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Abstract
The gap between speech and text modalities is a
major challenge in speech-to-text translation (ST).
Different methods have been proposed to reduce
this gap, but most of them require architectural
changes in ST training. In this work, we propose
to mitigate this issue at the pre-training stage, re-
quiring no change in the ST model. First, we
show that the connectionist temporal classifica-
tion (CTC) loss can reduce the modality gap
by design. We provide a quantitative compari-
son with the more common cross-entropy loss,
showing that pre-training with CTC consistently
achieves better final ST accuracy. Nevertheless,
CTC is only a partial solution and thus, in our sec-
ond contribution, we propose a novel pre-training
method combining CTC and optimal transport to
further reduce this gap. Our method pre-trains a
Siamese-like model composed of two encoders,
one for acoustic inputs and the other for tex-
tual inputs, such that they produce representa-
tions that are close to each other in the Wasser-
stein space. Extensive experiments on the stan-
dard CoVoST-2 and MuST-C datasets show that
our pre-training method applied to the vanilla
encoder-decoder Transformer achieves state-of-
the-art performance under the no-external-data
setting, and performs on par with recent strong
multi-task learning systems trained with external
data. Finally, our method can also be applied on
top of these multi-task systems, leading to further
improvements for these models.

1. Introduction
Speech-to-text translation (ST) is a challenging task that
often requires training two auxiliary tasks for better per-
formance: automatic speech recognition (ASR) and ma-
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chine translation (MT). This can be achieved through ei-
ther pre-training (Bérard et al., 2018; Bansal et al., 2019;
Wang et al., 2020e;b; Inaguma et al., 2020; Le et al., 2021)
or multi-task learning (joint-training) approaches (Anasta-
sopoulos & Chiang, 2018; Sperber et al., 2019; Le et al.,
2020; Chuang et al., 2020; Wang et al., 2020d; Tang et al.,
2021a;b; Ye et al., 2022). In particular, ASR and MT pre-
trainings have become arguably the most standard practice
in ST development. Indeed, they have been used to obtain
strong baselines in popular libraries such as ESPnet-ST (In-
aguma et al., 2020) and FAIRSEQ-S2T (Wang et al., 2020b),
or in standard benchmarks such as MuST-C (Di Gangi et al.,
2019) and CoVoST (Wang et al., 2020a;c). Furthermore,
they have also been adopted in most of the submissions to
recent IWSLT evaluation campaigns (Anastasopoulos et al.,
2021; 2022), as well as in strong multi-task learning sys-
tems (Tang et al., 2021a;b; 2022). Despite such ubiquity,
however, this approach presents a major limitation, namely
the so-called modality gap. Indeed, the ASR encoder is
pre-trained with speech inputs, whereas the MT decoder is
pre-trained with text inputs, thus plugging them together
(for ST fine-tuning) will naturally result in a mismatch. This
explains why simply using a pre-trained MT decoder in
addition to a pre-trained ASR encoder only brings modest
gains (Alinejad & Sarkar, 2020) or sometimes even worsens
the performance (Bahar et al., 2019).

In this work, we make two major contributions for mitigat-
ing the modality gap without requiring any changes in the
ST model. First, we show that CTC (Graves et al., 2006) is
a viable solution to this problem. We advocate through the-
oretical analysis and extensive experiments the use of CTC
for ASR pre-training over the standard cross-entropy (CE)
loss. Indeed, pre-training with vanilla CTC (i.e., without
additional components such as an external language model)
is not only faster but also yields better final ST results than
pre-training with CE. At first glance, this is rather counter-
intuitive, given that vanilla CTC generally produces inferior
ASR performance than CE (as already noticed by previous
work (Bahdanau et al., 2016; Kim et al., 2017) and again
confirmed by our experiments); but as we will point out, this
success of CTC may be attributed to the ability of its trained
encoder to align speech input to text output without the need
for a decoder. Even so, however, CTC can only partially
alleviate the modality gap. Therefore, in our second contri-
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bution, we propose a novel pre-training method combining
CTC and optimal transport (OT) (Peyré et al., 2019) to fur-
ther reduce this gap. It consists in training a Siamese-like
model composed of two encoders, one for acoustic inputs
and the other for textual inputs, such that they produce rep-
resentations (for the same sentence) close to each other in
the Wasserstein space, i.e., a metric space equipped with
the Wasserstein distance from OT. Furthermore, we intro-
duce positional encoding to the given OT formulation in
order to take into account the monotonicity of the inputs,
which brings an extra boost in performance. The proposed
method can work with or without MT pre-training, and in
the former case, it can use the pre-trained MT decoder in a
more effective way. Extensive experiments on the standard
CoVoST-2 (Wang et al., 2020c) and MuST-C (Di Gangi
et al., 2019) datasets show that our pre-training method ap-
plied to the vanilla encoder-decoder Transformer achieves
state-of-the-art performance under the no-external-data set-
ting. Moreover, simply increasing the model size and using
our method, still without using any additional data, leads
to performance that is competitive with recent strong multi-
task learning systems trained with external data. Finally,
our pre-training method can also be applied on top of these
multi-task systems, leading to further improvements. Our
code is available at github.com/formiel/fairseq.

2. Related Work
Speech-to-text translation The classical approach to ST
consists in using cascaded systems composed of an ASR
module followed by an MT one (Ney, 1999). This approach,
however, presents important limitations such as having high
latency and being susceptible to error propagation (Anas-
tasopoulos & Chiang, 2018). Recently, much effort has
been put into exploring end-to-end ST models (Duong et al.,
2016; Berard et al., 2016; Weiss et al., 2017; Di Gangi et al.,
2019; Inaguma et al., 2019; Le et al., 2020). While the first
works in this direction only obtained modest results (Berard
et al., 2016; Weiss et al., 2017), the most recent ones have
largely closed the gap with cascaded models, or even sur-
passed them (Bentivogli et al., 2021; Xu et al., 2021; Ye
et al., 2021; Tang et al., 2021b; Ye et al., 2022). Our work
falls into the end-to-end paradigm as a generic pre-training
approach that can be applied on top of existing methods.

Reducing pre-training modality gap Various methods
have been studied to bridge the gap between pre-training
and fine-tuning such as using cascaded encoders (Liu et al.,
2020; Wang et al., 2020d; Xu et al., 2021), adaptor mod-
ules (Bahar et al., 2019; Li et al., 2020; Xu et al., 2021), or
adversarial regularizer (Alinejad & Sarkar, 2020). Multi-
task learning (Tang et al., 2021a;b; 2022) can also be seen as
a solution to this problem. However, most of these methods
do not tackle the issue at the pre-training stage but adapt the
ST architecture to suit the pre-trained weights. Our method,

instead, can mitigate the modality gap at the pre-training
stage without requiring any changes in the ST model.

CTC for ST pre-training CTC has been used for pre-
training in previous work, either alone (Wang et al., 2020d)
or in combination with cross-entropy (Zhang et al., 2020;
Wang et al., 2020e; Xu et al., 2021; Inaguma et al., 2021)
or other losses (Bapna et al., 2022). However, no detailed
quantitative comparison with cross-entropy was given and
thus it was not clear how much CTC actually contributed
to the obtained improvements in these works. Our work
can be seen as complementary to them in terms of quanti-
tative analysis of CTC pre-training. We believe that this is
an important contribution as the effectiveness of CTC pre-
training has gone relatively unnoticed by the community.
For example, cross-entropy has still been used by default
in the most recent multi-task learning systems (Tang et al.,
2021a;b; 2022). We show that simply replacing it with CTC
leads to improvements for these methods.

Aligning speech and text Learning to align speech and
text features has been considered previously for ST, e.g., in
supervised pre-training (similar to our setting) using an ad-
versarial loss (Alinejad & Sarkar, 2020), in self-supervised
pre-training (Bapna et al., 2021; 2022; Chen et al., 2022;
Ao et al., 2022a;b), and in multi-task learning using Eu-
clidean distance (Liu et al., 2020; Dong et al., 2021; Tang
et al., 2021b), cosine distance (Chuang et al., 2020), Kull-
back–Leibler divergence (Tang et al., 2022), and contrastive
loss (Han et al., 2021; Ye et al., 2022; Ouyang et al., 2022).
We should point out that our architecture is conceptually
simpler than those proposed in these works. Moreover, our
framework can also work with OT replaced by any (differ-
entiable) distance function, including those aforementioned.
A major strength of OT, in addition to its strong theoretical
properties and practical performance, is that it can natively
handle sequences of different lengths, whereas Euclidean
distance and Kullback–Leibler divergence require some
length-matching mechanism such as average pooling (Liu
et al., 2020; Dong et al., 2021) or attention (Tang et al.,
2021b). Finally, we should note that speech-text alignment
has been used before in other speech applications beyond
ST, such as ASR (Juang, 1984; Berndt & Clifford, 1994),
text-to-speech (Haubold & Kender, 2007), or speaker iden-
tification (Yuan et al., 2008; Muda et al., 2010), with many
of them employing dynamic time warping (DTW) (Sakoe &
Chiba, 1978). A more complete survey on this topic can be
found in Liang et al. (2022, Section 4).

OT for speech translation OT has widely been used in
MT (Alqahtani et al., 2021; Alvarez-Melis et al., 2019;
Alvarez-Melis & Jaakkola, 2018; Grave et al., 2019; Chen
et al., 2019) and also in speech processing, e.g., for speech
enhancement (Lin et al., 2021). OT has not been used for
speech translation, to the best of our knowledge.
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3. The Modality Gap in ST Pre-training
We review the most standard pre-training recipe for ST
(namely ASR and MT pre-training, Figure 1) and discuss
the induced gap between pre-training and fine-tuning. In a
few words, we pre-train ASR and MT using the standard
encoder-decoder architecture with cross-entropy loss, then
the ASR encoder and MT decoder are used to initialize the
corresponding ST components. Note that MT pre-training is
optional as it does not necessarily improve the performance,
as discussed in Section 1. Here we assume that the ST model
is also the vanilla encoder-decoder. In more sophisticated
models such as multi-task learning (Tang et al., 2021b; Ye
et al., 2022), all pre-trained components are typically used.

“hello” Encoder Decoder CE “bonjour”

(a) MT pre-training (optional) Standard encoder-decoder with
cross-entropy (CE) loss. The encoder is often discarded for ST.

“heelllooo”
Encoder Decoder CE “hello”

(b) ASR pre-training Standard encoder-decoder with CE loss.
The decoder is often discarded for ST fine-tuning.

“heelllooo”
Encoder Decoder CE “bonjour”

(c) ST fine-tuning Using ASR encoder and MT decoder (if avail-
able) for initialization.

Figure 1. Standard pre-training recipe for ST.

In an attention-based encoder-decoder model, the decoder
typically learns to align the output with the input (Bahdanau
et al., 2015). In the above recipe, the two components of
ST are pre-trained to be aligned with other components
that are later discarded, causing a loss of alignment infor-
mation. This explains the modality discrepancy between
pre-training and fine-tuning. In the next section, we provide
an explanation why CTC can partially solve this problem.

4. ASR Pre-training with CTC
In this section, we revisit CTC (Graves et al., 2006) for
ASR pre-training and explain why it can be seen as a partial
solution to the modality gap issue.

4.1. Review of CTC

Given an input sequence of (typically pre-processed and
downsampled) audio features X ≜ (x1, . . . ,xS) (in some
language, e.g., English), the task of ASR consists in pre-
dicting its transcription (in the same language), repre-
sented by an output sequence y ≜ (y1, . . . , yT ), where

yt ∈ V ≜ {1, 2, . . . , V }, a vocabulary of size V . Suppose
that X is processed by an encoder to obtain

H ≜ (h1, . . . ,hS) ≜ ENCODE(X;θθθenc), (1)

where ht ∈ Rd is the hidden feature vector at time step
t ∈ {1, . . . , S}, and θθθenc is the parameters of the encoder.
The idea of CTC is to predict a token ât ∈ V for each time
step t based on ht:

p(at |X) = softmax(Wht + b)[at] ∀at ∈ V,
ât = argmax

at∈V
p(at |X), (2)

where W ∈ RV×d,b ∈ RV are the weights and biases
of the final linear layer, and v[i] denotes the ith element
of a vector v. The vector â ≜ (â1, . . . , âS) is called an
alignment. Clearly, this produces a sequence of tokens of the
same length as the input, which is not desirable. CTC solves
this by applying a collapsing function, y = COLLAPSE(â),
that removes consecutive repetitions. It is assumed that the
vocabulary contains a special blank token (“ ”, which the
model can predict), and collapsing only happens in-between
blanks and not across them:

COLLAPSE(heellllloooo) = helo

COLLAPSE(he ll l oo ) = hello.

The issue is that different â may collapse to the same y,
and thus the most likely assignment (given by (2)) may not
correspond to the most probable final output. To obtain
the latter, CTC actually computes the highest sum over the
probability of all its possible alignments using the Viterbi
algorithm (Viterbi, 1967). We refer the reader to Graves
et al. (2006) for further details.

4.2. CTC can reduce modality gap in pre-training

CTC has been used for pre-training in the ST literature,
either alone (Wang et al., 2020d) or with cross-entropy
(CE) (Zhang et al., 2020; Wang et al., 2020e; Xu et al.,
2021; Inaguma et al., 2021). This is illustrated in Figure 2
(compare with Figure 1b).

“heelllooo”
Encoder Decoder CE “hello”

CTC

Figure 2. Two flavors of ASR pre-training with CTC: with and
without CE. In the latter, the CE branch (in gray) is not present.

We will see later in the experiments that CTC completely
outperforms CE in terms of ST accuracy, while being on
par with CE+CTC, which indicates its importance for pre-
training. There is a simple explanation for this. On one
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hand, recall from our discussion in Section 3 that the dis-
crepancy between pre-training and ST fine-tuning is caused
by the loss of alignment information after discarding the
ASR decoder and the MT encoder. On the other hand, recall
from Section 4.1 that the ASR encoder trained with CTC
already learns to align speech input to text output with-
out a decoder, which means that no alignment information
will be lost when the encoder is used for ST fine-tuning,
as the encoder already contains this information. That is,
even though the model trained with CE is stronger (than
CTC) in general (Bahdanau et al., 2016; Kim et al., 2017),
the contribution of the CE decoder to the overall perfor-
mance could be so important that removing it would make
the CE encoder (alone) weaker than the CTC encoder. This
is indeed confirmed by our experiments (Appendix C.1).

Finally, CTC obviously cannot recover the loss of alignment
information when discarding the MT encoder, and thus it
should be considered only as a partial solution. In the next
section, we present a method for filling this gap.

5. Optimal Transport for Pre-training
This section presents our core contribution for reducing the
modality gap in ST. The idea is to train the speech encoder
to generate representations that are close to those produced
by a text encoder. The challenge here is that, given the
same sentence, its speech features typically have a much
longer sequence length than its text features, which makes it
difficult to “compare” them. The Wasserstein distance from
optimal transport (OT) turns out to be a suitable solution.

5.1. Review of discrete optimal transport

We first give a brief review of OT (Peyré et al., 2019).

Let α be a discrete probability distribution represented by
positive masses a1, . . . , am (where a1 + · · · + am = 1)
at locations u1, . . . ,um ∈ Rd, respectively (i.e., ai is the
quantity of mass at ui). Suppose we want to form a new dis-
tribution β with masses b1, . . . , bn (where b1+· · ·+bn = 1)
at new locations v1, . . . ,vn ∈ Rd by transporting all the
masses from α to β. Suppose that the cost of transporting
a unit of mass from ui to vj is given by c(ui,vj), where
c : Rd × Rd → R+ is some function. Let Zij ≥ 0 be the
quantity of mass to be transported from ui to vj , which in-
duces a cost of Zijc(ui,vj). The total transportation cost is
thus

∑m
i=1

∑n
j=1 Zijc(ui,vj). The total quantity of mass

that β receives from ui is
∑n

j=1 Zij , which must equal the
mass stored at ui, thus

∑n
j=1 Zij = ai. Similarly, the total

quantity of mass that vj receives from α is
∑m

i=1 Zij , and
thus

∑m
i=1 Zij = bj . OT consists in finding the transporta-

tion plan Z∗ that has the minimum cost:

min
Z

⟨C,Z⟩ s.t. Z1n = a,Z⊤1m = b,Z ≥ 0, (3)

where 1n denotes the n-dimensional vector of ones, a =
(a1, . . . , am), b = (b1, . . . , bn), Z and C denote the m×n
matrices whose elements are Zij and Cij = c(ui,vj).

Wasserstein loss Let Z∗ denote the optimal solution to (3).
If we define W (α, β) = ⟨C,Z∗⟩ (i.e., the minimum trans-
portation cost), then W can be seen as a distance measure
between α and β, and is called the Wasserstein distance. In
theory, one can use W as a loss function (called the exact
Wasserstein loss (Frogner et al., 2015)) because it is differ-
entiable almost everywhere. However, evaluating this loss
requires solving (3), which is expensive in practice. It is
typically better to work with an upper-bound approximation
of W , defined as (subject to the same constraints as in (3))

Wλ(α, β) = min
Z

{⟨C,Z⟩ − λH(Z)} , (4)

where H is the entropy function and λ > 0 is a regular-
ization weight. The function Wλ is not only fully differen-
tiable but also very efficient to evaluate using the so-called
Sinkhorn algorithm (Sinkhorn & Knopp, 1967). We refer
the reader to Cuturi (2013) and Frogner et al. (2015) for de-
tails. From now on, “Wasserstein distance” (or loss) refers
to this regularized variant Wλ.

5.2. Learning to align speech and text features

In this section, we present our proposed model for learning
to align speech and text features. Recall that our goal was to
mitigate the modality gap issue arising in ST, which involves
the discrepancy between acoustic and textual representa-
tions. To this end, we propose an architecture composed of
two encoders, one for speech inputs and the other for text
inputs. Then, given an input pair of an audio sequence and
its transcript, we feed them to the corresponding encoders
and train the model to produce features that are close to
each other in terms of Wasserstein distance. In addition, as
ASR data (audio together with transcripts) are assumed to
be available for this model, we make further use of them to
enrich the learned speech representations by jointly training
with a CTC loss. This is summarized in Figure 3.

Wasserstein distance between speech and text We have
mentioned the Wasserstein distance between two sets of fea-
tures, without having formally defined it (note that the previ-
ous section only presents the Wasserstein distance between
two probability distributions). Let U = (u1, . . . ,um) and
V = (v1, . . . ,vn) be the output speech and text features,
respectively, where ui ∈ Rd and vj ∈ Rd for all i, j. Here
we have assumed that the hidden dimensions of the two
encoders are the same and equal to d, but the sequence
lengths m and n can be different (typically m is much larger
than n). Define two distributions α and β whose masses
are uniformly distributed at locations (u1, . . . ,um) and
(v1, . . . ,vn), respectively; here uniform distribution means
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“hello” Text Encoder

Speech Encoder
“heelllooo”

speech features

text features

CTC OT

Figure 3. Our proposed Siamese-like architecture for learning to align speech and text representations. An input pair of audio sequence
and its transcript are fed to the corresponding speech and text encoders, then their outputs are compared using optimal transport (OT). The
speech features are enhanced by jointly training with CTC.

that ai = 1
m and bj = 1

n for all i, j, where a and b are de-
fined as in the previous section. Define the cost of transport-
ing a unit of mass from ui to vj as c(ui,vj) = ∥ui − vj∥p
for some p ≥ 1 (typically p = 2). Then, the Wasserstein
distance Wλ(α, β) (see (4)) can be seen as the discrepancy
between U and V. Without ambiguity, we refer to this quan-
tity as the Wassertein distance between these two sequences.
The obtained optimal transportation plan can then be seen
as an alignment map between the two sequences.

Positional encoding for OT An important property of the
above Wasserstein distance between two sets of features
is that it does not take into account the sequence orders.
Indeed, if we replace one of the sequences by any of its
permutations, then the Wasserstein distance remains the
same. While this property can be useful in many situations,
taking into account the sequence orders could be beneficial
in our case due to the nature of the task: the inputs to our
encoders are monotonically aligned. That is, the first audio
frames should represent the same part of the sentence as
the first text tokens do, and vice-versa (note that this is true
for ASR but not for MT or ST). We propose to integrate
this prior information into the OT model as follows. The
idea is to modify the cost matrix C such that transporting
from one location to another will have a high cost if their
positions in the corresponding sequences are very different.
For example, transporting from u1 to v1 (or from um to
vn) should induce a low cost while transporting from u1

to vn should induce a high cost. As the input sequence
lengths can be very different, we normalize them to unit
length so that the first element of the sequence has position
0 and the last has position 1. That is, the position vec-
tors (1, 2, . . . ,m) and (1, 2, . . . , n) will be normalized to,
respectively, (s1, s2, . . . , sm) and (t1, t2, . . . , tn), where

si =
i− 1

m− 1
and tj =

j − 1

n− 1
. (5)

Then, a simple way of including the positional constraint
into the cost matrix could be to define, e.g., Cij =
c(ui,vj) + γ |si − tj | (where γ > 0 is a weight scalar
that can be empirically tuned), which would penalize any

mismatch in terms of positions.1 However, this may cause
inefficiency in practice. Indeed, in our case c is an ℓp-norm
for some p ≥ 1 (according to the previous paragraph), for
which the Wasserstein distance can be evaluated very effi-
ciently without computing and storing the matrix C explic-
itly (Feydy et al., 2019); the above modification of C could
make Cij no longer an ℓp-norm (unless p = 1), thus losing
this efficiency. Therefore, given that c is an ℓp-norm, we
propose to modify the cost matrix as follows:

Cij =
(
∥ui − vj∥pp + γp |si − tj |p

)1/p

. (6)

Put u′
i = [ui; γsi] and v′

j = [vj ; γtj ], then the above is just
∥u′

i −v′
j∥p. That is, we have constructed a new feature vec-

tor at each sequence element by appending its normalized
position to its existing feature vector, so that performing OT
on these new features is equivalent to performing it on the
original features using the new cost matrix defined by (6).

Beyond optimal transport Clearly, the proposed method
can also work with OT replaced by any differentiable loss
function, including (soft) DTW (Cuturi & Blondel, 2017),
adversarial loss (Ganin et al., 2016), Euclidean distance,
or KL divergence (the latter two cannot work directly on
sequences of different lengths but require some length-
matching mechanism such as average pooling (Liu et al.,
2020; Dong et al., 2021) or attention (Tang et al., 2021b);
see also Section 2 and Appendix A for detailed descriptions
of these methods). We will see in later experiments that OT
turns out to have the best practical performance (in addition
to its strong theoretical properties, such as being a metric).

5.3. Proposed recipes for speech translation

Equipped with the above method for learning to align acous-
tic and textual representations, we are now ready to present

1It is worth pointing out that, even though the alignment of the
speech and text features is supposed to be monotonic, it is not nec-
essarily linear. For example, the speech features at (normalized)
position 0.5 need not correspond to the text features at position
0.5. Thus, our mismatch cost can be viewed as favoring a linear
approximation of the true alignment (which is unknown).
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“hello” Encoder Decoder CE “bonjour”

(a) MT pre-training Standard and same as Figure 1a.

“hello” Encoder

Encoder
“heelllooo”

CTC OT

(b) ASR pre-training Speech encoder and text encoder learn to
produce similar representations in the Wasserstein space. The text
encoder is initialized with the pre-trained MT encoder.

“heelllooo”
Encoder Decoder CE “bonjour”

(c) ST fine-tuning Both pre-trained ASR encoder and MT decoder
are used for initialization.

Figure 4. Our proposed pre-training recipe for ST.

our proposed training recipe for ST. As shown in Figure 4,
our recipe differs from the standard one (Figure 1) only at
the ASR pre-training stage. We follow the above method
(Section 5.2) and train a Siamese-like model using CTC and
OT. Here the text encoder is initialized with the pre-trained
MT encoder, which helps the speech encoder learn to align
with the text decoder right at the pre-training stage. Note
that freezing the text encoder during ASR pre-training also
produced good results in our experiments, though not as
good as training both encoders. In addition, a simplified
variant of our recipe can also be obtained by omitting MT
pre-training. In that case, the text encoder in ASR pre-
training is initialized randomly. As shown later in Section 6,
this recipe also outperforms ASR pre-training with CTC
and cross-entropy, indicating the effectiveness of OT.

6. Experiments
In this section, we provide empirical evidence for the effec-
tiveness and versatility of our proposed method. Section 6.1
outlines the experimental setup, while Section 6.2 conducts
ablation studies to justify our various design choices. Com-
parative results of the presented pre-training methods are
discussed in Section 6.3, and comparison to state-of-the-art
methods is presented in Section 6.4. Finally, Section 6.5
demonstrates that our pre-training method can also be ap-
plied to multi-task learning, showing its generality.

6.1. Experimental setup

Datasets We evaluate the pre-training methods presented
in this paper on the standard MuST-C (Di Gangi et al., 2019)
and CoVoST-2 (Wang et al., 2020c) datasets. MuST-C is a

large-scale one-to-many ST dataset built from audio record-
ings of TED Talks, covering pairs from English (En) to 8
European languages: Dutch (Nl), French (Fr), German (De),
Italian (It), Portuguese (Pt), Romanian (Ro), Russian (Ru),
and Spanish (Es). Each direction includes a triplet of speech,
transcription, and translation. CoVoST-2 is a large and diver-
sified multilingual ST corpus based on the Common Voice
project (Ardila et al., 2020). It covers translations from 21
source languages into English and from English into 15
target languages, many of which involves non-European
and very low-resource languages. We refer the reader to the
original papers for further details. It is important to note
that all our analyses are conducted on the dev splits of these
datasets to prevent overfitting their test sets. Then, only
the best-performing models will be selected for comparison
with existing methods on the test sets.

Training settings While we focus on multilingual transla-
tion (i.e., a single model for all language pairs), our ablation
analysis is conducted under the bilingual setting with only
two language pairs (one model for each), due to the high
training cost. For pre-training, we consider two settings:
with and without MT pre-training. In the latter, some com-
ponents are initialized randomly (see Figures 1 and 4).

Implementation details Our implementation is based on
the FAIRSEQ S2T toolkit (Wang et al., 2020b). We follow
closely previous work (Wang et al., 2020b;c) for setup, in-
cluding models, data processing, training and evaluation
settings (see Appendix B for details). In particular, we use
a model whose speech encoder, speech decoder, and text
decoder have respectively 12, 6, and 6 layers. For the anal-
ysis, we use a medium architecture with hidden dimension
d = 512. In the final experiments where we aim to reach
state-of-the-art performance for comparison with existing
methods, we also use the large variant where d = 1024.

Loss functions As CTC plays a crucial role in the final
ST performance, when training it jointly with another loss
(CE or OT), we keep it unchanged and scale the latter, i.e.,
the final loss will be either CTC + αCE or CTC + αOT.
We performed a grid search for α among [0.1, 0.2, 0.5, 1.0]
on MuST-C En-De and found that α = 0.1 works well
for both CE and OT (the other values yielded similar per-
formance). Therefore, we set α = 0.1 in all experiments.
Note that previous work (Wang et al., 2020e; Zhang et al.,
2020) used 0.7CE + 0.3CTC, but we found that this com-
bination performs worse than our choice (see Table 10 in
Appendix C.2), which again indicates the importance of
CTC. For the Wasserstein loss, we use the efficient GPU
implementation by Feydy et al. (2019) with the default pa-
rameters (regularization weight λ = 1 and ℓ2 cost function).
Tuning these could further boost the performance, but we
use the default for simplicity. For the weight γ of OT po-
sitional encoding (see (6)), after doing a quick grid search
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among [0.1, 0.5, 1.0, 5.0, 10.0] on a small training subset of
MuST-C En-De, we found that γ = 1.0 works reasonably
well and thus we use this value in all experiments.

6.2. Ablation analysis

We first conduct ablation studies to support some of our
claims and to validate the rationale behind various design
choices for our method. The following results are obtained
under the bilingual setting using two language pairs (En-De
and En-Fr) of the MuST-C dev sets, and with-MT setting.
More ablation results can be found in Appendix C.

ASR vs. ST performance The results shown in Table 1
strongly support our claim that CTC obtains better final ST
accuracy than CE (and not far off from CTC+CE) despite
its inferior ASR performance (recall our claim that CTC can
reduce modality gap). Comparing CTC and CTC+OT, we
see that OT could only improve WER very slightly (0.1-0.2
points), whereas the gain in the final ST performance is
more important (0.4-0.7 points). This indicates that OT has
a bigger impact on the final ST performance than merely
improving WER during ASR pre-training.

Table 1. BLEU and WER (in parentheses) on MuST-C dev sets.

Method En→De En→Fr Training time*

CE 23.04 (13.1) 28.89 (12.6) 7.10h
CTC 24.08 (17.7) 29.91 (17.3) 6.27h
CTC+CE 24.28 (12.9) 30.21 (11.9) 7.78h
CTC+OT 24.74 (17.6) 30.31 (17.1) 7.62h
*100 epochs on En-Fr, batch size 40K tokens, 8 V100 GPUs

Table 2. BLEU and WER (in parentheses) on MuST-C dev sets for
different distance functions in Siamese pre-training.

Metric Length-match En→De En→Fr
(CTC alone) - 24.08 (17.7) 29.91 (17.3)

Euclidean
average 24.41 (18.1) 29.86 (17.3)
attention 24.30 (18.6) 29.81 (19.2)
interpolation 23.94 (19.3) 29.77 (17.8)

KL-diverg. attention 24.56 (18.3) 30.10 (17.1)
interpolation 24.26 (18.1) 29.96 (17.4)

Adversarial - 23.73 (20.6) 29.98 (19.6)

Wasserstein - 24.74 (17.6) 30.31 (17.1)

OT vs. other distances As discussed in Section 5.2, our
Siamese pre-training can use different distance functions
than OT (Appendix A), including Euclidean distance, KL
divergence, Soft-DTW (Cuturi & Blondel, 2017), or adver-
sarial loss (Ganin et al., 2016; Lample et al., 2018; Alinejad
& Sarkar, 2020). The first two require a length-matching

operation to be applied to the sequences, for which we ex-
periment with average pooling (Liu et al., 2020; Dong et al.,
2021), cross-attention (Tang et al., 2021b), and linear inter-
polation (ours). Soft-DTW is excluded due to its prohibitive
memory footprint. For all methods we perform the same
hyper-parameter search (Section 6.1). Table 2 shows that
Euclidean distance and adversarial loss do not always im-
prove over CTC,2 while KL divergence and OT consistently
improve over that baseline, with OT being the best.

Different variants of Siamese pre-training As discussed
in Section 5.3, our proposed method can have different
variants: weight sharing between the encoders,3 and using
(or not) positional encoding for OT (Section 5.2). From the
results in Table 3, we observe that, without MT pre-training,
sharing the encoders tends to give slightly better results,
while it is the opposite with MT pre-training (but with a
larger margin). Using OT positional encoding gives better
results in most cases. Therefore, we disable weight sharing
and use positional encoding in the remaining experiments.

Table 3. BLEU for different variants of Siamese-PT.

Shared Positional En-De En-Fr
w

/o
M

T - - 23.69 29.69
✓ - 24.12 29.73
- ✓ 23.91 29.83
✓ ✓ 23.89 29.86

w
ith

M
T - - 24.29 30.04

✓ - 23.99 29.68
- ✓ 24.74 30.31
✓ ✓ 24.29 29.64

6.3. Comparative results on the dev sets

In this section, we compare the performance of the presented
pre-training methods (CE, CTC, CTC+CE, and CTC+OT).
A preliminary comparison has appeared in the previous sec-
tion (Table 1), but under a restricted setting (bilingual and
with-MT). Here we provide more extensive results where
we also consider the multilingual (our focus) and without-
MT settings. As the number of configurations is still high
at this point, we keep using the dev sets instead of the test
sets for performance evaluation. Figure 5 presents the re-
sults in terms of relative BLEU with respect to the baseline
CE, and Table 4 shows absolute BLEU. For the very low-
resource languages in CoVoST-2 many-to-one (X→En), the
results are very poor as no external data is used (0.13–4.56
points, see Table 13 in Appendix D), which makes the vari-
ance too high to draw comparisons. Therefore, we exclude

2Our results of adversarial loss differs from Alinejad
& Sarkar (2020) but in line with Lample et al. (2018). See
github.com/facebookresearch/UnsupervisedMT/issues/40.

3The speech encoder has 6 layers more than the text one, so
only the last 6 are shared.
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Figure 5. Results on the dev sets, relative to CE. The postfix “mt” in the legends indicates that MT pre-training was performed (see
Figures 1a and 4a). Best viewed in color. Detailed results can be found in Tables 12–14 in Appendix D.

these languages from the presentation, indicated by an as-
terisk: X*→En (see Table 13 for complete results). We
observe that CTC outperforms CE while being competitive
with CTC+CE. In general, CTC+OT is the best perform-
ing method and is competitive with all other recipes even
without MT pre-training.

Table 4. BLEU on the dev sets. The prefixes “(b)” and “(m)”
mean bilingual and multilingual (on average). See Tables 12–14 in
Appendix D for detailed results.

Method MuST-C CoVoST-2

(b)De (b)Fr (m)avg En→X X*→En

w
/o

M
T CE 22.39 28.48 25.42 20.50 19.64

CTC 23.25 29.87 26.51 21.71 20.27
CTC+CE 23.77 29.74 26.47 21.83 20.26
CTC+OT 23.91 29.83 26.60 22.36 21.12

w
ith

M
T CE 23.04 28.89 25.62 21.17 20.07

CTC 24.08 29.91 26.52 22.10 20.53
CTC+CE 24.28 30.21 26.57 22.22 20.56
CTC+OT 24.74 30.31 26.67 22.82 21.46

6.4. Comparison to state-of-the-art methods

In this section, we compare our multilingual models (with
MT pre-training) to state-of-the-art methods. Recall that
we only use a simple vanilla encoder-decoder architec-
ture. Tables 5 and 6 show the results on CoVoST-2 and
MuST-C (test sets), respectively. For reference, we name
our proposed pre-training method Siamese-PT (CTC+OT).
We should note that due to the low-resource nature of
CoVoST-2, a comparison to methods using external data
would be highly unfair. Therefore, we only compare
against Wang et al. (2020c) whose results were obtained
under the same settings as ours. Our proposed method can
certainly use external data, which is left for future work.

We observe the effectiveness of CTC pre-training from the

MuST-C results in Table 6. It surpasses CE by 0.4 points
(29.2 vs. 28.8; for the medium model the gap is 1.2 points,
see Table 17); and adding CE to CTC did not help. Siamese
pre-training with OT helps improve BLEU score to 29.8.
Moreover, we have improved from the previous best results
in the no-external-data and multilingual settings (Le et al.,
2021) (4th row) by 3.2 points (29.8 vs. 26.6). Finally, our
best result even surpasses previous strong and sophisticated
multi-task learning systems (Tang et al., 2021b; Ye et al.,
2022) that were trained on external data. The effectiveness
of CTC and OT is again confirmed on CoVoST, as shown in
Table 5, where Siamese-PT also achieved the best results.

Table 5. BLEU on CoVoST-2 test set. “X**→En” denotes the av-
erage excluding very low-resource languages (see Section 6.3) and
those not reported in Wang et al. (2020c, Table 3). See Tables 15
and 16 (Appendix D) for details. The reported results are obtained
using large model for En→X and medium model for X**→En,
which is better than the large one (Wang et al., 2020c).

Method En→X X**→En
Wang et al. (2020c) 19.4 24.5
CE 19.2 24.6
CTC 19.8 24.7
CTC+CE 19.7 24.5
Siamese-PT (this work) 21.5 25.5

6.5. Application to multi-task learning

As a proof of concept of the wide applicability of our
method, we apply it on top of the multi-task learning system
by Tang et al. (2021b), where they pre-trained the ASR com-
ponent with CE loss. We replicate their results on MuST-C
En-De and perform further experiments using different ASR
pre-training methods discussed in the paper. The results are
shown in Table 7. We observe again the superiority of CTC
over CE. Simply replacing CE with CTC yields an improve-
ment of 0.26 points, whereas using them together slightly
decreases the performance. Our Siamese-PT reached the
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Table 6. Performance on MuST-C test set. Due to space constraints, only the large model and only some existing methods are included.
Our results for the medium model are also competitive. See Table 17 in Appendix D for a complete list. The column “Multi” denotes
multilingual models (instead of individual bilingual ones).

Method Multi External Data BLEU

Unlabeled Labeled de es fr it nl pt ro ru avg

FAIRSEQ S2T (Wang et al., 2020b) ✓ - - 24.5 28.2 34.9 24.6 28.6 31.1 23.8 16.0 26.5
ESPnet-ST (Inaguma et al., 2020) ✓ - - 22.9 28.0 32.7 23.8 27.4 28.0 21.9 15.8 25.1
Dual-decoder (Le et al., 2020) ✓ - - 23.6 28.1 33.5 24.2 27.6 30.0 22.9 15.2 25.6
Adapters (Le et al., 2021) ✓ - - 24.7 28.7 35.0 25.0 28.8 31.1 23.8 16.4 26.6
BiKD (Inaguma et al., 2021) - - - 25.3 - 35.3 - - - - - -
JointSpeechText (Tang et al., 2021b) - - ✓ 26.8 31.0 37.4 - - - - - -
TaskAware (Indurthi et al., 2021) - - ✓ 28.9 - - - - - - - -
ConST (Ye et al., 2022) - ✓ ✓ 28.3 32.0 38.3 27.2 31.7 33.1 25.6 18.9 29.4
STPT (Tang et al., 2022) - ✓ ✓ - 33.1 39.7 - - - - - -

CE pre-training

MEDIUM

✓ - - 24.6 28.7 34.9 24.6 28.4 30.7 23.7 15.9 26.4
CTC pre-training ✓ - - 25.9 29.7 36.6 25.6 29.6 32.0 24.6 16.7 27.6
CTC+CE pre-training ✓ - - 25.6 29.5 36.4 25.2 29.5 31.6 24.5 16.5 27.4
Siamese-PT (this work) ✓ - - 26.2 29.8 36.9 25.9 29.8 32.1 24.8 16.8 27.8

CE pre-training

LARGE

✓ - - 26.9 30.8 37.7 26.7 30.8 33.3 26.2 17.9 28.8
CTC pre-training ✓ - - 27.6 31.4 38.2 27.2 31.1 33.6 26.4 18.4 29.2
CTC+CE pre-training ✓ - - 27.2 31.2 38.0 27.0 31.5 33.7 26.2 18.3 29.1
Siamese-PT (this work) ✓ - - 27.9 31.8 39.2 27.7 31.7 34.2 27.0 18.5 29.8

highest accuracy with an improvement of 0.46, showing that
our pre-training method is not only effective for vanilla ST
but also complementary to multi-task learning.

Table 7. Results of the multi-task learning system of Tang et al.
(2021b), using different ASR pre-training methods.

ASR pre-training method En-De

CE (reported in Tang et al. (2021b)) 26.74
CE (reproduced) 26.78
CTC 27.04
CTC+CE 26.69
Siamese-PT (CTC+OT, proposed) 27.20

7. Conclusion
In this paper, we have discussed the gap between speech
and text modalities as a challenge in speech-to-text transla-
tion, and proposed to overcome it at the pre-training stage.
We have shown that ASR pre-training using the CTC loss
can reduce this modality gap, but only partially. To further
mitigate this issue, we have proposed a novel pre-training
method in which we train a Siamese-like model composed
of a speech encoder and a text encoder, such that they pro-
duce representations that are close in the Wasserstein space.
Extensive experiments on two popular ST datasets have
demonstrated the effectiveness of our method. In particular,
our results surpassed previous work in the non-external-data
setting, while being on par with recent strong multi-task
learning systems trained with external data. Our pre-training
method can also be applied to the multi-task learning system,
yielding further improvements for these methods.

Limitations and future work Even though the proposed
pre-training recipe (Section 5.3) can use additional ASR and
MT data, we have only considered the setting without exter-
nal data. While this setting is important in many real-world
scenarios, by restricting to it we have missed the opportunity
to show the effectiveness of the proposed method on very
low-resource languages, as discussed in Section 6.3. On
the other hand, the proposed method for learning to align
speech and text features (Section 5.2) is quite generic and
has potential applications beyond pre-training for ST. For
example, the proposed OT speech-text alignment could be,
in principle, used as an additional loss in multi-task learning.
We aim to address all these open questions in future work.

Societal impact The technology developed in this work
can be used in surveillance systems, which might raise pri-
vacy concerns. Therefore, considerations should be taken
when releasing or deploying these models to the public.
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A. Distance Functions for Speech-Text
Alignment

We provide a more detailed description of alternative loss
functions (other than OT) for learning to align speech and
text features, as discussed in Section 5.2. Recall that our
notations for the output speech and text features are U =
(u1, . . . ,um) ∈ Rd×m and V = (v1, . . . ,vn) ∈ Rd×n,
respectively, where ui ∈ Rd and vj ∈ Rd for all i, j. As
some distance functions require the sequence lengths to be
the same (which is not the case, recall that typically m ≫ n),
we first present methods for making this happen.

A.1. Length-matching operations

In general, the sequences U and V are processed to obtain
new sequences Ũ ∈ Rd×p and Ṽ ∈ Rd×p that have the
same length p (which needs not equal m or n):

Ũ, Ṽ = LENGTHMATCHING(U,V). (7)

We have experimented with the following three length-
matching operations.

Average pooling This consists in simply taking the global
average of each sequence (Liu et al., 2020; Dong et al.,
2021):

Ũ =
1

m

m∑
i=1

ui, Ṽ =
1

n

n∑
j=1

vj . (8)

Note that before using this averaging operation, one may
also apply some kind of shrinking mechanisms to reduce
the length of the speech representations such as using CTC
labels as guidance to remove contiguous blanks or repeated
predictions (Liu et al., 2020), or using a shrinking layer, for
example a 2D convolutional layer followed by a normaliza-
tion one (Dong et al., 2021). These shrinking operations do
not necessarily make the length of the speech output equal
to that of the text one. For simplicity, we did not experiment
with any type of shrinking mechanisms.

Interpolation This consists in resizing the longer se-
quence to the same length as the shorter one:

Ũ = INTERPOLATE(U, n), Ṽ = V, (9)

The function INTERPOLATE(·, ·) takes as inputs the se-
quence U (of length m) together with the desired di-
mension n and produces the interpolated sequence Ũ of
length n. The most popular method of interpolation is
perhaps linear interpolation, which we use in our exper-
iments, but more advanced ones such as cubic interpola-
tion can also be used. In our implementation, we used Py-
Torch’s nn.functional.interpolate function (with ar-
gument mode=‘linear’). Since interpolation is a rather
standard operation, we omit further details.

Attention-based transformation This was proposed
by Tang et al. (2021b) under the name Cross-Attentive Reg-
ularization (CAR), which consists in using cosine atten-
tion (Graves et al., 2014) to obtain:

Ũ = U softmax(Ū⊤V̄) ∈ Rd×n, (10)

Ṽ = V softmax(V̄⊤V̄) ∈ Rd×n, (11)

where Ū = (ū1, . . . , ūm) and V̄ = (v̄1, . . . , v̄n) are se-
quences of normalized features:

ūi =
ui

∥ui∥2
, i = 1, . . . ,m, (12)

v̄j =
vj

∥vj∥2
, j = 1, . . . , n. (13)

A.2. Distance functions

We present four different distance functions: Euclidean dis-
tance, Kullback-Leibler (KL) divergence, adversarial loss,
and dynamic time warping (DTW). For the first two, we
apply one of the length-matching operations presented in
the previous section.

Euclidean distance This is computed as

deuc(Ũ, Ṽ) = ∥Ũ− Ṽ∥2 =

√√√√ p∑
i=1

∥ũi − ṽi∥22, (14)

14

https://pytorch.org/docs/stable/generated/torch.nn.functional.interpolate.html


Pre-training for Speech Translation: CTC Meets Optimal Transport

where p denotes the length of the sequences resulting from
the length-matching mechanism. In particular, p = 1 for
average pooling and p = n for interpolation or attention.

Kullback-Leibler divergence Let a = (a1, . . . , ad) and
b = (b1, . . . , bd) (where ai, bi ∈ [0, 1] and 1⊤a = 1⊤b =
1) be the masses representing two discrete probability distri-
butions. The KL divergence between these distributions is
given by

KL(a ∥ b) =

d∑
k=1

ak log
ak
bk

. (15)

For two input sequences Ũ ∈ Rd×p and Ṽ ∈ Rd×p (already
length-matched), we first normalize the features to obtain
probability vectors:

ūi = softmax(ũi), i = 1, . . . , p, (16)
v̄i = softmax(ṽi), i = 1, . . . , p. (17)

Then our KL-based distance between the input sequences is
given by:

dKL(Ũ, Ṽ) =

p∑
i=1

KL(ūi ∥ v̄i). (18)

Adversarial loss The idea is to add a discriminator mod-
ule that learns to distinguish speech features from text fea-
tures (Ganin et al., 2016; Lample et al., 2018; Alinejad &
Sarkar, 2020) (highly inspired by adversarial generative net-
works (Goodfellow et al., 2014)). In our case, the speech
and text encoders act as a generator that tries to deceive
the discriminator. Intuitively, if the discriminator fails to
distinguish between the speech and text features, then we
can say that the encoders are successful at producing speech
and text features that are close to each other. To achieve this,
we add two loss functions (in addition to existing ones such
as CTC):

1. A discriminator loss that helps train the discriminator
to distinguish between the speech and text features.

2. A generator loss that helps train the generator (i.e., the
two encoders) to fool the discriminator.

Then, training alternates between updating the discrimina-
tor’s parameters (while freezing the generator) and updating
the generator’s parameters (while freezing the discrimina-
tor). More formally, given an input feature vector u ∈ Rd,
the discriminator outputs a value p ∈ [0, 1] representing
the probability of u being produced by a speech encoder
(or equivalently, 1 − p denotes the probability of u being
produced by the text encoder):

p = DISCRIMINATOR(u). (19)

For a pair of sequences U = (u1, . . . ,um) ∈ Rd×m and
V = (v1, . . . ,vn) ∈ Rd×n produced by the speech and
text encoders, respectively, we compute the discriminator
loss as

Ldisc(U,V) =

m∑
i=1

BCE(pi, 1) +

n∑
j=1

BCE(qj , 0), (20)

where

pi = DISCRIMINATOR(ui), (21)
qj = DISCRIMINATOR(vj), (22)

and BCE(·, ·) is the binary cross-entropy loss:

BCE(p, y) = −y log p− (1− y) log(1− p), (23)

where y ∈ {0, 1} is the ground-truth label.

The generator loss is similar, except that we switch the
labels:

Lgen(U,V) =

m∑
i=1

BCE(pi, 0) +

n∑
j=1

BCE(qj , 1). (24)

We use the same set of hyper-parameters as Lample et al.
(2018) (which was also used by Alinejad & Sarkar (2020)).
In particular, our discriminator is a 3-layer feedforward net-
work with hidden dimension 1024 and leaky ReLU activa-
tions (with negative slope 0.2), each followed by a Dropout
layer of probability 0.1.

Differentiable DTW Dynamic time warping (Sakoe &
Chiba, 1978) is a popular approach to measuring the simi-
larity between two time series, making it a natural choice to
the problem of aligning speech and text, both of which are
temporal sequences. A differentiable variant of this func-
tion has been proposed (Cuturi & Blondel, 2017) to allow
training with stochastic gradient descent. Even though this
is also available in our implementation, we did not include
it in our experiments due to its prohibitively high memory
usage. Therefore, we refer the reader to Cuturi & Blondel
(2017) for further details.

B. Further Implementation Details
Data processing The speech input features are 80-
dimensional log Mel filter-bank. Utterances having more
than 3000 frames are removed for GPU efficiency. For data
augmentation, following (Wang et al., 2020b;c) we used
SpecAugment (Park et al., 2019) with LibriSpeech basic
(LB) policy (no time warping) in the bilingual MuST-C
and multilingual settings of CoVoST-2. For multilingual
MuST-C, we applied LibriSpeech double (LD) policy. The
inputs to the text encoder in our ASR and MT pre-training
phases are in their phoneme pronunciation form, except for
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the many-to-one case in which we used the 10k unigram
vocabulary (Kudo & Richardson, 2018) learned on the train-
ing text of all source languages. Following (Tang et al.,
2021b), the grapheme-to-phoneme conversion is done using
the g2p en package (Lee & Kim, 2018). The resulting En-
glish phoneme vocabulary has the size of 134 tokens. On
the target side for MT and ST models, we used 10K unigram
vocabulary learned on all relevant target training text. More
specifically, the vocabulary is learned on German or French
training text in the bilingual case, and on the concatenation
of all target training texts in the multilingual ones.

Training hyper-parameters We used the Adam opti-
mizer (Kingma & Ba, 2015) with learning rate linearly
increased for the first N warmup steps to a value ηmax,
then decreased proportionally to the inverse square root of
the step counter. ηmax is set to 2×10−3 in medium ASR/ST
experiments and to 5× 10−4 in experiments using large ar-
chitecture. For MT experiments, ηmax = 5 × 10−3. N is
set to 10000 in ASR/ST experiments and to 4000 in MT
experiments. Label smoothing is set to 0.1 (Szegedy et al.,
2016) for models using cross-entropy loss. All ST mod-
els on MuST-C are trained up to 50 epochs and those on
CoVoST-2 are trained up to 50 and 100 epochs for En→X
and X→En, respectively. The last 10 checkpoints are aver-
aged for decoding using a beam size of 5.

Metrics We report the case-sensitive detokenized BLEU
scores (Papineni et al., 2002; Post, 2018), except for English-
Japanese and English-Chinese where we report character-
level BLEU (Wang et al., 2020c). For ASR performence,
we report Word Error Rate (WER).

Hardware and training time Medium ASR/ST models
were trained on 8 NVIDIA V100 GPUs while large ASR/ST
ones were trained on 32 A100 GPUs. All MT models were
trained on 8 V100 GPUs. A comparison of the training time
is given in Table 8.

Table 8. Training time for 100 epochs on MuST-C En-Fr (batch
size 40K tokens).

Method Hours Slowdown vs. CTC

CE 7.10 1.13×
CTC 6.27 1.00×
CTC+CE 7.78 1.24×
CTC+OT 7.62 1.22×

C. Further Ablation Studies
C.1. CTC encoder vs. CE encoder

In Section 4.2 we claim that the speech encoder trained by
CTC is stronger than the one trained by CE. The experimen-
tal results in Section 6 already support this claim. Indeed,

the ST results labeled with “CTC” are consistently better
than those with “CE”. Given that the two models are iden-
tical except for the encoder initialization, any difference
in the ST performance between them can technically be
attributed to the quality of the initialized encoders. This
allows us to conclude that the CTC encoder is superior to
the CE encoder (in terms of producing better embeddings
for the subsequent ST task).

In this section, we present additional results on the ASR task
to further demonstrate the superiority of the CTC encoder.

• Consider two pre-trained speech encoders, one pre-
trained with CE and the other with CTC, as shown in
Figures 1b and 2 (without the CE branch), respectively.
Previously we have referred to these as “CE encoder”
and “CTC encoder”, respectively.

• We freeze these encoders, plug them into an encoder-
decoder ASR model, and train it with the CE loss.

• We do the same as the previous item, but this time
with an encoder-only model, trained with the CTC loss.
Here we add a linear layer between the encoder and
the CTC loss to project the encoder’s output hidden
dimension to the vocabulary size.

The results are shown in Table 9.

Table 9. WER on MuST-C En-De dev set for comparing CTC
encoder and CE encoder. “Enc” and “Dec” mean “encoder” and
“decoder”, respectively.

Frozen Enc Enc-Dec-CE Enc-Linear-CTC

CE 12.7 29.9
CTC 12.4 15.1

We observe that, for the encoder-decoder model, the pre-
trained CTC encoder outperforms the pre-trained CE en-
coder (WER 12.4 vs. 12.7) despite the fact that the CE
encoder has been previously pre-trained in a similar fashion
(using an encoder-decoder model). This provides strong
empirical evidence to support our hypothesis that the CTC
encoder is superior.

For the encoder-only model, the results are similar, but with
a much larger gap (WER 15.1 for CTC vs. 29.9 for CE). We
note that this model has a smaller number of trainable param-
eters compared to the previous one (5M parameters of the
linear layer compared to 35M parameters of the decoder).

C.2. Different loss weighting values in CTC+CE

The hybrid architecture using CE and CTC has been shown
to obtain strong ASR performance (Watanabe et al., 2017;
Karita et al., 2019). Hence, there are several works using
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Table 10. BLEU on MuST-C dev sets for different loss weighting values in CTC+CE.

Method Bilingual Multilingual (one-to-many)

de fr de es fr it nl pt ro ru avg

w/o MT 0.7CE + 0.3CTC 24.10 29.59 24.13 32.71 29.77 24.54 26.13 30.24 23.27 15.86 25.83
CTC + 0.1CE 24.09 29.74 25.32 33.80 30.54 25.64 26.97 30.07 23.44 15.95 26.47

with MT 0.7CE + 0.3CTC 24.04 29.77 25.34 33.57 30.42 25.61 26.98 30.31 23.14 15.90 26.41
CTC + 0.1CE 24.28 30.21 25.01 34.01 30.55 25.49 26.94 30.56 23.76 16.23 26.57

Table 11. BLEU on CoVoST-2 dev sets in En→X settings for different choices of tokenization: character (“char”) vs. Sentencepiece 10K
unigram (“spm10k”).

Method Vocab ar ca cy de et fa id ja lv mn sl sv ta tr zh avg

CE w/o MT char 14.95 27.01 26.94 20.83 14.06 15.77 25.07 36.04 13.92 12.31 16.70 22.63 14.17 13.90 30.00 20.29
spm10k 15.04 27.23 27.19 20.98 14.06 15.76 25.50 36.54 14.06 12.57 16.70 22.95 14.46 13.84 30.58 20.50

CE w/ MT char 15.86 27.99 27.92 21.71 14.53 16.25 26.05 36.89 14.89 12.96 17.77 23.51 14.86 14.61 30.49 21.09
spm10k 15.94 28.13 28.09 21.80 14.76 16.34 26.14 37.00 14.68 12.94 17.70 23.67 14.72 14.61 31.03 21.17

this pre-trained ASR model to initialize subsequent ST mod-
els with the combination of 0.7CE + 0.3CTC as proposed
in (Watanabe et al., 2017; Karita et al., 2019). We addi-
tionally compare this combination with our choice (CTC +
0.1CE) in order to find the better performing recipe for the
CTC+CE pre-training method. Results in Table 10 show
that our combination of CTC+0.1CE works better for the
ST initialization in both with (improvement of +0.16) and
without (improvement of +0.64) MT pre-training settings.
The results again highlight the importance of CTC in the
ASR pre-training stage.

C.3. Character vs. SentencePiece tokenization

For CoVoST one-to-many settings, we compare different
choices of vocabulary: character vs. 10K unigram vocab-
ulary. The results (see Table 11) show that using the 10K
unigram slightly outperforms using character dictionary.

D. Detailed Results and Discussion
D.1. Results without MT pre-training

Results are shown in the upper halves of Tables 12 and 14
for CoVoST-2 and MuST-C, respectively.

Bilingual The results (2nd and 3rd columns of Table 14, up-
per half) highlight the significant contribution of CTC in the
final ST performance: all three methods using CTC in pre-
training surpass the common method using CE (0.89–1.40
for En-De, and 1.35–1.39 for En-Fr). Specifically, pre-
training with CTC alone outperforms pre-training with CE
by a large margin (+0.89 and +1.39, respectively, for En-
De and En-Fr). Adding CE or OT on top of CTC is helpful
for En-De, though it slightly hurts the performance on En-Fr.

Multilingual The results (Tables 12 and 14, upper halves)
show that CTC consistently outperforms CE on both
datasets: the scores are higher across all language pairs
by a large margin (on average, +1.1 and +1.2 on MuST-C
and CoVoST-2, respectively). Adding CE on top of CTC
slightly degrades the results (26.47 vs. 26.51) while using
OT marginally improves the performance (26.60 vs. 26.51).

D.2. Results with MT pre-training

Results are shown in the lower halves of Tables 12 and 14
for CoVoST-2 and MuST-C, respectively.

Bilingual The results (2nd and 3rd columns of Table 14,
lower half) show that CTC outperforms CE by around +1.0
BLEU point for both En-De and En-Fr. Compare with the
without-MT-pre-training results (same columns but in the
upper halves), we observe that MT pre-training are help-
ful for all methods. Especially, the gains for our proposed
method are the highest (0.83/0.48 on En-De/En-Fr, com-
pared to 0.35/0.41, 0.50/0.04, and 0.19/0.47 for CE, CTC,
and CTC+CE, respectively).

Multilingual The results (Tables 12 and 14, lower halves)
again show that CTC remains superior to CE. On the other
hand, MT pre-training neither helps nor hurts the perfor-
mance for MuST-C, while the improvements are more no-
ticeable on CoVoST-2 (0.4–0.7 on average).
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Table 12. Detailed BLEU on CoVoST-2 dev sets in En→X settings for all directions.

Method ar ca cy de et fa id ja lv mn sl sv ta tr zh avg

w
/o

M
T CE 15.04 27.23 27.19 20.98 14.06 15.76 25.50 36.54 14.06 12.57 16.70 22.95 14.46 13.84 30.58 20.50

CTC 16.46 28.90 28.68 22.40 15.05 16.66 26.83 37.74 15.04 13.46 18.09 24.30 15.39 15.08 31.57 21.71
CTC+CE 16.50 28.84 28.84 22.38 15.16 16.90 26.89 38.11 15.38 13.60 18.36 24.31 15.38 15.16 31.59 21.83
CTC+OT 17.19 29.52 29.77 23.12 15.68 17.29 27.61 38.21 15.44 14.07 18.68 24.94 16.05 15.68 32.11 22.36

w
ith

M
T CE 15.94 28.13 28.09 21.80 14.76 16.34 26.14 37.00 14.68 12.94 17.70 23.67 14.72 14.61 31.03 21.17

CTC 16.92 29.20 29.07 22.76 15.45 17.00 27.29 38.03 15.56 13.73 18.47 24.57 15.77 15.24 32.02 22.10
CTC+CE 16.99 29.31 29.34 22.73 15.64 17.14 27.37 38.12 15.86 13.72 18.82 24.68 16.05 15.55 32.03 22.22
CTC+OT 17.61 30.21 30.19 23.58 16.20 17.60 28.09 38.63 16.21 14.38 19.30 25.33 16.35 16.20 32.36 22.82

Table 13. Detailed BLEU on CoVoST-2 dev sets in X→En settings for all directions.

Method ar ca cy de es et fa fr id it ja lv mn nl pt ru sl sv ta tr zh avg

Data (h) 2 136 2 184 113 3 49 264 1 44 1 2 3 7 10 18 2 2 2 4 10

w
/o

M
T CE 1.32 22.06 3.01 19.32 25.53 1.06 3.94 27.31 0.68 20.18 0.35 0.78 0.24 3.95 8.65 14.44 0.75 1.02 0.25 3.04 7.11 7.86

CTC 2.97 22.43 3.26 20.13 25.48 0.94 4.05 27.40 0.30 20.21 0.39 1.50 0.19 3.74 10.18 16.03 0.34 1.51 0.23 3.46 7.06 8.18
CTC+CE 2.80 22.06 2.99 19.67 25.35 0.85 3.94 27.27 0.38 19.66 0.46 1.65 0.27 3.81 10.10 17.71 0.96 1.87 0.15 3.27 6.92 8.20
CTC+OT 3.50 23.10 4.15 20.68 26.22 1.33 4.56 28.09 0.27 21.06 0.89 1.31 0.26 4.33 10.70 17.98 0.65 1.69 0.20 3.63 7.18 8.66

w
ith

M
T CE 1.72 22.42 2.85 20.01 25.78 0.75 3.66 27.84 0.22 20.17 0.22 0.86 0.14 3.70 9.09 15.20 0.32 1.63 0.19 3.00 6.90 7.94

CTC 2.20 22.79 2.90 20.67 25.76 0.96 3.88 27.79 0.44 20.59 0.70 1.16 0.19 4.22 10.37 15.74 0.97 1.68 0.24 3.05 6.92 8.25
CTC+CE 1.81 22.71 2.87 20.25 25.48 0.79 3.79 27.49 0.39 20.20 0.81 1.66 0.19 3.59 10.63 17.16 1.12 1.46 0.22 3.28 6.43 8.21
CTC+OT 3.26 23.73 3.26 21.14 26.52 0.93 4.45 28.87 0.52 21.32 0.31 1.25 0.25 4.20 11.39 17.23 0.97 1.77 0.13 3.53 7.19 8.68

Table 14. Detailed BLEU on MuST-C dev sets.

Method Bilingual Multilingual (one-to-many)

de fr de es fr it nl pt ro ru avg

w
/o

M
T CE 22.39 28.48 23.87 32.38 29.54 24.57 25.79 29.21 22.90 15.10 25.42

CTC 23.25 29.87 25.16 33.66 30.36 25.74 26.94 30.40 23.63 16.19 26.51
CTC+CE 23.77 29.74 25.32 33.80 30.54 25.64 26.97 30.07 23.44 15.95 26.47
CTC+OT 23.91 29.83 25.25 33.82 30.63 25.92 27.01 30.61 23.61 15.95 26.60

w
ith

M
T CE 23.04 28.89 24.29 32.83 29.86 25.09 26.06 29.49 22.32 15.05 25.62

CTC 24.08 29.91 25.41 33.60 30.54 25.63 26.79 30.45 23.80 15.92 26.52
CTC+CE 24.28 30.21 25.01 34.01 30.55 25.49 26.94 30.56 23.76 16.23 26.57
CTC+OT 24.74 30.31 25.53 33.89 30.51 26.17 27.27 30.49 23.55 15.97 26.67

Table 15. BLEU on CoVoST-2 test sets for En→X. †results from baselines in (Wang et al., 2020c). “CE” is the same model as the
corresponding ones in CoVoST-2 but with MT pre-training.

Method ar ca cy de et fa id ja lv mn sl sv ta tr zh avg

M
ed

iu
m

CoVoST-2 † 11.2 21.6 22.9 15.9 12.8 13.8 19.7 31.5 12.4 9.2 15.2 21.5 10.6 9.8 29.3 17.2
CE 12.2 23.1 24.5 17.3 13.9 15.1 21.7 32.0 13.5 10.5 16.5 22.7 11.9 11.1 29.3 18.4
CTC 12.9 24.1 25.4 18.1 14.7 15.7 22.7 32.8 14.3 11.1 17.7 23.6 12.6 11.7 30.5 19.2
CTC+CE 13.1 24.3 25.6 18.2 14.8 15.9 22.8 32.8 14.4 11.1 17.7 24.0 12.9 11.8 30.3 19.3
CTC+OT 13.5 25.1 26.2 18.9 15.5 16.3 23.2 33.4 14.9 11.6 18.3 24.5 13.3 12.1 31.0 19.9

L
ar

ge

CoVoST-2 † 13.9 23.6 25.1 18.4 15.1 15.5 22.0 33.0 15.2 11.0 18.3 24.1 12.8 11.7 31.3 19.4
CE 13.5 23.8 25.2 18.3 14.9 15.7 22.6 32.8 14.6 11.1 17.8 23.8 12.6 11.6 30.1 19.2
CTC 13.8 24.5 25.9 18.8 15.4 16.1 23.0 33.6 15.2 11.5 18.6 24.4 13.2 11.9 31.1 19.8
CTC+OT 15.3 26.5 28.1 20.6 17.1 17.5 25.1 35.7 16.6 12.8 20.6 26.5 14.8 13.5 32.4 21.5
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Table 16. BLEU on CoVoST-2 test sets for X→En. † results from baselines in (Wang et al., 2020c). “CE” is the same model as the
corresponding ones in CoVoST-2 but with MT pre-training.

Method fr de es ca avg

M
ed

iu
m

CoVoST-2 † 27.0 18.9 28.0 23.9 24.5
CE 27.9 19.3 28.3 22.9 24.6
CTC 27.7 19.7 28.2 23.2 24.7
CTC+CE 27.4 19.4 28.2 22.9 24.5
CTC+OT 28.4 20.4 29.2 24.1 25.5

Table 17. BLEU on MuST-C test sets (tst-COMMON), comparing with state-of-the-art methods. “Multi” means multilingual models. Note
that “CE pre-training” (8th row from the bottom) is the same as FAIRSEQ S2T (Wang et al., 2020b) (1st row) but with MT pre-training,
which turns out to be unhelpful.

Method Multi External Data BLEU

Unlabeled Labeled de es fr it nl pt ro ru avg

FAIRSEQ S2T (Wang et al., 2020b) ✓ - - 24.5 28.2 34.9 24.6 28.6 31.1 23.8 16.0 26.5
ESPnet-ST (Inaguma et al., 2020) ✓ - - 22.9 28.0 32.7 23.8 27.4 28.0 21.9 15.8 25.1
NeurST (Zhao et al., 2021a) ✓ - - 22.8 27.4 33.3 22.9 27.2 28.7 22.2 15.1 24.9
Dual-decoder (Le et al., 2020) ✓ - - 23.6 28.1 33.5 24.2 27.6 30.0 22.9 15.2 25.6
Adapters (Le et al., 2021) ✓ - - 24.7 28.7 35.0 25.0 28.8 31.1 23.8 16.4 26.6
AFS (Zhang et al., 2020) - - - 22.4 26.9 31.6 23.0 24.9 26.3 21.0 14.7 23.9
Speechformer (Papi et al., 2021) - - - 23.6 28.5 - - 27.7 - - - -
Mutual-learning (Zhao et al., 2021b) - - - - 28.7 36.3 - - - - - -
BiKD (Inaguma et al., 2021) - - - 25.3 - 35.3 - - - - - -
TDA (Du et al., 2022) - - - 25.4 29.6 36.1 25.1 29.6 31.1 23.9 16.4 27.2
Adversarial (Alinejad & Sarkar, 2020) - - ✓ 20.2 - 17.0 - - - - - -
MTL (Tang et al., 2021a) - - ✓ 23.9 28.6 33.1 - - - - - -
Joint Speech Text (Tang et al., 2021b) - - ✓ 26.8 31.0 37.4 - - - - - -
SATE (Xu et al., 2021) - - ✓ 28.1 - - - - - - - -
TaskAware (Indurthi et al., 2021) - - ✓ 28.9 - - - - - - - -
Self-training (Pino et al., 2020) - ✓ ✓ 25.2 - 34.5 - - - - - -
FAT-ST (Big) (Zheng et al., 2021) - ✓ ✓ 25.5 30.8 - - 30.1 - - - -
XSTNet (Ye et al., 2021) - ✓ ✓ 27.1 30.8 38.0 26.4 31.2 32.4 25.7 18.5 28.8
Chimera (Han et al., 2021) - ✓ ✓ 27.1 30.6 35.6 25.0 29.2 30.2 24.0 17.4 27.4
STEMM (Fang et al., 2022) - ✓ ✓ 28.7 31.0 37.4 25.8 30.5 31.7 24.5 17.8 28.4
ConST (Ye et al., 2022) - ✓ ✓ 28.3 32.0 38.3 27.2 31.7 33.1 25.6 18.9 29.4
STPT (Tang et al., 2022) - ✓ ✓ - 33.1 39.7 - - - - - -

CE pre-training

MEDIUM

✓ - - 24.6 28.7 34.9 24.6 28.4 30.7 23.7 15.9 26.4
CTC pre-training ✓ - - 25.9 29.7 36.6 25.6 29.6 32.0 24.6 16.7 27.6
CTC+CE pre-training ✓ - - 25.6 29.5 36.4 25.2 29.5 31.6 24.5 16.5 27.4
Siamese-PT (this work) ✓ - - 26.2 29.8 36.9 25.9 29.8 32.1 24.8 16.8 27.8

CE pre-training

LARGE

✓ - - 26.9 30.8 37.7 26.7 30.8 33.3 26.2 17.9 28.8
CTC pre-training ✓ - - 27.6 31.4 38.2 27.2 31.1 33.6 26.4 18.4 29.2
CTC+CE pre-training ✓ - - 27.2 31.2 38.0 27.0 31.5 33.7 26.2 18.3 29.1
Siamese-PT (this work) ✓ - - 27.9 31.8 39.2 27.7 31.7 34.2 27.0 18.5 29.8
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