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Abstract

Trustworthy policy learning has significant im-
portance in making reliable and harmless treat-
ment decisions for individuals. Previous pol-
icy learning approaches aim at the well-being
of subgroups by maximizing the utility function
(e.g., conditional average causal effects, post-view
click-through&conversion rate in recommenda-
tions), however, individual-level counterfactual
no-harm criterion has rarely been discussed. In
this paper, we first formalize the counterfactual
no-harm criterion for policy learning from a prin-
cipal stratification perspective. Next, we propose
a novel upper bound for the fraction negatively
affected by the policy and show the consistency
and asymptotic normality of the estimator. Based
on the estimators for the policy utility and harm
upper bounds, we further propose a policy learn-
ing approach that satisfies the counterfactual no-
harm criterion, and prove its consistency to the
optimal policy reward for parametric and non-
parametric policy classes, respectively. Extensive
experiments are conducted to show the effective-
ness of the proposed policy learning approach for
satisfying the counterfactual no-harm criterion.

1. Introduction

Policy learning determines the individuals who should be
treated based on their covariates (Murphy, 2003), and it
is important that a decision made by an algorithm can be
trusted by humans (Floridi, 2019; Kaur et al., 2022). Specif-
ically, trustworthy policy learning requires that the learned
policy has beneficence, non-maleficence, autonomy, justice,
and explicability (Thiebes et al., 2021; Floridi, 2019; Kaur
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et al., 2022), and many counterfactual-based metrics are pro-
posed to quantify the policy’s trustworthiness (Kusner et al.,
2017; Nabi & Shpitser, 2018; Chiappa, 2019; Wu et al.,
2019), which makes the algorithm try to understand, for the
individuals, what the outcome would be if an alternative
intervention had been implemented (Pearl, 2009).

Nevertheless, the counterfactual harmlessness of policy
learning is rarely discussed, which would prevent an active
intervention on the individuals from having worse outcomes
than the natural state without the intervention (Richens et al.,
2022). This also serves as the basic principle of the Hippo-
cratic oath (Sokol, 2013) that ”First do no harm”, and sim-
ilar principles can be found from Lin (2006); Mill (1966);
Asimov (2004). Towards this end, previous studies employ
group causal effects to define the utility to learn individual-
ized treatment policies (Bertsimas et al., 2016; Kitagawa &
Tetenov, 2018; Athey & Wager, 2021), however, they can
only maximize the average benefit of subgroups, without
satisfying the counterfactual no-harm for individuals.

In this paper, we formally discuss the cause of counterfactual
harm from a principal stratification perspective (Frangakis
& Rubin, 2002), by dividing the units into groups by the
joint value of the potential outcomes. We then formalize the
utility functions of the conditional average treatment effect
(CATE)-based (Chipman et al., 2010; Johansson et al., 2016;
Shalit et al., 2017; Wager & Athey, 2018; Kiinzel et al.,
2019; Shi et al., 2019) and the recommendation-based (Ma
et al., 2018; Zhang et al., 2020; Wang et al., 2022) policy
learning and discuss the explicit solutions of the optimal
policy. Unfortunately, neither of them is able to satisfy the
individual counterfactual no-harm, which is summarized
as pursuing only the maximal causal effect gain of the sub-
population is not sufficient to achieve reliable and no-harm
decision making for individuals.

The basic challenge for satisfying the counterfactual no-
harm criterion from subgroups to individuals is that, since
each unit can be only assigned with one treatment, we al-
ways observe the corresponding potential outcome, but not
both, which is also known as the fundamental problem of
causal inference (Holland, 1986; Morgan & Winship, 2015).
We follow Kallus (2022b) to consider the fraction negatively
affected (FNA), and further propose a metric to quantify
the fraction harmed by the policy. Specially, we extend Li



Trustworthy Policy Learning under the Counterfactual No-Harm Criterion

& Pearl (2019) and Kallus (2022b) to give upper boundset al., 2021; Floridi, 2019; Kaur et al., 2022), and many
of the counterfactual harm, which are strictly tighter undercounterfactual-based metrics are proposed to quantify the
mild assumptions. Notably, the proposed estimators of ugolicy's trustworthiness (Kusner et al., 2017; Nabi & Sh-
per bounds are consistent and asymptotically normal undegitser, 2018; Chiappa, 2019; Ben-Michael et al., 2022). In
weaker assumptions compared to Kallus (2022b), and arhis paper, we focus on policy learning under the counter-
convenient for policy learning, especially in optimization. factual no-harm criterion, which has rarely been discussed.

Next, we turn to the question that how to bridge the CATEHeterogeneous Treatment Effects and No-Harm Crite-

and the cost function with the counterfactual no harm criterion. Heterogeneous treatment effects, also known as the
rion? From a policy learning perspective, we demonstrateonditional average treatment effects (CATES), describe the
that larger CATE or cost would contribute to counterfactualaverage treatment effects on subgroups with speci ¢ covari-
harmless, which also has a guiding signi cance in practiceates, which plays a crucial role in such domains as precision
medicine (Jaskowski & Jaroszewicz, 2012) and decision

o i . .-making (Guelman et al., 2015). Many approaches have been
no-harm criterion, we propose estimators for the policy util- for th T f h :
ity and the upper bound of policy harm, respectively, anopropqsed ort gest|mat|on 0 CATE’. such as Bayesian
: . ' ' Additive Regression Trees (BART) (Chipman et al., 2010),
further propose a policy learning approach. Moreover, w

. L E‘Balancing Neural Network (BNN) (Johansson et al., 2016),
prove the consistency results, when the policies are pal

ra: : :
metric (also known as policy gradient) and nonparalmetric?:ounterFactuaI Regression (CFR) (Shalit et al., 2017), Per-

. L fect Match (PM) (Schwab et al., 2018), Causal Forest (CF)
respectively. To the best of our knowledge, this is the rst .
) : . Wager & Athey, 2018), X-learner (hzel et al., 2019), and
paper to propose policy learning approaches that satisfy th ;
o . X ragonNet (Shi et al., 2019).

counterfactual no-harm criterion and to prove its consistency
to the optimal counterfactual harmless policy reward. However, the observation-based utilities and CATE do not
necessarily satisfy the no-harm criterion, especially under
theindividual sense. This is intuitively due to that CATE-

We formally discuss the counterfactual no-harm criterionbased policy learning only seeks to maximize the average
for policy learning from a principal strati cation perspective effect under (sub)groups (see Section 4 for the formal dis-
and show that common CATE-based and recommendatioussions). Towards this end, Richens et al. (2022) propose a
based policy learning do not satisfy the criterion. formal de nition of harm and bene t using causal models.

We propose a metric to quantify the fraction harmed byl & Pearl (2019) and Ben-Michael et al. (2022) consider
the policy, and a novel estimator for its upper bound, andhe utilities depend on unobserved outcomes in binary out-
prove its consistency and asymptotic normality. comes case. Kallus (2022b) propose the sharp bounds on

Based on the estimators for the upper bounds and policghe fractions that are negatively affected, and Kallus (2022a)

reward, we further propose policy learning approaches thaytudy the conditional value at risk (CVaR) for the continuous

satisfy the counterfactual no-harm criterion and prove itUtcomes. In this paper, we extend Li & Pearl (2019) and

consistency to the optimal policy reward for parametric and<@/lus (2022b) to give an upper bound of the counterfactual

non-parametric policy classes, respectively. harm by the policy, the proposed upper bound is strictly
. . tighter under mild assumptions, as well as has many desir-
Extensive experiments are conducted to show the effec-

tiveness of the proposed policy learning approaches fo?ble properties. We also propose estimation methods for

satisfying the counterfactual no-harm criterion policy learning satisfying the counterfactual no-harm crite-
9 ‘ rion, and show the consistency and asymptotic normality.

To learn the optimal policies satisfying the counterfactual

The contributions of this paper are summarized as follows

2. Related Work

Trustworthy Policy Evaluation and Learning. Policy :

learning aims to determine the individuals who should be3'1' Notation and Setup
treated that maximizes the utility function based on theinn this paper, we consider the case of binary treatment. Sup-
covariates (Murphy, 2003). Previous studies employ grougpose a simple random samplingrofinits from a super pop-
causal effects to de ne the utility to learn individualized ulationP, for each unit, the covariate and the assigned treat-
treatment policies, using regression based (Bertsimas et ainent are denoted a6, 2 X R™ andT; 2T = f0;1g,
2016), reweighted based (Kitagawa & Tetenov, 2018), andespectively, wher& = 1 means receiving treatment, while
doubly robust methods (Athey & Wager, 2021). T; = 0 means not receiving treatment and maintaining a

In addition to utility maximization, trustworthy policy learn- n_atural state. LeY‘_ 2Y = 10,1g be th? corresponding
ing requires that the learned policy has bene cence, no vinary outcome. Without loss of generality, we assume that

male cence, autonomy, justice, and explicability (Thiebesthe larger outcome is preferable. To study the counterfactual

3. Preliminaries
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Rubin, 2003; Imai, 2008; Ding et al., 2011) and mediation

pal strati cation perspective, according ¢¥ (0); Y (1)), named a.nalySIS (Frangakis & Rubin, 1999; Gallop et al., 2009;

"useless treatment group”, "useful treatment group”, "harmful‘]Iang etal., 2016).

treatment group”, and "harmless treatment group”, respectively. Speci cally, we follow Ben-Michael et al. (2022) to de ne
NOTATION GROUP Y(@O) Y(@) the groups ofY(0) =0;Y(1)=0),(Y(©0)=0;Y(1) =

1,(Y©0)=1;Y1)=0),(Y(©0)=1;Y(@1) =1) asthe

Table 1.The units are divided into four subgroups from a princi-

Yo:0 USELESS TREATMENT 0 0

Yor USEFUL TREATMENT 0 1 useless treatment groupseful treatment groumarmful
Yio HARMFEUL TREATMENT 1 0 treatment grogpandharmless treatment groupespectively.
Yia HARMLESS TREATMENT 1 1 For simpli cation, we denote the labels of the four groups as

Yo.0; Yo:1; Y1.0, @andYy.1 correspondingly, as shown in Table
1. LetP(Yo;on = X), P(Yo;le = X), P(Y]_;ojx = X) and
P(Y1.1jX = x) be the probability that units with covariate
f( = X belong to each group. Therfx) is

no-harm criterion for individuals, we adopt the potential
outcome framework (Rubin, 1974; Neyman, 1990) in causa
inference. Speci cally, lety; (0) andY; (1) be the outcome (x)= E(Y(1) Y(0)jX = x)

of un|t|.had '[hI.S unit receive treatment =0 apdTi = 1 =0 OP(MooiX = X)+(L  O0)P(Yo1jX = X)
respectively. Since each unit can be only assigned with one o o
treatment, we always observe the corresponding outcome ¥ (0 DP(YyoiX = x)+ (1 1P(Y1;1jX = X)
be eitherY; (0) or Y; (1), but not both, which is also known = P(Yo.1jX = xX)  P(Y1,0]X = X);
as the fundamental problem of causal inference (Holland

. ik ( that is, thedifference between the probabilities of belonging
1986; Morgan & Winship, 2015). .

to theuseful groupYyp.1 andharmful groupYi.o in the sub-

We assume that the observation for unis Y; = (1 population ofX = x. Whereas the principal strati cation in-

Ti)Yi(0) + TiYi(1). In other words, the observed outcome terests in theraluesof P(Yo.1jX = x) andP(Y1.0jX = X).
is the potential outcome corresponding to the assigned treat-

ment, which also known as the consistency assumption iﬁemarkably, compared to CATE, the principal strati cation

the causal literature. We assume that the stable unit trea{EOVideS amore ne-grained and informative description of

ment value assumption (STUVA) assumption holds, i.e.f e individuals. Howeyer, even with thg stror)g ignora_bility
there should not be alternative forms of the treatment an&ssumptlon, We_ are still unable.to obtain unblased estimates
interference between units. Furthermore, we follow Li gofal thep,(YO?O_JX = X)’, P(Yo;1jX = X), _P(Yl?OIX = X)
Pearl (2022) and Kallus (2022b) to assume that the strongnd P(YL,1JX = x), which poses a serious challenge to
ignorability assumption holds, i.&Y; (0): Y; (1)) ? TijX; ssess the individual risk of a learned policy.

andlet < P(T; = 1jX; = x) < 1 , Where is a

constant betweeb and1=2. 4. Counterfactual No-Harm Criterion and the

To evaluate treatment assignments or learned policies, causal Relation to Trustworthy Policy Learning

effects are widely adopted. For unjtthe individual treat- 4 1 counterfactual No-Harm Criterion

ment effect (ITE) is de ned abTE; = Y;(1) Y;(0), where . _ _

ITE; > Oindicates that the treatmeTit = 1 is bene cial ~ Trustworthy policy learning requires that the learned pol-
for individual i, and vice versa. The conditional averageiCy pursue both bene cence and non-male cence (Thiebes

treatment effect (CATE) is de ned as et al., 2021). However, many previous studies have been
devoted to maximizing group utility, while have ignored the
(X) = E[ITEjX; = x]= E[Yi(1) Yi(0)jX; = x]; counterfactual no-harm requirement on the individual level.

that is, the difference in the conditional mean outcomedOr instance, for seriously ill patients, one can give either an

between treatments given covariate. For simpli cation, we(2Ctive) therapeutic interventioh =1 or maintain a (con-
drop the subscrigitfor a generic unit hereafter. servative) natural stafé = 0. However, in any case, the

treatment assigned to an individual should not be harmful,
i.e., no active treatmefit = 1 should be given to individu-

als with(Y (0) = 1;Y (1) = 0), since these patients could

In contrast to dividing units into groups by the observedhave had a more favorable outcome under the natural state
characteristics, principal strati cation method (Frangakis & T = 0. This also serves as the basic principle of the Hip-
Rubin, 2002) divides units into groups by tjoént value of  pocratic oath (Sokol, 2013) th&Eirst do no harm”, and

the potential outcomefsom a counterfactual perspective. It similar principles can be found from the environmental pol-
provides more informative description of the individual risk, icy (Lin, 2006), the foundations of classical liberalism (Mill,
and has been widely adopted in survival analysis (Zhang &966), and Asimov's laws of robotics (Asimov, 2004).

3.2. Principal Strati cation Method

3
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Given that policy learning based on (conditional) averagelherefore, one can conclude that the optimal policies do
causal effects seeks to maximize the average utility of theot satisfy the counterfactual no-harm criterion. The reason
(sub)population rather than the individual, we argue thats that such policies only focus on the difference between
these approaches may be overly aggressive and thus harmPéY,.1jX = x) andP(Y1.0jX = Xx), and fail to control
large number of individuals. For example, consider a policyP(Y1.0jX = X) itself and may assign harmful treatments.
that can be useful for 50% of patients but will harm 30%In particular, when botR(Yp.1jX = X) andP(Y1.0jX = X)
of patients, while an alternative policy can only be usefulare large, the optimal policy might still prefer to assign the
for 15% of patients but no harm. It is clear that the latter isactive treatment = 1, which results in a harmful decision
more applicable when considering counterfactual no-harnmaking for the individuals.
requirements, whereas those policies only considering to
maximize CATEs would prefer the former. 4.3. Previous Recommendation Policy Learning Does

Not Meet the Counterfactual No-Harm Criterion
4.2. Previous CATE-Based Policy Learning Does Not

Meet the Counterfactual No-Harm Criterion In contrast to CATE-based policy learning, an alternative

branch is personalized recommendation, which plays an
Let : X! [0;1]be apolicy that maps from the individual crucial role in practice. For advertising agencies, they gain
contextX = x to the probability of the treatmefit = 1 pro t only when the ad is being recommended to the user
to be assigned. For a general policy learning under th& =1 and convert¥ =1 (Ma et al., 2018; Zhang et al.,
counterfactual criterion, ld) = U(X;T;Y (T))! be the 2020; Wang et al., 2022). Formally, the utility function is
utility function and the policy rewar®( ) is UX;T;Y) = TY Tc(X), wherec(X) is the cost of
placing an advertisemefit = 1. Then we have
R()=E[ X)UX;LY@)+(@  (X)UX; 0 Y (0))]:
The policy learning aims to learn an optimal policy that R0 = BI(YQ)  cX) (L

maximizes the policy reward =argmax , R( ): and the optimal policy (x;c) =argmax » R( ;c)is

For the observed outcome-based decision making rule, the 8

utility function is de ned asU(X; T;Y ) = Y. More gen- 21 P(Yo1jX = x) + P(Y1;1jX = X) > c(x)
erally, given the bounded cost functiofX ) of imposing (x;0) = S 0; P(Yo1jX = x)+ P(Y1:1]X = X) <c(x):
active treatment = 1 compared to no treatmeifit= 0, “d; P(Yo1jX = x)+ P(Yp.1jX = x) = ¢(X)

the utility function isU(X;T;Y ;c) = Y TcX). Let
the policy reward bdR( ;c), and the optimal policy be

(x;0)=argmax » R( :0). One can see that this would lead to a more serious violation

of the counterfactual no-harm criterion compared to the
By substituting the utility in the policy reward, we have  polices learned in Section 4.2, which is also empirically
veri ed in Section 7. In fact, the optimal policies only
EI(Y(1) oX)) (X)+ Y(O)2 %)) care about the sum &f(Yp.1jX = x) andP(Y1.1jX = x),
E[(Y(1) Y(@O) (X)) (X)+ Y(@)I i.e., the users for whom conversidt(1) = 1 would occur
under the active recommendatidn= 1. Such policies
never take into account the harmful treatment population
P(Y1.0jX = Xx), which would lead to a more aggressive
recommendation policy and cause potential user churn.

R( ;0

and the optimal policy is
21; E[Y(1) Y(0)jX
(x;c) = S 0; E[Y()) Y(@©)jX
" d; E[Y(Q) Y(@©) ;X

x]= (x)>c(x)
x]= (x) <c(x);

XI= 0= g Proposed Sharp Bounds of the

whered is any value betweefi and1, and  would al- Counterfactual No-Harm Criterion

ways impose a treatment interventidn= 1 for individuals ) )
whose (x) is greater than the costx) and vice versa In the previous section, we found that both CATE-based

which is same as CATE-based policy learning. From £nd recommendation-based _pol_icy Ie_arning fail to satisfy
principle strati cation prospective, that is equivalentto (e counterfactual no-harm criterion, since they do not care
8 how many individuals will be negatively affected by the
> 1 P(Yo.1jX = x)  P(Y1.0}X = x) >c(x) learned policy. However, we cannot explicitly identify the
(x;0) = _0; P(Yo1jX = X) P(Yr0jX = x) < c(X): individuals who are negatively affected by the treatment
> d: P(Yo1jX = x)  P(Y0jX intervention, because of the fundamental problem of causal
' * Lol inference —that we never observe the two potential outcomes

lUnder the consistency assumption in Section 3.1, we writd Y (0); Y (1)) at the same time. We follow Kallus (2022b) to
U= UXT;Y (T)) = U(X;T,;Y ) thereafter for simpli cation.  consider the fraction negatively affected (FNA), iFENA =

X) = ¢(x)
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P(Y(0)=1;Y()=0)= P(Y1.0), and letFNA(x) be the = Remarks.4 (Tighter Bounds) The upper boundsgna (X)
FNA with given covariateX = x that are tighter than that ofvgna (X) for x 2 X, and
Elurna (X) (X)]  E[wena (X) (X)] for 2
FNA(X)= P(Y(0)=1;Y(1)=0jX = x): ) .
Moreover, the upper bounds in Theorem 5.2 require only
Given a policy 2 , we further propos€NA( ) as the  mild assumptions to guarantee the asymptotic normality of

fraction harmed by the policy that the estimates, while the upper bounds in Proposition 5.1
require stronger assumptions, namely the sharpness margin
FNA( )= E(P(Y(©0)=1;Y(1)=0jX) (X)): condition in Kallus (2022b). We further claim that the upper

bounds in Theorem 5.2 are convenient for policy learning,

In Proposition 5.1, we discuss a general upper bound fofspe(t:]ag}{.tfor opt|m|za(tj|c;n,t\r/1wth bettegsmczjothniss and_fﬁ-
ENA(x) and FNA ), respectively. erentiability, compared to the upper bounds in Proposition

5.1 where minimization operators exist.
Proposition 5.1(Tight upper bounds)(a) The tight upper i ) _ _
bound of FNAX), namedwena (X), is In the end of this section, we formally discuss the relation

between the CATEs(x) and the upper bounds 6NA(x)
minfP(Y =1jT =0;X = x);P(Y =0jT =1;X = x)g; InTheorem5.5. Given that CATEs are the nest magnitudes

that can be identi ed via a data-driven way, Theorem 5.5
(b) Given a policy 2 , the tight upper bound of the has important implications for guiding the policy learning
FNA( ) is E[wena (X) (X)]. that satis es the counterfactual no-harm criterion.

Theorem 5.5(Relation between CATEs and upper bounds)

The upper boundsvena (x) and E[Wena (X) (X)I i o the upper boundsvea (x) in Proposition 5.1 and

Proposition 5.1 are tight, that is, the best we could inferuFNA (x) in Theorem 5.2, for alk 2 X , we have
givenin nite data, and they are reached whfY = 1jT =

0;X = x)= P(Y =0jT =1;X = x) = 1. Besides, it 1 (%) @ (x)?
does not require any additional assumptions, which can b¥rna (X) 5 and  Uena (X) -
regarded as a special case in Li & Pearl (2022) and Kallus

(2022b). Howe\_/er, this bounq is Widg and inconvenient forTheorem 5.5 states that, for units whose CATE) tends

our policy Iearnln_g (see the discussions after Theor_em 5.2)9 be 1, the probability that they are negatively affected
By further assuming that (0) gndY(l) are non-neggtlvely by the treatmenT = 1 tends to be 0, i.e., the treatment
correlated glver).( = X, We give narrower bounds in The- is no-harm and safe. In fact, in real medical scenarios,
orem 5.2, and_d|scuss thg convenience as well as the the&iysicians treat patients if they are con dent thak)
reuog! results in the following. Note that thg assumption is;g ¢, ciently large, and bottwgna (X) andugna () are
empirically reasonable as well as easily satis ed. For examg | from Theorem 5.5. An alternative observation is that

ple, in medical scenarios whefe= 1 indicates receiving  ppysicians treat patients who would die if untreated, i.e.,
active treatment, a patient's health status affects ¥d@) P(Y = 1jT = 0:X = x) is small, which would also lead
andY (1) (Efron & Feldman, 1991); for a teacher-incentive to smallwena (X) andugna (x) from the formulas.

program wherd = 1 indicates receiving nancial incen- _ _
tives, a teacher's knowledge level and intend to teach affect¥ Corollary 5.6, we further discuss the relation between
bothY (0) andY (1) (Du o et al., 2012). the cost functiore(x) and the counterfactual harm upper

Theorem 5.2(Main result 1) (a) If Y (0) and Y (1) are bounds of the optlm-al policies in Section 4.2.
non-negatively correlated givex = x, the tight upper Corollary 5.6 (Relation to the cost)For the upper bound

bound of the FNf&), namedugna (X), is Wena () in Proposition 5.1 andigya () in Theorem 5.2,
the optimal policies in Section 4.2 satisfy
P(Y =1jT =0;X = x)P(Y =0jT =1;X = Xx); i
( j x)P( j X) hy o) i
: : . Wena () E —5— (X) ; and
(b) Given a policy 2 , the tight upper bound of the h 2 , i
i : 1 (X
FNA( ) is E[ugna (X) (X)]: Uena () E ( : ) (X) :

Notably, the conclusion in Theorem 5.2 gives the tightest-

possible upper bounds (see Remark 5.3) and are narroweorollary 5.6 shows that increasing the cost functior)
than the upper bounds in Proposition 5.1 (see Remark 5.4jeduces the counterfactual harm of the optimal policies
Remarks.3 (Tightest-Possible (i.e., Sharp) Bound§he in Section 4.2. This is because the optimal policiegend
upper boundsigna (X) are tight, and are reached when to be more conservative aéx) increases, and thus fewer
Y (0) andY (1) are conditional independent far2 X . units are being actively treated with= 1. Notably, given
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CATE (x) and the cost function(x), theugya (X) and  which are augmented inverse probability weighting (AIPW)-
Urna () always lead to tighter counterfactual harm upperlike estimators (Robins et al., 1994; 1995).

bounds thamvena (X) andwena () in the right hand side  Theorem 6.2. Suppose thajiéx)  e(X)jiz ji M (x)
(RHS) of Theorem 5.5 and Corollary 5.6. {(X)ji2 = op(n 2) forall x 2 X andt 2 f 0; 1g,

(@) R(;c; ) is consistent and asymptotically normal

6. Trustworthy No-Harm Policy Learning P a )
nfR(;c; ) R(;c;)d N(O; %)

Denote as the optimal target policy satisfying the coun-

terfactual no-harm criterion where 2= V[ (Z;e; o; 1)
max ;  R( ;¢ ) @ Oif ()= ofx; )isaparametric modelena () is
subjectto Urna () consistent and asymptotically normal

where is a pre-speci ed level of allowed harm, and pﬁfOFNA( ) uma()d  N(@; 2);

R( ;¢ )= E[L ()fY@) X)g+ Y OFL (XD nere

for 2 [0; 1], which is a general form of policy reward for h N@o(X: ) oi

different utility functions given in Sections 4.2 and 4.3. For 2=V  (Z;e o 1) S(X)E @ 1(X) (X)
exampleR( ;c;1)= R( )forU(X;T;Y)=Y Tc(X), ] . . )
andR( ;c;0)= R( )forU(X;T:Y)=TY Tc(X). ands(X) is the in uence function of estimator of

Let " be the learned policy of , derived by optimizing Theorem 6.2 shows the consistency and asymptotically
the empirical form of Eq. (1), normality of R( ;c; ) andfgna () under mild assump-
tions. Based on it, we can derive the convergence rates
2 ofR( ;¢ ) R(";ic )andR( ;¢ ) R("ic ),
which are the regret of the learned policy, and error of the
Wherelﬁ( :C; ) andOgna ( ) are the Corresponding esti- estimated reward of learned pO"Cy, respectively.

max » R( ;c; )
subjectto Ogna ()

mators ofR( ;c; ) andugnya ( ), obtained as follows. Theorem 6.3(Main result 2) Suppose thatforall 2
Lete(x) = P(T = 1jX = X), ((x):= E[Y|T = tX = (x); (x_; ) is a continuously d|ffere!f1t|able and convex
x]fort = 0; 1, and function with respect to, where 2 is a compact set,
o under the assumptions in Theorem 6.2, then we have
T(Y X
(Z;e; 0, 1) = % + 1(X) oX) (X)  (a) The expected reward of the Iearnsd policy is consistent,

@D oX) andR(" ;¢; ) R( ;¢ )= Op(1= n);

+ oo(X) @ (X)),

1 eX) (b) The estimated reward of the Iearngci policy is consistent,
@ TY  o(X)) andR(" ;c; ) R( ;c; )= Op(1= n).
(Z;e; o5 1)= 1 ax + o(X)  (X)
&X) Theorem 6.3(a) shows that the r;gbet of the learned pol-
T X)), X)  o(X) (X): icy has a convergence rate of ordetr n, and Theorem
e(X) ! 0 ' 6.3(b) shoavs that the estimated reward of learned policy

whereZ = (T:X;Y ), thenR( ;c; ) andugna ( ) can be R(* )isa' n-consistent estimator of the optimal harmless
unbiasedly estimated By and  from Lemma 6.1. policy rewardR( ) for parametric policy classes under
mild assumptions, which are widely widely adopted in prac-

Lemma6.1.8 2 ,R(;c )= E[ (Z;& o 1] jice (Puterman, 2014; Sutton & Barto, 2018).

anduena ()= B[ (Zi€5 07 ) Theorem 6.4(Main result 3) Suppose that is aP-G-C
Denoteg(x) and”¢(x) fort = 0; 1 as the estimators &x)  class,;(x) and&(x) are uniformly consistent estimators of
and ((x), respectively, using the sample-splitting (Wager ((x) ande(x) fort = 0;1, respectively, and. 2 for

& Athey, 2018; Chernozhukov et al., 2018) technique (Seeany 2 andO<a < 1, thenwe have (aR(" ;c; )
appendix for details). From Lemma 6.1, itis natural toR( ;¢; )17 0:and (b)R(* ;c; ) R( :c; ) 0.

de ne the estimators dR( ;c; ) andugna ( ) @s

In contrast to policy gradient learning, if we relax the para-

R( ;c; )= 1 o (Zi;8;70; M); metric restriction on the policy class and extend it to the
i=1 P-Glivenko-Cantelli P-G-C) class (van der Vaart & Wellner,
1 1996), then botfR(” ;c; ) andR(* ;c; ) remain consis-
Orna () = o (Zi; €% ™M); tent estimators oR( ;c; ) under mild assumptions, as
i=1 concluded in Theorem 6.4 (see appendix for proofs).
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Table 2.Comparison of the Naive method (maximizing estimated rewards), the proposed Nojamnd(No-Harm ) methods in
terms of the true reward, welfare change, and true harid@P andJoBs. The CATE-based policy learning and recommendation-based
policy learning are employed (with cost functior(x) = 0 ; 0:05; 0:10), respectively, where the expected reward and counterfactual harm

upper bound are estimated usiggmented inverse probability weighting (AIPW) estimators in Section 6.

IHDP: TRUE HARM 13\ CATE-BASED PoLICY LEARNING \ RECOMMENDATION-BASED POLICY LEARNING
CosT ‘METHOD \ REWARD WELFARE TRUE HARM \ REWARD WELFARE TRUE HARM
NAIVE 570.96 3.28" 157.78 4.11" 19.12 2.29" 549.14 1.61" 139.16 1.43" 64.36 0.87"
¢c=0:00 | No-HARM (u) | 496.93 11.39 83.80 10.42 10.34 2.54 100.90 15.11 43.82 10.37 9.60 2.52
No-HARM (w) | 459.80 6.86 48.56 6.82 5.98 1.95 73.76 15.62 31.82 7.16 5.42 2.26
NAIVE 551.62 4.15" 154.40 4.39" 16.76 2.21" 515.30 2.29" 139.48 1.38" 64.16 0.70"
¢c=0:05| No-HARM (u) | 491.33 13.44 84.34 13.91 9.32 2.83 101.42 12.16 47.82 9.10 9.88 2.61
No-HARM (w) | 456.17 6.88 50.50 6.40 6.02 2.01 67.59 13.56 31.46 7.74 5.98 2.94
NAIVE 534.27 4.21" 148.74 4.10" 14.86 2.21" 480.98 2.63" 139.50 1.96" 63.90 0.96"
c=0:10 | No-HARM (u) | 482.14 12.73 81.68 15.00 8.60 3.46 92.42 15.17 47.34 8.52 8.90 2.84
No-HARM (w) | 452.29 5.76 49.00 7.03 5.42 1.92 63.33 12.54 31.82 8.05 5.58 2.17
JoBs: TRUE HARM 50\ CATE-BASED POLICY LEARNING \ RECOMMENDATION-BASED POLICY LEARNING
CosT ‘METHOD \ REWARD WELFARE TRUE HARM \ REWARD WELFARE TRUE HARM
NAIVE 1798.60 7.63" 583.96 10.54" 113.73 4.47" | 1965.33 1.44" 758.50 1.52" 251.30 0.69"
¢=0:00 | No-HARM (u) | 1453.00 21.96 237.36 29.81 43.23 8.06 528.00 22.16 195.73 13.80 41.40 4.85
No-HARM (w) | 1325.00 48.62 113.74 60.39 16.80 8.41 197.46 138.66 66.26 52.88 17.16 12.60
NAIVE 1701.13 10.41" 566.23 11.23" 93.93 4.68" 1760.50 11.30" 705.26 8.62" 238.23 3.68"
c=0:05| No-HARM (u) | 1408.72 27.01 242.66 44.18 41.13 9.31 504.18 25.78 195.80 18.89 42.86 5.32
No-HARM (w) | 1325.56 32.28 118.83 55.50 19.76 9.13 220.94 113.36 77.30 43.96 18.93 8.92
NAIVE 1612.20 9.07" 527.06 52.29" 72.66 7.65" 1529.96 49.49" 630.86 34.30" 212.93 11.51"
c=0:10 | No-HARM (u) | 1362.20 22.95 232.63 51.70 36.26 8.04 475.10 20.52 193.83 16.48 44.30 5.84
No-HARM (w) | 1257.19 39.17 67.83 59.52 11.63 8.91 214.76 179.24 85.33 82.95 22.93 23.32
7. Experiments oi N ( o0;1),and 15 N ( 1;1). We set the noise

parametersg =1 and ; =3 forIHDP and ¢ =0 and
1 = 2 for JoBs.

Dataset and Prepossessing.Following previous stud- gynerimental Details. The goal of our policy learning is
ies (Shalit et al., 2017; Louizos et al., 2017; Yoon et al. 1o maximize the reward and the resulting change in wel-
2018; Yao etal., 2018), we conduct extensive experiments, o yhile satisfying the counterfactual no-harm criterion
on one semi-synthetic datas#iDP, and one real-world  jyen that the simulated potential outcomes demonstrate 65
datasetJoBs. ThelHDP dataset (Hill, 2011) is based on 5,4 252 units in the "harmful treatment” strata ibtD P

the Infant Health and Development Program (IHDP), and,nq 305, respectively, we de ne the counterfactual no-

examines the effects of specialist home visits on future co4s4rm criterion as harming less than 20% of them by the
nitive test scores. The dataset comprises 672 units (123 5ned policy, i.e., 13 units faHDP and 50 units for

treated, 549 control) and 25 covariates measuring aspectg s o Formally, the reward for the learned policyx)
of chHQren and their mothe.rs. THeBs dataset (LaLonde, is in:1 (Y, ‘71) 9 (x)+ Y (0)1 (xi)) for CATE-
1986) is b.ased on the Nathnal SL.Jp.portedl Work progranyssed and in=l (Yi(1) © (xi) for recommendation-
and examines the effects of job training on income and eMya5ed policy learning, respectively. Following (Kitagawa
ployment status after training. The dataset comprises 2,578 Teatenov P2018) the change in welfare is de ned as
units (237 treated, 2,333 control) and 17 covariates from \y( ) = ' "o [Y,i 1) )+ Y0 (1 ()]

. . . I
non-randomized observational studies. n Yi&oz =T %@ Yi(0)  (xi)]. The true
Different from estimating causal effects, even for data coltharmis ;_; 1fY;(0) =1:Yi(1)=0g (Xi).

lected from randomized controlled trials, we are unablgye jearn policies satisfying the counterfactual no-harm cri-
to identify whether individuals are in the "harmful treat- o ion based on the estimation of the upper bowada (x)
ment” strata, i.e.¥(0) = 1 andY(1) = 0. Thus, we j, proposition 5.1 and the estimation of the upper bound
simulate potential outcomes based on the covariates Ba (x) in Theorem 5.2, named "No-Harmwj” and "No-
follows: Yi(0)  Bem( (woxi + o;)), andYi(1) Harm (u)” respectively, and compare them to the baseline
Bern(' (wix; + 1)), where () is the sigmoid function,  athod that directly maximizes the estimated reward. We
Wo N  1;1)(0;1) follows a truncated normal distribu- yne the costs(x) = 0;0:025 0:05; 0:075 0:10 and use
tion, w;  Unif( 1;1) follows a uniform distribution,  oR |pw, AIPW estimators (see appendix for details).

7.1. Experimental Setup






