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Abstract
We investigate the expressive power of depth-2
bandlimited random neural networks. A random
net is a neural network where the hidden layer
parameters are frozen with random assignment,
and only the output layer parameters are trained
by loss minimization. Using random weights for
a hidden layer is an effective method to avoid non-
convex optimization in standard gradient descent
learning. It has also been adopted in recent deep
learning theories. Despite the well-known fact
that a neural network is a universal approximator,
in this study, we mathematically show that when
hidden parameters are distributed in a bounded
domain, the network may not achieve zero ap-
proximation error. In particular, we derive a new
nontrivial approximation error lower bound. The
proof utilizes the technique of ridgelet analysis, a
harmonic analysis method designed for neural net-
works. This method is inspired by fundamental
principles in classical signal processing, specifi-
cally the idea that signals with limited bandwidth
may not always be able to perfectly reconstruct
the original signal. We corroborate our theoretical
results with various simulation studies, and gener-
ally, two main take-home messages are offered: (i)
Not any distribution for selecting random weights
is feasible to build a universal approximator; (ii) A
suitable assignment of random weights exists but
to some degree is associated with the complexity
of the target function.
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1. Introduction
In recent years, there has been a growing interest in utilizing
random methods for training neural networks as they have
been shown to have the potential to significantly accelerate
the training process, particularly for large-scale datasets and
real-time processing requirements (Scardapane & Wang,
2017; Cao et al., 2018). In this study, we examine the capa-
bility of shallow random networks in a bandlimited context,
where the hidden parameters are confined to a specific range.
Past research has, in some cases, deliberately or uninten-
tionally limited the distribution range of parameters. For
instance, uniform distributions were used due to technical
limitations, or normal random vectors with insufficiently
small variance were employed due to the default configu-
rations of the software. Analogous to the well-established
principle in signal processing (or Fourier analysis) that ban-
dlimited signals may not be able to accurately reproduce the
original signal, bandlimited neural networks may not fully
exhibit their function approximation capabilities. However,
unlike classical Fourier analysis, the correlation between
bandwidth and approximation error has yet to be clearly
defined. One challenge in this area is that neural networks
do not possess an orthonormal basis, but rather a frame.
Through the use of ridgelet analysis, a Fourier-like analysis
developed specifically for neural networks, we have derived
a new lower bound for approximation error.

This study considers a shallow neural network gd(x) =∑d
j=1 cjσ(aj · x − bj) of input x ∈ Rm with activation

function σ and parameters (aj , bj , cj) ∈ Rm × R × R for
each j ∈ [d] := {1, . . . , d}, and the random training method
with two steps:

Step I: Randomly initialize hidden parameters
(aj , bj) to a given data-independent probability dis-
tribution Q(a, b), and freeze them; then

Step II: Statistically determine output parameters
cj given a dataset Dn = {(xi, yi)}ni=1.

A variety of neural network architectures have been de-
veloped that utilize random training methods, including
random vector functional-link (RVFL) networks (Igelnik &
Pao, 1995), random feature expansions (Rahimi & Recht,
2008a;b; 2009), random weight networks (Saxe et al., 2011),
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stochastic configuration networks (Li et al., 2019; Li &
Wang, 2021; Wang & Li, 2017a;b), graph convolutional net-
works with random weighths (Huang et al., 2023), and cer-
tain versions of over-parametrized networks (Belkin et al.,
2019; Daniely, 2017; Ghorbani et al., 2019; Yehudai &
Shamir, 2019). A kernel function defined by the inner prod-
uct of feature maps: k(x, x′) =

∫
Rm×R σ(a·x−b)σ(a·x

′−
b)dQ(a, b) is a special case of random training methods be-
cause we can regard this as a sum of infinitely many random
samples (a, b) ∼ Q (Bach, 2017; Cho & Saul, 2009; Suzuki,
2018). On the other hand, Bayesian neural networks (Neal,
1996) are not strictly based on the random training method
in consideration since the distribution Q is a “posterior”,
which contains the information of the dataset Dn; nor is the
lazy learning (Jacot et al., 2018) since its hidden parameters
are not strictly frozen.

The random training method has the remarkable trick of
“convexification”. It frees us from inevitable non-convexity
in the standard gradient descent training. The non-convexity
is caused by the hidden parameters (aj , bj) (and not by the-
output parameters cj). In the random training setting, we
do not optimize the parameters in Step I, but only the out-
put parameters cj in Step II. This “randomization” trick is
beneficial both for theory and applications, and has recently
been adopted not only in practical algorithms but also in
the theoretical study of deep learning (Belkin et al., 2019;
Jacot et al., 2018; Louart et al., 2018; Malach et al., 2020;
Pennington & Worah, 2017). While the potential of random
neural networks has been explored, the expressivity of these
networks has not been extensively studied. In this study, we
aim to shed light on this topic by highlighting a limitation
in expressivity of random nets. Our main contribution is
the introduction of a new approximation lower bound for
bandlimited shallow neural networks.

Main Theorem (simplified). Let Ω ⊂ Rm be a bounded
open set with smooth boundary, and put K := Ω be its
closure. Suppose f : Ω → R be an L2-Sobolev function
on Ω with order at least s ∈ (1/2,∞]. Let λ > 0, and
put V := {(a, b) ∈ Rm × R | |a| ≤ λ, |b| ≤ λ}. Suppose
σ : R → R is bounded, self-admissible, and the constant
Cσ,P := sup(a,b)∈V ∥σa,b∥L2(K) exists finite. Consider
approximating f with a bandlimited shallow neural network
gd(x) =

∑d
j=1 cjσ(aj · x− bj). Then, the approximation

error is lower bounded as

∥f − gd∥2L2(K) ≥ ∥S∗[f ]∥2L2(V c) ≥ ∥f∥2L2(K) −

C2
b

{
∥f∥2L1(K)∥σ∥

2
L∞(R)λ

m, λ ∈ (0, ϑ)

∥f∥2Hs(Ω)C
2
σ,s

(−1
2s λ

−2s+ 2s+m
2sm ϑ−2s

)
, λ ∈ [ϑ,∞)

.

Here, S∗ is the adjoint of integral representation operator
S; and the constants Cb, Cσ,s and threshold ϑ > 0 de-
pend on norms of f , dimension m and smoothness s. (See
Figure 1 for the outline, and Section 3 for more detailed

statement.)
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Figure 1. Outline of the approximation lower bound.

Our results, as depicted in Figure 1, demonstrate that the
lower bound: (i) holds true regardless of whether the hidden
parameters are random or deterministic, (ii) is always non-
negative, (iii) converges to 0 as bandwidth λ tends to ∞,
which agrees with the universality of the network, (iv) is
continuous at λ = ϑ, and (v) depends on the smoothness
s of target function f when λ ≥ ϑ. This implies that the
lower bound is more significant when the target function
is smoother. Thus, if the domain of hidden parameters is
bandlimited, the approximation error may not reach 0. To
better illustrate this interesting phenomenon, we provide
quantitative demonstration based on two simple examples
in Appendix D.3.

Additional remarks to avoid potential confusions. In the
Main Theorem, randomness is not essential/required but
bandlimiting is. Nevertheless, we focus on random nets be-
cause we can find a lot of usecases both in theorertical and
practical aspects. As long as the hidden unit number is finite,
random nets are always bandlimited. We may list two more
examples: (1) Random nets with fully-supported proposal
distribution Q (such as Gaussian), because hidden unit pa-
rameters are in a bounded domain with high probability. (2)
NNs trained by gradient descent in the lazy learning regime,
because the lazy assumption (that final parameters are close
to the initial parameters) means that the final parameters are
distributed in a bounded domain (with high probability).

Notation. For any complex number z, we denote by z the
complex conjugate of z. For any subset A ⊂ X of a set
X , Ac(= X \ A) denotes the complement of A. For an
activation function σ, we write σa,b(x) := σ(a · x− b). For
any vector x ∈ Rd, we denote ⟨x⟩ := (1 + |x|2)1/2, where
|x| is the Euclidean norm of x. S(R) denotes the space
of rapidly decreasing smooth functions, or the Schwartz
test functions, on R; and S ′(R) denotes the space of tem-
pered distributions, or the topological dual space of S(R).
Hs(Ω) denotes the L2-Sobolev space on open set Ω of or-
der s(∈ R). In order to avoid confusion, we use ρ♯(ω) :=∫
R ρ(t) exp(−itω)dt for 1-dimensional Fourier transform

of ρ ∈ L2(R), and f̂(ξ) :=
∫
Rm f(x) exp(−iξ · x)dx for

m-dimensional Fourier transform of f ∈ L2(Rm). By the
terms ‘random neural networks’, ‘random nets’, or ‘neural
nets with random weights’ we mean the same thing.
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2. Integral Representation and Ridgelet
Transform

In this section, we introduce a few basics of the integral rep-
resentation theory and ridgelet analysis, then provide several
important (known) propositions that will be used in proving
our main results. In Appendix B, we further supplemented
the backgrounds and detailed (but quick) overview.

2.1. Integral Representation of Neural Nets

The integral representation is a handy tool for the analysis
of neural networks with a variable number of hidden units.

Let V be a Borel subset in Rm×R, and M(V ) be the space
of all signed Radon measures on V . We set V to be a space
of hidden parameters (a, b), and call an element µ ∈ M(V )
a parameter distribution.

Let σ : R → R be an activation function. We always assume
that the activation function σ is associated with a function
ρ that satisfies the admissibility condition, which is a suffi-
cient condition for the neural network to have the universal
approximation property (see § 2.2 and Proposition 1).

Definition 1. The integral representation of a neural net-
work is defined as an integral transform of the parameter
distribution µ ∈ M:

S[µ](x) :=

∫
Rm×R

σ(a · x− b)dµ(a, b), x ∈ Rm. (1)

We have two motivations to employ the integral represen-
tation introduced above. First, it provides a unified ex-
pression for a variable number d of parameters including
an infinite number of parameters. As the integral sug-
gests, it is formally an infinite version of the ordinary
finite neural network. Namely, whereas the finite net
gd =

∑d
j=1 cjσ(aj · x − bj) is a weighted sum of a fi-

nite number of hidden units σ(aj · x − bj) with weights
cj and indices j ∈ [d], the infinite net S[µ] is a weighted
integral of an infinite number of hidden units σ(a · x − b)
with weight function µ(a, b) and “indices” (a, b) ∈ V . Nev-
ertheless, we can also express a finite net as gd = S[µd] by
letting µd =

∑d
j=1 cjδ(aj ,bj) with Dirac measures δ(aj ,bj),

because we assume that a parameter distribution µ is a
Radon measure, which includes both continuous densities
and singular masses. In other words, the integral represen-
tation is not a counterpart of the finite models, but it is an
extension of the finite models. Second, the map S is linear in
µ. Since the non-linear parameters (a, b) are “integrated out”
in the integral representation (as “marginalized out” in the
Bayesian literature), we are now free from the non-linearity
of neural networks.

2.2. Admissibility Condition

Definition 2. Given an activation function σ : R → C, we
say that a function ρ : R → C is admissible when it satisfies
the admissibility condition

(2π)m−1

∫
R
σ♯(ω)ρ♯(ω)|ω|−mdω = 1. (2)

This condition seems technical, but is typical in the context
of wavelet transforms (see e.g., Mallat (2009)). It simply
requires the |ω|−m-weighted inner product of σ♯ and ρ♯

to be finite (not zero nor infinite). Therefore, this is not
a strong condition and we can find, in general, an infinite
number of different ρ’s for a given σ. For example, if σ is
a gaussian, then its Fourier transform σ♯ is again another
gaussian, and we can find a “family of” particular solutions:
ρ♯(ω) = C|ω|mϕ♯(ω) with an arbitrary Schwartz function
ϕ ∈ S(R) (as long as the integral is finite and not zero) and
an appropriate normalizing constant C > 0. We refer to
(Sonoda & Murata, 2017, § 6.2) for more examples. Finally,
when ρ = σ, we say that ρ (or σ) is admissible with itself,
or self-admissible.

2.3. Ridgelet Transform

The ridgelet transform R is, in a nutshell, a right inverse
operator to the integral representation operator S. Given a
function f ∈ L2(Rm), consider finding an unknown param-
eter distribution µ ∈ M that satisfies the integral equation
S[µ] = f . As we would describe later, the solution to this
integral equation is not unique, and the ridgelet transform
provides a particular solution to this equation.

Definition 3. For every f ∈ Lp(Rm)(p = 1, 2), the ridgelet
transform of f with respect to ρ ∈ S(R) is given by

R[f ](a, b) :=

∫
Rm

f(x)ρ(a · x− b)dx, (a, b) ∈ Rm×R.

We provide two important propositions as a basic prepara-
tion for the main theoretical analysis performed in Section
3. Their proofs are reported in Appendix B.

Proposition 1 (Reconstruction formula). Let f ∈
Lp(Rm)(p = 1, 2). Provided that ρ ∈ S(R) is admissi-
ble with an activation function σ ∈ S ′(R), then we have

S[R[f ]](x) =

∫
Rm×R

R[f ](a, b)σ(a · x− b)dadb

= f(x), x ∈ Rm.

We have two interpretations for Proposition 1. First, re-
call that S[µ] represents a neural network. Then, the re-
construction formula implies the universal approximation
property, because a neural network S[µ] can express any
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function f ∈ Lp(Rm)(p = 1, 2) by letting µ = R[f ]. Sec-
ond, recall the Fourier inversion formula: F−1[f̂ ](x) =

(2π)−m
∫
Rm f̂(ξ) exp(iξ · x)dξ = f(x). Then, we can find

a clear correspondence of S with F−1, R[f ] with f̂ , and
σ(a · x − b) with exp(iξ · x). However, we should also
remark the difference that by the non-uniqueness of admis-
sible functions ρ, the ridgelet transform R[f ] is not unique
either. This means that R is not the strict inverse operator
to S, but only a right inverse operator to S.

Proposition 2 (Plancherel theorem). Let f ∈ L2(Rm). Pro-
vided that σ is self-admissible, one has ∥R[f ]∥L2(Rm×R) =
∥f∥L2(Rm).

The Plancherel theorem plays a key role in our main results.
As to be displayed in Figure 2, a ridgelet spectrum R[f ] has
a long tail. If the ridgelet spectrum R[f ] is truncated, then
the Plancherel theorem implies that we cannot reconstruct
f without loss.

2.4. Proof Idea Behind Main Theorem

To enhance the readers’ understanding of our main theo-
rem, we present a visual example of how real parameters
are distributed. Without this visualization, some readers
may imagine/assume that neural network parameters are
distributed randomly, with relatively simple structures such
as uniform distribution and normal distribution. On the con-
trary, the parameter distribution has the structure of ridgelet
transform. With this illustration, we can intuitively/visually
understand how/why the expressive power is lost when the
parameter distribution is truncated to a bounded domain.

Figure 2, produced by Sonoda et al. (2018), visualizes pa-
rameter distributions in two ways.
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Figure 2. Example of parameter distributions

Both figures are obtained from the common dataset Dn =
{(xi, yi)}ni=1 that is generated by the function y = f(x) =
sin 2πx. Figure 2(a) shows the distribution of the parame-
ters (aj , bj , cj), which are obtained from many neural net-
works trained on the common dataset Dn by gradient de-
scent (GD); and Figure 2(b) shows the ridgelet spectrum
R[f ](a, b) approximated by numerical integration evaluated
at each point (a, b).

Despite the fact that two figures are obtained from different
procedures, gradient descent and numerical integration, they
have an apparent intriguing resemblance. The shapes of the
distributions are 10-point star shaped. In other words, the
trained parameters (aj , bj , cj) concentrate on high intensity
areas in the ridgelet spectrum. This phenomenon that GD
converges to the ridgelet spectrum is initially reported by
Sonoda et al. (2018), and recently given a mathematical
justification by Sonoda et al. (2021a).

Based on the visualized results, one can naturally conjec-
ture that if the parameter space is bandlimited, that is, the
spectrum is truncated to a compact domain such as |a| ≤ λ
and |b| ≤ κ, then the neural network loses the universal
approximation property. In other words, there exists a class
of functions that a bandlimited network cannot reconstruct.
Overall, that is the primary idea behind our main theorem,
i.e., we quantify and prove this conjecture by carefully esti-
mating the tail of the ridgelet spectrum.

3. Main Results
For theoretical analysis, we reformulate the random training
method at the beginning of the introduction as follows: Let
Ω be a bounded open set with smooth boundary, put K :=
Ω, and let V be a Borel set in Rm × R.

Step I’: Let {(aj , bj)}dj=1 be arbitrary d points in
V , and let M(d) := {

∑d
j=1 cjδ(aj ,bj) | cj ∈ R},

Step II’: Let µ◦
d := argminµ∈M(d) ∥f −

S[µ]∥2L2(K), and let g◦d := S[µ◦
d].

Here, the generation process of (aj , bj) need not be random
as long as these are inside of V .

The main goal of this section is to lower bound the approxi-
mation error ∥f − g◦d∥L2(K). This is also a lower bound on
∥f − gd∥L2(K), where gd is provided by Step II in Section
1, since ∥f − g◦d∥L2(K) ≤ ∥f − gd∥L2(K) by construction.
Unlike the Fourier or Taylor series expansions, the rate of
approximation lower bound for a finite d is unknown, and it
is known as a (complicated) open question (see Kainen et al.
(2013) for more details). To circumvent this difficulty, we
only estimate the approximation error achieved by infinite
minimizers, µ ∈ M(V ), which exists as a consequence of
the extreme value theorem, and lower bounds the approxi-
mation error achieved by its finite minimizers as follows:

∥f − g◦d∥2L2(K) = min
µ∈M(d)

∥f − S[µ]∥2L2(K)

≥ inf
µ∈M(V )

∥f − S[µ]∥2L2(K), (3)

where the inequality above is an immediate consequence
of the inclusion M(d) ⊂ M(V ). Namely, just contrary to
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the case of estimating upper bounds, the lower bound for
more expressive (=infinite) networks is automatically valid
for less expressive (=finite) networks.

In Theorem 1, we show that the infinite minimum is lower
bounded by the tail part of the ridgelet spectrum.

Theorem 1. Let f ∈ L2(K) be a square-integrable func-
tion that is supported in the compact domain K. Assume
that σ is self-admissible, and that the constant Cσ,P :=
sup(a,b)∈V ∥σa,b∥L2(K) exists finite. Then, the approxima-
tion error is lower bounded as follows:

inf
µ∈M(V )

∥f − S[µ]∥2L2(K)

≥ ∥S∗[f ]∥2L2(V c) =

∫
V c

|S∗[f ](a, b)|2dadb, (4)

where S∗ is the adjoint operator of S.

Namely, if the tail part S∗[f ]|V c , or the ridgelet spectrum
outside the parameter domain V , does not vanish, then
the tail bound ∥S∗[f ]∥2L2(V c) inevitably lower bounds the
approximation error ∥f − g◦d∥L2(K).

In order to quantify (or estimate from below) the tail bound
∥S∗[f ]∥L2(V c), we exploit the property S∗[f ] = R[f ] (valid
in case of a self-admissible function σ, see Appendix B),
and rewrite the right-hand side of (4) as

∥S∗[f ]∥2L2(V c) = ∥R[f ]∥2L2(V c) = ∥f∥2L2(K) − ∥R[f ]∥2L2(V ).

Then, the estimation problem of ∥S∗[f ]∥L2(V c) from below
is now turned to the estimation problem of ∥R[f ]∥L2(V )

from above. Thus, we can estimate the tail bound through
the decay property of ridgelet spectrum, which is given by
the following theorem.

Theorem 2. Let f ∈ Hs(Ω) be an L2-Sobolev function on
Ω with order s ∈ (1/2,∞]. Assume that ρ ∈ L∞(R) be
self-admissible. For (r, u, b) ∈ R+ × Sm−1 × R, put

ϕa(ru) :=min
{
∥f∥L1(K)∥ρ∥L∞(R), Cρ,sΦs[f ](u)r

−2s−m
2

}
,

ϕb(ru, b) := |R[f ; ρ](ru, b)|/ϕa(ru) (≤ 1),

where C2
ρ,s := 2

(2π)2

∫
R⟨ω⟩

−2s+1|ρ♯(ω)|2|ω|−mdω,

which always exists finite; and Φs[f ](u)
2

:=∫∞
0

⟨ω⟩2s|f̂(ωu)|2ωm−1dω, which satisfies∫
Sm−1 Φs[f ](u)

2
du = ∥f∥2Hs . Then, the ridgelet

spectrum is upper bounded by

|R[f ; ρ](ru, b)| ≤ ϕa(ru), (r, u, b) ∈ R+ × Sm−1 × R.

Furthermore, when V is given by a product Va × Vb with
some Va ⊂ Rm and Vb ⊂ R, we can decompose the inte-
gral:

∥R[f ; ρ]∥L2(Va×Vb) = ∥ϕa∥L2(Va)∥ϕb∥L2(Vb).

Finally, by integrating the dominating functions ϕa and ϕb,
we obtain an estimate of the tail bound ∥R[f ]∥L2(V c), as
follows.

Theorem 3 (Main Theorem). Let f ∈ Hs(Ω) with
s ∈ (1/2,∞]. Let λ > 0, Va := {a ∈ Rm | |a| ≤ λ}
be a ball, Vb ⊂ R be an arbitrary Borel set, and
put V = Va × Vb. Assume that σ ∈ L∞(R)
is self-admissible, and that the constant Cσ,P :=
sup(a,b)∈Va×Vb

∥σa,b∥L2(K) exists finite. Put ϑ :=

(mVm∥f∥2L1(K)∥ρ∥
2
L∞(R)/∥f∥

2
Hs(Ω)C

2
ρ,s)

−1/(2s+m),
where Vm := πm/2/Γ(m/2 + 1) is the volume of
the m-unit ball. Then, for a bandlimited network
gd =

∑d
j=1 cjσ(aj · x − bj) obtained by Steps I’ and II’,

we have the following approximation lower bounds:

∥f − gd∥2L2(K) ≥ inf
µ∈M(V )

∥f − S[µ]∥2L2(K)

≥ ∥S∗[f ]∥2L2(V c) = ∥f∥2L2(K) − ∥ϕb∥2L2(Vb)
·{

∥f∥2L1(K)∥σ∥L∞(R)λ
m, λ ∈ (0, ϑ),

∥f∥2Hs(Ω)C
2
σ,s

(
−λ−2s

2s + 2s+m
2sm ϑ−2s

)
, λ ∈ [ϑ,∞).

Here, the final bound is continuous at λ = ϑ, always non-
negative, and tends to 0 as λ→ ∞.

We provide the proofs of all the theoretical results above in
Appendix C.

3.1. Technical Remarks

(Un)necessity of Randomness. Even though our subject
is random nets, we do not need any randomness in the main
theorem because the key inequality (3) holds for any realiza-
tion of µ ∈ M(V ) (besides that the function f is fixed). Ac-
cording to Steps I’ and II’, the LHS of (3) is a random vari-
able. However, the RHS is not a random variable but a con-
stant because it is by definition smaller than any loss-value
J(µ) := ∥f − S[µ]∥2L2(K) for µ ∈ M(V ). (4) (= RHS of
(3)) indicates that the lower bound on J := infµ∈M(V ) J(µ)
is strictly positive when the ridgelet spectrum R[f ] is sup-
ported on a set containing the parameter domain V . Thus,
if the proposal distribution Q(a, b) (in Step I) is supported
on a compact set V and R[f ] has support containing V ,
then inevitably J > 0. We may consider extensions to a
fully supported distribution such as the normal distribution
N . For this case, in contrast, to extend our main result, we
need some high probability condition that initial parameters
{(aj , bj)}dj=1 concentrate on a certain compact domain V .

Extension to Unbounded Activation Functions such as
ReLU. It would be possible, but not immediate. The
Plancherel formula (Proposition 2) is a key step to obtain
the lower bound in Theorem 1, and the self-admissible
assumption in Proposition 2 is the main cause of the
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bounded assumption on activation function. Recently, Son-
oda et al. (2021b) have extended the Plancherel formula for
unbounded activation functions. Thus, it is technically pos-
sible and left for our future work to derive the lower bound
for unbounded activation functions by similar arguments.

Extension to Deep. The ridgelet theory is essentially
based on the linearity of parameter distribution µ in the
integral representation S[µ]. But this linearity is specific to
the single-hidden-layer structure. Namely, in a DNN such
as S[µ2] ◦ S[µ1], the µ1 (inside the σ of S[µ2]) is no more
linear. Technically, we need a deep ridgelet theory, but there
are no such things yet. We note that other theories based
on the linearity of shallow networks, such as the mean field
theory, also face to the same difficulty.

Verification of Tightness. In fact, the obtained lower
bound is not tight, simply because NNs with M(V ) (in-
finitely many hidden units) are more expressive than NNs
with M(d) (at most d hidden units). (On the other
hand, for the infinitely-many-hidden-units case M(V ), the
Pythagorean relation (7) is tight.) Nonetheless, we consider
this relaxed bound meaningful because we can interpret the
bound as: If the band is limited, then even if we use infinite
units, the approximation power can be limited.

Estimation of Upper Bound. We consider it an out-of-
scope because (1) estimating the approximation error with
respect to finite unit number d with bandlimiting assump-
tion is another challenging problem, and (2) our focus is
to present a non-trivial lower bound (since sometimes ran-
dom nets are misunderstood to be always universal). In fact,
before this study, there was no lower bound for a bandlim-
ited network, even though it sounds reasonable when we
consider the Fourier series expansion. And the difficulty
why it has not been shown is the existence of null compo-
nents, which Fourier series expansion does not hold. For the
case of finite hidden units without bandlimiting assumption,
two types of upper bounds—the Jackson bound O(d−s/m)
and the Maurey-Jones-Barron (MJB) bound O(1/

√
d) were

obtained by multiple authors in the 1990s. However, these
upper bounds are in general not sharp for bandlimiting cases.

4. Related Work and Further Remarks
For a whole picture, we should recall the pioneering work
by Barron, Theorem 6 in (Barron, 1993), which is a lower
bound on the best approximation error for linear combina-
tions of any fixed basis functions:

inf
(aj ,bj)

sup
Cf≤C

inf
cj

∥f − gd∥L2([0,1]m) ≥
κC

md1/m
,

where Cf is a certain complexity of function f , κ is a
universal constant not smaller than 1/(8πeπ−1) (further
refinements/improvements can also be found in (Gnecco,

2012; Kůrková & Sanguineti, 2002)), m denotes the input
dimension, d stands for the number of hidden neurons. Bar-
ron’s theoretical results, related to the so-called Kolmogorov
width, indicate that “fixed basis function expansions must
have a worst-case performance that is much worse than that
which is proven to be achievable by certain adaptable basis
function methods (such as neural nets).” We note that neural
nets with random frozen weights is a special case of fixed
basis function expansion. However, for fixed C and a given
approximation error tolerance, the estimate κCm−1d−1/m

goes to 0 as either m or d tends to infinity; in this case,
the lower bound is of impractical use to show the smaller
effectiveness of fixed basis function approximation. Simi-
larly, Yarotsky (2017) considered the problem that a deep
ReLU net (not random but in which all the parameters are
adaptable, without any norm constraints on the weights)
approximates an L∞-Sobolev function f ∈W s,∞([0, 1]m).
Based on covering number arguments, he proved (in The-
orem 5) that if a ReLU net ϵ-approximates f in a unit ball,
i.e. ∥f∥W s,∞([0,1]m) ≤ 1, then the ReLU net must have at
least d0 = cε−m/9s units:

sup
∥f∥Ws,∞([0,1]m)≤1

inf
params.

∥f − gd∥L∞([0,1]m) ≥
C

(md)9s/m
.

However, this again goes to 0 as either m or d tends to in-
finity. The difference lies in the assumptions on the approx-
imator gd and approximated function f . The Kolmogorov
width considers the setting where gd is not limited and f
is the worst one and thus the bound is uniform, while our
result considers the setting where gd is bandlimited and f is
an arbitrary given one and thus the bound is pointwise.

In the context of modern deep learning theory, Yehudai &
Shamir (2019) and Ghorbani et al. (2019) proved (under very
limited settings) that the expressive power of random nets
is low, while Malach et al. (2020) proved a stronger lottery
ticket hypothesis, which essentially claims that the expres-
sive power is exceptionally high. These seemingly contra-
dictory claims are, of course, consistent. Yehudai & Shamir
(2019) considered the problem that a finite-dimensional ran-
dom net (FRN) approximates a single ReLU neuron and
provided an approximation lower bound w.h.p. for a fi-
nite number of parameters d to conclude low expressive
power. Ghorbani et al. (2019) considered the problem that
an FRN approximates a quadratic function and showed that
the asymptotic approximation error does not tend to zero
(Theorem 1). Namely, these two studies focused on specific
examples that FRNs cannot easily approximate. On the
other hand, Malach et al. (2020) considered the so-called
student-teacher problem in which a student FRN approxi-
mates teacher FRN, and proved that if both the student and
the teacher share a common norm constraint, then the stu-
dent can ϵ-approximate the teacher w.h.p., which does not
contradict the previous two (and our) claims because this
study focused on specific examples that FRNs can easily
approximate. Hsu et al. (2021) studied the approximation
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power of two-layer networks of random ReLUs, where both
upper and lower-bounds for Lipschitz functions with ex-
plicit asymptotics were provided. However, the role of
the hyper-parameter λ, determining the selection range of
the random weights (and biases), is not considered in their
main theorems, in contrast to our Theorem 3. Compared
to these results, we consider the problem in which a po-
tentially infinite-dimensional random net approximates an
L2-Sobolev function f ∈ Hs(Ω) and provide an approxi-
mation error lower bound. Thus, our results cover a wider
range of functions than previous studies.

5. Numerical Experiments
In this section, we conduct some simulation studies to verify
our theoretical results. Two toy examples for 1D function
regression are used in our experiments. Consistent with
our theoretical analysis, the numerical simulations aim at
showing how λ, which is used for the random assignment
of input weights (and biases), would affect the expressive
power of the random net. For this purpose, we present an
intuitive illustration of the infeasibility of individual triv-
ial settings of λ. Then, we would discuss statistically the
potential relationship between λ and the critical parameter
that can determine the complexity of the target function.
We utilize the following 1D target function in the following
Simulation 1 and Simulation 2.

f(x;σ)=0.2 exp

(
− (x− 0.4)2

σ2

)
+0.5 exp

(
− (x− 0.6)2

σ2

)
,

where x ∈ [0, 1], σ > 0 is a scalar index that can determine
the complexity of f , as mentioned in our theoretical analy-
sis. In Simulations 1 and 2, we use the sigmoid activation
function.

Simulation 1. We set σ = 0.05 and sample 1000 instances
{xi, f(xi)}1000i=1 based on equally spaced points on [0,1],
then randomly and uniformly select 500 training sample and
500 test samples. We test the performance of two random
networks with λ = 1 and λ = 20. For each case, we train
the network with a different number of hidden nodes L,
which helps with excluding the influence of L to our analy-
sis. In Figure 3, we show the training and test approximation
results for four different random networks, including (a) and
(b) for the network built with λ = 1, L = 100, (c) and (d)
for the network built with λ = 1, L = 500, (e) and (f) for
the network built with λ = 1, L = 10000, (g) and (h) for
the network built with λ = 20, L = 200, respectively. We
observe that the random network with λ = 1 cannot achieve
a good approximation accuracy for this simple function
approximation problem, even when the number of hidden
nodes is sufficiently large. In contrast, the network with
λ = 20 and trained with L = 200 demonstrates excellent
learning and generalization performance. Other larger val-
ues of λ, such as λ = 50, 100, 150, 200 as we tested, have

the same excellent performance on this regression task. This
implies that the choice of λ has a strong impact on the ran-
dom network’s expressive power, which is consistent with
our theoretical results.

Simulation 2. Following the intuitive investigation of the
role of λ in the expressive power of random networks
in Simulation 1, in this part, we present more statisti-
cal results for function approximation with various pairs
of (λ, σ) so that we can summarize a general pattern em-
pirically. Specifically, we create different forms of tar-
get function f(x;σ) by choosing σ as one element of the
set {0.01, 0.05, 0.1, 0.5}, and for each regression task we
build random nets with λ taken as an element from the set
{0.1, 0.5, 1, 5, 10, 50, 100, 200}, and choose a sufficiently
large L (here, L = 10000 in each case) so that we can
observe the trend as L → +∞. In a similar way as in
Simulation 1, we sample 1000 instances {xi, f(xi)}1000i=1

which are equally spaced points on [0,1], then randomly
and uniformly select 500 training samples and 500 test
samples. For each pair (λ, σ), we run independently
50 trials and calculate the relative training error Ek :=
∥f⃗ − y⃗∥2/∥f⃗∥2 for each trial, where k = 1, 2, . . . , 50,
f⃗ = (f(x1), f(x2), . . . , f(x500)) represents the vector of
training targets, y⃗ = (y1, y2, . . . , y500) stands for the out-
put vector of the random network. As a matter of fact,
as already shown by Figure 3, we only need to study the
training performance to see whether a given λ is suitable
for approximating the target function produced by a given
σ. Table 1 summarizes the averaged relative training error

Table 1. Summary of mean relative training error for various
choices of (λ, σ).

λ
Averaged Relative Training Error E

σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.5
λ = 0.1 0.9504 0.6969 0.3149 0.0026
λ = 0.5 0.9299 0.6627 0.2179 1.0606e-04
λ = 1 0.9188 0.6546 0.2089 1.1781e-05
λ = 5 0.8574 0.1263 0.0016 5.8661e-08
λ = 10 0.5714 0.0064 5.5692e-08 4.5881e-08
λ = 50 0.0131 4.4905e-08 4.6897e-08 4.5834e-08
λ = 100 1.9055e-06 7.5046e-08 7.2133e-08 6.8683e-08
λ = 200 1.1171e-07 1.3937e-07 1.0784e-07 1.1284e-07

E :=
∑50

k=1Ek/50. Note that we do not provide their stan-
dard deviations here because, compared with the average
values, standard deviation values may not affect the con-
clusion that we are aiming to verify, as we will detail later.
Table 1 shows how the choice of (σ, λ) affects the approxi-
mation ability of random networks. From the colored cells
of the table, which values are tiny (magnitude between e-8
and e-6), we can observe that, for a target function with a
smaller σ value, we would need a larger λ for a random net
to ensure a random network to achieve an accurate approxi-
mation of the target function. From the above simulations,
we can see that the effectiveness of the approximation by

7



How Powerful are Shallow Neural Networks with Bandlimited Random Weights?

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Training Target

Training Approximation

(a) λ = 1, L = 100, Train

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Test Target

Test Approximation

(b) λ = 1, L = 100, Test

0 0.2 0.4 0.6 0.8 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Training Target

Training Approximation

(c) λ = 1, L = 500, Train
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Figure 3. Performance of random nets with λ = 1 and λ = 10 in training and test. (a-b) λ = 1, L = 100. (c-d) λ = 1, L = 500. (e-f)
λ = 1, L = 10000. (g-h) λ = 20, L = 200.

random networks is constrained by both the network param-
eter distribution and the class of target functions. For a given
learning task, there exists an appropriate range/distribution
D∗ (not unique), but NOT ANY range/distribution, such
that a neural network with random weights assigned from
D∗ can be a universal approximator (if the number of hidden
nodes is sufficiently large). Second, the D∗ (for example,
[−λ∗, λ∗]) is highly dependent upon the complexity of the
target function. One needs an adequate amount of samples
from the target function to provide some prior knowledge
or empirical studies to discover D∗.

Simulation 3. To further reveal the infeasibility of the trivial
range [-1,1] for certain function approximation problems,
we conduct similar simulations on a new target function
g(x), denoted as

g(x) = 0.5 cos(22πx2) + 0.5x2, x ∈ [0, 1].

Mathematically, g(x) is composed of two parts:
0.5 cos(22πx2) and 0.5x2, which represent two com-
pletely different ‘modes’ at distinct ‘frequencies’, as shown
in Figure 4.

We carry on the same sampling as in Simulations 1 and 2
to generate 500 training and test points on [0,1]. Here, we
only consider the training performance of random nets with
various choices of λ. We report the results of the comparison
for λ = 1 and λ = 100 in Figure 5. We observe that the
random net with λ = 1 is not a universal approximator,
although the number of hidden nodes is sufficiently large
(L = 10, 000). The network with λ = 1 can only fit the
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1

0 0.2 0.4 0.6 0.8 1

-0.5
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Figure 4. Visualization for the target function g(x) (up), its modes
0.5 cos(22πx2) (middle) and 0.5x2 (bottom), respectively.

‘mean’ curve of the original signal and fails to approximate
the high-frequency ‘mode’ 0.5 cos(22πx2). On the other
hand, for the second ‘mode’ 0.5x2, the random net with
λ = 1 has great approximation performance.

As we observe the derivative |g′(x)| ≤ 25 in Figure 5 (c),
we conjecture that in general, the ‘appropriate’ range of λ is
related to the magnitude of |g′(x)|, rather than independent
of the target function class and training samples. Moreover,
a multi-scale strategy that selects random parameters from
various scopes can be beneficial, especially when the target
function is complicated and composed of multiple ‘modes.’
In Figure 5 (d), we find another interesting result that the
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training output of the network with 300 hidden neurons and
weights (and biases) randomly chosen from [-100,100] is not
significantly affected if we remove 85 hidden neurons with
weights (and biases) located in the ‘narrow’ range [-30,30].
It means, these hidden weights (and biases) as randomly
assigned from [-30,30], not to mention the ones from [-1,1],
provide a little contribution to approximation universality
in learning.
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(a) λ = 1, L = 10000
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(b) λ = 100, L = 300
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Figure 5. Performance for training results of g(x): (a) λ = 1, L =
10000, (b) λ = 100, L = 300. (c) Derivative function g′(x). (d)
N1: Training approximation of g(x) with hidden weights (and
biases) randomly assigned from [−100, 100], N2: Training ap-
proximation of g(x) with hidden weights (and biases) randomly
assigned from [−100, 100]/[−30, 30], and their numerical differ-
ence N1 −N2.

Two main take-home messages: Our experiments support
our theoretical results, which send two critical messages.
(1) For a learning task, simply taking a fixed scope [−λ, λ]
would not make random neural nets universal approxima-
tors, if λ is not set properly. (2) For a gaussian-type target
function f(x;σ) = exp(−|x|2/σ2) (σ > 0), which is a
Sobolev function and thus meets the conditions of our main
theorem, a large value of λ is usually needed if σ is small.
Our empirical findings provide valuable guidance for devel-
oping algorithms for constructing random neural networks.
As a practical suggestion, users utilizing random networks
for data modeling should be aware that the selection of the
parameter λ greatly impacts the performance of the model.
To determine an appropriate value of λ, it is recommended
to conduct simulations through a trial-and-error approach.
While this method is relatively straightforward to imple-
ment, it relies heavily on human intervention and is not a
fully automated algorithm.

Our theoretical and empirical results indicate that randomly
assigning weights from a fixed range or distribution that
is independent of the training samples or prior knowledge
may not be the most effective approach. Instead, it is more
beneficial to explore different settings of random weights
from various distributions, with the goal of expanding the
function basis and increasing the ability to approximate the
target function. Refer to the additional information provided
in Appendix A. Further simulations on a 2D example and
some real-world datasets are provided in Appendix D.1 and
Appdendix D.2, respectively.

6. Conclusion and Discussion
In this paper, we examine the lower bound on the approxima-
tion error of shallow neural networks with random weights.
Specifically, we explore the impact and limitations of ran-
domness on the network’s capacity for expression. Our
theoretical findings indicate that the lower bound on the
approximation error of a random network may not be zero
if the range/distribution of hidden parameters is not appro-
priately selected in advance. Our results are based on the
assumption of bandwidth limitation, which is a form of
stochastic limitation that includes a finite variation, and are
also valid when the proposed distribution is fully supported,
such as a normal distribution.

Our theoretical results and empirical findings provide ev-
idence that challenges the prevalent belief that a shallow
random neural network is always a universal approximator
regardless of the choice of hidden weights. This is signif-
icant as it helps researchers working with shallow neural
networks and random weights to have a better understanding
of the critical issues and potential drawbacks associated with
randomness. Further in-depth analysis, both for deep neu-
ral networks or with tighter bounds, is expected to provide
more insights. Interpretation of when and why neural net-
works with random weights are effective or not is essential
to advance the understanding of this research topic.
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A. Further Background
The initial motivation of this work comes from the comments posted by Yann LeCun1, where some truth background
behind randomness in neural nets was briefly revisited. We do not only agree with Yann’s comments after we conduct a
comprehensive literature review for this line of research but also technically question the feasibility and effectiveness of the
“neural nets with random weights” (with certain controversial name/term), since many researchers found empirically that, in
some cases, although not always, random models with inappropriate setting of the random parameters lead to unstable or
poor results .

Overall, that motivates us to investigate two pressing, however, puzzling questions: (1) Can we guarantee that a random
neural net model with hidden parameters chosen from a fixed range, for example, a trivial case obtained by letting λ = 1,
is a universal approximator? (2) Given a target function f with specified complexity, what is the relationship between an
appropriate setting of λ (that can lead to a universal approximator in the sense of probability) and the smoothness of f?
Though we raise these questions, our intention is not to make any judgement on or get involved in the controversial name
towards this direction. Instead, we present our current study along the right track of neural nets with random weights (or
random neural nets, random nets), with particular concerns on the theoretical aspects, aiming to provide some new insights
into answering the above questions.

The appearance of randomness in neural networks can trace back to the original Rosenblatt’s perceptron (Rosenblatt, 1958),
where the first layer is randomly connected and later Minsky and Papert’s Gamba perceptron (Minsky & Papert, 1988) whose
first layer is a bunch of linear threshold units. In early 1990s, researchers made random training methods/models reification,
for example, with single hidden layer feedforward networks (SLFNs) with random weights (Schmidt et al., 1992) and
random vector functional-link (RVFL) networks (Pao et al., 1994). Algorithmically, they performed the two steps (mentioned
at the beginning of the introduction section) to build the randomized learner model. However, the approximation errors
of the resulting models are bounded in the statistical sense (Igelnik & Pao, 1995), implying that preferable approximation
performance is not guaranteed for every random assignment of the hidden parameters if the re-given probability distribution
Q(a; b) is not appropriately chosen (Gorban et al., 2016; Li & Wang, 2017). In contrast, the stochastic configuration networks
(Wang & Li, 2017b) can ensure universal approximation by enforcing certain constraints on the random assignment of the
hidden parameters, rather than using the purely random way as the “good” probability distribution Q∗(a; b) is unknown and
data-dependent. Sonoda & Murata (2014) proposed the sampling regression learning method by introducing a nonparametric
probability distribution of the hidden parameters of SLFNs, and fitting the output parameters via ordinary linear regression.
Kleyko et al. (2021) proposed to represent input features of RVFLs via density-based encoding, which is widely known
in the area of stochastic computing, and used the operations of binding and bundling from the area of hyper-dimensional
computing for obtaining the activations of the hidden neurons. The framework of a broad learning system (Chen & Liu,
2017) performs in the manner of a flat network, in which the original inputs are transferred and placed as the “mapped
features” in feature nodes and the structure is expanded in a wide sense in the “enhancement nodes.”

Although we only pay attention to shallow NNRWs with Step I and Step II (mentioned in the introduction), some other
techniques/models using randomness are still worth mentioning here, aiming to present the engaging readers with a big
picture of this line of research. For instance, the use of randomness in deep neural nets is also concerned in terms of different
viewpoints. Mongia et al. (2016) showed that simple single-layer CNNs with random filters could serve as the basis for
excellent texture synthesis models. Saxe et al. (2011) observed that the results of a learner based on random weights are
comparable to that after regular pre-training and fine-tuning processes. Giryes et al. (2015) showed that under certain
conditions, DNNs with random gaussian weights could perform a stable embedding of the original data, permitting a stable
recovery of the data from the features represented by the network. Reservoir computing, a new paradigm to use recurrent
neural networks with fixed and randomly generated weights, has also been widely adopted in-stream data modeling tasks
(Jaeger, 2002; LukoševičIus & Jaeger, 2009; Zhang et al., 2011). Kernel approximation with random features (Rahimi &
Recht, 2008a;b; 2009) can also be viewed as a random training method as its primary philosophy is mapping the input
data to a randomized low-dimensional feature space and then applying existing fast linear methods. See the recent survey
paper (Liu et al., 2021). On the other hand, random projections are well established and commonly used for dimensionality
reduction (Boutsidis et al., 2014; Barbier et al., 2020). Here, one utilizes a random matrix to project input patterns from a
high-dimensional space to a lower-dimensional representation such that distances between these patterns are preserved with
high accuracy, as stated in Johnson-Lindenstrauss lemma (Johnson & Lindenstrauss, 1984).

1https://www.facebook.com/yann.lecun/posts/10152872571572143
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B. Integral Representation Theory and Ridgelet Transform
B.1. Background

The ridgelet transform has been independently discovered by Murata (1996), Candès (1999), and Rubin (1998) during
1996–1998 as a ‘harmonic analysis of neural networks’. This is a path-breaking study, not only in the neural network field,
but also in the sparse coding theory (see overviews by Donoho (2002) and by Starck et al. (2010)). The ridgelet transform
has been extended to Schwartz distributions by Kostadinova et al. (2014), and to non-integrable activation functions such as
ReLU by Sonoda & Murata (2017). The integral representation of a neural network had been developed before the ridgelet
transform. (Recall that the ridgelet transform R is a right inverse operator of the integral representation operator S. Thus, we
can analyze S without knowing R.) For example, Irie & Miyake (1988), Funahashi (1989) and Barron (1993) used Fourier
transform as an integral representation to prove the UAP. Carroll & Dickinson (1989) and Ito (1991) used Radon transform.
In particular, the so-called Barron class (proposed in Barron (1993)) characterizes the functions that neural networks can
effectively approximate. The effectiveness here is quantified as Barron’s bound, a dimension-free approximation upper
bound (see the overview by Kainen et al. (2013)). The original Barron’s theory excludes ReLU, and the upper bound is in
general not tight. Thus, many authors (Klusowski & Barron, 2018; Lee et al., 2017; Sonoda, 2019; E et al., 2019; Savarese
et al., 2019; Ji et al., 2020; Ongie et al., 2020; Parhi & Nowak, 2021) have improved and developed Barron-like theories
for ReLU nets. It is notable that Ongie et al. (2020) and Parhi & Nowak (2021) have employed the Radon transform and
developed some representer theorems. The novelty of this study in the integral representation literature is in the estimation
of lower bounds.

B.2. Quick Overview

We explain the integral representation theory established in (Sonoda & Murata, 2017) showing a few new results. In order to
avoid confusion, we use two symbols ·̂ and ·♯ for m-dimensional and 1-dimensional Fourier transforms respectively, namely,

f̂(ξ) :=

∫
Rm

f(x)e−iξ·xdx, f ∈ L2(Rm), ξ ∈ Rm;

σ♯(ω) :=

∫
R
σ(t)e−iωtdt, σ ∈ L2(R), ω ∈ R.

Let P be a Radon measure on Rm. We consider two Hilbert spaces F = L2(P ) and G = L2(Rm × R) associated with the
following inner products:

⟨f, g⟩F :=

∫
Rm

f(x)g(x)dP (x),

⟨ϕ, ψ⟩G :=

∫
Rm×R

ϕ(a, b)ψ(a, b)dadb,

and the Banach space M of the finite Radon measures on Rm × R equipped with the total variation norm ∥ · ∥TV .
Definition 4 (Integral representation S). Fix any function σ : R → C and measure µ on Rm × R, we define the integral
representation as

S[µ](x) :=

∫
Rm×R

σ(a · x− b)dµ(a, b), x ∈ Rm.

With a slight abuse of notation, when the measure µ has a density ϕ ∈ L1(Rm × R), we write S[ϕ] instead of S[ϕdadb].
Proposition 3 (Fourier expression of S).

S[µ](x) =
1

2π

∫
Rm×R

µ♯(a, ω)σ♯(ω)dωeiωa·xda.

Proof. Since σ(a · x− b) = 1
2π

∫
R σ

♯(ω)eiω(a·x−b)dω,

S[µ](x) =
1

2π

∫
Rm×R

σ♯(ω)eiω(a·x−b)dωdµ(a, b)

=
1

2π

∫
Rm×R

µ♯(a, ω)σ♯(ω)eiωa·xdωda.
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Proposition 4 (Boundedness (Lipschitz continuity) of S : M → F). We write σa,b(x) := σ(a · x− b). Provided that the
constant C2

σ,P := supa,b ∥σa,b∥2F exists finite, then S : M → F is bounded, or equivalently, Lipschitz continuous: For any
µ ∈ M, we have

∥S[µ]∥2F ≤
∫ (∫

|σa,b(x)|d|µ|(a, b)
)2

dP (x) ≤ ∥µ∥2TV

∫ ∫
|σa,b(x)|2

d|µ|(a, b)
∥µ∥TV

dP (x) ≤ C2
σ,P ∥µ∥2TV .

The boundedness of S is a sufficient condition for the optimization problem to be well-defined, in the sense that S(M) ⊂ F .
Hence, unless otherwise noted, we always assume that Cσ,P <∞.

Proposition 5 (Adjoint operator S∗
P ). For S : G → F , the adjoint operator S∗

P : F → G is given by

S∗
P [f ](a, b) =

∫
Rm

f(x)σ(a · x− b)dP (x).

If P is obvious from the context, we write S∗
P as S∗ for simplicity.

Proof. We can verify this by the direct calculation: For any f ∈ F and ϕ ∈ G,

⟨f, S[ϕ]⟩F =

∫
Rm×R×Rm

f(x)σ(a · x− b)ϕ(a, b)dadbdP (x) = ⟨S∗
P [f ], ϕ⟩G ,

as long as one of the integrals exists.

Definition 5 (Ridgelet transform R). For any measure P on Rm and function ρ : R → C, we define the ridgelet transform
of f on Rm by

RP [f ; ρ](a, b) :=

∫
Rm

f(x)ρ(a · x− b)dP (x), (a, b) ∈ Rm × R.

If P and/or ρ are obvious from the context, we write RP [f ; ρ] as R[f ] for simplicity. In addition, when we emphasize the
Lebesgue measure case P = dx, we write Rdx.

In particular, the adjoint operator S∗
P is a ridgelet transform: S∗

P [f ] = RP [f ;σ].

Proposition 6 (Fourier expression of R).

RP [f ; ρ](a, b) =
1

2π

∫
R
f̂dP (ωa)ρ♯(ω)eiωbdω,

where f̂dP denotes the Fourier transform of the measure fdP . When P = dx, then f̂dx is naturally identified with the
ordinary Fourier transform f̂ .

Proof. Since ρ(a · x− b) = 1
2π

∫
R ρ

♯(ω)eiω(a·x−b)dω,

RP [f ; ρ](a, b) =
1

2π

∫
Rm

f(x)

∫
R
ρ♯(ω)e−iω(a·x−b)dωdP (x)

=
1

2π

∫
R
f̂dP (ωa)ρ♯(ω)eiωbdω.

We remark that satisfying this admissible condition is not difficult. For example, take a Gaussian ρ0(t) := exp(−t2/2), and
put ρn(t) := Cρ

(n)
0 (t) with an integer n such that 2n−m > 0 and a positive constant C. Then, by appropriately setting C,

ρn can be admissible (with itself) because (2π)m−1
∫
R |ρ♯n(ω)|2/|ω|mdω = (2π)m−1C

∫
R |ω|2n−m|ρ♯0(ω)|2dω <∞ and

we can set C for the integral to be normalized as 1.

Proposition 7 (Reconstruction formula). For any f ∈ L1(P ), S[RP [f ; ρ]] = fdP .
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Proof. We write fP := fdP for short. By using the Fourier expressions, we have

S[RP [f ; ρ]](x) =
1

2π

∫
Rm×R

f̂P (ωa)σ
♯(ω)ρ♯(ω)eiωa·xdωda

=
1

2π

∫
Rm

f̂P (ξ)

[∫
R

σ♯(ω)ρ♯(ω)

|ω|m
dω

]
eiξ·xdξ

= fP (x).

Here, we change the variable (a, ω) = (ξ/ω, ω) with dadω = |ω|−mdξdω in the second equation.

We remark that when σ is self-admissible, the reconstruction formula can be extended to f ∈ L2(Rm) by using the
Plancherel formula below.

The following isometries play an important role in the proof of main results as we can regard |R[f ](a, b)|2 with a “density
function” of the parameter distribution.

Proposition 8 (Plancherel formula).

• When σ = ρ, ∥S∗
P [f ]∥2G = ⟨f, fdP ⟩F because

∥S∗
P [f ]∥2G=⟨S∗

P [f ], S
∗
P [f ]⟩G=⟨f, S[S∗

P [f ]]⟩F =⟨f, fdP ⟩F .

• When σ = ρ, ∥f∥2F = ⟨S∗
P [f ], S

∗
dx[f ]⟩G because

∥f∥2F = ⟨f, f⟩F = ⟨f, S[S∗
dx[f ]]⟩F = ⟨S∗

P [f ], S
∗
dx[f ]⟩G .

• When f is supported in a set X ⊂ Rm and P = 1Xdx (indicator function), then fdP = f , and thus S∗
dx[f ] = S∗

P [f ],
and the above two identities coincide: ∥S∗

P [f ]∥2G = ∥f∥2F .

C. Proofs for Theorems
C.1. Theorem 1

We impose assumptions as below.

(A1) Let Ω be a bounded open subset with smooth boundary in the input domain Rm, and put K := Ω. Namely, K
is a compact set. The boundedness assumption is required for the loss ∥f − gd∥L2(K) between f and finite net
gd(x) =

∑d
i=1 ciσ(ai · x− bi) exists finite. We note that ∥gd∥L2(Rm) = ∞ simply because σ(a · x− b) has a constant

direction, while ∥gd∥L2(K) < ∞. The closure assumption excludes degenerated cases such as K = {x1, . . . , xn}
(isolated points) for the sake of simplicity. The smooth boundary is required in Theorem 2, to continuously embed
Hs(Ω) to Hs(Rm) via zero-extension.

(A2) Let f : Rm → C be an square-integrable function supported in the compact set K. Namely, f ∈ L2(K). Both
integrability and compact-support assumptions exclude the so-called “teacher-student setting” where f is a finite neural
network such as

∑d
i=1 ciσ(ai · x− bi).

(A3) P := 1Kdx (i.e., the volume is not normalized to 1), which yields F = L2(P ) = L2(K) and S∗[f ] =
R[f ;σ, 1Kdx] = S∗

K [f ].

(A4) Cσ,P exists finite, namely ∥S[µ]∥F ≤ Cσ,P ∥µ∥TV so that S(M) ⊂ F .

(A5) Let σ : R → C be a measurable function that is admissible with itself.
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Then, the approximation error is lower bounded by the volume of the tail part (i.e., outside the parameter domain V ) of the
ridgelet spectrum:

inf
µ∈M(V )

∥f − S[µ]∥2L2(K) ≥ ∥f∥2L2(K) − ∥S[S∗
K [f ]|V ]∥2L2(K) ≥ ∥f∥2L2(K) − ∥S∗

K [f ]∥2L2(V ) = ∥S∗
K [f ]∥2L2(V c).

Obviously, the lower bound is strictly positive when the tail density S∗[f ]|V c is positive.

Proof. We write G := L2(Rm × R) for short. By S∗[f ]|V (resp. S∗[f ]|V c = S∗[f ]− S∗[f ]|V ) we write the truncation of
the ridgelet spectum S∗[f ] onto V (resp. V c). By projkerS (resp. proj(kerS)⊥ ) we write the projection from M(V ) to the
null space kerS (resp. to its complement (kerS)⊥).

Step 1. Let µ∗ denote an arbitrary single element of the minimizers in M(V ). We note that µ∗ always exists as a
consequence of the following extreme value theorem:

Proposition 9. Suppose E be a Banach space, X be a closed convex subset of E, and φ : X → (∞,∞] be a coercive lower
semi-continuous function. (Here, coercive means φ(x) → +∞ as ∥x∥E → ∞.) Then, there exists an element (minimizer)
x∗ ∈ X that attains the minimum, i.e., infx∈X φ(x) = φ(x∗).

Now E = X = M(V ) is a Banach space (known as an rca space), which means it is closed and convex, and φ(µ) :=
∥f − S[µ]∥2L2(K) is coercive and Lipschitz continuous, there exists a minimizer µ∗ ∈ M(V ). Namely, we have

inf
µ∈M(V )

∥f − S[µ]∥2L2(K) = ∥f − S[µ∗]∥2L2(K). (5)

Since the minimizer S[µ∗] satisfies the Pythagorean relation:

∥S[µ∗]∥2L2(K) + ∥f − S[µ∗]∥2L2(K) = ∥f∥2L2(K), (6)

we have

(5) = ∥f∥2L2(K) − ∥S[µ∗]∥2L2(K). (7)

Step 2. We show the following inequality:

∥S[µ∗]∥L2(K) ≤ ∥S[S∗[f ]|V ]∥L2(K), (8)

which yields the following lower bound:

(7) ≥ ∥f∥2L2(K) − ∥S[S∗[f ]|V ]∥2L2(K) (9)

Proof of (8). To estimate the norm of S[µ∗], we can neglect the null component of µ∗, say µ∗
0 ∈ ker(S : M(V ) → L2(K)),

since it satisfies

∥S[µ∗]∥L2(K) = ∥S[µ∗ − µ∗
0]∥L2(K), and ⟨f, S[µ∗]⟩L2(K) = ⟨S∗

K [f ], µ∗ − µ∗
0⟩L2(Rm×R), (10)

for any f ∈ L2(K). The Pythagorean relation (6) is rephrased as

∥S[µ∗]∥2L2(K) = ℜ⟨f, S[µ∗]⟩L2(K). (11)

Since µ∗ is supported in V ,

= ℜ⟨S∗
K [f ]|V , µ∗⟩L2(Rm×R). (12)

Since µ∗ is assumed not to contain the null component,

= ℜ⟨proj(kerS)⊥ [S
∗
K [f ]|V ], S∗

K [S[µ∗]]⟩L2(Rm×R), (13)
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By the definition of S∗
K ,

= ℜ⟨S[S∗[f ]|V ], S[µ∗]⟩L2(K). (14)

By the Cauchy-Schwartz inequality,

≤ ∥S[S∗[f ]|V ]∥L2(K)∥S[µ∗]∥L2(K), (15)

which yields the inequality (8).

Step 3. Next, we show the following equalities:

∥f∥2L2(K) = ∥S∗
K [f ]∥2L2(V ) + ∥S∗

K [f ]∥2L2(V c)

= ∥S[S∗
K [f ]|V ]∥2L2(K) + ∥S[S∗

K [f ]|V c ]∥2L2(K) + 2∥ϕ0∥2L2(Rm×R), (16)

where ϕ0 is the null component of S∗
K [f ]|V defined later, and this equality refines the lower bound as

(9) = ∥S[S∗
K [f ]|V c ]∥2L2(K) + 2∥ϕ0∥2L2(Rm×R) ≥ ∥S∗[f ]∥2L2(V c) = ∥f∥2L2(K) − ∥S∗[f ]∥2L2(V ).

Proof of (16). By using the Plancherel formula and splitting the integral, the restrictions S∗[f ]|V and S∗[f ]|V c(= S∗[f ]−
S∗[f ]|V ) of ridgelet spectra S∗[f ] satisfy the following equation:

∥f∥2L2(K) = ∥S∗
K [f ]∥2L2(Rm×R)

=

(∫
V

+

∫
V c

)
|S∗

K [f ](a, b)|2dadb = ∥S∗
K [f ]∥2L2(V ) + ∥S∗

K [f ]∥2L2(V c). (17)

In order to further decompose the equation (17), we consider the null components of the restrictions S∗
K [f ]|V and S∗

K [f ]|V c .
Recall that the operator S : L2(Rm × R) → L2(K) has a non-trivial null space ker(S : L2(Rm × R) → L2(K)), and its
orthogonal complement is given by the image space imageS∗

K of the adjoint operator S∗
K : L2(K) → L2(Rm × R), namely,

(kerS)⊥ = imageS∗
K . Hence, the entire space G := L2(Rm × R) is decomposed into the orthogonal direct sum: G =

kerS ⊕ imageS∗
K . By definition, S∗

K [f ] ∈ imageS∗
K = (kerS)⊥. Nevertheless, its restrictions S∗

K [f ]|V and S∗
K [f ]|V c

may have null components. We write the (potentially non-trivial) null component of S∗
K as ϕ0 := projkerS [S

∗
K [f ]|V ], and its

orthogonal component as ϕV := proj(kerS)⊥ [S
∗
K [f ]|V ], so that both components become a direct sum: ϕV ⊕ϕ0 = S∗

K [f ]|V .
Then, the null component of S∗

K [f ]|V c is −ϕ0 because the sum S∗
K [f ]|V + S∗

K [f ]|V c = S∗
K [f ] is in the image space

imageS∗
K , and thus the orthogonal component ϕV c := proj(kerS)⊥ [S

∗
K [f ]|V c ] is given by ϕV c = S∗

K [f ]|V c + ϕ0. Hence,
by using the orthogonality and the Plancherel formula, the equation (17) is further calculated as follows:

(17) = ∥ϕV ∥2L2(Rm×R) + ∥ϕV c∥2L2(Rm×R) + 2∥ϕ0∥2L2(Rm×R)

= ∥S[S∗
K [f ]|V ]∥2L2(K) + ∥S[S∗

K [f ]|V c ]∥2L2(K) + 2∥ϕ0∥2L2(Rm×R).

Combining Steps 1, 2, and 3, we have the assertion.

C.2. Theorem 2

We write ⟨x⟩ := (1 + |x|2)1/2 for x ∈ Rm, which satisfies max{1, |x|} ≤ ⟨x⟩ for any x. For square-integrable functions
f ∈ L2(Rm) on whole space Rm, we employ ∥f∥2Hs(Rm) :=

∫
Rm |f̂(ξ)|2(1 + |ξ|2)sdξ for the L2-Sobolev norm of order

s ∈ R. For functions on an open subset Ω with C1-boundary, we define the L2-Sobolev space Hs(Ω) with s ∈ (1/2,∞] by
continuously embedding it to Hs(Rm). Namely, we identify f ∈ Hs(Ω) with f ∈ Hs(Rm) that is compactly supported in
Ω and satisfies f |Ω = f .

Decay property. Suppose that ρ is self-admissible, namely,
∫
R |ρ♯(ω)|2|ω|−mdω = (2π)m−1. For any f ∈ Hs(Ω),

|R[f ](ru, b)| ≤ 1

2π

∫
R
|f̂(ωu)||ρ♯(ω/r)/r|dω

≤ 1

2π

∫
R

(
|ωu|s|f̂(ωu)ω

m−1
2 |
)(

|ω−(2s+m−1)/2ρ♯(ω/r)/r|
)
dω

≤ 1

2π

(
2

∫ ∞

0

⟨ωu⟩2s|f̂(ωu)|2ωm−1dω

)1/2(
|r|−2s−m

∫
R
⟨ω⟩−2s+1|ρ♯(ω)|2|ω|−mdω

) 1
2

= Cρ,s|r|−(2s+m)/2Φs[f ](u).
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Here, we write Φs[f ](u) :=
(∫∞

0
⟨ωu⟩2s|f̂(ωu)|2ωm−1dω

)1/2
for future use, of which the spherical mean becomes the

Sobolev norm: ∫
Sm−1

Φs[f ](u)
2du = ∥f∥2Hs ;

and the constant Cρ,s is given and bounded as

C2
ρ,s :=

2

(2π)2

∫
R
⟨ω⟩−2s+1 |ρ♯(ω)|2

|ω|m
dω ≤ 2

(2π)2

∫
R

|ρ♯(ω)|2

|ω|m
dω = 2(2π)m−3 <∞,

because ⟨ω⟩−2s+1 ≤ 1 as long as −2s+ 1 ≤ 1.

Auxiliary estimates. The obtained estimate does not depend on b and diverges at r = 0, but R[f ] usually depends on
b and does not always diverge at r = 0. Hence, we derive auxiliary estimates. By the assumption that f ∈ L1(K) and
ρ ∈ L∞(R), we have

|R[f ](a, b)| ≤
∫
Rm

|f(x)||ρ(a · x− b)|dx ≤ ∥f∥L1(K)∥ρ(a · x− b)∥L∞(K) ≤ ∥f∥L1(K)∥ρ∥L∞(R).

Therefore, put

ϕa(ru) := min
{
∥ρ∥L∞(R)∥f∥L1(K), Cρ,sΦs[f ](u)r

−2s−m
2

}
, ϕb(b) :=

|R[f ](ru, b)|
ϕa(ru)

.

Since the estimate |R[f ](ru, b)| ≤ ϕa(ru) is independent of b, ϕb is well-defined and uniformly bounded as |ϕb| ≤ 1. By
the square integrability of R[f ], we can decompose the integral as

∥R[f ]∥2L2(Rm×R) =

∫
Rm

|ϕa(a)|2da
∫
R
|ϕb(b)|2db.

C.3. Theorem 3

Proof. We write C0 := ∥σ∥L∞(R)∥f∥L1(K) and C∞ := Cσ,s∥f∥Hs(Ω) for short. Let Va := {a ∈ Rm | |a| ≤ λ} and
Vb := {b ∈ R | |b| ≤ κ} so that V = Va×Vb. By Theorem 1, the approximation error infµ∈M(p) ∥f −S[µ]∥2L2(K) is lower
bounded by the tail bound ∥S∗

K [f ]∥2L2(V c) = ∥f∥2L2(K) − ∥S∗[f ]∥2L2(V ). On the other hand, by Theorem 2, the parameter
“density” |S∗

K [f ]|2 is upper bounded by a dominating function |ϕa|2; Furthermore, the integration of |S∗
K [f ]|2 over a product

space Va×Vb is exactly decomposed into the integrations of |ϕa|2 and |ϕb|2. In the following, by integrating the dominating
function over the bandlimited domain V , we estimate the tail bound.

We begin with decomposing the integral as

∥S∗
K [f ]∥2L2(V )=

(∫
Sm−1

∫ λ

0

|ϕa(ru)|2rm−1drdu

)∫
Vb

|ϕb(b)|2db = ∥ϕa∥2L2(Va)
∥ϕb∥2L2(Vb)

.

Thus, we compute ∥ϕa∥2L2(Va)
in the following.

By averaging ϕa in direction u ∈ Sm−1,∫
Sm−1

|ϕa(ru)|2du = min{C2
0Ωm−1, C

2
∞r

−2s−m}.

Here, Ωm−1 = 2πm−1/Γ(m/2) is the surface area of Sm−1. Therefore, the rate in r changes at the cross point r = ϑ
satisfying C2

0Ωm−1 = C2
∞ϑ

−2s−m.

Let us consider the case λ ≤ ϑ. Then,

∥ϕa∥2L2(Va)
=

(∫
Sm−1

∫ λ

0

|ϕa(ru)|2rm−1drdu

)
= C2

0Vmλ
m =: I0(λ).
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Here, Vm = πm/2/Γ(m/2 + 1) is the volume of m-unit ball, and we used the relation Ωm−1/m = Vm. Next, let us
consider the case λ ≥ ϑ.

∥ϕa∥2L2(Va)
= I0(ϑ) +

∫
Sm−1

∫ λ

ϑ

|ϕa(ru)|2rm−1drdu

= C2
0Vmϑ

m − C2
∞
2s

(
λ−2s − ϑ−2s

)
=
C2

∞
2s

(
−λ−2s +

2s+m

m
ϑ−2s

)
,

where the final equation is immediate from the relation mC2
0Vmϑ

m = C2
∞ϑ

−2s. By the positivity of integrand |ϕa|2, the
final estimate is also positive (inspite of the negative term −λ−2s).

As a biproduct, by letting λ→ ∞, we can verify that both ϕa and ϕb are finite measures on Rm and R respectively:

∥ϕa∥2L2(Rm) = C2
∞

(
2s+m

2sm

)
ϑ−2s ∈ (0,∞),

=⇒ ∥ϕb∥2L2(Vb)
= ∥S∗[f ]∥2L2(Rm×Vb)

/∥ϕa∥2L2(Rm) ∈ (0,∞).

To conclude, we have the following approximation lower bound:

inf
µ∈M(d)

∥f − S[µ]∥2L2(K)

≥ inf
µ∈M(V )

∥f − S[µ]∥2L2(K)

≥ ∥S∗
K [f ]∥2L2(V c)

= ∥f∥2L2(K) − ∥S∗[f ]∥2L2(V )

= ∥f∥2L2(K) − ∥ϕb∥2L2(Vb)
·

{
∥f∥2L1(K)∥σ∥

2
L∞(R)Vmλ

m λ ∈ [0, ϑ)

∥f∥2Hs(Ω)C
2
σ,s

(
− 1

2sλ
−2s + 2s+m

2sm ϑ−2s
)

λ ∈ [ϑ,∞)
,

where the final bound is continuous at λ = ϑ, and it is non-negative.

D. Further Experiments
D.1. Simulations on a 2D artificial example

To further verify our results, we extend the 1D target function to a 2D case, which is expressed as follows:

f2D(x1, x2;σ)=0.2 exp

(
− (x1 − 0.4)2 + (x2 − 0.4)2

σ2

)
+ 0.5 exp

(
− (x1 − 0.6)2 + (x2 − 0.6)2

σ2

)
,

where x1 ∈ [0, 1], x2 ∈ [0, 1],σ > 0 is a scalar index that can determine the complexity of f2D, similar as the 1D case.

Similar to Simulation 2 (1D case) as detailed in Section 5, we create different forms of target function f(x1, x2;σ) by
choosing σ as one element of the set {0.01, 0.05, 0.1, 0.5}, and for each regression task we build random nets with λ taken
as an element from the set {0.1, 0.5, 1, 5, 10, 50, 100, 200}, and fix the number of hidden nodes as L = 10000 for each case.
We sample 10000 instances {(x(i)1 , x

(i)
2 ), f2D(x

(i)
1 , x

(i)
2 )}10000i=1 which are meshgrid points on [0, 1]2 (both x1 and x2 are

equally space points over [0,1]), then randomly and uniformly select 5000 training samples and 5000 test samples.

For each pair (λ, σ), we run independently 50 trials and calculate the relative training error for each trial. The following
Table 2 shows the averaged training performance for the case of each pair (λ, σ).

It is clear that similar findings can be seen from Table 2, that is, consistent with the conclusion drwan from Table 1, there
exists an appropriate range/distribution D∗, but NOT ANY range/distribution, such that a neural network with random
weights (NNRWs) assigned from D∗ can be a universal approximator. Essentially, the D∗ (e.g, [−λ∗, λ∗]2) is highly
dependent upon the complexity of the target function, as consistent with the theoretical and empirical results elaborated in
(Li & Wang, 2017).
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Table 2. Summary of mean relative training error for various choices of (λ, σ) for the 2D case.

λ
Averaged Relative Training Error E

σ = 0.01 σ = 0.05 σ = 0.1 σ = 0.5
λ = 0.1 0.0310 0.0225 0.0121 0.0062
λ = 0.5 0.0297 0.0214 0.0086 0.0041
λ = 1 0.0296 0.0210 0.0072 0.0016
λ = 5 0.0277 0.0032 0.0012 2.8661e-04
λ = 10 0.0192 0.0011 3.4762e-05 2.1093e-05
λ = 50 0.0010 6.3672e-05 6.1358e-05 5.3784e-05
λ = 100 1.2561e-04 4.2462e-05 5.1378e-05 5.3165e-05
λ = 200 1.1762e-04 3.2672e-05 2.6826e-05 2.3018e-05

D.2. Simulations on five real-world datasets

Also, we conduct another simulation study on five real-world datasets from KEEL-dataset repository for regression task
(https://sci2s.ugr.es/keel/). The basic information of these datasets is summarized in Table 3. We choose
randomly 75% samples as traning set while the left samples for testing set. Similar as the experiments conducted on 1D and
2D artificial examples presented before, we also consider different settings of λ for each dataset, and fix L = 10000 for the
neural network with random weights. Then, we run independently 50 trials and calculate the relative training error for each
trial. The following Table 4 shows the averaged training performance for the case of each pair (λ, σ).

Table 3. Summary of basic information of five real-world datasets
Dataset Number of Samples Input Dimension Output Dimension
stock 950 9 1
laser 993 4 1

friedman 1200 5 1
abalone 4177 8 1

compactiv 8192 21 1

Table 4. Summary of mean relative training error for various choices of (λ, σ) for real-world datasets.

λ
Averaged Relative Training Error E

stock laser friedman abalone compactiv
λ = 0.1 0.0065 0.0131 0.0314 0.0654 0.0145
λ = 0.5 1.4295e-09 0.0111 0.0027 0.0468 0.0029
λ = 1 1.0003e-10 0.0103 1.1831e-09 0.0300 9.8862e-04
λ = 5 2.2323e-13 5.8883e-04 1.8764e-13 3.5419e-09 3.0985e-08
λ = 10 2.6994e-14 4.2153e-10 9.1391e-15 9.7869e-11 5.8270e-09
λ = 50 3.0819e-15 4.4011e-14 3.1680e-15 1.5955e-13 2.3818e-10
λ = 100 2.8372e-15 8.9380e-15 2.9847e-15 6.2920e-14 5.3666e-11
λ = 200 5.2748e-15 2.9870e-15 3.1563e-15 1.6981e-14 3.0773e-11

It clearly shows that there are a few cases (like λ = 0.1, 0.5, 1) when the training errors of the randomized neural networks
cannot converge to zero (even when L = 10000). This finding is also consist with what we have obtained in the 1D and
2D artificial examples. All these findings validate our theoretical results that when hidden parameters are distributed in a
bounded domain, the network may not achieve zero approximation error.

D.3. Quantitative demonstration for Figure 1

Consider the following two toy examples:

f1(x) = 0.2e−(10x−4)2 + 0.5e−(80x−40)2 + 0.3e−(80x−20)2 , x ∈ [0, 1],
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and
f2(x) = 0.8 exp(−0.2x) sin(10x), x ∈ [0, 5].

We uniformly sample 1000 training samples (with x ∈ [0, 1] for f1, x ∈ [0, 5] for f2, respectively). For the neural
networks with random weights (NNRWs), we fix the number of hidden nodes L = 10000 (so that we can observe
the trend as L → ∞) and try the randomized learner model using different setting of the random distribution, e.g.,
λ = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 5, 10, 15, 20, 25, 30, 40, 50]. As shown clearly in Figure 6 (similar to the
qualitative plot shown in Figure 1), for both toy examples, when λ = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] the approxi-
mation error change is relatively flatten, while for λ = [5, 10, 15, 20, 25, 30, 40, 50] the magnitude of the approximation
error decreasing become much larger. Although it is intuitively seen that the threshold value ϑ is ‘roughly’ around 1 for
both f1 and f2, it is not easy to find the ‘optimal’ value of ϑ. Given limited training samples (sampled from an unknown
function), how to develop advanced algorithms/strategies to compute numerically the threshold ϑ is out of the focus of our
current work. Nonetheless, it is expected to benefit and motivate future research on algorithm development for building
more powerful (shallow and/or deep) neural nets with random weights (NNRWs).

(a) f1 (b) f2

Figure 6. Outline of the approximation lower bound for f1 and f2.
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