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Abstract
Parameter inference, i.e. inferring the poste-
rior distribution of the parameters of a statistical
model given some data, is a central problem to
many scientific disciplines. Generative models
can be used as an alternative to Markov Chain
Monte Carlo methods for conducting posterior in-
ference, both in likelihood-based and simulation-
based problems. However, assessing the accuracy
of posteriors encoded in generative models is not
straightforward. In this paper, we introduce ‘Tests
of Accuracy with Random Points’ (TARP) cover-
age testing as a method to estimate coverage prob-
abilities of generative posterior estimators. Our
method differs from previously-existing coverage-
based methods, which require posterior evalua-
tions. We prove that our approach is necessary
and sufficient to show that a posterior estimator is
accurate. We demonstrate the method on a vari-
ety of synthetic examples, and show that TARP
can be used to test the results of posterior infer-
ence analyses in high-dimensional spaces. We
also show that our method can detect inaccurate
inferences in cases where existing methods fail.

1. Introduction
The task of parameter inference, i.e. determining the values
of unknown parameters θ in a statistical model consistent
with observed data x, is a ubiquitous task in scientific anal-
yses. While multiple well-established approaches such as
Markov-chain Monte Carlo (MCMC), variational inference
(VI) and nested sampling (Skilling, 2006) already exist,
there has been a recent shift towards applying machine
learning for posterior inference amortized over different
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observations (e.g. Zhu & Zabaras, 2018; Papernot & Mc-
Daniel, 2018; Charnock et al., 2020; Wilson & Izmailov,
2020; Zuo et al., 2020). This approach involves training
a model (typically a neural network) to approximate the
true posterior distribution as a function of the observation.
The goal is to efficiently infer the posterior for new data,
eliminating the need for costly MCMC runs for each new
observation.

Simulation-based inference (SBI, e.g. Cranmer et al., 2020),
also known as likelihood-free inference (LFI) or implicit
likelihood inference (ILI), has gained significant popularity
in recent years (e.g. Ong et al., 2018; Perreault Levasseur
et al., 2017; Gonçalves et al., 2020; Dax et al., 2021; Als-
ing et al., 2019; Wagner-Carena et al., 2021; Legin et al.,
2021; Brehmer, 2021; Coogan et al., 2020; Montel et al.,
2022; Coogan et al., 2022; Brehmer et al., 2019; Chen et al.,
2020; Mishra-Sharma & Cranmer, 2022; Karchev et al.,
2022b; Hermans et al., 2021a; Anau Montel & Weniger,
2022; de Witt et al., 2020; Marlier et al., 2021; Karchev
et al., 2022a; Ramesh et al., 2022). SBI does not require an
explicit expression for the likelihood, and instead merely
relies on having a simulator to generate training data. The
SBI framework allows handling complex, high-dimensional
data and models that are difficult or intractable to analyze
using traditional likelihood-based methods.

Early developments of SBI include the introduction of Re-
jection Approximate Bayesian Computation (ABC) (Ru-
bin, 1984; Pritchard et al., 1999; Beaumont et al., 2002;
Marjoram et al., 2003; Fearnhead & Prangle, 2012), but
today SBI has evolved to encompass more powerful, neural
network-powered, amortized methods, such as Neural Ra-
tio Estimation (NRE) (Cranmer et al., 2015; Thomas et al.,
2022; Hermans et al., 2020; Durkan et al., 2020; Miller
et al., 2022b); Neural Posterior Estimation (NPE) (Rezende
& Mohamed, 2015; Papamakarios & Murray, 2016; Lueck-
mann et al., 2018; Lueckmann et al., 2017; Greenberg et al.,
2019) and Neural Likelihood Estimation (NLE) (Price et al.,
2018; Papamakarios et al., 2019; Frazier et al., 2022). Re-
cently there has been substantial interest in applying SBI
in high-dimensional parameter spaces. Generative models,
such as Generative Adversarial Networks GANs (Goodfel-
low et al., 2014), Normalizing Flows (Dinh et al., 2014;
Rezende & Mohamed, 2015; Papamakarios et al., 2021),
Variational Autoencoders (Kingma & Welling, 2013) and
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Score-Based/Diffusion Models (Song et al., 2020; Ho et al.,
2020; Sohl-Dickstein et al., 2015), are powerful ways to
encode approximate posteriors in such settings.

Convergence tests for MCMC methods, such as the Gelman-
Rubin statistic (Gelman & Rubin, 1992), the effective sam-
ple size and the integrated autocorrelation time, are well-
established. However, these assess the diversity of samples
rather than directly guaranteeing that the posterior is be-
ing sampled correctly. For SBI, testing for accuracy of
the estimated posterior is often performed using coverage
probabilities (but see also Guo et al. (2017)), relying on the
evaluation of the density of the posteriors. (Schall, 2012;
Prangle et al., 2013; Cranmer et al., 2020; Hermans et al.,
2021b). Coverage probabilities measure the proportion of
the time that a certain interval contains the true parameter
value. However, coverage probability calculations based on
evaluations of the learned posterior distributions are not ap-
plicable to samples obtained from those generative models
where such evaluations are not available, such as GANs and
diffusion models. Furthermore, and more importantly, these
coverage probability tests are a necessary but not sufficient
diagnostic to assess the accuracy of the estimated posterior.

Other methods have been suggested as alternative valida-
tions for SBI (Lueckmann et al., 2021; Dalmasso et al.,
2020; Deistler et al., 2022). For example, Simulation-Based
Callibration (SBC) (Talts et al., 2018), proposes an interest-
ing technique that uses only samples, but can only be used
for one-dimensional posteriors and not the full-dimensional
space. Another method, proposed by Linhart et al. (2022),
is an efficient way to assess posterior accuracy but is de-
signed specifically for normalizing flows and cannot be
applied in other inference settings. None of these meth-
ods can be applied to assess the accuracy of inference for
high-dimensional variables.

The goal is this paper is to introduce a framework for test-
ing the accuracy of parameter inference using only samples
from the true joint distribution of data x and the parame-
ters of interest θ, p(x, θ), and samples from the estimated
posterior distribution p̂(θ|x).
Our novel contributions are a proof of the necessary and
sufficient conditions to verify the accuracy of posterior esti-
mators through coverage checks (Theorem 3), along with a
methods that practically implements this theorem (§3.2). We
begin by introducing all necessary notation in §2. We then
introduce our method in §3, present our experiments in §
4, and summarize our findings in §5. Our code is available at
https://github.com/Ciela-Institute/tarp.

2. Formalism
In this section, we introduce some basic concepts and build
up to our key theoretical result (Theorem 3). The coverage

testing procedure introduced in the following section is
essentially a practical implementation of this theorem.

2.1. Notation

As stated in the introduction, we are interested continuous-
valued parameters θ ∈ U ⊂ Rn and observations x ∈ V ⊂
Rm taken from (subsets of) Euclidean space, with joint
density p(θ, x). We denote our posterior estimator by p̂(θ|x)
(which could be a neural network or MCMC sampler, for
example) and assume we can also use it to generate samples
of θ.

With these preliminaries, we make two basic definitions:
Definition 1. A posterior estimator p̂(θ|x) is accurate if

p̂(θ|x) = p(θ|x) ∀(x, θ) ∼ p(x, θ) . (1)

Definition 2. A credible region generator G : p̂, α, x 7→
W ⊂ U for a given credibility level 1− α and observation
x is a function satisfying∫

G(p̂,α,x)
dθ p̂(θ|x) = 1− α . (2)

Note that there are an infinite number of such generators. A
commonly-used one is the highest-posterior density region
generator, defined in §3.1.

Next, we introduce two central definitions for this work,
adapted from Hermans et al. (2021b) (henceforth H21).
Definition 3. The coverage probability for a generator G,
credibility level 1− α and datum x is

CP(p̂, α, x,G) = Ep(θ|x) [1 (θ ∈ G(p̂, α, x))] . (3)

Definition 4. The expected coverage probability for a gen-
erator G and credibility level α is the coverage probability
averaged over the data distribution:

ECP(p̂, α,G) = Ep(x) [CP(p̂, α, x,G)] . (4)

2.2. Coverage probability

We now demonstrate some basic facts about estimators with
correct coverage probabilities. We begin with a straightfor-
ward result:
Theorem 1. The posterior has coverage probability
CP(p, α, x,G) = 1−α for all values of x and any credible
region generator G(p, α, x).

Proof Substituting p̂(θ|x) = p(θ|x), the definition of cov-
erage probability becomes:

CP(p, α, x,G) = Ep(θ|x) [1(θ ∈ G(p, α, x)]

=

∫
G(p,α,x)

dθ p(θ|x)

= 1− α ,

(5)
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where the last line follows from the definition of a credible
region.

It follows trivially from this that the posterior has
ECP(p, α, x,G) = 1− α as well.

Next, we prove the more interesting reverse direction of
this theorem, which requires introducing another type of
credible region generator.

Definition 5. A positionable credible region generator
Pθr (p̂, α, x) generates credible regions positioned at θr, a
freely-chosen point in parameter space, in the sense that

lim
α→1
Pθr (p̂, α, x) = {θr} (6)

for all x and θr. The regions’ shapes are not important:
they could be, for example, balls or hypercubes.

Lastly, we denote the average of a function f(·) over a
credible region Θ positioned at θr as

f(θr)(Θ) :=
1

vol[Θ]

∫
Θ

dθ f(θ) . (7)

When f(·) is a probability density function, f(·)(Θ) is as
well, since it is the convolution of f(·) with the density
1(θ ∈ Θ).

Theorem 2. Suppose the coverage probability of a posterior
estimator is equal to 1−α for a positionable credible region
generator Pθr for all θr, x and α. Further, suppose that
p̂(·|x) and p(·|x) are both continuous on their domains.
Then p̂(·|x) = p(·|x).

Proof Define Θ := Pθr (p̂, α, x) for clarity.

The integral in the definition of the coverage probability can
be written as

CP(p̂, α, x,Pθr ) = 1− α

=

∫
Θ

dθ p(θ|x)

= vol[Θ] p(·|x)(Θ) ,

(8)

where first equality follows by assumption. Since we’ve
assumed p̂(·|x) has support everywhere that p(·|x) has sup-
port, the volume of the credible region is positive. By the
definition of a credible region, we also have

1− α =

∫
Θ

dθ p̂(θ|x) = vol[Θ] p̂(·|x)(Θ) . (9)

Setting this equal to the previous expression yields
p̂(·|x)(Θ) = p(·|x)(Θ), which holds for all θr and x by
assumption. Taking α→ 1 (i.e., making Θ small) gives the
desired result.

2.3. Expected coverage probability

The previous result is still not very useful, since it is com-
putationally very expensive to calculate the coverage prob-
ability of a posterior estimator. Practically, doing so re-
quires producing histograms of the samples from p(θ, x) in
x, which may be high-dimensional. However, as pointed out
in H21, it’s much simpler to compute the expected coverage
probability.

The next theorem is our main theoretical result: correct
expected coverage is enough to verify the posterior estimator
is accurate, as long as it is correct for any function θr(x)
defining the positions of the credible regions.

Theorem 3. Suppose the expected coverage probability
of p̂ is equal to 1 − α for a positionable credible region
generator Pθr for all α, x, and θr(·) assigning a position to
the credible regions as a function of x. Further suppose that
p̂(·|x) has support everywhere that p(·|x) has support, and
that both functions are continuous on their domains. Then
p̂(·|x) = p(·|x).

Proof Again, let Θ := Pθr (p̂, α, x) for clarity.

First, we leverage the definition of credible regions to find
an expression for the volume of Θ:

1− α =

∫
Θ

dθ p̂(θ|x) = vol[Θ] p(·|x)(Θ) , (10)

which implies

vol[Θ] =
1− α

p(·|x)(Θ)
. (11)

This allows us to expand and simplify the expression for the
expected coverage:

ECP(p̂, α,Pθr ) = 1− α

=

∫
dx p(x)

∫
Θ

dθ p(θ|x)

=

∫
dx p(x) vol[Θ] p(·|x)(Θ)

= (1− α)

∫
dx p(x)

p(·|x)(Θ)

p̂(·|x)(Θ)
.

(12)

Canceling the factors of 1− α gives that the integral in the
last line is equal to 1.

By assumption, this holds for any choice of position function
θr(x). We can therefore take the functional derivative of the
integral with respect to θr(x). Recalling that the averages
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30% in ball

Simulation 1 (x∗1 ∼ p(·|θ∗1))

θ ∼ p̂(θ|x∗)
θ∗

θr

40.6% in ball

Simulation 2 (x∗2 ∼ p(·|θ∗2))

33.6% in ball

Simulation 3 (x∗3 ∼ p(·|θ∗3))

92.6% in ball

... Simulation N (x∗N ∼ p(·|θ∗N))

Figure 1. A graphical illustration of the proposed coverage test for assessing the quality of a posterior estimator p̂. Given a set of
simulations (panels), we draw samples from the posterior estimator (orange points). We sample a reference parameter point θr , and
determine the fraction of points f falling within a ball centered on θr extending to the true parameter point θ∗ used to generate the
simulation (ball indicated in yellow, f indicated below each panel). Our coverage test aggregates the statistics of f , providing a necessary
and sufficient way to guarantee the accuracy of p̂.

in the integrand depend on θr, we obtain

0 =
δ

δθr(x)

∫
dx p(x)

p(·|x)(Θ)

p̂(·|x)(Θ)
(13)

=

∫
dx δθr,i(x) p(x)

∂

∂θr,i

(
p(·|x)(Θ)

p̂(·|x)(Θ)

)
(14)

=

∫
dx δθr,i(x)

p(·|x)(Θ) p(x)

p̂(·|x)(Θ)

×
[
∂ log p(·|x)(Θ)

∂θr,i
− ∂ log p̂(·|x)(Θ)

∂θr,i

]
,

(15)

where the i subscript indexes the components of θr. Since
this expression must hold for all variations δθr,i, the inte-
grand must evaluate to zero (i.e., the Euler-Lagrange equa-
tion must be satisfied). By assumption, the factor outside
the braces in the integrand is nonzero, implying

∂ log p(·|x)(Θ)

∂θr,i
=

∂ log p̂(·|x)(Θ)

∂θr,i
. (16)

This implies log p(·|x)(Θ) = log p̂(·|x)(Θ) + c(x), for
some x-dependent integration constant c. But since the func-
tions inside the logarithms themselves densities, we have
c(·) = 0. Taking the limit α→ 1 gives p̂(θ|x) = p(θ|x).

The coverage testing method we will introduce in the next
section is effectively a practical implementation of this the-
orem.

3. Our method
With our main theoretical result proven (c.f. Theorem 3),
in this section we use it to first explain the blind spots of

typical coverage probability calculations and then introduce
our new coverage checking procedure.

3.1. High posterior density coverage testing

Before introducing the proposed method, we first discuss
HPD coverage.

Definition 6. We define the HPD credible region generator
H(p̂, α, x) as the generator that produces the region with
mass 1− α occupying the smallest possible volume in U 1.

Note that this is not a positionable credible region generator.
This can be used combined with Def. 4 to calculate High-
Posterior Density Expected Coverage Probabilities (HPD
ECPs). HPD ECPs are often used to assess coverage (Her-
mans et al., 2021b; Rozet et al., 2021; Miller et al., 2022a;
Deistler et al., 2022; Tejero-Cantero et al., 2020).

Perhaps the most intuitive way of calculating expected cov-
erage probability using HPD regions is to compute such
a region for all possible values of α,2 then calculate the
expected coverage using (3). In practice, however, there is a
more efficient calculation of expected coverage probabilities,
which is derived from the following result:

Remark 1. A pair (θ∗, x∗), and a posterior estimator p̂(θ|x)
uniquely define a HPD confidence region as:

{θ ∈ U | p̂(θ|x∗) ≥ p̂(θ∗|x∗)} . (17)

This, in turn, defines a corresponding HPD confidence
level 1 − α̃HPD(p̂, θ

∗, x∗), as the integral of p̂(θ|x) over
that region.

1Note this is ill-defined for the uniform density function.
2Note that previous works such as Perreault Levasseur et al.

(2017) have attempted to perform accuracy testing from a handful
of values of α. This test is not nearly as restrictive as scanning over
all possible values of α as is typically used for coverage testing.
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Figure 2. Results on the Gaussian toy model for all four cases described in §4.1. The red line shows the method presented in this paper,
while the blue shows the HPD region.

Algorithm 1 Calculation of ECP(p̂, α,H) using highest posterior density regions, from a set of simulations {θi, xi},
i ∈ [1, Nsims]

Generate n samples {θij} ∼ p̂(θ|xi) for each simulation xi.
for i← 1 to Nsims do
fi = (1/n) ·∑n

j=1 1 [p̂(θij |xi) < p̂(θ∗i |xi)]
end for
ECP(p̂, α,H) = (1/Nsims)

∑Nsims

i=1 1 (fi < 1− α)

We can then rederive an important result for this HPD confi-
dence level:

Lemma 1. We can calculate the ECP of the 1− α highest
posterior density regions as:

ECP(p̂, α,H) = Ep(θ,x) [1 (α̃HPD(p̂, θ, x) ≥ α)] . (18)

Proof Firstly, we notice that:

θ∗ ∈ H (p̂, α, x∗)⇔ α̃HPD(p̂, θ
∗, x∗) ≥ α. (19)

This follows from the fact that, if θ∗ ∈ H (p̂, α, x∗), then
the HPD confidence region defined by (θ∗, x∗) is contained
inH (p̂, α, x∗).

Then, from (4), it follows that (18) is true.

This result can be used in practice to calculate the HPD
ECP from samples of the true joint distribution p(θ, x), as
shown in Algorithm 1. As previously discussed, this algo-
rithm requires explicit evaluations of the posterior estimator.
We try to provide more intuitive connections between both
definitions in §A.

As is well-known in the literature, estimating the ECP with
HPD regions is not enough to demonstrate a posterior esti-
mator is accurate. Theorem 3 reveals why: by definition, the
HPD region generator is not positionable. Positionability is
critical to the proof of the theorem, since it requires varying
the position function θr(x).

To concretely demonstrate how considering only HPD cov-
erage can fail, we consider the interesting case discussed in
H21 of p̂(θ|x) = p(θ). From the definition of ECP,

ECP(p̂, α,H) = Ep(x,θ)[1(θ ∈ H(p̂, α)]
= Ep(θ)[1(θ ∈ H(p̂, α)]

=

∫
H(p̂,α)

dθ p(θ)

= 1− α .

(20)

In the second line, we used the fact that HPD generator is
independent of x in this case H(p̂, α, x) = H(p̂, α). We
recognize the third line as the definition of a credible region
for the prior, yielding the fourth line. This means that p̂(θ|x)
has perfect HPD ECP in this case.

We now introduce a coverage testing method that remedies
such blind spots.

3.2. Distance to random point coverage testing

The method proposed here generates spherical credible re-
gions around position θr:
Definition 7. Given a distance metric d : U × U → R,
We define the generator of TARP regions Dθr (p̂, α, x, d) as
the positionable generator that produces credible regions of
credibility level 1− α:

Dθr (p̂, α, x, d) := {θ ∈ U | d(θ, θr) ≤ R(p̂, α, x)} ,
(21)

where R(p̂, α, x) is such that (2) is satisfied.
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Figure 3. An example of one of the lensing simulations performed. The top panels show the (latent) source plane that we are trying to
infer, while the bottom panels show the distorted images. From left to right, the plot shows the truth, mean, and standard deviation of the
samples from the posterior estimator (in the case of this figure, the ‘exact’ estimator), and the residuals. The noise in the observations is
set to 1 on the color scales shown here.

Algorithm 2 Calculation of ECP(p̂, α,Dθr ) using the TARP method, using a set of simulations {θi, xi}, i ∈ {1, . . . , Nsims},
parameter distance metric d : U × U → R≥0 and reference point sampling distribution p̃(·|x).

Generate n samples {θij} ∼ p̂(θ|xi) for each simulation xi, where j = {1, . . . , n}.
for i← 1 to Nsims do
θr ∼ p̃(θr|x) {Generate reference point}
fi = (1/n) ·∑n

j=1 1 [d(θij , θr) < d(θ∗i , θr)]
end for
ECP(p̂, α,Dθr ) = (1/Nsims)

∑Nsims

i=1 1 (fi < 1− α)

From this result, and similarly to the previous section, a key
result follows:
Remark 2. A pair (θ∗, x∗), and a posterior estimator p̂(θ|x)
uniquely define a TARP3 credible region for a given d and
θr:

{θ ∈ U | d(θ, θr) ≤ d(θ∗, θr)} (22)

This, in turn, defines a corresponding TARP confidence
level 1− α̃TARP(p̂, θ

∗, θr, d). as the integral of p̂(θ|x) over
that region.

We can calculate expected coverage similar to the HPD case:
Lemma 2. We can calculate the ECP of the 1 − α TARP
regions as:

ECP(p̂, α,Dθr ) = Ep(θ,x) [1(α̃TARP(p̂, θ
∗, θr, x

∗, d) ≥ α)] .
(23)

Proof Let Dθr (x
∗, α, p̂, d) be a ball centered at θr with

radius R(p̂, α, x) and credibility 1 − α. Similarly, the

3TARP is short for ”Test of Accuracy with Random Points. A
previous version of this paper used the name DRP (”Distance to
Random Point”).

TARP region defined by (θ∗, x∗) has the same center, radius
d(θ∗, θr), and credibility 1− α̃ for some α̃. It then follows
that:

θ∗ ∈ Dθr (x
∗, α, p̂, d)⇔ d(θ∗, θr) ≤ R(p̂, α, x). (24)

Since R is a monotonic function of α and the regions are
centered on the same point, we have

d(θ∗, θr) ≤ R(p̂, α, x)⇔ α̃ ≥ α . (25)

Then by (4) we have (23).

With this, we have everything we need to formulate our
algorithm, which is presented in Algorithm 2. While sim-
ilar to Algorithm 1, there are three key differences to this
algorithm:

• TARP implements Theorem 3’s requirement that cov-
erage holds for all possible ways of choosing the posi-
tions of the credible regions by randomly sampling θr
from some distribution p̃(θ|x) that can depend on x.
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• TARP probes credible regions of smaller size (i.e.,
larger α) as the number of posterior samples, simu-
lations, and reference points tested is increased. Fol-
lowing the logic of the proof of Theorem 3, this means
it asymptotically tests whether the averages of p̂(θ|x)
and p(θ|x) match on smaller and small balls.

• TARP does not require explicit evaluations of the pos-
terior estimator p̂: it only requires calculating distances
between parameters sampled from p̂ and θr.

In the following section, we test the proposed method in
a series of experiments and compare its performance with
that of HPD coverage probabilities.

4. Experiments
We apply our algorithm, described in Algorithm 2 to three
different experiments. For all experiments, we normalize
all parameters θ to the range [0, 1], and unless otherwise
specified, we generate reference points uniformly in the
D-dimensional hypercube x ∈ [0, 1]D where D is the di-
mensionality of the parameter space. We use the Euclidean
or L2 distance as a metric to calculate TARP regions. We
explore the dependence on the reference point distribution
and the distance metric in §4.2.

4.1. Gaussian Toy Model

As a first example, we can use a simple Gaussian toy model.
In this model, we assume that all the posterior distribu-
tions are Gaussian. Therefore, we can generate samples
from the posterior for a validation simulation from the es-
timated mean and covariance matrix. We first generate
‘simulations’, by uniform sampling in our parameter space,
θ∗ ∼ U(−5, 5). We also randomly generate the diagonal
elements of the covariances matrices Σ of our posterior es-
timates by sampling from log σ ∼ U(−5,−1), and set the
off-diagonal elements to 0. To validate, we also need to
know the mean of the posterior distributions. We consider
three cases:

• Firstly, we draw these from a normal distribution
N (θ∗,Σ). This means that the coverage probabili-
ties should show a uniform distribution. We call this
the correct case.

• Secondly, we draw the true values from N (θ∗, 0.5Σ)
and (N (θ∗, 2Σ)). This means that the posterior sam-
ples come from a distribution that is too narrow (wide),
and are therefore overconfident (underconfident)

• Lastly, we want to build a biased case. For this, we
pick the means to be equal to:

θ∗ − sign(θ∗) · Z
(
1− |θ

∗|
5

)
· σ, (26)

where Z is the inverse survival function. The idea
with this example is to create a position-dependent bias:
The furthest the true value is from the origin, the more
biased the posterior is. We have specifically designed
this bias in a way that HPD coverage probabilities will
be blind to it. However, the point of this example is to
show that there are biases that HPD can be blind to, but
the random nature of TARP should be able to detect.
The function (26) is plotted in appendix §C

For each of these cases, we want to compare how this
method compares to the HPD coverage probability test. Be-
cause in this toy model we know the correct posterior, we
can easily compute both HPD and TARP coverage probabil-
ities. To pick the TARP reference points, we use the prior
(p̃(θr|x) = p(θr)).

The results for our Gaussian toy model are shown in Fig. 2.
In each panel, the x-axis shows the credibility level 1− α,
while the y-axis shows the expected coverage ECP(p̂, α,G).
For an accurate posterior estimator, ECP(p̂, αG) = 1 −
α, ∀α ∈ (0, 1) as described in §2, which would then lead to
the diagonal black dashed diagonal line. We see in the first
panel that that is indeed the case for the ‘correct’ case, which
is accurate by construction. We found consistent results
amongst all values of D we tested, going up to D = 1000.

The second and third panels show the over and undercon-
fident cases, respectively. We see how these cases lead
to different coverage plots than the HPD method. This
is not entirely unexpected: For underconfident estimators,
the TARP regions from randomly selected points are more
likely to cover approximately half of the posterior estimator
α ∼ 0.5, while for overconfident estimators, they are likely
to cover either very little α ∼ 1 or a lot α ∼ 0. We expand
this intuition, including some figures, in §B. Finally, in the
fourth panel, we see how the biased case cannot be detected
by the HPD region but is detectable by TARP. This shows
how, as explained in §2, ECP(p̂, α) = 1−α does not mean
the posterior is accurate for HPD regions, but it does for
TARP regions.

We also repeated this example for the case of Gaussian
distributions with nondiagonal elements in the covariance
matrix. To do this, we randomly generated arrays of size
D(D − 1)/2, we then converted them into lower triangular
matrices, which we used as the Cholesky decomposition
of the covariance matrix. We found that adding non-zero
elements to the covariance matrix did not change our results.

4.2. Dependence on θr distribution and distance metric

All the results of the Gaussian Toy Model, shown in Fig. 2,
rely on two choices, specified in § 3.2: A distribution to
draw reference points θr from, and a distance metric d(·, ·).
Therefore, it is key to study the dependence of our method
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Figure 4. Expected coverage vs credibility level for the uninforma-
tive posterior estimator described in §4.3. The blue line shows the
coverage calculated using HPD regions, while the red lines use
TARP regions. The continuous line uses reference points that are
independent of x, while the dot-dashed line uses reference points
that depend on x.

on different choices of both things. Firstly, we repeated
all four versions of the Gaussian Toy Model experiment,
drawing θr from various distributions:

• A uniform distribution, both covering the wide range
θr ∼ U(0, 1), and covering only part of the range
θr ∼ U(0, 0.5)

• A normal distribution, centered at θ = 0.5, and with
standard deviation varying between 0.01 and 0.1

• θr with a fixed value, either at the center of parameter
space θr = 0.5 or at a different location.

We also repeated our experiments using the Manhattan or
L1 distance, instead of L2. We found very similar curves
to those shown in Fig. 2 for the correct, overconfident, and
underconfident cases. In the biased case, the different θr
distributions led to different curves, but all of them clearly
showed there was a bias. These figures are shown in §D.
Therefore, we conclude that the proposed method is robust
to different distributions for θr, and choices of distance
metric.

4.3. Revealing when estimators are uninformative

As our second benchmark, we consider the case mentioned
before in which the learned posterior estimator is equal to
the prior p̂(θ|x) = p(θ). The reason why we are interested

in this example is that, in that case, the expected coverage
probability calculated using HPD regions will be equal to
1− α for any value of α, as previously discussed. However,
with TARP we have the ability to avoid this blindspot by
sampling reference points in a manner dependent on x.

To make this concrete, we consider a one-dimensional ex-
ample with a Gaussian prior p(θ) = N (θ;µ0, σ

2
0). Our

‘forward model’ in this case is simply generating a num-
ber nx of data points, from {xi}nx

i=1 ∼ N(θ, σx
2). In this

conjugate model, we can easily derive the true posterior:

p (θ| {xi}nx

i=1) = N (µ|m, s), (27)

s =

(
1

σ2
0

+
n+ x

σx + x2

)−1

, (28)

m = s

(
µ0

σ2
0

+

∑
i xi

σ2
x

)
(29)

We fix nx = 50, µ0 = 0, σ0 = 1 and σx = 0.1. We
generate 500 samples from the forward model, and calcu-
late expected coverage from an ‘uninformative estimator’
p̂(θ|x) = p(θ) in three ways: 1) using HPD regions, 2) us-
ing TARP regions where θr is drawn randomly from U(0, 1),
and 3) using TARP regions where θr = x0 + u, where x0

is the first observation, and u ∼ U(0, 1). We expect the first
two methods to have ECP equal to 1 − α, but not for the
third.

We show the results in Fig. 4. First, we notice that when
we use HPD regions, we get the correct expected coverage,
even though the estimator is wrong (validating the theo-
retical discussion in § 2). This means that, in this case,
HPD coverage could fool us into thinking our estimator
is accurate when in reality it is completely uninformative.
Interestingly, the same happens when we use TARP regions
with reference points selected randomly from the prior (red
line). This is because, as discussed in §2, Theorem 3 only
holds in both directions when the choice of the region de-
pends on x. Finally, as anticipated, the expected coverage is
not 1− α when the sampling distribution for θr has some
x-dependence. Therefore, we see how even when we intro-
duce a small dependence on x to p̃(θr|x) in TARP reveals
that the posterior estimator is not accurate. We further ex-
plore how the dependence of p̃(θr|x) on x affects our results
in §D.

4.4. Gravitational Lensing

To test our algorithm in a more realistic and high-
dimensional setting, we consider a simplified astrophysics
problem: gravitational lensing source reconstruction. Grav-
itational lensing occurs in nature when light rays from a
distant galaxy move along curved rather than straight paths
due to the mass of another intervening galaxy (the ‘lens’)
(Treu, 2010). The result is a highly-distorted, ring-shaped
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Figure 5. Expected coverage probability vs credibility level for
our lensing example, for which tests based on HPD coverage
are intractable. We see how, as expected, the exact posterior
estimator (blue) accurately characterizes the posterior while the
biased estimator (orange) does not.

image of the background galaxy. The goal of source recon-
struction is to infer from a noisy image what the light from
the source galaxy looks like without distortions, assuming
the mathematical form of the distortions is perfectly known.
In this high-dimensional setting, coverage checks based on
the posterior’s HPD region are intractable.

The simulator in this scenario samples the source galaxy’s
light θ from a multivariate-normal distribution that we fit to
a dataset of galaxy images (Stone & Courteau, 2019; Stone
et al., 2021). A matrix A encoding the lensing distortions
are then applied, and the final observation is produced by
adding Gaussian pixel noise of standard deviation σn, so that
x ∼ N (Aθ, σ2

n). For computational convenience, we use
16×16-pixel source images and 32×32-pixel observations.

As shown in Adam et al. (2022) and reviewed in §E, pos-
terior samples of θ can be generated using techniques from
diffusion modeling. In general, this approach yields subtly
biased posterior samples. However, with our multivariate-
normal prior on θ, it is possible to generate unbiased pos-
terior samples. We refer to samples from these as ‘biased’
and ‘exact’ in our results.

Fig. 5 shows the results for both the exact and the biased
posterior estimators, using 500 simulations, and 1000 poste-
rior samples per simulation, and sampling θr from the prior.
As expected, our method gets the correct coverage for the
exact estimator. It is important to stress that generative mod-
els are needed for parameter spaces of this dimensionality
(256 parameters), and no previously existing methods could

calculate ECPs to assess the accuracy of such models. The
biased estimator, on the other hand, produces a similar curve
to that of the bottom right panel of Fig. 2, which indicates
that it is indeed biased.

5. Conclusions
Testing the accuracy of estimated posteriors is a key element
of parameter inference. While there exist well-establish con-
vergence diagnostics for established sampling methods like
MCMC, it is difficult to directly test the accuracy of pos-
terior inferences, particularly those computed using deep
learning methods. This is the case for both likelihood-based
and simulation-based inference. In this paper, we intro-
duced TARP coverage probabilities as a new technique to
test the accuracy of estimated posteriors using posterior
samples alone, when explicit posterior evaluations are not
available. While our focus is testing posterior estimators
based on generative machine learning models, our method
could equally well be used to test the correctness of MCMC
samples, although potentially at a great computational cost.

We have shown that this test is sufficient to prove that the
inference is accurate, while other similar tests were nec-
essary but not sufficient. We also tested the impact of the
choice of p̂(θr|x) and the distance metric used by the TARP
method and found that they do not significantly affect our
results. The exception to this is the case where the posterior
estimator is equal to the prior, in which case TARP only
works if p̂(θr|x) has some dependency on x. It is left up to
the user of the method to determine whether this is a risk.

We applied our test successfully to a variety of inference
problems, in particular in cases where alternative methods
fail, and showed that it scales well to high-dimensional pos-
teriors. Therefore, we propose TARP coverage probabilities
as a tool to test the accuracy of future posterior inference
analyses from generative models.

6. Broader Impact
Our work is focused on checking the correctness of statisti-
cal inferences, which is an important open issue. We expect
our work to have a positive societal impact by increasing
the trustworthiness of machine learning applications to sci-
entific problems across a wide variety of domains. As with
any statistical method, however, incorrect application of our
method (particularly through poor choice of the sampling
distribution for θref ) could lead to invalid conclusions.
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chain monte carlo without likelihoods. Proceedings of
the National Academy of Sciences, 100(26):15324–15328,
2003.
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Figure 6. This figure illustrates the intuition behind the two ways of calculating high posterior density coverages. Each column shows one
of three simulations in a toy example. The blue curves show the predicted posteriors, and the black vertical lines show the corresponding
truths. We want to calculate the coverage for the 68% credibility level (α = 0.32). The first approach, shown in the top row, would consist
of calculating the 1− α credibility region, then checking how often the truth is in the said region (in this case twice, so the coverage is
2/3). The alternative approach, described in §3.1, and shown in the bottom row, is to find the HPD region defined by the truth, then find
how often α̃HPD < α, which is again twice. The plot illustrates the fact that these two approaches are exactly equivalent.

A. Connection between both definitions
§3.1 discussed the differences between two possible methods for calculating coverage probabilities, both for HPD and TARP
regions. We try to build more intuition behind that connection in this appendix. Focusing first on the case of HPD regions,
shown in Fig. 6. The first method, perhaps more intuitive but far more inefficient, would be to calculate the 1− α credibility
region, then check how often the truth is in the said region for each simulation, and for multiple values of alpha (notice the
nested loop). The second method, a consequence of the very important Lemma 1, and already used by Algorithm 1 would
be to find the HPD region defined by the truth for each simulation, and its corresponding credibility level 1− α̃HPD. We can
then calculate the coverage for the 1− α level as

∑N
i=1 α̃HPD ≥ α, where N is the number of simulations.

A similar logic applies to TARP credibility regions. While we could find the radius from the reference point, such that α
reaches a certain value, it is far more computationally efficient, and equivalent, to use the credibility regions defined by the
true values, as shown in Fig. 7. This is the method used by Algorithm 2.

B. Intuition about over and under confident plots
Practitioners used to applying coverage probabilities to validate SBI analysis will be used to seeing over- and underconfident
curves, such as those in the blue curves of Fig. 2. However, the same figure shows how the TARP method produces different
curves for over- and underconfident posterior estimators. The aim of this appendix is to provide some intuition behind these
differences.

Firstly, we focus on underconfident posteriors, shown in the top panel of Fig. 8. In this case, we see that the TARP coverage
tends to be close to 0.5. This is because regardless of where the random reference point is, if the truth is close to the peak of
the posterior, the TARP area is likely to cover approximately half of the distribution. On the other hand, for overconfident
posteriors, shown in the bottom panel of Fig. 8, we see that the TARP coverage tends to be close to either 0 or 1. This is
because regardless of where the random reference point is, if the truth is far from the peak of the posterior, the TARP area is
likely to cover either the whole distribution, or none of it.
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Figure 7. Similarly to Fig. 6, this figure illustrates the intuition behind the two ways of calculating ‘distance to random point’ coverages.
Each column shows one of three simulations in a toy example. The red curves show the predicted posteriors, and the black vertical lines
show the corresponding truths. The orange lines show the randomly selected reference points. We want to calculate the coverage for
the 68% credibility level (α = 0.32). The first approach, shown in the top row, would consist of finding the 1 − α credibility region
centered around the reference point, then checking how often the truth is in the said region (in this case twice, so the coverage is 2/3).
The alternative approach, shown in the bottom row, is to find the TARP region defined by the reference and the truth, then find how often
α̃HPD < α, which is again twice. The plot illustrates the fact that these two approaches are exactly equivalent.
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Figure 8. This figure illustrates the reason behind the shapes of over and underconfident curves obtained using TARP coverage, such
as those in Fig. 2. The top shows three example simulations with overconfident predictions, while the bottom shows underconfident
predictions. The figure shows that TARP coverages tend to be close to 0.5, while for overconfident regions they tend to be close to either
0 or 1.
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Figure 9. The position-dependent function used as the mean in the biased case in §4.1, for three different values of sigma.

C. Biased case experiment function
Fig. 9 shows the function (26), used in §4.1 for the one-dimensional case, as the means of the normal distributions. The
function shows how, when θ∗ is zero, the distributions are centered at the correct value, whereas as we move away from
zero, the posterior estimator will be increasingly biased.

D. Dependence on θr distribution and distance metric
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Figure 10. The Gaussian Toy Model experiment described in § 4.1, drawing the reference points θr from different distributions, as
described in §4.2.

Fig. 10 shows the same as Fig. 2, but varying the distribution used to draw θr. We find that this only makes a difference in
the biased case, but even then there is clear evidence of bias for all distributions. Fig. 11 shows the same, comparing the use
of L1 and L2 as distance metrics. We find no appreciable differences in this case. We, therefore, conclude that our method is
robust to choices of θr distribution and distance metric.

In §4.3, we discussed how when we have a distribution p̃(θr|x) that has some dependency on x, the TARP method reveals
an inaccurate posterior estimator, in the case when the posterior estimator is simply recovering the prior. Fig. 12 shows
what happens to this experiment for different distributions. We see how the distributions that do not depend on x, shown
in continuous lines, do not detect the inaccurate posterior estimator as expected. On the other hand, the distributions that
depend strongly on x, shown as dotted lines, very clearly detect the inaccurate estimator. Finally, we show a distribution with
a weaker dependence on x, where TARP does lie away from the diagonal line, but much closer than the other x-dependent
distributions, as expected.
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Figure 11. The Gaussian Toy Model experiment described in §4.1, using L1 or L2 distance metrics, as described in §4.2.
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show distributions that do not depend on x, the dash-dotted line shows a distribution with a weak dependence on x, and the dotted lines
show a stronger dependence.
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E. Gravitational lensing experiment details
As shown in Adam et al. (2022), gravitational lensing source reconstruction can be performed using techniques from
score-based modeling. Here we summarize the key ideas behind score-based modeling and how we generate biased and
exact posterior samples.

Score-based modeling works by perturbing a training dataset sampled from a prior p(θ) with noise of increasing scales
indexed by t ∈ [0, T ]. Here t = 0 corresponds to unperturbed data (p0(θ) = p(θ)) and t = T corresponds to perturbing the
data so much it is buried under noise and follows a Gaussian distribution (pT (θ) = N (θ|0, σ2

T )). The noising process be
described by the stochastic differential equation (SDE) (Song et al., 2020)

dθt = f(t, θ) dt+ g(t) dw , (30)

where w is a standard Wiener process. Using denoising score-matching (Hyvärinen & Dayan, 2005; Vincent, 2011; Song
et al., 2020), a neural network can be trained to approximate the time-dependent prior score ∇θpt(θ), where pt(θ) is the
distribution over data perturbed by the noising process up to time t. Given the prior score, samples can be generated by
solving the corresponding reverse SDE (RSDE) backward in time, starting with samples from pT :

dθ =
[
f(t, θ)− g2(t)∇θ log pt(θ)

]
dt+ g(t) dw , (31)

where here dt is a negative timestep.

For simplicity, instead of fitting a score-based model, we fit a multivariate Gaussian to the PROBES dataset of galaxy
images as our prior, giving p(θ) = N (µ0,Σ0). We use the variance-exploding SDE from Song et al. (2020) as our noise
process. The prior at time t is thus pt(θ) = N (θ|µ0,Σ0 + σ2

t I), where σ2
t is the variance of the noise process at time t. This

expression can be used to evaluate the prior score analytically.

To modify the sampling procedure to generate samples from p(θ|x) for some observation x, we must condition the score in
the RSDE, replacing the prior score with the posterior score:

dθ =
[
f(t, θ)− g2(t)∇θ log pt(θ|x)

]
dt+ g(t) dw , (32)

By Bayes’ rule, the posterior score is

∇θ log pt(θ|x) = ∇θ log pt(x|θ) +∇θ log pt(θ) , (33)

where the first term on the RHS is the score of the likelihood. As pointed out in Adam et al. (2022), this time-dependent
likelihood is in general intractable but can be approximated as

p̂t(x|θ) = N (x|Aθ, σ2
nI+ σ2

tAAT ) ≈ pt(x|θ) , (34)

where the matrix A encodes the lensing distortions and σn is the standard deviation of the noise in the observation (see §
4.4). However, when p(θ) is a multivariate Gaussian, the time-dependent likelihood is tractable, evaluating to

pt(x|θ) = N (x|Aθc(θ), σ
2
nI+AΣcA

T ) , (35)

where
Σc :=

(
Σ−1

0 + σ−2
t I
)−1

, θc(θ) := σ−2
t Σcθ . (36)

We, therefore, have two methods for sampling the posterior for the source galaxy’s light: solving the RSDE (32) using the
exact time-dependent likelihood ((35)) or the approximate, biased one ((34)). We refer to these as the ‘exact’ and ‘biased’
samplers respectively.

Finally, we solve both the exact and biased RSDEs by discretizing with the Euler-Maruyama method (see e.g. Song et al.
(2020)). We find 300 steps are sufficient to ensure convergence.

18


