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Abstract
Inference from large autoregressive models like
Transformers is slow - decoding K tokens takes
K serial runs of the model. In this work we in-
troduce speculative decoding - an algorithm to
sample from autoregressive models faster without
any changes to the outputs, by computing several
tokens in parallel. At the heart of our approach lie
the observations that (1) hard language-modeling
tasks often include easier subtasks that can be ap-
proximated well by more efficient models, and
(2) using speculative execution and a novel sam-
pling method, we can make exact decoding from
the large models faster, by running them in par-
allel on the outputs of the approximation mod-
els, potentially generating several tokens concur-
rently, and without changing the distribution. Our
method can accelerate existing off-the-shelf mod-
els without retraining or architecture changes. We
demonstrate it on T5-XXL and show a 2X-3X
acceleration compared to the standard T5X imple-
mentation, with identical outputs.

1. Introduction
Large autoregressive models, notably large Transformers
(Vaswani et al., 2017), are much more capable than smaller
models, as is evidenced countless times in recent years e.g.,
in the text or image domains, like GPT-3 (Brown et al.,
2020), LaMDA (Thoppilan et al., 2022), Parti (Yu et al.,
2022), and PaLM (Chowdhery et al., 2022). Unfortunately,
a single decode step from these larger models is significantly
slower than a step from their smaller counterparts, and mak-
ing things worse, these steps are done serially - decoding K
tokens takes K serial runs of the model.

Given the importance of large autoregressive models and
specifically large Transformers, several approaches were
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developed to make inference from them faster. Some ap-
proaches aim to reduce the inference cost for all inputs
equally (e.g. Hinton et al., 2015; Jaszczur et al., 2021;
Hubara et al., 2016; So et al., 2021; Shazeer, 2019). Other
approaches stem from the observation that not all infer-
ence steps are born alike - some require a very large model,
while others can be approximated well by more efficient
models. These adaptive computation methods (e.g. Han
et al., 2021; Sukhbaatar et al., 2019; Schuster et al., 2021;
Scardapane et al., 2020; Bapna et al., 2020; Elbayad et al.,
2019; Schwartz et al., 2020) aim to use less compute re-
sources for easier inference steps. While many of these
solutions have proven extremely effective in practice, they
usually require changing the model architecture, changing
the training-procedure and re-training the models, and don’t
maintain identical outputs.

The key observation above, that some inference steps are
“harder” and some are “easier”, is also a key motivator for
our work. We additionally observe that inference from large
models is often not bottlenecked on arithmetic operations,
but rather on memory bandwidth and communication, so
additional computation resources might be available. There-
fore we suggest increasing concurrency as a complemen-
tary approach to using an adaptive amount of computation.
Specifically, we are able to accelerate inference without
changing the model architectures, without changing the
training-procedures or needing to re-train the models, and
without changing the model output distribution. This is
accomplished via speculative execution.

Speculative execution (Burton, 1985; Hennessy & Patterson,
2012) is an optimization technique, common in processors,
where a task is performed in parallel to verifying if it’s
actually needed - the payoff being increased concurrency.
A well-known example of speculative execution is branch
prediction. For speculative execution to be effective, we
need an efficient mechanism to suggest tasks to execute
that are likely to be needed. In this work, we generalize
speculative execution to the stochastic setting - where a
task might be needed with some probability. Applying this
to decoding from autoregressive models like Transformers,
we sample generations from more efficient approximation
models as speculative prefixes for the slower target mod-
els. With a novel sampling method, speculative sampling,
we maximize the probability of these speculative tasks to
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Figure 1. Our technique illustrated in the case of unconditional language modeling. Each line represents one iteration of the algorithm.
The green tokens are the suggestions made by the approximation model (here, a GPT-like Transformer decoder with 6M parameters
trained on lm1b with 8k tokens) that the target model (here, a GPT-like Transformer decoder with 97M parameters in the same setting)
accepted, while the red and blue tokens are the rejected suggestions and their corrections, respectively. For example, in the first line the
target model was run only once, and 5 tokens were generated.

be accepted, while guaranteeing that the outputs from our
system have the same distribution as those from the target
model alone. For example, the sentence in Figure 1, con-
sisting of 38 tokens, was generated by our method with
only 9 serial runs of a larger target model (97M parameters)
thanks to a smaller and more efficient approximation model
(6M parameters), while the probability of generating it is
unchanged.

We analyze our method in a variety of tasks and model
sizes: unconditional generation from a 97M parameter GPT-
like model trained on lm1b, English to German translation
and news article summarization with an 11B parameters
T5-XXL model, and a dialog task with a 137B parameter
LaMDA model. We implement our method and compare
actual walltimes for T5-XXL to those of the robust T5X
implementation (Roberts et al., 2022), showing an out-of-
the-box latency improvement of 2X-3X, without any change
to the outputs (Section 4).

Our method is easy to employ in actual production settings,
doesn’t require training new models, and doesn’t change the
outputs. Therefore, in common situations where memory
bandwidth is the bottleneck, and compute resources are
available, it may be a good default to accelerate sampling
from autoregressive models like Transformers.

To summarize, our main contributions are: (1) A generaliza-
tion of speculative execution to the stochastic setting, with
a novel sampling method we call speculative sampling, and
(2) A decoding mechanism we call speculative decoding that
can accelerate decoding from autoregressive models, with-
out any change to the model architectures, training regimes
and output distributions.

2. Speculative Decoding
2.1. Overview

Let Mp be the target model, inference from which we’re
trying to accelerate, and p(xt|x<t) the distribution we get
from the model for a prefix x<t. Let Mq be a more effi-
cient approximation model for the same task, and denote
by q(xt|x<t) the distribution we get from the model for a
prefix x<t1. The core idea is to (1) use the more efficient
model Mq to generate γ ∈ Z+ completions (see Section 3.5
for how to optimally choose this parameter), then (2) use
the target model Mp to evaluate all of the guesses and their
respective probabilities from Mq in parallel, accepting all
those that can lead to an identical distribution, and (3) sam-
pling an additional token from an adjusted distribution to fix
the first one that was rejected, or to add an additional one
if they are all accepted. That way, each parallel run of the
target model Mp will produce at least one new token (so the
number of serial runs of the target model can never, even
in the worst case, be larger than the simple autoregressive
method), but it can potentially generate many new tokens,
up to γ + 1, depending on how well Mq approximates Mp.

2.2. Standardized Sampling

First, note that while there are many methods and parame-
ters of sampling, like argmax, top-k, nucleus, and setting
a temperature, and popular implementations usually treat
them differently at the logits level, they can all easily be cast
into standard sampling from an adjusted probability distribu-
tion. For example, argmax sampling is equivalent to zeroing
out non-max elements of the distribution and normalizing.
We can therefore only deal with standard sampling from a

1We’ll use p(x) to denote p(xt|x<t) whenever the prefix x<t

is clear from the context, and similarly for q(x).
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probability distribution, and cast all of the other types of
sampling into that framework. Going forward we’ll assume
that p(x) and q(x) are the distributions from Mp and Mq

respectively, adjusted for the sampling method.

2.3. Speculative Sampling

To sample x ∼ p(x), we instead sample x ∼ q(x), keeping
it if q(x) ≤ p(x), and in case q(x) > p(x) we reject the
sample with probability 1− p(x)

q(x) and sample x again from an
adjusted distribution p′(x) = norm(max(0, p(x)− q(x)))
instead. It’s easy to show (see Appendix A.1) that for any
distributions p(x) and q(x), and x sampled in this way,
indeed x ∼ p(x).

Given the distribution q(x) obtained from running Mq on
a conditioning prefix, we can sample a token x1 ∼ q(x).
We then calculate the distribution p(x) by running Mp on
prefix while in parallel speculatively calculating the distri-
bution of the next token x2 by runningMp on prefix+[x1].
Once both computations complete, we proceed as per above:
If x1 is rejected, we discard the computation of x2 and
re-sample x1 from an adjusted distribution, and if x1 is ac-
cepted, we keep both tokens. Algorithm 1 generalizes this
idea to sample between 1 and γ + 1 tokens at once.

Algorithm 1 SpeculativeDecodingStep
Inputs: Mp,Mq, prefix.
. Sample γ guesses x1,...,γ from Mq autoregressively.
for i = 1 to γ do
qi(x)←Mq(prefix+ [x1, . . . , xi−1])
xi ∼ qi(x)

end for
. Run Mp in parallel.
p1(x), . . . , pγ+1(x)←

Mp(prefix), . . . ,Mp(prefix+ [x1, . . . , xγ ])
. Determine the number of accepted guesses n.
r1 ∼ U(0, 1), . . . , rγ ∼ U(0, 1)

n← min({i− 1 | 1 ≤ i ≤ γ, ri > pi(x)
qi(x)
} ∪ {γ})

. Adjust the distribution from Mp if needed.
p′(x)← pn+1(x)
if n < γ then
p′(x)← norm(max(0, pn+1(x)− qn+1(x)))

end if
. Return one token from Mp, and n tokens from Mq .
t ∼ p′(x)
return prefix+ [x1, . . . , xn, t]

3. Analysis
3.1. Number of Generated Tokens

Let’s analyze the reduction factor in the number of serial
calls to the target model, or equivalently, the expected num-

ber of tokens produced by a single run of Algorithm 1.

Definition 3.1. The acceptance rate βx<t , given a prefix
x<t, is the probability of accepting xt ∼ q(xt|x<t) by
speculative sampling, as per Section 2.32.

E(β) is then a natural measure of how well Mq approxi-
mates Mp. If we make the simplifying assumption that the
βs are i.i.d., and denote α = E(β), then the number of
tokens produced by a single run of Algorithm 1 is a capped
geometric variable, with success probability 1− α and cap
γ + 1, and the expected number of tokens generated by
Algorithm 1 satisfies Equation (1). See Figure 2.

E(# generated tokens) =
1− αγ+1

1− α
(1)
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Figure 2. The expected number of tokens generated by Algorithm 1
as a function of α for various values of γ.

3.2. Calculating α

We’ll now derive a simple formula for calculating α given a
prefix and the two models Mp and Mq . We start by defining
a natural divergence DLK :

Definition 3.2. DLK(p, q) =
∑
x |p(x) − M(x)| =∑

x |q(x)−M(x)| where M(x) = p(x)+q(x)
2 .

Lemma 3.3. DLK(p, q) = 1−
∑
xmin(p(x), q(x))

Proof. DLK(p, q) =
∑
x |p(x) −M(x)| =

∑
x
|p−q|

2 =

1−
∑
x
p+q−|p−q|

2 = 1−
∑
xmin(p(x), q(x))

From Lemma 3.3 we immediately get the following results:

2As before, we’ll omit the x<t subscript whenever the prefix is
clear from the context.
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Corollary 3.4. DLK(p, q) is a symmetric divergence in [0, 1].
DLK(p, q) = 0 ⇐⇒ p = q.
DLK(p, q) = 1 ⇐⇒ p and q have disjoint support.

Theorem 3.5. β = 1−DLK(p, q)

Proof. β = Ex∼q(x)

{
1 q(x) ≤ p(x)
p(x)
q(x) q(x) > p(x)

=

Ex∼q(x) min(1, p(x)q(x) ) =
∑
xmin(p(x), q(x))

Finally we get:

Corollary 3.6. α = 1− E(DLK(p, q)) = E(min(p, q))

See Table 3 for empirically observed α values in our experi-
ments.

3.3. Walltime Improvement

We’ve shown that with the i.i.d. assumption our algorithm
reduces the number of calls to the target model by a factor
of 1−αγ+1

1−α . Note that speculative execution in general, and
our algorithm in particular, assume that we have enough
compute resources to support the increased concurrency
(Section 3.4). For the walltime anaylsis, we’ll assume that
we can run γ + 1 concurrent evaluations of Mp in parallel
without increasing the walltime. To get the total walltime
improvement, we now consider the cost of running the ap-
proximation model Mq .

Definition 3.7. Let c, the cost coefficient, be the ratio be-
tween the time for a single run of Mq and the time for a
single run of Mp.

Note that unlike α which is an intrinsic property of the
models and the task, the value of c depends on the hardware
configuration and software implementation details. In our
experiments where Mq is typically a couple of orders of
magnitude smaller than Mp, c was always less than 0.05
and often negligibly close to 0.

Theorem 3.8. The expected improvement factor in total
walltime by Algorithm 1 is 1−αγ+1

(1−α)(γc+1) .

Proof. Denote the cost of running a single step of Mp by T .
Now, each run of Algorithm 1 costs Tcγ + T (for running
the approximation modelMq γ times and runningMp once)
and according to Equation (1) produces 1−αγ+1

1−α tokens on
average. So the overall expected cost for producing a token
with Algorithm 1 is (cγ+1)(1−α)

1−αγ+1 T . Since the cost of pro-
ducing a single token with the standard decoding algorithm
is T , we get the desired result.

Note that Theorem 3.8 assumes long enough generations
(for example, since we run Mp at least once, the improve-
ment factor is capped by the number of generated tokens).

Corollary 3.9. If α > c, there exists γ for which we’ll get
an improvement, and the improvement factor will be at least
1+α
1+c .

Proof. If we get an improvement for γ, we’d also get an
improvement for any 0 < γ∗ < γ, so for our method to
yield an improvement, we can evaluate Theorem 3.8 for
γ = 1, yielding 1−α2

(1−α)(c+1) =
1+α
1+c .

3.4. Number of Arithmetic Operations

Algorithm 1 does γ+1 runs ofMp in parallel, so the number
of concurrent arithmetic operations grows by a factor of
γ+1. Now, since Algorithm 1 produces at most γ+1 tokens
per run, the total number of arithmetic operations might be
higher than that of the standard decoding algorithm. When
we accept the sample from Mq the increased concurrency
is “free” and the total number of operations isn’t increased3.
When we reject a guess though, computation is wasted. Let’s
now analyze the effect of our method on the total number
of arithmetic operations.

Definition 3.10. Let ĉ be the ratio of arithmetic operations
per token of the approximation model Mq to that of the
target model Mp.

Theorem 3.11. The expected factor of increase in the num-
ber of total operations of Algorithm 1 is (1−α)(γĉ+γ+1)

1−αγ+1 .

Proof. Denote by T̂ the number of arithmetic operations
done by a standard decoding baseline per token, i.e. the
number of operations of a single run of Mp. Then a single
iteration of Algorithm 1 costs T̂ ĉγ + T̂ (γ + 1) operations
(for γ runs of Mq and γ + 1 parallel runs of Mp). Dividing
by the expected number of tokens produced by Algorithm 1,
i.e. Equation (1), and by T̂ , we get the desired result.

If α is low, the increase in the number of arithmetic oper-
ations is high, and vice-versa. Note that for Transformer
decoders, the total number of arithmetic operations by Al-
gorithm 1 (not counting runs of Mq) can be bounded from
above by a single run of the same-size Transformer encoder.

Unlike the total number of arithmetic operations, the total
number of memory accesses can go down with our method.
Specifically, the target model’s weights and KV cache can
be read once per execution of Algorithm 1, so the number
of memory accesses for reading them shrinks by a factor of
1−αγ+1

1−α , according to Equation (1).

3.5. Choosing γ

Given c and α and assuming enough compute resources (see
Section 3.4), the optimal γ is the one maximizing the wall-

3Neglecting the cost of Mq .
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Figure 3. The optimal γ as a function of α for various values of c.

time improvement equation (Theorem 3.8): 1−αγ+1

(1−α)(γc+1) .
Since γ is an integer, it can be easily found numerically, see
Figure 3.

Table 1 and Figure 4 illustrate the trade-off between infer-
ence speed and the total number of arithmetic operations for
various values of α and γ, assuming c = ĉ = 0. Figure 5
shows a simplified trace diagram.

Table 1. The total number of arithmetic operations and the infer-
ence speed vs the baseline, for various values of γ and α, assuming
c = ĉ = 0.

α γ OPERATIONS SPEED

0.6 2 1.53X 1.96X
0.7 3 1.58X 2.53X
0.8 2 1.23X 2.44X
0.8 5 1.63X 3.69X
0.9 2 1.11X 2.71X
0.9 10 1.60X 6.86X

Instead of picking a single value for γ based on α, since the
βs aren’t constant, we could get further improvement by pre-
dicting the value of β and accordingly varying the value of γ
during the run of Algorithm 1. To get an upper bound on the
additional improvement factor, assume we had an oracle for
γ. We would then have E(# generated tokens) = 1

1−α .
For typical values of c and α, and assuming unbounded com-
pute resources, the enhanced walltime improvement factor
can be up to∼60% higher than the improvement factor with
a fixed γ. We leave exploring this for future work4.

4The above bound assumes that we still runMp to verify the or-
acle’s predictions. If we skip those verifications the bound doesn’t
hold and we would get a substantial additional improvement.
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Figure 4. The speedup factor and the increase in number of arith-
metic operations as a function of α for various values of γ.

3.6. Approximation Models

Speculative sampling, and therefore speculative decoding,
guarantee an identical output distribution for any choice
of approximation model Mq without restriction (see Ap-
pendix A.1). In our experiments, we mostly tested existing
off-the-shelf smaller Transformers as the approximation
models. Further, we only tested approximation models of
the same architecture as the target models Mp and using the
same probability standardization. In this setup, choosing
Mq to be around two orders of magnitude smaller than Mp

usually performed best, balancing α and c (Theorem 3.8).

Another type of approximation models, negligible-cost mod-
els, are those for which c ≈ 0, i.e. approximation models
with a negligible cost relative to the target model. In this
case, we get an expected walltime improvement of 1−αγ+1

1−α ,
which is bounded from above by 1

1−α (we approach equal-
ity if γ is large). One interesting type of negligible-cost
approximation models are n-gram models, where the evalu-
ation amounts to a table lookup. Interestingly, in empirical
tests (Section 4.2) we get non zero αs even for these triv-
ial n-gram models. For example, for the English-German
translation task, with Mp being T5-XXL 11B and Mq being
a trivial bigram model, we get α ≈ 0.2 which leads to an
inference speed improvement factor of 1.25X with γ = 3.

Other simple heuristics can be used as negligible-cost ap-
proximation models. For example, in cases where long se-
quences are likely to repeat, such as for summarization tasks
or chat-like interfaces 5, an approximation model that simply

5E.g. where a user and a language model iterate on content, like
text or code (“can you rewrite this story but change the ending”,
“can you make this function also do X”).
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Figure 5. A simplified trace diagram for a full encoder-decoder Transformer stack. The top row shows speculative decoding with γ = 7
so each of the calls to Mp (the purple blocks) is preceded by 7 calls to Mq (the blue blocks). The yellow block on the left is the call to the
encoder for Mp and the orange block is the call to the encoder for Mq . Likewise the middle row shows speculative decoding with γ = 3,
and the bottom row shows standard decoding.

copies tokens from the context in case we find a matching
prefix, might yield high values of α. These parameter-less
approximation models, have the additional advantage of
being even simpler to deploy from a production standpoint.

Another type of approximation models that can be used by
speculative decoding are non-autoregressive models, like
those from (Stern et al., 2018). Then, instead of the au-
togreressive loop in Algorithm 1 we’d just call the non-
autoregressive model once.

A final example, interesting mostly from a theoretical per-
spective, is an approximation model which chooses tokens
at random, which guarantees some improvement (although
very small) for all models Mp.

4. Experiments
4.1. Empirical Walltime Improvement

We implement our algorithm and compare it to the imple-
mentation in the T5X codebase for accelerating T5-XXL.

Setup We test a standard encoder-decoder T5 version 1.1
model (Raffel et al., 2020) on two tasks from the T5 paper:
(1) English to German translation fine tuned on WMT EnDe,
and (2) Text summarization fine tuned on CCN/DM. For
both tasks, we use T5-XXL (11B) for Mp. For the approx-
imation model Mq we test several existing configurations,
namely T5-large (800M), T5-base (250M), and T5-small
(77M) (Raffel et al., 2020). We use existing checkpoints
for all models. We measure walltime improvements with a
batch size of 1 on a single TPU-v4 for both argmax sampling
(temp=0) and standard sampling (temp=1).

Results Table 2 shows the empirical results from our
method. We see that T5-small (77M), with a good balance
of c and α, provides the highest speedup out of the tested

approximation models. As expected we see that α increases
with the size of the approximation model. Interestingly, α
and walltime improvement are higher for argmax sampling
(temp=0). We observe speedups of 2.6X (temp=1) and 3.4X
(temp=0) on the translation task and slightly lower speedups
of 2.3X (temp=1) and 3.1X (temp=0) for the summarization
task. These empirical results match well with the theoreti-
cal predictions, with some variance due to implementation
details (see Appendix A.3).

Table 2. Empirical results for speeding up inference from a T5-
XXL 11B model.

TASK Mq TEMP γ α SPEED

ENDE T5-SMALLF 0 7 0.75 3.4X
ENDE T5-BASE 0 7 0.8 2.8X
ENDE T5-LARGE 0 7 0.82 1.7X
ENDE T5-SMALLF 1 7 0.62 2.6X
ENDE T5-BASE 1 5 0.68 2.4X
ENDE T5-LARGE 1 3 0.71 1.4X

CNNDM T5-SMALLF 0 5 0.65 3.1X
CNNDM T5-BASE 0 5 0.73 3.0X
CNNDM T5-LARGE 0 3 0.74 2.2X
CNNDM T5-SMALLF 1 5 0.53 2.3X
CNNDM T5-BASE 1 3 0.55 2.2X
CNNDM T5-LARGE 1 3 0.56 1.7X

4.2. Empirical α Values

While we only implemented our method for T5, we mea-
sured α values for various tasks, sampling methods, target
models Mp, and approximation models Mq. Specifically,
we evaluated the expectation from Corollary 3.6 on 10K
tokens generated by Mp, for each of the settings below.

GPT-like (97M params) We test a decoder-only Trans-
former model on unconditional language generation, trained
on lm1b (Chelba et al., 2013). The model here is a GPT-
like Transformer decoder with Gelu activations (Hendrycks
& Gimpel, 2016). For Mq we experimented with a Trans-

6



Fast Inference from Transformers via Speculative Decoding

former decoder model with 6M parameters: dim 256, dim
feed-forward 1024, 2 layers, 4 attention heads, as well as
simple unigram and bigram models. Mp has 97M parame-
ters: dim 768, dim feed-forward 3072, 12 layers, 12 atten-
tion heads. We used Bert tokenization (Devlin et al., 2019)
with 8k tokens for all models.

LaMDA (137B params) We tested a decoder only
LaMDA model on a dialog task (Thoppilan et al., 2022).
We used existing checkpoints from LaMDA 137B as Mp

and LaMDA 8B, LaMDA 2B, and LaMDA 100M for Mq .

See Section 4.1 for the setup of the T5-XXL (11B params)
model.

Table 3 summarizes the α values for the tested cases. We
observe that approximation models that are a couple of
orders of magnitude smaller than the target model tend to
produce α values between 0.5 and 0.9. Interestingly, we also
note that for all models, the sharper the adjusted distribution,
the higher the α values. Finally, we note that even trivial
unigram and bigram approximations yield non negligible
α values. For example, for the case of English to German
translation, the bigram model has an α value of 0.2, and
since c = 0 in this case, yields a 1.25X speed improvement,
which is surprisingly high for this trivial approximation
model (but is still lower than the speedup we get from using
T5-small as the approximation model).

5. Related work
The efficiency of inference from large models was studied
extensively (Dehghani et al., 2021). Many approaches aim
to speed up inference from large models in general, and au-
toregressive models like Transformers in particular. Numer-
ous techniques try to make inference more efficient for all
tokens, e.g. distillation (Hinton et al., 2015), sparcification
(Jaszczur et al., 2021), quantization (Hubara et al., 2016),
and architecture modification (So et al., 2021; Shazeer,
2019). Closer to our approach are adaptive computation
methods which adapt the amount of computation to problem
difficulty (Han et al., 2021). Examples include attending to a
subset of the inputs (Sukhbaatar et al., 2019), and early exits
(Schuster et al., 2021; Scardapane et al., 2020; Bapna et al.,
2020; Elbayad et al., 2019; Schwartz et al., 2020). Notably,
Wisdom of Committees (Schwartz et al., 2020) leverages
off-the-shelf smaller models, but is an adaptive computation
approach, and so it uses a heuristic to determine when to
stop, losing the guarantee of identical outputs to those of
the target models. In general, adaptive computation meth-
ods usually learn, either within the model itself or with an
auxiliary model, when a computation shortcut can be taken.
Usually, these methods save on both inference time and
arithmetic operations, but require a change of architecture, a
change of training procedure and training custom models or

Table 3. Empirical α values for various target models Mp, approx-
imation models Mq , and sampling settings. T=0 and T=1 denote
argmax and standard sampling respectively6.

Mp Mq SMPL α

GPT-LIKE (97M) UNIGRAM T=0 0.03
GPT-LIKE (97M) BIGRAM T=0 0.05
GPT-LIKE (97M) GPT-LIKE (6M) T=0 0.88
GPT-LIKE (97M) UNIGRAM T=1 0.03
GPT-LIKE (97M) BIGRAM T=1 0.05
GPT-LIKE (97M) GPT-LIKE (6M) T=1 0.89

T5-XXL (ENDE) UNIGRAM T=0 0.08
T5-XXL (ENDE) BIGRAM T=0 0.20
T5-XXL (ENDE) T5-SMALL T=0 0.75
T5-XXL (ENDE) T5-BASE T=0 0.80
T5-XXL (ENDE) T5-LARGE T=0 0.82
T5-XXL (ENDE) UNIGRAM T=1 0.07
T5-XXL (ENDE) BIGRAM T=1 0.19
T5-XXL (ENDE) T5-SMALL T=1 0.62
T5-XXL (ENDE) T5-BASE T=1 0.68
T5-XXL (ENDE) T5-LARGE T=1 0.71

T5-XXL (CNNDM) UNIGRAM T=0 0.13
T5-XXL (CNNDM) BIGRAM T=0 0.23
T5-XXL (CNNDM) T5-SMALL T=0 0.65
T5-XXL (CNNDM) T5-BASE T=0 0.73
T5-XXL (CNNDM) T5-LARGE T=0 0.74
T5-XXL (CNNDM) UNIGRAM T=1 0.08
T5-XXL (CNNDM) BIGRAM T=1 0.16
T5-XXL (CNNDM) T5-SMALL T=1 0.53
T5-XXL (CNNDM) T5-BASE T=1 0.55
T5-XXL (CNNDM) T5-LARGE T=1 0.56

LAMDA (137B) LAMDA (100M) T=0 0.61
LAMDA (137B) LAMDA (2B) T=0 0.71
LAMDA (137B) LAMDA (8B) T=0 0.75
LAMDA (137B) LAMDA (100M) T=1 0.57
LAMDA (137B) LAMDA (2B) T=1 0.71
LAMDA (137B) LAMDA (8B) T=1 0.74

re-training of existing models. They usually also change the
outputs of the model. We note that while many of the meth-
ods above improve the memory to arithmetic-operations
ratio, in cases where the ratio remains high, these methods
and our speculative decoding method might be effective in
tandem.

Two prior methods leverage speculative execution for speed-
ing up decoding from autoregressive models. Blockwise
Parallel Decoding (Stern et al., 2018) decodes several to-
kens in parallel, similarly to our work. However, it only
supports greedy decoding (temperature=0) and not the gen-
eral stochastic setting, it requires additional training of a
custom model, and focuses on preserving down-stream task
quality, instead of guaranteeing identical outputs. Shallow
Aggressive Decoding (SAD) (Sun et al., 2021) also decodes
several tokens in parallel, similarly to our work. Unlike
our work, SAD only supports copying the input to the out-

7



Fast Inference from Transformers via Speculative Decoding

put, and not general approximation models, making it only
suitable for the cases where the inputs and outputs are very
similar like grammatical error correction. In addition, simi-
larly to Blockwise Parallel Decoding, SAD does not support
the general stochastic sampling setting.

After we initially published our work, an independent im-
plementation of speculative decoding (Chen et al., 2023)
showed similar 2X-2.5X improvements on Chinchilla 70B.

6. Discussion
We presented speculative sampling which enables efficient
stochastic speculative execution - i.e. speculative execu-
tion in the stochastic setting. We analyzed its impact on
decoding from autoregressive models like Transformers via
speculative decoding and have shown that given enough
compute resources, we get meaningful 2X-3X speedups in
practice vs T5X, a popular optimized implementation.

One limitation of speculative execution in general, and of
speculative decoding in particular, is that latency is im-
proved through increased concurrency at the cost of an in-
creased number of arithmetic operations. Thus, our method
is not helpful for configurations where additional compu-
tation resources are not available. However, in common
cases where additional computation resources are available
(e.g. when memory bandwidth is the bottleneck) our method
provides the speedup with significant benefits: the model
architecture doesn’t change, retraining isn’t required, and
most importantly, the output distribution is guaranteed to
stay the same. Our method is easy to implement, and can
be used to speedup inference using out-of-the-box models
without developing and evaluating custom schemes.

There are several directions for follow up research, impor-
tantly, further investigating the compatibility of speculative
decoding with beam search (see Appendix A.4). Also, while
our method yields substantial speedups with existing off-the-
shelf approximation models, greater improvements might
be obtained via custom approximation models (Section 3.6),
such as those with custom architectures (e.g. custom sizes,
non-autoregressive models, or various heuristics) or with
custom training procedures (e.g. standard distillation with
soft targets from Mp, or optimizing Mq for α directly). It
could also be interesting to explore a hierarchical version
of the algorithm, where the approximation model is itself
accelerated by an even faster model, which could allow
for more capable approximation models. In this work we
fixed the approximation model and the number of guesses
γ throughout inference, but varying them during inference
could yield additional improvements (Section 3.5). In our

6Note that the outputs from the LaMDA model always go
through a Top40 filter. This has no effect on argmax, but does
have some effect on standard sampling.

experiments we always performed the same standardization
on the distributions generated by the approximation model
as the desired one for the target model (Section 2.2), but fur-
ther improvements might be obtained by applying different
transformations. We tested speculative decoding only in the
text modality, but it might work well in other domains (e.g.
images) which would be interesting to experiment with.

Finally, we note that stochastic speculative execution and
speculative sampling can be helpful outside the scope of
speculative decoding from autoregressive models. For ex-
ample, given two slow functions, f(x) and g(y) such that
f(x) generates a distribution from which g’s input is sam-
pled, we could use our method to run f and g in parallel.
This setup might arise e.g. in physics simulations, or in rein-
forcement learning where f is a large model that produces a
distribution on actions, and g is the world simulation, which
would be interesting to explore.
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A. Appendix
A.1. Correctness of Speculative Sampling

We will now show that for any distributions p(x) and q(x), the tokens sampled via speculative sampling from p(x) and q(x)
are distributed identically to those sampled from p(x) alone. Let β be the acceptance probability (Definition 3.1).

Note that as p′(x) = norm(max(0, p(x) − q(x))) = p(x)−min(q(x),p(x))∑
x′ (p(x

′)−min(q(x′),p(x′))) = p(x)−min(q(x),p(x))
1−β , the normalizing

constant for the adjusted distribution p′(x) is 1 − β, where the last equation follows immediately from Lemma 3.3 and
Theorem 3.5.

Now:

P (x = x′) = P (guess accepted, x = x′) + P (guess rejected, x = x′)

Where:

P (guess accepted, x = x′) = q(x′)min(1,
p(x′)

q(x′)
) = min(q(x′), p(x′))

And:

P (guess rejected, x = x′) = (1− β)p′(x′) = p(x′)−min(q(x′), p(x′))

Overall:

P (x = x′) = min(p(x′), q(x′)) + p(x′)−min(p(x′), q(x′)) = p(x′).

As desired. �

A.2. Speculative Sampling vs. Rejection Sampling

Rejection sampling is the following iterative sampling procedure that looks superficially similar to ours:

1. Sample x ∼ q(x) and r ∼ U(0, 1).

2. If r < p(x)
Mq(x) return x.

3. Go to 1.

Where M = maxx
p(x)
q(x) . We could employ a non-iterative version of rejection sampling instead of speculative sampling

- specifically go through steps 1 and 2 above, and otherwise sample from an unmodified p(x) directly. That would
be much less efficient than our method though. Specifically, the expected accept probability here is Ex∼q(x)

p(x)
Mq(x) =∑

x p(x)minx′
q(x′)
p(x′) ≤

∑
x p(x)min(1, q(x)p(x) ) =

∑
xmin(p(x), q(x)) = α is (potentially much) lower than the expected

accept probability in our method α.

A.3. Theoretical Predictions vs. Empirical Runtimes

Table 4 compares the expected runtime improvements based on Theorem 3.8 to the empirically measured runtimes from
Table 2. We estimated the values of c for the various models based on profiler traces. We can see that the theoretical
predictions mostly match the measured runtimes. The larger differences are due to: (1) optimization differences between our
implementation and the baseline, and (2) the simplifying assumption that the βs are i.i.d. being only an approximation (see
Section 3.1).
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Table 4. Expected improvement factor (EXP) vs. empirically measured improvement factor (EMP).

TASK Mq TEMP γ α c EXP EMP

ENDE T5-SMALL 0 7 0.75 0.02 3.2 3.4
ENDE T5-BASE 0 7 0.8 0.04 3.3 2.8
ENDE T5-LARGE 0 7 0.82 0.11 2.5 1.7
ENDE T5-SMALL 1 7 0.62 0.02 2.3 2.6
ENDE T5-BASE 1 5 0.68 0.04 2.4 2.4
ENDE T5-LARGE 1 3 0.71 0.11 2.0 1.4

CNNDM T5-SMALL 0 5 0.65 0.02 2.4 3.1
CNNDM T5-BASE 0 5 0.73 0.04 2.6 3.0
CNNDM T5-LARGE 0 3 0.74 0.11 2.0 2.2
CNNDM T5-SMALL 1 5 0.53 0.02 1.9 2.3
CNNDM T5-BASE 1 3 0.55 0.04 1.8 2.2
CNNDM T5-LARGE 1 3 0.56 0.11 1.6 1.7

A.4. Application to Beam Search

Our method can be applied, with some performance penalty, to beam search sampling. Given the original beam width w, we
can perform beam search with the approximation model Mq and beam width u ≥ w for γ steps. Then, we can use Mp to
check all of the candidates in parallel (costing a compute budget of (w + uγ) runs of Mp). Finally, for each step, we can
accept the guesses of Mq as long as topw(Mp) ⊆ topu(Mq) to get identical results to regular beam search with Mp alone
(with a more elaborate procedure we could also accept cases where the candidates we got happen to have higher probabilities
than those of Mp alone). The analysis of our method in this setting is more involved and we leave it for future work.

A.5. Lenience

A strong property of Algorithm 1 is that the output distribution is guaranteed to remain unchanged. That said, if we’re
willing to allow some changes, with nice guarantees, we can get further inference speed improvements. To further motivate
this, note that when we train two models with identical architectures and sizes on the same dataset, the generated probability
distributions will not be identical, so some lenience might make sense. Note that the results in this paper except for this
section use the strictest version of Algorithm 1 and don’t allow lenience of any kind.

We could include a lenience parameter l ∈ [0, 1] and multiply q(x) by l before comparing with p(x) in Algorithm 1. This
still maintains the nice guarantee that no token can be sampled with probability greater than p(x)

l . This means for example,
that with l = 1

10 no token can be sampled with more than 10X its ground truth probability, so we can guarantee that
extremely rare tokens will remain extremely rare (there is no guarantee on the minimum probability, so lenience could hurt
the diversity of the samples).

Specifically, with a lenience factor l we have α = Ex∼q(x)

{
1 lq(x) ≤ p(x)
p(x)
lq(x) lq(x) > p(x)

= Ex∼q(x)
p(x)

max(p(x),lq(x)) =∑
x

p(x)q(x)
max(p(x),lq(x)) =

1
l

∑
xmin(p(x), lq(x)) =

∑
xmin(p(x)l , q(x)).

Table 5 shows α values for different values of l when Mp is T5-XXL (11B) and Mq is T5-small (77M). With c = 0.015,
using lenience values of 1, 0.5, 0.3, and 0.1 (meaning that no token can be sampled with probability greater than 1X, 2X, 3X
and 10X of the ground truth) we get improvement factors of 2.5X, 3.1X, 3.6X, and 5X respectively.

Table 5. α values for various values of l with standard sampling where Mp is T5-XXL (11B) on the EnDe translation task.

Mq l = 1 l = 0.5 l = 0.3 l = 0.1

UNIGRAM 0.07 0.1 0.11 0.16
BIGRAM 0.19 0.23 0.25 0.32
T5-SMALL (77M) 0.62 0.71 0.76 0.84
T5-BASE (250M) 0.68 0.8 0.83 0.90
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Note that when using temperature = 0 (i.e. argmax sampling), we can no longer use lenience as above. Instead, we could
allow some lenience before standardizing the distributions. For example, we could accept the token x sampled from Mq in
case p(x) ≤ l ·max(p). In this case, we measure similar empirical increases in α values to those with temperature = 1. For
example, when using lenience values of 1, 0.5, 0.3, and 0.1 for Mp T5-XXL Mq T5-small for English-German translation,
we get α values of 0.75, 0.75, 0.8, 0.87. Taking for example c = 0.015 and γ = 8 we get speed improvement factors of
3.3X, 3.3X, 3.9X, and 4.9X respectively7.

7In this case, unlike in the standard sampling case shown in Table 5, a lenience factor of 0.5 doesn’t improve the speed-up.
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