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Abstract
Trustworthy policy learning has significant im-
portance in making reliable and harmless treat-
ment decisions for individuals. Previous pol-
icy learning approaches aim at the well-being
of subgroups by maximizing the utility function
(e.g., conditional average causal effects, post-view
click-through&conversion rate in recommenda-
tions), however, individual-level counterfactual
no-harm criterion has rarely been discussed. In
this paper, we first formalize the counterfactual
no-harm criterion for policy learning from a prin-
cipal stratification perspective. Next, we propose
a novel upper bound for the fraction negatively
affected by the policy and show the consistency
and asymptotic normality of the estimator. Based
on the estimators for the policy utility and harm
upper bounds, we further propose a policy learn-
ing approach that satisfies the counterfactual no-
harm criterion, and prove its consistency to the
optimal policy reward for parametric and non-
parametric policy classes, respectively. Extensive
experiments are conducted to show the effective-
ness of the proposed policy learning approach for
satisfying the counterfactual no-harm criterion.

1. Introduction
Policy learning determines the individuals who should be
treated based on their covariates (Murphy, 2003), and it
is important that a decision made by an algorithm can be
trusted by humans (Floridi, 2019; Kaur et al., 2022). Specif-
ically, trustworthy policy learning requires that the learned
policy has beneficence, non-maleficence, autonomy, justice,
and explicability (Thiebes et al., 2021; Floridi, 2019; Kaur
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et al., 2022), and many counterfactual-based metrics are pro-
posed to quantify the policy’s trustworthiness (Kusner et al.,
2017; Nabi & Shpitser, 2018; Chiappa, 2019; Wu et al.,
2019), which makes the algorithm try to understand, for the
individuals, what the outcome would be if an alternative
intervention had been implemented (Pearl, 2009).

Nevertheless, the counterfactual harmlessness of policy
learning is rarely discussed, which would prevent an active
intervention on the individuals from having worse outcomes
than the natural state without the intervention (Richens et al.,
2022). This also serves as the basic principle of the Hippo-
cratic oath (Sokol, 2013) that ”First do no harm”, and sim-
ilar principles can be found from Lin (2006); Mill (1966);
Asimov (2004). Towards this end, previous studies employ
group causal effects to define the utility to learn individual-
ized treatment policies (Bertsimas et al., 2016; Kitagawa &
Tetenov, 2018; Athey & Wager, 2021), however, they can
only maximize the average benefit of subgroups, without
satisfying the counterfactual no-harm for individuals.

In this paper, we formally discuss the cause of counterfactual
harm from a principal stratification perspective (Frangakis
& Rubin, 2002), by dividing the units into groups by the
joint value of the potential outcomes. We then formalize the
utility functions of the conditional average treatment effect
(CATE)-based (Chipman et al., 2010; Johansson et al., 2016;
Shalit et al., 2017; Wager & Athey, 2018; Künzel et al.,
2019; Shi et al., 2019) and the recommendation-based (Ma
et al., 2018; Zhang et al., 2020; Wang et al., 2022) policy
learning and discuss the explicit solutions of the optimal
policy. Unfortunately, neither of them is able to satisfy the
individual counterfactual no-harm, which is summarized
as pursuing only the maximal causal effect gain of the sub-
population is not sufficient to achieve reliable and no-harm
decision making for individuals.

The basic challenge for satisfying the counterfactual no-
harm criterion from subgroups to individuals is that, since
each unit can be only assigned with one treatment, we al-
ways observe the corresponding potential outcome, but not
both, which is also known as the fundamental problem of
causal inference (Holland, 1986; Morgan & Winship, 2015).
We follow Kallus (2022b) to consider the fraction negatively
affected (FNA), and further propose a metric to quantify
the fraction harmed by the policy. Specially, we extend Li
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& Pearl (2019) and Kallus (2022b) to give upper bounds
of the counterfactual harm, which are strictly tighter under
mild assumptions. Notably, the proposed estimators of up-
per bounds are consistent and asymptotically normal under
weaker assumptions compared to Kallus (2022b), and are
convenient for policy learning, especially in optimization.

Next, we turn to the question that how to bridge the CATE
and the cost function with the counterfactual no harm crite-
rion? From a policy learning perspective, we demonstrate
that larger CATE or cost would contribute to counterfactual
harmless, which also has a guiding signi�cance in practice.

To learn the optimal policies satisfying the counterfactual
no-harm criterion, we propose estimators for the policy util-
ity and the upper bound of policy harm, respectively, and
further propose a policy learning approach. Moreover, we
prove the consistency results, when the policies are para-
metric (also known as policy gradient) and nonparametric,
respectively. To the best of our knowledge, this is the �rst
paper to propose policy learning approaches that satisfy the
counterfactual no-harm criterion and to prove its consistency
to the optimal counterfactual harmless policy reward.

The contributions of this paper are summarized as follows.

� We formally discuss the counterfactual no-harm criterion
for policy learning from a principal strati�cation perspective
and show that common CATE-based and recommendation-
based policy learning do not satisfy the criterion.
� We propose a metric to quantify the fraction harmed by
the policy, and a novel estimator for its upper bound, and
prove its consistency and asymptotic normality.
� Based on the estimators for the upper bounds and policy
reward, we further propose policy learning approaches that
satisfy the counterfactual no-harm criterion and prove its
consistency to the optimal policy reward for parametric and
non-parametric policy classes, respectively.
� Extensive experiments are conducted to show the effec-
tiveness of the proposed policy learning approaches for
satisfying the counterfactual no-harm criterion.

2. Related Work

Trustworthy Policy Evaluation and Learning. Policy
learning aims to determine the individuals who should be
treated that maximizes the utility function based on their
covariates (Murphy, 2003). Previous studies employ group
causal effects to de�ne the utility to learn individualized
treatment policies, using regression based (Bertsimas et al.,
2016), reweighted based (Kitagawa & Tetenov, 2018), and
doubly robust methods (Athey & Wager, 2021).

In addition to utility maximization, trustworthy policy learn-
ing requires that the learned policy has bene�cence, non-
male�cence, autonomy, justice, and explicability (Thiebes

et al., 2021; Floridi, 2019; Kaur et al., 2022), and many
counterfactual-based metrics are proposed to quantify the
policy's trustworthiness (Kusner et al., 2017; Nabi & Sh-
pitser, 2018; Chiappa, 2019; Ben-Michael et al., 2022). In
this paper, we focus on policy learning under the counter-
factual no-harm criterion, which has rarely been discussed.

Heterogeneous Treatment Effects and No-Harm Crite-
rion. Heterogeneous treatment effects, also known as the
conditional average treatment effects (CATEs), describe the
average treatment effects on subgroups with speci�c covari-
ates, which plays a crucial role in such domains as precision
medicine (Jaskowski & Jaroszewicz, 2012) and decision
making (Guelman et al., 2015). Many approaches have been
proposed for the estimation of CATE, such as Bayesian
Additive Regression Trees (BART) (Chipman et al., 2010),
Balancing Neural Network (BNN) (Johansson et al., 2016),
CounterFactual Regression (CFR) (Shalit et al., 2017), Per-
fect Match (PM) (Schwab et al., 2018), Causal Forest (CF)
(Wager & Athey, 2018), X-learner (K̈unzel et al., 2019), and
DragonNet (Shi et al., 2019).

However, the observation-based utilities and CATE do not
necessarily satisfy the no-harm criterion, especially under
theindividual sense. This is intuitively due to that CATE-
based policy learning only seeks to maximize the average
effect under (sub)groups (see Section 4 for the formal dis-
cussions). Towards this end, Richens et al. (2022) propose a
formal de�nition of harm and bene�t using causal models.
Li & Pearl (2019) and Ben-Michael et al. (2022) consider
the utilities depend on unobserved outcomes in binary out-
comes case. Kallus (2022b) propose the sharp bounds on
the fractions that are negatively affected, and Kallus (2022a)
study the conditional value at risk (CVaR) for the continuous
outcomes. In this paper, we extend Li & Pearl (2019) and
Kallus (2022b) to give an upper bound of the counterfactual
harm by the policy, the proposed upper bound is strictly
tighter under mild assumptions, as well as has many desir-
able properties. We also propose estimation methods for
policy learning satisfying the counterfactual no-harm crite-
rion, and show the consistency and asymptotic normality.

3. Preliminaries

3.1. Notation and Setup

In this paper, we consider the case of binary treatment. Sup-
pose a simple random sampling ofn units from a super pop-
ulationP, for each uniti , the covariate and the assigned treat-
ment are denoted asX i 2 X � Rm andTi 2 T = f 0; 1g,
respectively, whereTi = 1 means receiving treatment, while
Ti = 0 means not receiving treatment and maintaining a
natural state. LetYi 2 Y = f 0; 1g be the corresponding
binary outcome. Without loss of generality, we assume that
the larger outcome is preferable. To study the counterfactual
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Table 1.The units are divided into four subgroups from a princi-
pal strati�cation perspective, according to(Y (0); Y (1)) , named
”useless treatment group”, ”useful treatment group”, ”harmful
treatment group”, and ”harmless treatment group”, respectively.

NOTATION GROUP Y(0) Y (1)

Y0;0 USELESS TREATMENT 0 0
Y0;1 USEFUL TREATMENT 0 1
Y1;0 HARMFUL TREATMENT 1 0
Y1;1 HARMLESS TREATMENT 1 1

no-harm criterion for individuals, we adopt the potential
outcome framework (Rubin, 1974; Neyman, 1990) in causal
inference. Speci�cally, letYi (0) andYi (1) be the outcome
of unit i had this unit receive treatmentTi = 0 andTi = 1 ,
respectively. Since each unit can be only assigned with one
treatment, we always observe the corresponding outcome
be eitherYi (0) or Yi (1), but not both, which is also known
as the fundamental problem of causal inference (Holland,
1986; Morgan & Winship, 2015).

We assume that the observation for uniti is Yi = (1 �
Ti )Yi (0) + Ti Yi (1). In other words, the observed outcome
is the potential outcome corresponding to the assigned treat-
ment, which also known as the consistency assumption in
the causal literature. We assume that the stable unit treat-
ment value assumption (STUVA) assumption holds, i.e.,
there should not be alternative forms of the treatment and
interference between units. Furthermore, we follow Li &
Pearl (2022) and Kallus (2022b) to assume that the strong
ignorability assumption holds, i.e.,(Yi (0); Yi (1)) ?? Ti jX i

and let� < P(Ti = 1 jX i = x) < 1 � � , where� is a
constant between0 and1=2.

To evaluate treatment assignments or learned policies, causal
effects are widely adopted. For uniti , the individual treat-
ment effect (ITE) is de�ned asITEi = Yi (1) � Yi (0), where
ITEi > 0 indicates that the treatmentTi = 1 is bene�cial
for individual i , and vice versa. The conditional average
treatment effect (CATE) is de�ned as

� (x) = E[ITEi jX i = x] = E[Yi (1) � Yi (0)jX i = x];

that is, the difference in the conditional mean outcomes
between treatments given covariate. For simpli�cation, we
drop the subscripti for a generic unit hereafter.

3.2. Principal Strati�cation Method

In contrast to dividing units into groups by the observed
characteristics, principal strati�cation method (Frangakis &
Rubin, 2002) divides units into groups by thejoint value of
the potential outcomesfrom a counterfactual perspective. It
provides more informative description of the individual risk,
and has been widely adopted in survival analysis (Zhang &

Rubin, 2003; Imai, 2008; Ding et al., 2011) and mediation
analysis (Frangakis & Rubin, 1999; Gallop et al., 2009;
Jiang et al., 2016).

Speci�cally, we follow Ben-Michael et al. (2022) to de�ne
the groups of(Y (0) = 0 ; Y (1) = 0) , (Y (0) = 0 ; Y (1) =
1), (Y (0) = 1 ; Y (1) = 0) , (Y (0) = 1 ; Y (1) = 1) as the
useless treatment group, useful treatment group, harmful
treatment group, andharmless treatment group, respectively.
For simpli�cation, we denote the labels of the four groups as
Y0;0; Y0;1; Y1;0, andY1;1 correspondingly, as shown in Table
1. LetP(Y0;0jX = x), P(Y0;1jX = x), P(Y1;0jX = x) and
P(Y1;1jX = x) be the probability that units with covariate
X = x belong to each group. Then� (x) is

� (x) = E(Y (1) � Y (0)jX = x)

= (0 � 0)P(Y0;0jX = x) + (1 � 0)P(Y0;1jX = x)

+ (0 � 1)P(Y1;0jX = x) + (1 � 1)P(Y1;1jX = x)

= P(Y0;1jX = x) � P(Y1;0jX = x);

that is, thedifferencebetween the probabilities of belonging
to theuseful groupY0;1 andharmful groupY1;0 in the sub-
population ofX = x. Whereas the principal strati�cation in-
terests in thevaluesof P(Y0;1jX = x) andP(Y1;0jX = x).

Remarkably, compared to CATE, the principal strati�cation
provides a more �ne-grained and informative description of
the individuals. However, even with the strong ignorability
assumption, we are still unable to obtain unbiased estimates
of all theP(Y0;0jX = x), P(Y0;1jX = x), P(Y1;0jX = x)
andP(Y1;1jX = x), which poses a serious challenge to
assess the individual risk of a learned policy.

4. Counterfactual No-Harm Criterion and the
Relation to Trustworthy Policy Learning

4.1. Counterfactual No-Harm Criterion

Trustworthy policy learning requires that the learned pol-
icy pursue both bene�cence and non-male�cence (Thiebes
et al., 2021). However, many previous studies have been
devoted to maximizing group utility, while have ignored the
counterfactual no-harm requirement on the individual level.

For instance, for seriously ill patients, one can give either an
(active) therapeutic interventionT = 1 or maintain a (con-
servative) natural stateT = 0 . However, in any case, the
treatment assigned to an individual should not be harmful,
i.e., no active treatmentT = 1 should be given to individu-
als with(Y (0) = 1 ; Y (1) = 0) , since these patients could
have had a more favorable outcome under the natural state
T = 0 . This also serves as the basic principle of the Hip-
pocratic oath (Sokol, 2013) that”First do no harm”, and
similar principles can be found from the environmental pol-
icy (Lin, 2006), the foundations of classical liberalism (Mill,
1966), and Asimov's laws of robotics (Asimov, 2004).
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Given that policy learning based on (conditional) average
causal effects seeks to maximize the average utility of the
(sub)population rather than the individual, we argue that
these approaches may be overly aggressive and thus harm a
large number of individuals. For example, consider a policy
that can be useful for 50% of patients but will harm 30%
of patients, while an alternative policy can only be useful
for 15% of patients but no harm. It is clear that the latter is
more applicable when considering counterfactual no-harm
requirements, whereas those policies only considering to
maximize CATEs would prefer the former.

4.2. Previous CATE-Based Policy Learning Does Not
Meet the Counterfactual No-Harm Criterion

Let � : X ! [0; 1] be a policy that maps from the individual
contextX = x to the probability of the treatmentT = 1
to be assigned. For a general policy learning under the
counterfactual criterion, letU = U(X; T; Y (T))1 be the
utility function and the policy rewardR(� ) is

R(� ) = E[� (X )U(X; 1; Y (1)) + (1 � � (X ))U(X; 0; Y (0))] :

The policy learning aims to learn an optimal policy� � that
maximizes the policy reward� � = arg max � 2 � R(� ):

For the observed outcome-based decision making rule, the
utility function is de�ned asU(X; T; Y ) = Y . More gen-
erally, given the bounded cost functionc(X ) of imposing
active treatmentT = 1 compared to no treatmentT = 0 ,
the utility function isU(X; T; Y ; c) = Y � Tc(X ). Let
the policy reward beR(� ; c), and the optimal policy be
� � (x; c) = arg max � 2 � R(� ; c).

By substituting the utility in the policy reward, we have

R(� ; c) = E[(Y (1) � c(X )) � (X ) + Y(0)(1 � � (X ))]

= E[(Y (1) � Y (0) � c(X )) � (X ) + Y(0)];

and the optimal policy is

� � (x; c) =

8
><

>:

1; E[Y (1) � Y (0) j X = x] = � (x) > c (x)

0; E[Y (1) � Y (0) j X = x] = � (x) < c (x);

d; E[Y (1) � Y (0) j X = x] = � (x) = c(x)

whered is any value between0 and1, and� � would al-
ways impose a treatment interventionT = 1 for individuals
whose� (x) is greater than the costc(x) and vice versa,
which is same as CATE-based policy learning. From a
principle strati�cation prospective, that is equivalent to

� � (x; c) =

8
><

>:

1; P(Y0;1jX = x) � P(Y1;0jX = x) > c (x)

0; P(Y0;1jX = x) � P(Y1;0jX = x) < c (x):

d; P(Y0;1jX = x) � P(Y1;0jX = x) = c(x)

1Under the consistency assumption in Section 3.1, we write
U = U(X; T; Y (T )) = U(X; T; Y ) thereafter for simpli�cation.

Therefore, one can conclude that the optimal policies do
not satisfy the counterfactual no-harm criterion. The reason
is that such policies only focus on the difference between
P(Y0;1jX = x) andP(Y1;0jX = x), and fail to control
P(Y1;0jX = x) itself and may assign harmful treatments.
In particular, when bothP(Y0;1jX = x) andP(Y1;0jX = x)
are large, the optimal policy might still prefer to assign the
active treatmentT = 1 , which results in a harmful decision
making for the individuals.

4.3. Previous Recommendation Policy Learning Does
Not Meet the Counterfactual No-Harm Criterion

In contrast to CATE-based policy learning, an alternative
branch is personalized recommendation, which plays an
crucial role in practice. For advertising agencies, they gain
pro�t only when the ad is being recommended to the user
T = 1 and convertsY = 1 (Ma et al., 2018; Zhang et al.,
2020; Wang et al., 2022). Formally, the utility function is
U(X; T; Y ) = TY � Tc(X ), wherec(X ) is the cost of
placing an advertisementT = 1 . Then we have

R(� ; c) = E[(Y (1) � c(X )) � (X )];

and the optimal policy� � (x; c) = arg max � 2 � R(� ; c) is

� � (x; c) =

8
><

>:

1; P(Y0;1jX = x) + P(Y1;1jX = x) > c (x)

0; P(Y0;1jX = x) + P(Y1;1jX = x) < c (x):

d; P(Y0;1jX = x) + P(Y1;1jX = x) = c(x)

One can see that this would lead to a more serious violation
of the counterfactual no-harm criterion compared to the
polices learned in Section 4.2, which is also empirically
veri�ed in Section 7. In fact, the optimal policies only
care about the sum ofP(Y0;1jX = x) andP(Y1;1jX = x),
i.e., the users for whom conversionY(1) = 1 would occur
under the active recommendationT = 1 . Such policies
never take into account the harmful treatment population
P(Y1;0jX = x), which would lead to a more aggressive
recommendation policy and cause potential user churn.

5. Proposed Sharp Bounds of the
Counterfactual No-Harm Criterion

In the previous section, we found that both CATE-based
and recommendation-based policy learning fail to satisfy
the counterfactual no-harm criterion, since they do not care
how many individuals will be negatively affected by the
learned policy. However, we cannot explicitly identify the
individuals who are negatively affected by the treatment
intervention, because of the fundamental problem of causal
inference – that we never observe the two potential outcomes
(Y (0); Y (1)) at the same time. We follow Kallus (2022b) to
consider the fraction negatively affected (FNA), i.e.,FNA =
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P(Y(0) = 1 ; Y (1) = 0) = P(Y1;0), and letFNA(x) be the
FNA with given covariatesX = x that

FNA(x) = P(Y (0) = 1 ; Y (1) = 0 jX = x):

Given a policy� 2 � , we further proposeFNA(� ) as the
fraction harmed by the policy� that

FNA(� ) = E(P(Y (0) = 1 ; Y (1) = 0 jX )� (X )) :

In Proposition 5.1, we discuss a general upper bound for
FNA(x) and FNA(� ), respectively.

Proposition 5.1(Tight upper bounds). (a) The tight upper
bound of FNA(x), namedwFNA (x), is

minf P(Y = 1 jT = 0 ; X = x); P(Y = 0 jT = 1 ; X = x)g;

(b) Given a policy� 2 � , the tight upper bound of the
FNA(� ) is E[wFNA (X )� (X )].

The upper boundswFNA (x) and E[wFNA (X )� (X )] in
Proposition 5.1 are tight, that is, the best we could infer
given in�nite data, and they are reached whenP(Y = 1 jT =
0; X = x) = P(Y = 0 jT = 1 ; X = x) = 1 . Besides, it
does not require any additional assumptions, which can be
regarded as a special case in Li & Pearl (2022) and Kallus
(2022b). However, this bound is wide and inconvenient for
our policy learning (see the discussions after Theorem 5.2).
By further assuming thatY (0) andY(1) are non-negatively
correlated givenX = x, we give narrower bounds in The-
orem 5.2, and discuss the convenience as well as the theo-
retical results in the following. Note that the assumption is
empirically reasonable as well as easily satis�ed. For exam-
ple, in medical scenarios whereT = 1 indicates receiving
active treatment, a patient's health status affects bothY(0)
andY(1) (Efron & Feldman, 1991); for a teacher-incentive
program whereT = 1 indicates receiving �nancial incen-
tives, a teacher's knowledge level and intend to teach affects
bothY(0) andY(1) (Du�o et al., 2012).

Theorem 5.2(Main result 1). (a) If Y (0) and Y(1) are
non-negatively correlated givenX = x, the tight upper
bound of the FNA(x), nameduFNA (x), is

P(Y = 1 jT = 0 ; X = x)P(Y = 0 jT = 1 ; X = x);

(b) Given a policy� 2 � , the tight upper bound of the
FNA(� ) is E[uFNA (X )� (X )]:

Notably, the conclusion in Theorem 5.2 gives the tightest-
possible upper bounds (see Remark 5.3) and are narrower
than the upper bounds in Proposition 5.1 (see Remark 5.4).
Remark5.3 (Tightest-Possible (i.e., Sharp) Bounds). The
upper boundsuFNA (x) are tight, and are reached when
Y(0) andY(1) are conditional independent forx 2 X .

Remark5.4 (Tighter Bounds). The upper boundsuFNA (x)
are tighter than that ofwFNA (x) for x 2 X , and
E[uFNA (X )� (X )] � E[wFNA (X )� (X )] for � 2 � .

Moreover, the upper bounds in Theorem 5.2 require only
mild assumptions to guarantee the asymptotic normality of
the estimates, while the upper bounds in Proposition 5.1
require stronger assumptions, namely the sharpness margin
condition in Kallus (2022b). We further claim that the upper
bounds in Theorem 5.2 are convenient for policy learning,
especially for optimization, with better smoothness and dif-
ferentiability, compared to the upper bounds in Proposition
5.1 where minimization operators exist.

In the end of this section, we formally discuss the relation
between the CATEs� (x) and the upper bounds ofFNA(x)
in Theorem 5.5. Given that CATEs are the �nest magnitudes
that can be identi�ed via a data-driven way, Theorem 5.5
has important implications for guiding the policy learning
that satis�es the counterfactual no-harm criterion.

Theorem 5.5(Relation between CATEs and upper bounds).
For the upper boundswFNA (x) in Proposition 5.1 and
uFNA (x) in Theorem 5.2, for allx 2 X , we have

wFNA (x) �
1 � � (x)

2
; and uFNA (x) �

(1 � � (x))2

4
:

Theorem 5.5 states that, for units whose CATE� (x) tends
to be 1, the probability that they are negatively affected
by the treatmentT = 1 tends to be 0, i.e., the treatment
is no-harm and safe. In fact, in real medical scenarios,
physicians treat patients if they are con�dent that� (x)
is suf�ciently large, and bothwFNA (x) anduFNA (x) are
small from Theorem 5.5. An alternative observation is that
physicians treat patients who would die if untreated, i.e.,
P(Y = 1 jT = 0 ; X = x) is small, which would also lead
to smallwFNA (x) anduFNA (x) from the formulas.

In Corollary 5.6, we further discuss the relation between
the cost functionc(x) and the counterfactual harm upper
bounds of the optimal policies� � in Section 4.2.

Corollary 5.6 (Relation to the cost). For the upper bound
wFNA (� ) in Proposition 5.1 anduFNA (� ) in Theorem 5.2,
the optimal policies� � in Section 4.2 satisfy

wFNA (� � ) � E
h1 � c(X )

2
� � (X )

i
; and

uFNA (� � ) � E
h(1 � c(X ))2

4
� � (X )

i
:

Corollary 5.6 shows that increasing the cost functionc(x)
reduces the counterfactual harm of the optimal policies� �

in Section 4.2. This is because the optimal policies� � tend
to be more conservative asc(x) increases, and thus fewer
units are being actively treated withT = 1 . Notably, given
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CATE � (x) and the cost functionc(x), theuFNA (x) and
uFNA (� � ) always lead to tighter counterfactual harm upper
bounds thanwFNA (x) andwFNA (� � ) in the right hand side
(RHS) of Theorem 5.5 and Corollary 5.6.

6. Trustworthy No-Harm Policy Learning

Denote� � as the optimal target policy satisfying the coun-
terfactual no-harm criterion

max� 2 � R(� ; c; � )
subject to uFNA (� ) � �;

(1)

where� is a pre-speci�ed level of allowed harm, and

R(� ; c; � ) = E[� (X )f Y (1) � c(X )g+ �Y (0)f 1� � (X )g]

for � 2 [0; 1], which is a general form of policy reward for
different utility functions given in Sections 4.2 and 4.3. For
example,R(� ; c;1) = R(� ) for U(X; T; Y ) = Y � Tc(X ),
andR(� ; c;0) = R(� ) for U(X; T; Y ) = TY � Tc(X ).

Let �̂ � be the learned policy of� � , derived by optimizing
the empirical form of Eq. (1),

max� 2 � R̂(� ; c; � )
subject to ûFNA (� ) � �;

(2)

whereR̂(� ; c; � ) andûFNA (� ) are the corresponding esti-
mators ofR(� ; c; � ) anduFNA (� ), obtained as follows.

Let e(x) := P(T = 1 jX = x), � t (x) := E[Y jT = t; X =
x] for t = 0 ; 1, and

' � (Z ; e; � 0; � 1) =
�

T(Y � � 1(X ))
e(X )

+ � 1(X ) � c(X )
�

� (X )

+ �
�

(1 � T)(Y � � 0(X ))
1 � e(X )

+ � 0(X )
�

(1 � � (X )) ;

 � (Z ; e; � 0; � 1) =
�

(1 � T)(Y � � 0(X ))
1 � e(X )

+ � 0(X )
�

� (X )

�
�

T(Y � � 1(X ))
e(X )

+ � 1(X )
�

� 0(X )� (X );

whereZ = ( T; X; Y ), thenR(� ; c; � ) anduFNA (� ) can be
unbiasedly estimated by' � and � from Lemma 6.1.
Lemma 6.1. 8� 2 � , R(� ; c; � ) = E[' � (Z ; e; � 0; � 1)]
anduFNA (� ) = E[ � (Z ; e; � 0; � 1)].

Denoteê(x) and�̂ t (x) for t = 0 ; 1 as the estimators ofe(x)
and� t (x), respectively, using the sample-splitting (Wager
& Athey, 2018; Chernozhukov et al., 2018) technique (See
appendix for details). From Lemma 6.1, it is natural to
de�ne the estimators ofR(� ; c; � ) anduFNA (� ) as

R̂(� ; c; � ) =
1
n

nX

i =1

' � (Z i ; ê; �̂ 0; �̂ 1);

ûFNA (� ) =
1
n

nX

i =1

 � (Z i ; ê; �̂ 0; �̂ 1);

which are augmented inverse probability weighting (AIPW)-
like estimators (Robins et al., 1994; 1995).

Theorem 6.2. Suppose thatjj ê(x) � e(x)jj2 � jj �̂ t (x) �
� t (x)jj2 = oP(n� 1=2) for all x 2 X andt 2 f 0; 1g,

(a) R̂(�; c ; � ) is consistent and asymptotically normal
p

nf R̂(�; c ; � ) � R(�; c ; � )g �! N (0; � 2
1);

where� 2
1 = V[' � (Z ; e; � 0; � 1)];

(b) if � 0(x) = � 0(x; � ) is a parametric model,̂uFNA (� ) is
consistent and asymptotically normal

p
nf ûFNA (� ) � uFNA (� )g �! N (0; � 2

2);

where

� 2
2 = V

h
 � (Z ; e; � 0; � 1) � s(X )E

n @�0(X ; � )
@�

� 1(X )� (X )
oi

;

ands(X ) is the in�uence function of estimator of� .

Theorem 6.2 shows the consistency and asymptotically
normality of R̂(� ; c; � ) andûFNA (� ) under mild assump-
tions. Based on it, we can derive the convergence rates
of R(� � ; c; � ) � R(�̂ � ; c; � ) andR(� � ; c; � ) � R̂(�̂ � ; c; � ),
which are the regret of the learned policy, and error of the
estimated reward of learned policy, respectively.

Theorem 6.3(Main result 2). Suppose that for all� 2 � ,
� (x) = � (x; � ) is a continuously differentiable and convex
function with respect to� , where� 2 � is a compact set,
under the assumptions in Theorem 6.2, then we have

(a) The expected reward of the learned policy is consistent,
andR(�̂ � ; c; � ) � R(� � ; c; � ) = OP(1=

p
n);

(b) The estimated reward of the learned policy is consistent,
andR̂(�̂ � ; c; � ) � R(� � ; c; � ) = OP(1=

p
n).

Theorem 6.3(a) shows that the regret of the learned pol-
icy has a convergence rate of order1=

p
n, and Theorem

6.3(b) shows that the estimated reward of learned policy
R̂(�̂ � ) is a

p
n-consistent estimator of the optimal harmless

policy rewardR(� � ) for parametric policy classes under
mild assumptions, which are widely widely adopted in prac-
tice (Puterman, 2014; Sutton & Barto, 2018).

Theorem 6.4(Main result 3). Suppose that� is a P-G-C
class,�̂ t (x) andê(x) are uniformly consistent estimators of
� t (x) ande(x) for t = 0 ; 1, respectively, anda� 2 � for
any� 2 � and0 < a < 1, then we have (a)R(�̂ � ; c; � ) �

R(� � ; c; � ) P! 0; and (b)R̂(�̂ � ; c; � ) � R(� � ; c; � ) P! 0.

In contrast to policy gradient learning, if we relax the para-
metric restriction on the policy class and extend it to the
P-Glivenko-Cantelli (P-G-C) class (van der Vaart & Wellner,
1996), then bothR(�̂ � ; c; � ) andR̂(�̂ � ; c; � ) remain consis-
tent estimators ofR(� � ; c; � ) under mild assumptions, as
concluded in Theorem 6.4 (see appendix for proofs).
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Table 2.Comparison of the Naive method (maximizing estimated rewards), the proposed No-Harm (u) and No-Harm (w) methods in
terms of the true reward, welfare change, and true harm onIHDP andJOBS. The CATE-based policy learning and recommendation-based
policy learning are employed (with cost functionsc(x) = 0 ; 0:05; 0:10), respectively, where the expected reward and counterfactual harm
upper bound are estimated usingaugmented inverse probability weighting (AIPW)estimators in Section 6.

IHDP: TRUE HARM � 13 CATE-BASED POLICY LEARNING RECOMMENDATION-BASED POLICY LEARNING

COST METHOD REWARD � WELFARE TRUE HARM REWARD � WELFARE TRUE HARM

c = 0 :00
NAIVE 570.96� 3.28" 157.78� 4.11" 19.12� 2.29" 549.14� 1.61" 139.16� 1.43" 64.36� 0.87"
NO-HARM (u) 496.93� 11.39 83.80� 10.42 10.34� 2.54 100.90� 15.11 43.82� 10.37 9.60� 2.52
NO-HARM (w) 459.80� 6.86 48.56� 6.82 5.98� 1.95 73.76� 15.62 31.82� 7.16 5.42� 2.26

c = 0 :05
NAIVE 551.62� 4.15" 154.40� 4.39" 16.76� 2.21" 515.30� 2.29" 139.48� 1.38" 64.16� 0.70"
NO-HARM (u) 491.33� 13.44 84.34� 13.91 9.32� 2.83 101.42� 12.16 47.82� 9.10 9.88� 2.61
NO-HARM (w) 456.17� 6.88 50.50� 6.40 6.02� 2.01 67.59� 13.56 31.46� 7.74 5.98� 2.94

c = 0 :10
NAIVE 534.27� 4.21" 148.74� 4.10" 14.86� 2.21" 480.98� 2.63" 139.50� 1.96" 63.90� 0.96"
NO-HARM (u) 482.14� 12.73 81.68� 15.00 8.60� 3.46 92.42� 15.17 47.34� 8.52 8.90� 2.84
NO-HARM (w) 452.29� 5.76 49.00� 7.03 5.42� 1.92 63.33� 12.54 31.82� 8.05 5.58� 2.17

JOBS: TRUE HARM � 50 CATE-BASED POLICY LEARNING RECOMMENDATION-BASED POLICY LEARNING

COST METHOD REWARD � WELFARE TRUE HARM REWARD � WELFARE TRUE HARM

c = 0 :00
NAIVE 1798.60� 7.63" 583.96� 10.54" 113.73� 4.47" 1965.33� 1.44" 758.50� 1.52" 251.30� 0.69"
NO-HARM (u) 1453.00� 21.96 237.36� 29.81 43.23� 8.06 528.00� 22.16 195.73� 13.80 41.40� 4.85
NO-HARM (w) 1325.00� 48.62 113.74� 60.39 16.80� 8.41 197.46� 138.66 66.26� 52.88 17.16� 12.60

c = 0 :05
NAIVE 1701.13� 10.41" 566.23� 11.23" 93.93� 4.68" 1760.50� 11.30" 705.26� 8.62" 238.23� 3.68"
NO-HARM (u) 1408.72� 27.01 242.66� 44.18 41.13� 9.31 504.18� 25.78 195.80� 18.89 42.86� 5.32
NO-HARM (w) 1325.56� 32.28 118.83� 55.50 19.76� 9.13 220.94� 113.36 77.30� 43.96 18.93� 8.92

c = 0 :10
NAIVE 1612.20� 9.07" 527.06� 52.29" 72.66� 7.65" 1529.96� 49.49" 630.86� 34.30" 212.93� 11.51"
NO-HARM (u) 1362.20� 22.95 232.63� 51.70 36.26� 8.04 475.10� 20.52 193.83� 16.48 44.30� 5.84
NO-HARM (w) 1257.19� 39.17 67.83� 59.52 11.63� 8.91 214.76� 179.24 85.33� 82.95 22.93� 23.32

7. Experiments

7.1. Experimental Setup

Dataset and Prepossessing.Following previous stud-
ies (Shalit et al., 2017; Louizos et al., 2017; Yoon et al.,
2018; Yao et al., 2018), we conduct extensive experiments
on one semi-synthetic dataset,IHDP, and one real-world
dataset,JOBS. TheIHDP dataset (Hill, 2011) is based on
the Infant Health and Development Program (IHDP), and
examines the effects of specialist home visits on future cog-
nitive test scores. The dataset comprises 672 units (123
treated, 549 control) and 25 covariates measuring aspects
of children and their mothers. TheJOBS dataset (LaLonde,
1986) is based on the National Supported Work program,
and examines the effects of job training on income and em-
ployment status after training. The dataset comprises 2,570
units (237 treated, 2,333 control) and 17 covariates from
non-randomized observational studies.

Different from estimating causal effects, even for data col-
lected from randomized controlled trials, we are unable
to identify whether individuals are in the ”harmful treat-
ment” strata, i.e.,Y (0) = 1 and Y(1) = 0 . Thus, we
simulate potential outcomes based on the covariates as
follows: Yi (0) � Bern(� (w0x i + � 0;i )) , and Yi (1) �
Bern(� (w1x i + � 1;i )) , where� (�) is the sigmoid function,
w0 � N [� 1;1](0; 1) follows a truncated normal distribu-
tion, w1 � Unif( � 1; 1) follows a uniform distribution,

� 0;i � N (� 0; 1), and� 1;i � N (� 1; 1). We set the noise
parameters� 0 = 1 and� 1 = 3 for IHDP and� 0 = 0 and
� 1 = 2 for JOBS.

Experimental Details. The goal of our policy learning is
to maximize the reward and the resulting change in wel-
farewhile satisfying the counterfactual no-harm criterion.
Given that the simulated potential outcomes demonstrate 65
and 252 units in the ”harmful treatment” strata onIHDP
and JOBS, respectively, we de�ne the counterfactual no-
harm criterion as harming less than 20% of them by the
learned policy, i.e., 13 units forIHDP and 50 units for
JOBS. Formally, the reward for the learned policy� (x)
is

P n
i =1 (Yi (1) � c)� (x i ) + Yi (0)(1 � � (x i )) for CATE-

based and
P n

i =1 (Yi (1) � c)� (x i ) for recommendation-
based policy learning, respectively. Following (Kitagawa
& Tetenov, 2018), the change in welfare is de�ned as
� W (� ) =

P n
i =1 [Yi (1) � � (x i ) + Yi (0) � (1 � � (x i ))] �P n

i =1 Yi (0) =
P n

i =1 [(Yi (1) � Yi (0)) � � (x i )]. The true
harm is

P n
i =1 1f Yi (0) = 1 ; Yi (1) = 0 g � � (x i ).

We learn policies satisfying the counterfactual no-harm cri-
terion based on the estimation of the upper boundwFNA (x)
in Proposition 5.1 and the estimation of the upper bound
uFNA (x) in Theorem 5.2, named ”No-Harm (w)” and ”No-
Harm (u)” respectively, and compare them to the baseline
method that directly maximizes the estimated reward. We
tune the costsc(x) = 0 ; 0:025; 0:05; 0:075; 0:10 and use
OR, IPW, AIPW estimators (see appendix for details).
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