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Abstract
In practical federated learning (FL) systems, the
communication cost between the clients and the
central server can often be a bottleneck. In this
paper, we focus on biased gradient compression
in non-convex FL problems. In the classical dis-
tributed learning, the method of error feedback
(EF) is a common technique to remedy the down-
sides of biased gradient compression, but the per-
formance of EF in FL still lacks systematic inves-
tigation. In this work, we study a compressed FL
scheme with error feedback, named Fed-EF, with
two variants depending on the global model opti-
mizer. While directly applying biased compres-
sion in FL leads to poor convergence, we show
that Fed-EF is able to match the convergence rate
of the full-precision FL counterpart with a linear
speedup w.r.t. the number of clients. Experiments
verify that Fed-EF achieves the same performance
as the full-precision FL approach, at the substan-
tially reduced communication cost.

Moreover, we develop a new analysis of the EF
under partial participation (PP), an important sce-
nario in FL. Under PP, the convergence rate of
Fed-EF exhibits an extra slow-down factor due
to a so-called “stale error compensation” effect,
which is also justified in our experiments. Our
results provide insights on a theoretical limitation
of EF, and possible directions for improvements.

1. Introduction
Federated learning (FL) has seen numerous applications in,
e.g., wireless communications, Internet of Things (IoT), sen-
sor networks, financial fraud detection, input method editor
(IME), advertising, online visual object detection, public
health records (Hard et al., 2018; Yang et al., 2019a;b; Liu
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et al., 2020b; Rieke et al., 2020; Kairouz et al., 2021; Khan
et al., 2021), etc. A centralized FL system includes multiple
clients each with local data, and one central server that coor-
dinates the training process. The goal of FL is for n clients
to collaboratively learn a global model, parameterized by θ,
such that

θ∗ = arg min
θ∈Rd

f(θ) := arg min
θ∈Rd

1

n

n∑
i=1

fi(θ), (1)

where fi(θ) := ED∼Di

[
Fi(θ;D)

]
is an (in general) non-

convex loss function for the i-th client w.r.t. the local data
distribution Di. In a typical FL system design, in each
training round, the server first broadcasts the model to the
clients. Then, each client trains the model based on the local
data, after which the updated local models are transmitted
back to the server and aggregated (McMahan et al., 2017;
Stich, 2019; Chen et al., 2020). The number of clients
n can be tens/hundreds in some applications, e.g., cross-
silo FL (Marfoq et al., 2020; Huang et al., 2021) where
clients are companies/organizations. In other scenarios, n
can be as large as millions or even billions, e.g., cross-
device FL (Karimireddy et al., 2021; Khan et al., 2021),
where clients can be personal/IoT devices.

There are three key features/challenges of FL:

• Communication cost: The model transmission cost
can be a major challenge in FL systems with limited
bandwidth (e.g., portable wireless devices), especially
when training modern ML models with millions or bil-
lions of model parameters. Developing efficient meth-
ods for transmitting the model/gradient information
in FL has gained growing research interest in wire-
less/satellite communication (Amiri and Gündüz, 2020;
Niknam et al., 2020; Yang et al., 2020; Khan et al.,
2021; Yang et al., 2021b; Chen et al., 2022a).

• Data heterogeneity: Unlike in the classic distributed
training, the local data distribution in FL (Di in (1)) can
be different (non-iid), reflecting the practical scenarios
where local data held by clients (e.g., app/website users)
are highly personalized (Zhao et al., 2018; Kairouz et al.,
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2021; Li et al., 2022a). When multiple local training
steps are taken, the local models becomes “biased” to-
wards minimizing the local losses, which may hinder
the global model from quickly converging to a good
solution (Mohri et al., 2019; Li et al., 2020c; Hard et al.,
2018; Li et al., 2020a;b; Yuan and Li, 2022).

• Partial participation (PP): Another practical issue
of FL systems is the partial participation (PP) where
the clients do not join training consistently, e.g., due to
unstable connection or active selection (Li et al., 2020a).
That is, only a fraction of clients are involved in each FL
training round to update their local models and send the
local update information. This may also slow down the
convergence of the global model, intuitively because
less data/information is used per round (Charles et al.,
2021; Cho et al., 2022).

FL with compression. To reduce the communication cost,
FL algorithms with compressed message passing have been
proposed. Examples include FedPaQ (Reisizadeh et al.,
2020), FedCOM (Haddadpour et al., 2021), FedZip (Malek-
ijoo et al., 2021), etc. These algorithms are built upon
directly compressing model updates communicated from
clients to server. In particular, Reisizadeh et al. (2020);
Haddadpour et al. (2021) applied unbiased stochastic com-
pressors such as stochastic quantization (Alistarh et al.,
2017) and stochastic sparsification (Wangni et al., 2018),
and showed that with significant communication saving
(e.g., > 30 - 100x compression rate), applying unbiased
compression in FL could approach the performance of un-
compressed FL algorithms in many learning tasks.

Error feedback (EF). Biased compression is also com-
monly used in communication-efficient distributed train-
ing (Lin et al., 2018; Beznosikov et al., 2020). Common
biased compressors include fixed quantization (Dettmers,
2016), TopK sparsification (Aji and Heafield, 2017; Alis-
tarh et al., 2018; Stich et al., 2018), SignSGD (Bernstein
et al., 2018; 2019), etc. For these compressors, the output
is a biased estimator of the true gradient. In distributed
optimization literature, it has been observed that directly
updating with the biased gradients may slow down the
convergence, lead to worse generalization performance, or
even diverge (Seide et al., 2014; Karimireddy et al., 2019;
Beznosikov et al., 2020; Malekijoo et al., 2021). A popular
remedy is the error feedback (EF) strategy (Seide et al.,
2014; Stich et al., 2018): in each iteration, the local worker
sends a compressed gradient to the server and records the
local compression error, which is used to adjust the gradient
computed in next iteration, conceptually “correcting the bias”
due to compression. With EF, using biased compression in
distributed training can achieve the same theoretical conver-
gence rate and empirical performance as the full-precision
counterpart (Karimireddy et al., 2019; Li et al., 2022b).

Our contributions. Despite the rich literature on EF in clas-
sic distributed optimization, EF has not been fully explored
in the context of federated learning. In this work, we pro-
vide a thorough analysis of EF in FL. The three key features
of FL—local steps, data heterogeneity, and partial participa-
tion, pose challenging questions regarding the performance
of EF in federated learning: (i) Can EF achieve the same
linear speedup rate as full-precision FL algorithms, under
highly non-iid local data distribution? (ii) How does partial
participation affect the convergence of EF?

• We study Fed-EF, a communication-efficient FL frame-
work with biased compression and error feedback (EF),
with two variants (Fed-EF-SGD and Fed-EF-AMS) de-
pending on the global optimizer (SGD and adaptive
AMSGrad (Reddi et al., 2018), respectively). Our in-
vestigation starts by providing a convergence analysis
showing the non-convergence issue of directly applying
biased compression in FL. Then, we develop sharp con-
vergence analysis and prove that Fed-EF has asymptotic
convergence rate O( 1√

TKn
) when T = O(Kn), where

T is the number of communication rounds, K is the
number of local steps and n is the number of clients.
Our result improves the communication complexity of
the prior result on error-compensated FL and matches
the best-known rates of many full-communication and
compressed FL methods (see Table 1 for a summary).
Moreover, Fed-EF-AMS is the first compressed adap-
tive FL method in the literature.

• Error feedback has not been studied in the literature
of distributed optimization under partial client partic-
ipation. We initiate a new analysis of Fed-EF in this
setting, considering both local steps and non-iid data
situations. We show that under PP, Fed-EF exhibits a
slow-down factor of

√
n/m compared with the best

full-precision rate, where m is the number of active
clients per round. We argue that this potential theoreti-
cal limitation is caused by an intrinsic “delayed error
compensation” effect of EF.

• Experiments are conducted to illustrate the effective-
ness of Fed-EF. We show that Fed-EF matches the per-
formance of full-precision FL with a significant reduc-
tion in communication cost, and the proposed method
compares favorably with FL algorithms using unbiased
compression without EF. Numerical examples are also
provided to justify our theory.

2. Background and Related Work
Gradient compression methods. In distributed SGD train-
ing systems, extensive works have applied various compres-
sion techniques to the communicated gradients. For exam-
ple, the so-called “unbiased compressors” are commonly
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Table 1. Summary of theoretical convergence results from some existing works on distributed and federated learning with communication
compression for non-convex optimization. “PP” stands for “partial participation”, and “# of Rounds” is the number of communication
rounds required to achieve linear speedup, which is a common measure of the communication complexity of FL algorithms. T is the
number of communication rounds, K is the number of local steps, and n is the total number of clients.

Reference Local Step Non-iid Data PP Adaptive Opt. Compression # of Rounds
Jiang and Agrawal (2018) a ✓ Unbiased T = O(n)

Li et al. (2022b) ✓ ✓ Biased + EF T = O(n3)
Reisizadeh et al. (2020) ✓ Unbiased − b

Haddadpour et al. (2021) ✓ ✓ Unbiased T = O(Kn)
Basu et al. (2019) ✓ Biased + EF T = O(K3n3)
Gao et al. (2021) ✓ Biased + EF T = O(Kn3)

Fed-EF (our paper) c ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ Biased + EF T = O(Kn)

a The authors also provided analysis with local steps, but the result of T = O(K2n5) is worse than Haddadpour et al. (2021).
b This cell is invalid because the convergence rate does not have a linear speedup in n.
c The result in the table is under full participation (Corollary 4.9). The analysis for partial participation is provided in Section 4.3.

used, which include the stochastic rounding and QSGD (Al-
istarh et al., 2017; Zhang et al., 2017; Wu et al., 2018;
Liu et al., 2020a; Xu et al., 2021), count-sketch (Charikar
et al., 2004; Ivkin et al., 2019; Haddadpour et al., 2020;
Li and Li, 2023), and the magnitude based random spar-
sification (Wangni et al., 2018). In an extreme case with
the highest compression rate, Seide et al. (2014); Bernstein
et al. (2018; 2019); Jin et al. (2020) proposed to use only the
stochastic sign (1-bit) information of the gradients. On the
other hand, the “biased compressors” are also popular. Rep-
resentative examples include the TopK compressor (Alistarh
et al., 2018; Stich et al., 2018; Shi et al., 2019) (which only
transmits gradient coordinates with largest magnitudes),
fixed (or learned) quantization (Dettmers, 2016; Zhang et al.,
2017; Yu et al., 2018; Malekijoo et al., 2021), and low-rank
approximation (Vogels et al., 2019). See Beznosikov et al.
(2020) for more discussion on biased compressors. Our
work assumes a fairly general condition on the compressor
which applies to a wide range of compression schemes.

Error feedback (EF). It has been shown that directly
adopting biased compression in distributed SGD may lead
to divergence, through empirical observations or counter
examples (Seide et al., 2014; Karimireddy et al., 2019;
Beznosikov et al., 2020). The error feedback (EF) method
is proposed to fix this issue (Seide et al., 2014; Stich et al.,
2018; Karimireddy et al., 2019). In particular, with EF,
distributed SGD under biased compression can match the
convergence rate of the full-precision distributed SGD (Al-
istarh et al., 2018; Jiang and Agrawal, 2018; Shen et al.,
2018; Stich and Karimireddy, 2019; Zheng et al., 2019). Li
et al. (2022b) showed that EF is also effective for distributed
training with adaptive gradient methods. Among the limited
related literature on applying EF to FL, the most relevant
method is the QSparse-local-SGD (Basu et al., 2019), which
is a special instance of the proposed Fed-EF-SGD method.

The analysis of Basu et al. (2019) did not consider data
heterogeneity and partial client participation, and their con-
vergence rate is slower than our analysis. Gao et al. (2021)
analyzed momentum SGD under the same setting and im-
proved the communication complexity of Basu et al. (2019).
Table 1 provides more details. Recently, Richtárik et al.
(2021); Fatkhullin et al. (2021) proposed “EF21” as an alter-
native to the standard EF. Our work is different in that we
study the standard EF (which is a different algorithm from
EF21) and our analytical setup is more practical with local
steps, non-iid data and partial participation.

Distributed adaptive gradient methods. Our proposed
Fed-EF algorithm, in addition to SGD, also includes a vari-
ant with the base optimizer being AMSGrad (Reddi et al.,
2018), an adaptive gradient method that is widely used in
optimization and distributed learning (Chen et al., 2020;
Karimi et al., 2021; Reddi et al., 2021; Li et al., 2022b;
Chen et al., 2022b; Zhao et al., 2022). Adaptive gradient
algorithms assign different implicit learning rates to differ-
ent coordinates adaptively guided by the training trajectory,
usually leading to faster convergence, less effort needed
for parameter tuning, and better performance than SGD on
some tasks (Zhang et al., 2020; Liu et al., 2021). Readers
are referred to the extensive literature on adaptive gradient
methods for more details, e.g., Duchi et al. (2011); Zeiler
(2012); Kingma and Ba (2015); Chen et al. (2019); Zhou
et al. (2020); Reddi et al. (2021); Wang et al. (2021).

3. Compressed FL with Error Feedback
3.1. Biased Compressors in Federated Learning

We introduce some existing and new compressors used in
our paper. Let [n] be the integer set {1, ..., n}. Let ∥ · ∥
denote the l2 norm and ∥ · ∥1 denote the l1 norm.
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Definition 3.1 (qC-deviate compressor). The biased qC-
deviate compressor C : Rd 7→ Rd is defined such that
for ∀x ∈ Rd, ∃ 0 ≤ qC < 1 s.t. ∥C(x)− x∥2 ≤ q2C ∥x∥

2.
Two examples are Stich et al. (2018); Zheng et al. (2019):

• Let S = {i ∈ [d] : |xi| ≥ t} where t is the (1 − k)-
quantile of |xi|, i ∈ [d]. The TopK compressor with
compression rate k is defined as C(x)i = xi, if i ∈ S;
C(x)i = 0 otherwise.

• Divide [d] into M groups (e.g., neural network lay-
ers) with index sets Ii, i = 1, ...,M , and di := |Ii|.
The (Group) Sign compressor is defined as C(x) =[∥xI1

∥1

d1
sign(xI1

), ...,
∥xIM

∥1

dM
sign(xIM

)
]
, with xIi

the sub-vector of x at indices Ii.

Larger qC indicates heavier compression, and qC = 0 im-
plies no compression, i.e. C(x) = x. Additionally, these
two compression operators can be combined to derive the so-
called “heavy-Sign” compressor, where we first apply TopK
and then Sign, for an even higher compression rate. This is
similar in spirit to the Sparse Binary Compression (Sattler
et al., 2019) but with group-wise magnitude adjustment.

Definition 3.2 (Heavy-Sign). Let Ck(·) and Cs(·) be the
TopK and Sign in Definition 3.1. Then the Heavy-Sign
operator is defined as Chv(x) := Cs

(
Ck(x)

)
for x ∈ Rd.

We can show that this compressor is also q-deviate.

Proposition 3.3. The heavy-Sign compressor satisfies Defi-
nition 3.1 with q2C = 1−mini∈[M ]

k
di

.
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Figure 1. Test accuracy of MLP trained by Fed-SGD on MNIST
dataset (LeCun et al., 1998): full-precision vs. Sign compressed
communication, η = 1, ηl = 0.01, n = 200 non-iid clients.

Can we directly use biased compressors in FL? As an exam-
ple, in Figure 1, we report the test accuracy of a multi-layer
perceptron (MLP) trained on MNIST dataset in non-iid FL
environment (see Section 5 for more descriptions), of Fed-
SGD (Stich, 2019) with full communication (blue) versus
compression using Sign (red), i.e., clients directly send
compressed local model update to the server for aggrega-
tion (see Appendix B for details). We see a catastrophic

performance downgrade of using biased compression di-
rectly. In Section 3, we will show that naively adopting
biased compression leads to an undesirable asymptotically
non-vanishing term in the convergence rate, theoretically
justifying this empirical performance degradation.

Algorithm 1 Fed-EF: Compressed FL with Error Feedback

1: Input: learning rates η, ηl; parameters β1, β2, ϵ
2: Initialize: global model θ1 ∈ Rd ⊆ Rd; local error

accumulator e1,i = 0; m0 = 0, v0 = 0, v̂0 = 0
3: for t = 1, . . . , T do
4: parallel for worker i ∈ [n] do:
5: Receive global model θt from server, set θ(1)t,i = θt
6: for k = 1, . . . ,K do
7: Compute stochastic gradient g(k)t,i at θ(k)t,i

8: Local update θ
(k+1)
t,i = θ

(k)
t,i − ηlg

(k)
t,i

9: end for
10: Compute local update ∆t,i = θt − θ

(K+1)
t,i

11: Send ∆̃t,i = C(∆t,i + et,i) to server
12: Update the error et+1,i = et,i +∆t,i − ∆̃t,i

13: end parallel
14: Central server do:
15: Global aggregation ∆̃t =

1
n

∑n
i=1 ∆̃t,i

16: Global update θt+1 = θt − η∆̃t { Fed-EF-SGD }

17: mt = β1mt−1 + (1− β1)∆̃t { Fed-EF-AMS }

18: vt = β2vt−1 + (1− β2)∆̃
2

t , v̂t = max(vt, v̂t−1)

19: Global update θt+1 = θt − η mt√
v̂t+ϵ

20: end for

3.2. Fed-EF Algorithm

In Algorithm 1, we present the general compressed FL
framework named Fed-EF. Error feedback (EF) is a popular
tool in distributed training and can be adapted to federated
learning. In round t: 1) The server broadcast the global
model θt to all clients (line 5); 2) The i-th client performs
K steps of local SGD updates to get local model θ(K)

t,i , com-
pute the compressed local model update ∆̃t,i, updates the
local error accumulator et,i, and sends the compressed ∆̃t,i

back to the server (line 6-12); 3) The server receives ∆̃t,i,
i ∈ [n] from all clients, takes the average, and perform a
global model update using the averaged compressed local
model updates (line 15-19).

Depending on the global optimizer, we propose two variants:
Fed-EF-SGD (green) which applies SGD global updates,
and Fed-EF-AMS (blue), whose global optimizer is AMS-
Grad (Reddi et al., 2018). In Fed-EF-AMS, we incorporate
momentum (mt) with different implicit dimension-wise
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learning rates η/v̂t. For conciseness, the presented algo-
rithm employs one-way compression (clients-to-server). In
Appendix G, we provide Fed-EF with two-way compression
and show that adding the server-to-clients compression does
not affect the asymptotic convergence rates.

Algorithmic comparison with related work. Compared
with EF in the classical distributed training, e.g., Stich et al.
(2018); Karimireddy et al. (2019); Zheng et al. (2019); Liu
et al. (2020a); Ghosh et al. (2021); Li et al. (2022b), our
algorithm allows local steps and uses two-side learning rates.
Note that when η ≡ 1, the Fed-EF-SGD method reduces to
QSparse-local-SGD (Basu et al., 2019). In Section 4, we
will demonstrate how the two-side learning rate schedule
improves the convergence analysis of Basu et al. (2019). In
addition, several recent works considered compressed FL
using unbiased stochastic compressors. FedPaQ (Reisizadeh
et al., 2020) applied stochastic quantization without error
feedback to local SGD, which is improved by Haddadpour
et al. (2021) using a gradient tracking trick that, however, re-
quires communicating an extra vector from server to clients.
Malekijoo et al. (2021) provided an empirical study on di-
rectly compressing the local updates without using EF. Mitra
et al. (2021) proposed FedLin, which only uses compression
for synchronizing a local memory term but still requires
transmitting full-precision updates. It is also worth men-
tioning that, all the aforementioned works only studied the
SGD prototype. To our knowledge, Fed-EF-AMS is the first
compressed adaptive FL method in the literature1.

4. Theoretical Results
Assumption 4.1 (Smoothness). For ∀i ∈ [n], fi is L-
smooth: ∥∇fi(x)−∇fi(y)∥ ≤ L ∥x− y∥, ∀x, y ∈ Rd.
Assumption 4.2 (Bounded variance). For ∀t ∈ [T ], ∀i ∈
[n], ∀k ∈ [K]: (i) the stochastic gradient is unbiased:
E
[
g
(k)
t,i

]
= ∇fi(θ

(k)
t,i ); (ii) the local variance is bounded:

E
[
∥g(k)t,i −∇fi(θ

(k)
t,i )∥2

]
< σ2; (iii) the global variance is

bounded: 1
n

∑n
i=1 ∥∇fi(θt)−∇f(θt)∥2 ≤ σ2

g .

Both assumptions are standard in the convergence analysis
of stochastic gradient methods. The global variance bound
σ2
g in Assumption 4.2 characterizes the difference among

local loss functions, i.e., data heterogeneity.
Assumption 4.3 (Compression discrepancy). There exists
some constant qA < 1, such that E

[
∥ 1
n

∑n
i=1 C

(
∆t,i +

et,i
)
− 1

n

∑n
i=1(∆t,i + et,i)∥2

]
≤ q2AE

[
∥ 1
n

∑n
i=1(∆t,i +

et,i)∥2
]

in every round t ∈ [T ].

Assumption 4.3 is a common assumption in related work on
compressed distributed learning. If we replace “the average

1We sincerely thank an anonymous reviewer and the Chair for
suggesting us to discuss the results in Wang et al. (2022). As
requested, we provide our comments in Appendix.

of compression”, 1
n

∑n
i=1 C

(
∆t,i + et,i

)
, by “the compres-

sion of average”, C
(
1
n

∑n
i=1(∆t,i + et,i)

)
, the statement

immediately holds by Definition 3.1 with qA = qC . Thus,
Assumption 4.3 basically says that the above two terms stay
close during training. A similar assumption is used in Alis-
tarh et al. (2018) for analyzing sparsified SGD. In Haddad-
pour et al. (2021), to achieve a sharp convergence rate for
FL with unbiased compression, a similar condition is also
assumed with an absolute bound. See Appendix E for more
discussion and justification.

Norm convergence. We bound the squared gradient norm
of a uniformly sampled global model from θ1, ..., θT : Ψ =
1
T

∑T
t=1 E

[
∥∇f(θt)∥2

]
which is a standard convergence

measure in non-convex optimization.

4.1. Warm-up: Biased Compression Without EF

In Figure 1, we see that naively transmitting the condensed
message by biased compressors performs poorly. The pre-
cise steps of this approach are summarized in Algorithm 2
in Appendix B. In each round t, after conducting local train-
ing to get the model update ∆t,i, the i-th client computes
∆̃t,i = C(∆t,i) and sends it to the server. The server makes
a global SGD update by averaging all the compressed gra-
dients. In Beznosikov et al. (2020), the authors provided
toy counter-examples showing that solely using biased com-
pressors may lead to divergence under a simple distributed
learning setting with a constant learning rate. In the follow-
ing, we develop a general convergence analysis under our
more complex FL setup, and present the result with specific
learning rates. The proof can be found in Appendix F.5.

Theorem 4.4 (Fed-SGD with biased compression). Let
θ∗ = argmin f(θ), and denote q = max{qC , qA}. Con-
sider Fed-SGD with biased compression (Algorithm 2). Un-
der Assumptions 4.1 to 4.3, when ηl ≤ 1

8KLmax{1,8(1+q2)η} ,

choosing ηl = Θ( 1
K

√
T
) and η = Θ(

√
Kn), we have

Ψ = O
( 1 + q2√

TKn
+

1 + q2

TK
(σ2 +Kσ2

g) +
q2σ2

Kn

)
.

Remark 4.5. If unbiased compressors are used instead, we
can remove the bias term in our analysis and recover the
O( 1√

TKn
) convergence rate in Haddadpour et al. (2021)

for FL with unbiased compression.

In Theorem 4.4, we see that larger q (i.e., higher compres-
sion rate) would slow down the convergence, as expected.
The first term depends on the model initialization and the
local variance. The second term containing σ2

g represents
the influence of data heterogeneity. The last non-vanishing
term (as T → ∞) is a consequence of the gradient estima-
tion bias, which shows that Fed-SGD does not converge to a
stationary point when biased compression is directly applied
without EF. Also, we note that this constant is independent
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of the choice of the learning rates. This bias term decreases
with smaller q (i.e., less compression); when q = 0, we
recover the sharp rate of full-precision Fed-SGD.

4.2. Fed-EF: Linear Speedup under Data Heterogeneity

We now analyze our Fed-EF algorithm which compensates
the compression bias with error feedback (EF).

Theorem 4.6 (Fed-EF-SGD). Let θ∗ = argmin f(θ), and
denote △ = f(θ1) − f(θ∗), q = max{qC , qA}, C1 :=

2 + 4q2

(1−q2)2 . Under Assumptions 4.1 to 4.3, when ηl ≤
1

2KL·max{4,η(C1+1)} , the squared gradient norm of Fed-EF-
SGD iterates in Algorithm 1 satisfies

Ψ ≲
△

ηηlTK
+

2ηηlC1L

n
σ2 + 10ηη3l C1K

2L3(σ2 + 6Kσ2
g).

In our analysis of Fed-EF-AMS, we make the following ad-
ditional assumption of bounded stochastic gradients, which
is common in the convergence analysis of adaptive gradi-
ent methods, e.g., Reddi et al. (2018); Zhou et al. (2018);
Chen et al. (2019); Reddi et al. (2021); Li et al. (2022b),
among others. Note that this assumption is only used for
Fed-EF-AMS, but not for Fed-EF-SGD.

Assumption 4.7 (Bounded gradients). It holds that
∥g(k)t,i ∥ ≤ G, ∀t > 0, ∀i ∈ [n], ∀k ∈ [K].

We provide the convergence analysis of adaptive FL with
error feedback (Fed-EF-AMS) as below.

Theorem 4.8 (Fed-EF-AMS). With same notations as
in Theorem 4.6, let C1 := β1

1−β1
+ 2q

1−q2 . Under As-
sumptions 4.1 to 4.7, if the learning rates satisfy ηl ≤√

ϵ
8KL min

{
1√
ϵ
, 2(1−q2)L
(1+q2)1.5G , 1

max{16,32C2
1}η

, 1
3η1/3

}
, the Fed-

EF-AMS iterates in Algorithm 1 satisfy

Ψ ≲
△

ηηlTK
+

ηηlL(6 + 4C2
1 )

nϵ
σ2 +

2C1G
2d

T
√
ϵ

+
3ηηlC

2
1LKG2d

Tϵ

+
[5η2

l KL2

2
√
ϵ

+
ηη3

l (30 + 20C2
1 )K

2L3

ϵ

]
(σ2 + 6Kσ2

g).

With some properly chosen learning rates, we have the fol-
lowing simplified results.

Corollary 4.9 (Fed-EF, specific learning rates). Suppose
the conditions in Theorem 4.6 and Theorem 4.8 are satisfied,
respectively. Choosing ηl = Θ( 1

K
√
T
) and η = Θ(

√
Kn),

Fed-EF-SGD satisfies

Ψ = O
( △√

TKn
+

1√
TKn

σ2 +

√
n

T
3
2

√
K

(σ2 +Kσ2
g)
)
,

and for Fed-EF-AMS, it holds that

Ψ = O
( △√

TKn
+

1√
TKn

σ2 + (
1

TK
+

√
n

T
3
2

√
K

)(σ2 +Kσ2
g)
)
.

Discussion. From Corollary 4.9, when T ≥ O(K), Fed-
EF-AMS and Fed-EF-SGD have the same rate of conver-
gence asymptotically. Therefore, our following discus-
sion applies to the general Fed-EF scheme with both vari-

ants. In Corollary 4.9, when T ≥ Kn
σ2
g

σ2 , the global vari-
ance term σ2

g vanishes and the convergence rate becomes
O(1/

√
TKn) 2. Thus, the proposed Fed-EF enjoys a linear

speedup w.r.t. the number of clients n, i.e., it reaches a δ-
stationary point (i.e., 1

T

∑T
t=1 E

[
∥∇f(θt)∥2

]
≤ δ) as long

as TK = Θ(1/nδ2), which matches the recent results of
the full-precision counterparts (Yang et al., 2021a; Reddi
et al., 2021) (Note that Reddi et al. (2021) only analyzed
the special case β1 = 0, while our analysis is more general).
Moreover, our result is also better than O(K3n3) of the
federated momentum SGD analysis in Yu et al. (2019). By
setting K = Θ(1/nδ), Fed-EF only requires T = Θ(1/δ)
rounds of communication to converge. This matches one of
the state-of-the-art FL communication complexity results of
SCAFFOLD (Karimireddy et al., 2020).

Comparison with prior compressed FL results. Table 1
provides a summary of the related results of compressed
FL in non-convex optimization. As a special case of Fed-
EF-SGD (η ≡ 1), the analysis of QSparse-local-SGD (Basu
et al., 2019) did not consider data heterogeneity, and their
communication complexity to achieve linear speedup is
T = O(K3n3), which is much worse than our O(Kn) re-
sult. They also imposed a bounded gradient assumption (for
the SGD analysis) while our Theorem 4.6 does not. Gao
et al. (2021) studied compressed local momentum SGD and
proved the communication complexity T = O(Kn3), but
also limited to the homogeneous data setting and is worse
than our rates. For FL with direct unbiased compression
(without EF), the convergence rate of FedPaQ (Reisizadeh
et al., 2020) is O(1/

√
TK) which did not achieve linear

speedup. Recently, Haddadpour et al. (2021) refined the
analysis and algorithm of FedPaQ, and their result for un-
biased compression matches our O(1/δ) communication
complexity when taking K = Θ(1/nδ).

To conclude, our results provide the sharp linear speedup
analysis of EF in FL (with local steps and data heterogene-
ity), and show that EF + FL can match the convergence rate
of many state-of-the-art rates of uncompressed FL methods
and FL methods with unbiased compression. Moreover,
to our knowledge, Theorem 4.8 is the first result on com-
pressed adaptive federated learning in the literature.

2This also implies that K = O(Tσ2

nσ2
g
) is needed to achieve the

O( 1√
TKn

) asymptotic convergence rate which decreases in K (in
other words, when more local steps help). The inverse relationship
between K and σ2

g (the global variance) is because when σ2
g is

large, the local losses might be very different from the global loss.
Therefore, applying more local steps may not help with the global
convergence in this case.
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4.3. Analysis of Fed-EF under Partial Participation

Whilst being a popular strategy in classical distributed train-
ing, error feedback has not been analyzed under partial par-
ticipation (PP), which is an important feature of FL. Next,
we provide new analysis and results of EF under this set-
ting. In each round t, assume only m randomly chosen
clients (without replacement) indexed by Mt ⊆ [n] are
active and participate in training (i.e., changing i ∈ [n]
to i ∈ Mt at line 4 of Algorithm 1). For the remaining
(n−m) inactive clients, nothing is changed and we simply
set et,i = et−1,i, ∀i ∈ [n] \ Mt. The model is updated

using ∆̃t,Mt
= 1

m

∑
i∈Mt

∆̃t,i instead of the full average.
The result for Fed-EF under PP is given below.

Theorem 4.10 (Fed-EF, partial participation). In each
round, suppose m randomly chosen clients in Mt partici-
pate in the training. Denote △ = f(θ1)− f(θ∗). Under As-
sumptions 4.1 to 4.3, suppose the learning rates satisfy ηl ≤
min

{
1
8 ,

mL
500C′η ,

m2

53760(n−m)C1η
, (1−q2)2m2

32q2n2η , 1
32(C1∨1)η

}
1

KL .
Then, Fed-EF-SGD admits

Ψ ≲
△

ηηlTK
+

[ηηlL
m

+
8ηηlC1Ln

m2

]
σ2+[5η2

l KL2

2
+

5ηηlC
′

m
+

560ηηlC1(n−m)L

m2

]
(σ2 + 6Kσ2

g),

with constants C1 = q2

(1−q2)3 and C ′ = n−m
n−1 . Choosing

η = Θ(
√
Km), ηl = Θ(

√
m

K
√
Tn

), we have

Ψ = O
( √

n√
m

(f(θ1)− f(θ∗)√
TKm

+
1√

TKm
σ2 +

√
K√
Tm

σ2
g

))
.

Remark 4.11. We present Fed-EF-SGD for simplicity. With
a more complicated analysis, the same asymptotic conver-
gence rate also applies to Fed-EF-AMS.

Remark 4.12. When m = n, Theorem 4.10 reduces to
the O(1/

√
TKn) rate in Corollary 4.9. When q = 0 (no

compression), we can recover the O(
√
K/Tm) rate of full-

precision Fed-SGD under PP (Yang et al., 2021a).

The convergence rate in Theorem 4.10 contains m in the
denominator, instead of n as in Corollary 4.9, which is a
result of larger gradient estimation variance due to client
sampling. Importantly, compared with the O(

√
K/Tm)

rate of the full-precision local SGD under partial participa-
tion, we extract an additional slow-down factor,

√
n/m, for

Fed-EF under partial participation. Hence, Theorem 4.10
points out a potential theoretical limitation of EF that has
not been demonstrated before.

Effect of delayed error compensation. We argue that this
slow-down factor is a consequence of the mechanism of er-
ror feedback as a “stateful” compression scheme. Intuitively,
EF itself can, to a large extent, be regarded as subtly “delay-
ing” the “untransmitted” gradient information (C(∆t)−∆t)

to the next iteration. However, under partial participation,
in round t, the error accumulator of a chosen client actually
contains the latest information from round t − s, where s
can be viewed as the “lag” which follows a geometric distri-
bution with E[s] = n/m. In some sense, this “delayed error
compensation” effect shares a similar spirit to asynchronous
distributed optimization with delayed gradients (e.g., Agar-
wal and Duchi (2011); Lian et al. (2015)). The delayed
error information in Fed-EF under PP is likely to pull the
model away from heading towards a stationary point (i.e.,
slower down the convergence), especially for highly non-
convex loss functions. In Section 5, we propose a simple
strategy called “error restarting” to empirically justify (and
to an extent mitigate) the negative impact of the stale error
compensation on the norm convergence.

5. Experiments
We provide empirical results to show the efficacy of Fed-EF
and justify our theoretical convergence results. More imple-
mentation details and results are placed in Appendix D.

Datasets. We conduct experiments on three popular FL
datasets. The MNIST dataset (LeCun et al., 1998) con-
tains 60000 training examples and 10000 test samples of
28 × 28 gray-scale hand-written digits from 0 to 9. The
FMNIST dataset (Xiao et al., 2017) has the same input size
and train/test split as MNIST, but the samples are fashion
products (e.g., clothes and bags). We describe the CIFAR
dataset and its ResNet experiments in Appendix D.

Training setup. We test n = 200 clients. The clients’ local
data are set to be highly non-iid (heterogeneous). Precisely,
we split the data into 2n = 400 shards where each shard
only contains samples from one class. Then, we randomly
assign each client to shards of data, so that the local data
samples of each client contain at most two classes. We run
T = 100 rounds, where one FL training round is finished
after all the clients perform one epoch of local training. The
local mini-batch size is 32, implying 10 local iterations per
round per client. We uniformly randomly sample m =
20, 100 clients in each round (i.e., participation rate p =
0.1, 0.5 respectively). For all the methods, we tune the
global and local learning rates η, ηl over a fine grid. The
reported results are averaged over 10 independent runs.

Methods and compressors. We compare the following al-
gorithms in our experiments (see Algorithm 2 in Appendix B
for details of the competing methods):

• SGD-full: Fed-SGD with full-precision communica-
tion and two-sided learning rates (Yang et al., 2021a).

• SGD-Stoc: Fed-SGD with unbiased stochastic quan-
tization (QSGD) (Alistarh et al., 2017) without error
feedback, see (2) for the details. This algorithm is
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equivalent to FedPaQ/FedCOM (Reisizadeh et al., 2020;
Haddadpour et al., 2021). For this compressor, we test
parameter b ∈ {1, 2, 4}.

• SGD-sign, SGD-topk, SGD-hv-sign: our proposed
Fed-EF-SGD method with three compressors, respec-
tively. For TopK, we test compression level k ∈
{0.001, 0.01, 0.05}. For heavy-Sign compressor (Defi-
nition 3.2) where Sign is applied after TopK (i.e., a fur-
ther 32x compression over TopK under same sparsity),
we test k ∈ {0.01, 0.05, 0.1}. Note that the Qsparse-
local-sgd (Basu et al., 2019) method is also included in
our experiments as a special case of Fed-EF when the
global learning rate η = 1.

• AMS-full: full-precision adaptive federated learning
with two-sided learning rates (Reddi et al., 2021).

• AMS-Stoc: unbiased stochastic quantization applied to
the client-to-server communication in AMS-full.

• AMS-sign, AMS-optk, AMS-hv-sign: the proposed
Fed-EF-AMS with AMSGrad as the global optimizer
and three compressors respectively.

5.1. Fed-EF Matches Full-Precision FL with
Substantially Less Communication

Firstly, we provide a general evaluation of Fed-EF in practi-
cal FL tasks. We train a ReLU-activated CNN with two
convolutional layers followed by one max-pooling, one
dropout, and two fully-connected layers before the softmax
output. We test each compression strategy with different
compression ratios. To measure the communication cost,
we report the accumulated number of bits transmitted from
the client to the server (averaged over all clients), assuming
that full-precision gradients are 32-bit encoded. In Figure 2
(participation rate p = 0.5) and Figure 3 (p = 0.1), we
present the test accuracy chosen as follows: for each method,
we present the curve with highest compression rate that
achieves the best full-precision test accuracy (within 0.1%);
if the method does not match the full-precision performance,
we present the curve with the highest test accuracy. The ac-
curacy tables with standard deviations and full results with
all compression rates can be found in Appendix D. From
the experiments, we observe the following:

• Both variants of Fed-EF achieve the same performance
as the full-precision methods with substantial commu-
nication reduction, e.g., heavy-Sign and TopK reduce
the communication by more than 100x without losing
accuracy; Sign also provides 30x compression with
matching accuracy as full-precision training.

• In Figure 2, on MNIST, the test accuracy of Stoc (with-
out EF) is slightly lower than Fed-EF-SGD with heavy-
Sign, yet requiring more communication.
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Figure 2. Test accuracy vs. communicated bits on MNIST and
FMNIST, participation rate p = 0.5. “sign”, “topk” and “hv-sign”
are with Fed-EF; “Stoc” is the stochastic quantization without EF.
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Figure 3. Training loss and test accuracy vs. communicated bits
on MNIST and FMNIST datasets, participation rate p = 0.1.

• With a more aggressive participation rate p = 0.1 (Fig-
ure 3), Fed-EF with a proper compressor still performs
on a par with uncompressed methods. We notice that
fixed sign-based compressors (Sign and heavy-Sign)
are outperformed by TopK for Fed-EF-AMS on FM-
NIST. We conjecture that this is because when p is
small, sign-based compressors tend to assign equal
implicit learning rates across coordinates, making the
adaptive method less effective. In contrast, magnitude-
preserving compressors (e.g., TopK and Stoc) may bet-
ter exploit the adaptivity of AMSGrad.
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Figure 4. MLP on MNIST with TopK-0.01 Fed-EF: Squared gra-
dient norm and train loss. 1st column: full participation with
increasing n. 2nd column: partial participation with increasing m.

5.2. Linear Speedup and Delayed Error Compensation

We evaluate the norm convergence to verify the linear
speedup of Fed-EF and the effect of delayed error compen-
sation in partial participation (PP). From Theorem 4.9, un-
der full participation, reaching a δ-stationary point requires
running Θ(1/nδ2) rounds of Fed-EF. When n is fixed, The-
orem 4.10 implies that under PP the speedup should be
super-linear against m, the number of active clients. In
other words, altering m under PP should have more impact
on the convergence than altering n with full participation.

We train an MLP (which is also used for Figure 1) with one
hidden layer with 200 neurons. In Figure 4, we report the
squared gradient norm and the training loss on MNIST under
the same non-iid setting above (the results on FMNIST are
similar). In the full participation case, we implement Fed-
EF-SGD with n = 20, 40, 60, 100; for PP, we fix n = 200
and alter m = 20, 40, 60, 100. According to our theory, we
set η = 0.1

√
n (or 0.1

√
m) and ηl = 0.1. We see that:

1) the convergence of Fed-EF is faster with increasing n
and m, which confirms the speedup property; 2) The gaps
among curves in the PP setting are larger than those with the
full-participation, suggesting that the acceleration brought
by increasing m under PP is more significant than that of
increasing n in full-participation, which is consistent with
the implications of theoretical rates.

Error restarting. To further embody the intuitive impact
of delayed error compensation under PP, we test a simple
strategy called “error restarting” as follows: for each client
i in round t, if the error accumulator was last updated more
than S rounds ago, we simply restart its error accumulator
by setting et,i = 0, which effectively eliminates the error
information that is “too old”. In Figure 5, we report the
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Figure 5. Squared gradient norm of Fed-EF (TopK-0.01) under PP
with error restarting, S = 10. 1st row: logistic regression. 2nd
row: MLP. n = 200, η = 1, ηl = 0.1.

squared gradient norm for training logistic regression and
MLP with non-iid data. We first run Fed-EF for 50 rounds,
and then trigger error restarting with S = 10. As we see,
after the 50-th round, the gradient norm with error restarting
is smaller than that of the standard Fed-EF. These results
illustrate the impact of the stale error compensation of Fed-
EF, and suggest that properly handling this staleness might
be a promising direction for improvement in the future.

6. Conclusion
We study Fed-EF, a federated learning (FL) framework with
biased communication compression and error feedback (EF).
We consider two variants, Fed-EF-SGD and Fed-EF-AMS,
where the global optimizers are the SGD and the adaptive
AMSGrad method, respectively. Theoretically, we demon-
strate the non-convergence issue of directly using biased
compression in FL, and provide a new analysis showing that
Fed-EF achieves linear speedup in the convergence rate as
fast as the state-of-the-art full-precision FL algorithms. In
the literature, the proposed Fed-EF-AMS variant is the first
compressed adaptive federated learning method.

Moreover, we develop a new analysis of EF in distributed
optimization under partial participation (PP). Our result
reveals an additional slow-down factor related to the partici-
pation rate due to the delayed error compensation of the EF
mechanism. Experiments validate that Fed-EF achieves a
significant communication reduction without performance
drop. In summary, our work provides a thorough theoretical
investigation of the error feedback technique in federated
learning and analyzes its convergence under practical FL set-
tings. Our new analysis of partial participation also reveals
a potential theoretical limitation of EF.
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A. Comments on Wang et al. (2022)
We sincerely thank an anonymous reviewer and the Chair for strongly suggesting us to discuss the results in Wang et al.
(2022) https://proceedings.mlr.press/v162/wang22o/wang22o.pdf which also studied compressed
FL with EF. Our paper and Wang et al. (2022) both applied the setup and techniques in Li et al. (2022b) on compressed
distributed adaptive optimization. During the intensive discussion/rebuttal period, it became clear that Wang et al. (2022)
had an error in the critical step of the proof of the main result and it is not obvious how to fix the error. Specifically, in their
equation (C.15), the E[∥△i

t∥2] term on the RHS of the first inequality cannot be bounded by their Lemma C.5, since Lemma
C.5 is for the averaged term ∥△t∥2. Also, their equation (C.16) does not hold because the bound on E[∥eit∥2] is not the one
in their Lemma C.3.

Wang et al. (2022) also included an analysis for EF in FL with partial participation in their appendix. Their rate, however,
does not appear to be meaningful. Precisely, in their Theorem B.2, the convergence rate contains two dominant terms
(of asymptotic order O(1/

√
T )) that sum up to O( 1

ηηlKT + ηηlK). Hence, one term decreasing in m, the number of
participating clients, would result in another term increasing in m. This means there is a region where their convergence rate
decreases with larger m, which contradicts the common expectation that more active clients should improve the convergence.
Also, their rate does not recover the full participation rate when m = n. In contrast, in our Theorem 4.10, the convergence
rate of Fed-EF under PP decreases with larger m, and recovers the full participation result when m = n and recovers the
result for full-precision FL when q = 0.

We again highly appreciate the intensive and detailed technical discussion during the rebuttal phase. As suggested by the
Reviewer, those discussions should be made available to the community.
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B. Compressed FL Algorithms Without Error Feedback

Algorithm 2 A general framework for more algorithms considered in this paper

1: Input: learning rates η, ηl, hyper-parameters β1, β2, ϵ
2: Initialize: central server parameter θ1 ∈ Rd ⊆ Rd; e1,i = 0 the accumulator for each worker;

m0 = 0, v0 = 0, v̂0 = 0

3: for t = 1, . . . , T do
4: parallel for worker i ∈ [n] do:
5: Receive model parameter θt from central server, set θ(1)t,i = θt
6: for k = 1, . . . ,K do
7: Compute stochastic gradient g(k)t,i at θ(k)t,i

8: Local update θ
(k+1)
t,i = θ

(k)
t,i − ηlg

(k)
t,i

9: end for
10: Compute the local model update ∆t,i = θt − θ

(K+1)
t,i

11: Send quantized model update ∆̃t,i = Q(∆t,i) to central server using (2)
12: end parallel
13: Central server do:
14: Global aggregation ∆̃t =

1
n

∑n
i=1 ∆̃t,i

15: Update the global model θt+1 = θt − η∆̃t { Stoc or biased compression with SGD }

16: mt = β1mt−1 + (1− β1)∆̃t { Stoc or biased compression with AMSGrad }

17: vt = β2vt−1 + (1− β2)∆̃
2

t , v̂t = max(vt, v̂t−1)

18: Update the global model θt+1 = θt − η mt√
v̂t+ϵ

19: end for

For completeness, in Algorithm 2, we give the details of more algorithms, such as compressed FL without error feedback
and FL with stochastic quantization. Similar to Fed-EF, we may also design two variants depending on the global optimizer.

When the compressor is biased. In Algorithm 2, if the compressor Q is biased (e.g., Sign and TopK), then the SGD
variant of Algorithm 2 is essentially the algorithm considered in Theorem 4.4, the Fed-SGD method directly using biased
compression without EF.

When the compressor is unbiased, Algorithm 2 becomes the Stoc baseline in our experiments, which directly compresses
the transmitted vector from clients to server by unbiased stochastic quantization Q(·) proposed by Alistarh et al. (2017). For
a vector x ∈ Rd, the operator Q(·) is defined as

QSGD (Stoc): Qb(x) = ∥x∥ · sign(x) · ξ(x, b), (2)

where b ≥ 1 is the number of bits per non-zero entry of the compressed vector Q(x). Suppose 0 ≤ l < 2b−1 is the integer
such that |xi|/∥x∥ is contained in the interval [l/2b−1, (l + 1)/2b−1]. The random variable ξ(x, b) is defined by

ξ(x, b) =

{
l/s, with probability 1− g( |xi|

∥x∥ , b),

(l + 1)/s, otherwise,

with g(a, b) = a · 2b−1 − l for a ∈ [0, 1]. Simply, 0 is always quantized to 0. We can verify that the Stoc quantizer is
unbiased, i.e., E[Q(x)|x] = x. In addition, it also introduces sparsity to the compressed vector in a probabilistic way, with
E[∥Q(x)∥0] ≤ 2b + 2b−1

√
d.

Additionally, we mention that Stoc also has two corresponding variants, one using SGD and one using AMSGrad as the
global optimizer. For the SGD variant, Stoc is equivalent to the FedCOM method in Haddadpour et al. (2021), which is also
the FedPaQ algorithm (Reisizadeh et al., 2020) with tunable global learning rate.
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When there is no compression, for the full-precision algorithms, we simply set ∆̃t,i = ∆t,i in line 11 of Algorithm 2.
For SGD, it is the one studied in Yang et al. (2021a) which is the standard local SGD (McMahan et al., 2017) with global
learning rate. For the AMSGrad variant, it becomes FedAdam (Reddi et al., 2021). Note that (Reddi et al., 2021) used
Adam, while we use AMSGrad (with the max operation) for better stability. Empirically, the performances of these two
options are very similar.

C. Analysis of Biased Compressors (Proof of Proposition 3.3)
The following Proposition C.1 is well-known, and we include the proof for clarity and completeness.
Proposition C.1. For the TopK compressor which selects top k-percent of coordinates, we have q2C = 1 − k. For the
(Group) Sign compressor, q2C = 1−mini∈[M ]

1
di

.

Proof. For TopK, the proof is trivial: since C(x)− x only contain (1− k)d coordinates with lowest magnitudes, we know
∥C(x)− x∥2/∥x2∥ ≤ 1− k.

For Sign, recall that Ii is the index set of block (group) i. By definition, for the i-th block (group) xIi
∈ Rdi , we have

∥C(xIi
)− xIi

∥2 = ∥xIi
− ∥xIi

∥1
di

sign(xIi
)∥2

= ∥xIi∥2 +
∥xIi

∥21
d2i

· di −
2∥xIi

∥21
di

= ∥xIi
∥2 − ∥xIi

∥21/di.

Since we have M blocks, concatenating the blocks leads to

∥C(x)− x∥2 =

M∑
i=1

(
∥xIi

∥2 − ∥xIi
∥21/di

)
= ∥x∥2 −

M∑
i=1

∥xIi
∥21/di

=
(
1−

∑M
i=1 ∥xIi

∥21/di
∥x∥2

)
∥x∥2

≤
(
1− min

i∈[M ]

∥xIi∥21
di∥xIi

∥2
)
∥x∥2 ≤ (1− min

i∈[M ]

1

di
)∥x∥2,

where the last inequality is because l1 norm is lower bounded by l2 norm.

Proposition 3.3 is re-stated here for convenience.
Proposition C.2. The heavy-Sign compressor satisfies Definition 3.1 with q2C = 1−mini∈[M ]

k
di

.

Proof. Recall Definition 3.2 that Ck denotes the TopK compressor and Cs is the Sign operator. The heavy-Sign operator
C(x) = Cs

(
Ck(x)

)
admits

∥Chv(x)− x∥2 = ∥Cs
(
Ck(x)

)
− Ck(x) + Ck(x)− x∥2

= ∥Cs
(
Ck(x)

)
− Ck(x)∥2 + ∥Ck(x)− x∥2,

where the second equality holds because TopK zeros out the unpicked coordinates. By Proposition C.1, we continue to
obtain

∥Chv(x)− x∥2 ≤ (1− min
i∈[M ]

1

di
)∥Ck(x)∥2 + ∥Ck(x)− x∥2

= ∥x∥2 − min
i∈[M ]

1

di
∥Ck(x)∥2 ≤ (1− min

i∈[M ]

k

di
)∥x∥2,

where M is the number of blocks in Sign and we use the fact that ∥Ck(x)∥2 + ∥Ck(x)− x∥2 = ∥x∥2, and ∥C(x)∥ ≥ k∥x∥2
by Proposition C.1.
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D. Implementation Details and More Experiment Results
D.1. Implementation and Parameter Tuning

In our experiments, the clients’ local data are set to be highly non-iid (heterogeneous), where the local data samples of each
client contain at most two classes: we first split the data samples into 2n = 400 shards each containing samples from only
one class; then each client is assigned with two shards uniformly at random.

For TopK, in our implementation, we also apply it in a “layer-wise” manner similar to Sign. Let k denote the proportion
of coordinates selected. For each layer with di parameters, we pick max(1, ⌊kdi⌋) gradient dimensions. The maximum
operator avoids the case where a layer is never updated.

We fine-tune the global and local learning rates for the baseline methods and Fed-EF with each hyper-parameter of the
compressors (i.e., the compression rate). For the AMSGrad optimizer, we set β1 = 0.9, β2 = 0.999 and ϵ = 10−8 as the
recommended default (Reddi et al., 2018). For each algorithm, we tune η over {10−4, 10−3, 10−2, 10−1, 1, 5, 10} and ηl
over {10−4, 10−3, 10−2, 10−1, 1}. We found that the compressed methods usually have the same optimal learning rates as
the full-precision training. The best learning rate combinations achieving the highest test accuracy are given in Table 2.

Fed-EF-SGD Fed-EF-AMS
η ηl η ηl

MNIST 10 10−3 10−3 10−2

FMNIST 1 10−1 10−2 10−1

CIFAR-10 1 10−1 10−3 10−2

Table 2. Optimal global (η) and local (ηl) learning rate combinations to attain highest test accuracy.

D.2. Results on CIFAR and ResNet

The CIFAR-10 (Krizhevsky and Hinton, 2009) dataset includes 50000 natural images of size 32 × 32 each with RGB
channels for training and 10000 images for testing. There are 10 classes, e.g., airplanes, cars, cats, etc. We follow a
standard strategy for CIFAR-10 dataset to pre-process the training images by a random crop, a random horizontal flip,
and a normalization of the pixel values to have zero mean and unit variance. For images in the test set, we only apply the
normalization step.

We present additional experiments to illustrate that Fed-EF is able to match the full-precision training on larger models, on
the task of CIFAR-10 image classification. For this experiment, we train a ResNet-18 (He et al., 2016) network for 200
rounds. The clients’ local data are distributed in the same way as described above which is highly non-iid.

In Figure 6, we plot the test accuracy of Fed-EF with different compressors. Again, we see that Fed-EF (both variants) is
able to attain the same accuracy level as the corresponding full-precision federated learning algorithms. For Fed-EF-SGD,
the compression rate is around 32x for Sign, 100x for TopK and ∼300x for heavy-Sign. For Fed-EF-AMS, the compression
ratio can also be around hundreds. Note that for Fed-EF-AMS, the training curve of TopK-0.001 is not stable. Though it
reaches a high accuracy, we still plot TopK-0.01 in the third column for comparison.

In Figure 7 we report the results for partial participation with p = 0.1. Similarly, for SGD, all three compressors are able to
match the full-precision accuracy, with a significantly reduced number of communicated bits. For Fed-EF-AMS, similar
to the observations on FMNIST, we see that TopK outperforms Sign and heavy-Sign, and achieves the performance of
full-precision method with 100x compression ratio. Sign also performs reasonably well.

In conclusion, our results on CIFAR-10 and ResNet again confirm that compared with standard full-precision FL algorithms,
the proposed Fed-EF scheme can provide significant communication reduction without empirical performance drop in test
accuracy, under both data heterogeneity and partial client participation.
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Figure 6. CIFAR-10 dataset trained by ResNet-18. Test accuracy of Fed-EF with TopK, Sign and heavy-Sign compressors. Participation
rate p = 0.5, non-iid data. 1st row: Fed-EF-SGD. 2nd row: Fed-EF-AMS. The last column presents the corresponding curves that achieve
full-precision accuracy using lowest communication.

10
5

10
10

log. Communicated Bits

10

20

30

40

50

T
e

s
t 

A
c
c
u

ra
c
y
 (

%
)

CIFAR p = 0.1

SGD-full

SGD-sign

SGD-topk-0.001

SGD-topk-0.01

SGD-topk-0.05

10
5

10
10

log. Communicated Bits

10

20

30

40

50

T
e

s
t 

A
c
c
u

ra
c
y
 (

%
) CIFAR p = 0.1

SGD-full

SGD-sign

SGD-hv-sign-0.01

SGD-hv-sign-0.05

SGD-hv-sign-0.1

10
5

10
10

log. Communicated Bits

10

20

30

40

50

T
e

s
t 

A
c
c
u

ra
c
y
 (

%
)

CIFAR p = 0.1

SGD-full

SGD-sign

SGD-topk

SGD-hv-sign

10
5

10
10

log. Communicated Bits

10

20

30

40

50

T
e

s
t 

A
c
c
u

ra
c
y
 (

%
)

CIFAR p = 0.1

AMS-full

AMS-sign

AMS-topk-0.001

AMS-topk-0.01

AMS-topk-0.05

10
5

10
10

log. Communicated Bits

10

20

30

40

50

T
e

s
t 

A
c
c
u

ra
c
y
 (

%
)

CIFAR p = 0.1

AMS-full

AMS-sign

AMS-hv-sign-0.01

AMS-hv-sign-0.05

AMS-hv-sign-0.1

10
6

10
8

10
10

log. Communicated Bits

10

20

30

40

50

T
e

s
t 

A
c
c
u

ra
c
y
 (

%
)

CIFAR p = 0.1

AMS-full

AMS-sign

AMS-topk

AMS-hv-sign

Figure 7. CIFAR-10 dataset trained by ResNet-18. Test accuracy of Fed-EF with TopK, Sign and heavy-Sign compressors. Participation
rate p = 0.1, non-iid data. 1st row: Fed-EF-SGD. 2nd row: Fed-EF-AMS. The last column presents the corresponding curves that achieve
the full-precision accuracy using lowest communication.
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D.3. More Experiment Results on MNIST and FMNIST

We provide the complete set of experimental results on each method under various compression rates. In Table 3 - Table 6,
for completeness we report the average test accuracy at the end of training and the standard deviations, corresponding to the
curves (compression parameters) in Figure 2 and Figure 3. Figure 8 to Figure 11 present the training loss and test accuracy
under participation rate p = 0.5, and Figure 12 to Figure 15 report the loss and accuracy results for p = 0.1. All the results
suggest that Fed-EF is able to perform on a par with full-precision FL with much less communication cost.

Fed-EF-SGD No EF
Sign TopK Hv-Sign Stoc Full-precision

MNIST 90.87 (±0.84) 91.04 (±1.05) 91.18 (±1.10) 90.16 (±0.96) 90.85 (±0.89)
FMNIST 71.13 (±0.68) 71.16 (±0.77) 71.07 (±0.83) 71.26 (±0.87) 71.20 (±0.71)

Table 3. Test accuracy (%) with client participation rate p = 0.5, of Fed-EF-SGD with Sign, TopK and heavy-Sign compressor and Stoc
(stochastic quantization) without EF. The compression parameters (i.e., k and b) of the compressors are consistent with Figure 2.

Fed-EF-AMS No EF
Sign TopK Hv-Sign Stoc Full-precision

MNIST 92.32 (±0.98) 92.74 (±0.84) 91.77 (±1.22) 92.36 (±0.93) 92.23 (±0.73)
FMNIST 71.35 (±0.61) 71.90 (±0.78) 70.73(±1.03) 71.94 (±0.95) 71.97 (±0.86)

Table 4. Test accuracy (%) with client participation rate p = 0.5, of Fed-EF-AMS with Sign, TopK and heavy-Sign compressor and Stoc
(stochastic quantization) without EF. The compression parameters (i.e., k and b) of the compressors are consistent with Figure 2.

Fed-EF-SGD No EF
Sign TopK Hv-Sign Stoc Full-precision

MNIST 90.15 (±1.06) 90.61 (±0.93) 90.42 (±1.09) 90.27 (±1.18) 90.22 (±0.82)
FMNIST 67.69 (±0.73) 67.47 (±0.80) 67.72 (±0.55) 67.71 (±0.78) 67.50 (±0.85)

Table 5. Test accuracy (%) with client participation rate p = 0.1, of Fed-EF-SGD with Sign, TopK and heavy-Sign compressor and Stoc
(stochastic quantization) without EF. The compression parameters (i.e., k and b) of the compressors are consistent with Figure 3.

Fed-EF-AMS No EF
Sign TopK Hv-Sign Stoc Full-precision

MNIST 88.67 (±1.11) 88.97 (±1.16) 77.49 (±1.53) 88.76 (±1.22) 89.05 (±1.04)
FMNIST 57.60 (±2.34) 64.09 (±0.91) 50.77(±2.87) 64.35 (±1.06) 64.18 (±0.90)

Table 6. Test accuracy (%) with client participation rate p = 0.1, of Fed-EF-AMS with Sign, TopK and heavy-Sign compressor and Stoc
(stochastic quantization) without EF. The compression parameters (i.e., k and b) of the compressors are consistent with Figure 3.
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Figure 8. Training loss of Fed-EF on MNIST dataset trained by CNN. “sign”, “topk” and “hv-sign” are applied with Fed-EF, while “Stoc”
is the stochastic quantization without EF. Participation rate p = 0.5, non-iid data. 1st row: Fed-EF-SGD. 2nd row: Fed-EF-AMS.
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Figure 9. Training loss of Fed-EF on FMNIST dataset trained by CNN. “sign”, “topk” and “hv-sign” are applied with Fed-EF, while
“Stoc” is the stochastic quantization without EF. Participation rate p = 0.5, non-iid data. 1st row: Fed-EF-SGD. 2nd row: Fed-EF-AMS.
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Figure 10. Test accuracy of Fed-EF on MNIST dataset trained by CNN. “sign”, “topk” and “hv-sign” are applied with Fed-EF, while
“Stoc” is the stochastic quantization without EF. Participation rate p = 0.5, non-iid data. 1st row: Fed-EF-SGD. 2nd row: Fed-EF-AMS.
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Figure 11. Test accuracy of Fed-EF on FMNIST dataset trained by CNN. “sign”, “topk” and “hv-sign” are applied with Fed-EF, while
“Stoc” is the stochastic quantization without EF. Participation rate p = 0.5, non-iid data. 1st row: Fed-EF-SGD. 2nd row: Fed-EF-AMS.
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Figure 12. Training loss of Fed-EF on MNIST dataset trained by CNN. “sign”, “topk” and “hv-sign” are applied with Fed-EF, while “Stoc”
is the stochastic quantization without EF. Participation rate p = 0.1, non-iid data. 1st row: Fed-EF-SGD. 2nd row: Fed-EF-AMS.
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Figure 13. Training loss of Fed-EF on FMNIST dataset trained by CNN. “sign”, “topk” and “hv-sign” are applied with Fed-EF, while
“Stoc” is the stochastic quantization without EF. Participation rate p = 0.1, non-iid data. 1st row: Fed-EF-SGD. 2nd row: Fed-EF-AMS.
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Figure 14. Test accuracy of Fed-EF on MNIST dataset trained by CNN. “sign”, “topk” and “hv-sign” are applied with Fed-EF, while
“Stoc” is the stochastic quantization without EF. Participation rate p = 0.1, non-iid data. 1st row: Fed-EF-SGD. 2nd row: Fed-EF-AMS.
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Figure 15. Test accuracy of Fed-EF on FMNIST dataset trained by CNN. “sign”, “topk” and “hv-sign” are applied with Fed-EF, while
“Stoc” is the stochastic quantization without EF. Participation rate p = 0.1, non-iid data. 1st row: Fed-EF-SGD. 2nd row: Fed-EF-AMS.
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Figure 16. Training loss and test accuracy vs. communicated bits on MNIST and FMNIST datasets, participation rate p = 0.5. “sign”,
“topk” and “hv-sign” are applied with Fed-EF, while “Stoc” is the stochastic quantization without EF.
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Figure 17. Training loss and test accuracy vs. communicated bits on MNIST and FMNIST datasets, participation rate p = 0.1. “sign”,
“topk” and “hv-sign” are applied with Fed-EF, while “Stoc” is the stochastic quantization without EF.
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E. Compression Discrepancy
In our theoretical analysis for Fed-EF, Assumption 4.3 is needed, which states that E[∥ 1

n

∑n
i=1 C

(
∆t,i + et,i

)
−

1
n

∑n
i=1(∆t,i + et,i)∥2] ≤ q2AE[∥ 1

n

∑n
i=1(∆t,i + et,i)∥2] for some qA < 1 during training. In the following, we jus-

tify this assumption to demonstrate how it holds in practice. It is worth mentioning that a similar condition is was assumed
in Haddadpour et al. (2021) for the analysis of FL with unbiased compression. To study sparsified SGD, (Alistarh et al.,
2018) also used a similar and stronger (uniform bound instead of in expectation) analytical assumption. As a result, our
analysis and theoretical results are also valid under their assumption.

E.1. Simulated Data

We first conduct a simulation to investigate how the two compressors, TopK and Sign, affect qA. In our presented results,
for conciseness we use n = 5 clients and model dimensionality d = 1100. Similar conclusions hold for much larger n and d.
We simulate two types of gradients following normal distribution and Laplace distribution (more heavy-tailed), respectively.
Examples of the simulated gradients are visualized in Figure 18 and Figure 19. To mimic non-iid data, we assume that
each client has some strong signals (large gradients) in some coordinates, and we scale those gradients by a scaling factor
s = 2, 10, 100. Conceptually, larger s represents higher data heterogeneity.
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Figure 18. The simulated gradients of 5 heterogeneous clients, from N(0, γ2) with γ = 0.01. The gradient on each distinct client is
scaled by s = 2, 10, 100 (left, mid, right), respectively. Larger s implies higher data heterogeneity.
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Figure 19. The simulated gradients of 5 heterogeneous clients, from Lap(0, λ) with λ = 0.01. The x-axis is the dimension. The gradient
on each distinct client is scaled by s = 2, 10, 100 (left, mid, right), respectively. Wee the gradients have heavier tail than normal
distribution. Larger s implies higher data heterogeneity.
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Figure 20. The compression coefficient qA in Assumption 4.3 on simulated gradients. TopK is applied with sparsity k = 0.1. Left:
Gaussian distribution. Right: Laplace distribution. q2A is computed by q = ∥δ(x)−x∥2

∥x∥2 where δ(x) = 1
n

∑n
i=1 C(∆t,i + et,i) and

x = 1
n

∑n
i=1(∆t,i + et,i). The dashed curves are respectively the compression coefficients q2C from Definition 3.1, which is calculated

by replacing δ(x) = C( 1
n

∑n
i=1 ∆t,i + et,i). We see that in all cases, qA < 1.

We apply the TopK-0.1 and Sign compressor in Definition 3.1 to the simulated gradients, and compute the averaged q2A in
Figure 20 over 105 independent runs. The dashed curves are respectively the “ideal” compression coefficients qC such that
E[∥C

(
1
n

∑n
i=1 ∆t,i + et,i

)
− 1

n

∑n
i=1(∆t,i + et,i)∥2] ≤ q2CE[∥ 1

n

∑n
i=1(∆t,i + et,i)∥2] from Definition 3.1. We see that in

all cases, qA is indeed less than 1. This still holds even when the data heterogeneity increases to as large as 100.

E.2. Real-world Data

We report the empirical qA values when training CNN on MNIST and FMNIST datasets. The experimental setup is the
same as in Section 5. We present the result in Figure 21 with η = 1, ηl = 0.01 under the same heterogeneous setting where
client data are highly non-iid. The plots for other learning rate combinations and iid data are similar. In particular, we see
for both compressors and both datasets, the empirical qA is well-bounded below 1 throughout the training process.
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Figure 21. The compression coefficient qA in Assumption 4.3 in our experiments (Section 5) for CNN trained on MNIST and FMNIST
dataset, averaged over multiple runs. η = 1, ηl = 0.01, non-iid client data distribution. Left: Sign compression. Mid: TopK compression
with k = 0.01. Right: TopK compression with k = 0.1.
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F. Proof of Convergence Results
We first present the proof for the more complicated Fed-EF-AMS in Section F.1, and the proof of Fed-EF-SGD would follow
in Section F.2. Section F.3 contains intermediary lemmas, Section F.4 provides the analysis of Fed-EF in partial participation
and Section F.5 proves the rate of FL directly using biased compression.

F.1. Proof of Theorem 4.8: Fed-EF-AMS

Proof. We first clarify some notations. At round t, let the full-precision local model update of the i-th worker be ∆t,i,

the error accumulator be et,i, and denote ∆̃t,i = C(gt,i + et,i). Define ∆̄t =
1
n

∑n
i=1 ∆t,i, ∆̃t =

1
n

∑n
i=1 ∆̃t,i and ēt =

1
n

∑n
i=1 et,i. The second moment computed by the compressed local model updates is denoted as vt = β2vt−1+(1−β2)∆̃

2

t ,
and v̂t = max{v̂t−1, vt}. Also, the first order moving average sequence

mt = β1mt−1 + (1− β1)∆̃t and m′
t = β1m

′
t−1 + (1− β1)∆̄t,

where m′
t represents the first moment moving average sequence using the uncompressed updates. By construction we have

m′
t = (1− β1)

∑t
τ=1 β

t−τ
1 ∆̄τ .

Our proof will use the following auxiliary sequences: for round t = 1, ..., T ,

Et+1 := (1− β1)

t+1∑
τ=1

βt+1−τ
1 ēτ ,

θ′t+1 := θt+1 − η
Et+1√
v̂t + ϵ

.

Then, we can write the evolution of θ′t as

θ′t+1 = θt+1 − η
Et+1√
v̂t + ϵ

= θt − η
(1− β1)

∑t
τ=1 β

t−τ
1 ∆̃τ + (1− β1)

∑t+1
τ=1 β

t+1−τ
1 ēτ√

v̂t + ϵ

= θt − η
(1− β1)

∑t
τ=1 β

t−τ
1 (∆̃τ + ēτ+1) + (1− β)βt

1ē1√
v̂t + ϵ

= θt − η
(1− β1)

∑t
τ=1 β

t−τ
1 ēτ√

v̂t + ϵ
− η

m′
t√

v̂t + ϵ

= θt − η
Et√

v̂t−1 + ϵ
− η

m′
t√

v̂t + ϵ
+ η(

1√
v̂t−1 + ϵ

− 1√
v̂t + ϵ

)Et

(a)
= θ′t − η

m′
t√

v̂t + ϵ
+ η(

1√
v̂t−1 + ϵ

− 1√
v̂t + ϵ

)Et

:= θ′t − η
m′

t√
v̂t + ϵ

+ ηDtEt,

where (a) uses the fact of error feedback that for every i ∈ [n], ∆̃t,i + et+1,i = ∆t,i + et,i, and et,1 = 0 at initialization.
Further define the virtual iterates:

xt+1 := θ′t+1 − η
β1

1− β1

m′
t√

v̂t + ϵ
,
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which follows the recurrence:

xt+1 = θ′t+1 − η
β1

1− β1

m′
t√

v̂t + ϵ

= θ′t − η
m′

t√
v̂t + ϵ

− η
β1

1− β1

m′
t√

v̂t + ϵ
+ ηDtEt

= θ′t − η
β1m

′
t−1 + (1− β1)∆̄t +

β2
1

1−β1
m′

t−1 + β1∆̄t
√
v̂t + ϵ

+ ηDtEt

= θ′t − η
β1

1− β1

m′
t−1√

v̂t + ϵ
− η

∆̄t√
v̂t + ϵ

+ ηDtEt

= xt − η
∆̄t√
v̂t + ϵ

+ η
β1

1− β1
Dtm

′
t−1 + ηDtEt.

The general idea is to study the convergence of the sequence xt, and show that the difference between xt and θt (of interest)
is small. First, by the smoothness Assumption 4.1, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2.

Taking expectation w.r.t. the randomness at round t and re-arranging terms, we obtain

E[f(xt+1)]− f(xt)

≤ −ηE
[〈
∇f(xt),

∆̄t√
v̂t + ϵ

〉]
+ ηE

[〈
∇f(xt),

β1

1− β1
Dtm

′
t−1 +DtEt

〉]
+

η2L

2
E
[
∥ ∆̄t√

v̂t + ϵ
− β1

1− β1
Dtm

′
t−1 −DtEt∥2

]
= −ηE

[〈
∇f(θt),

∆̄t√
v̂t + ϵ

〉]
︸ ︷︷ ︸

I

+ ηE
[〈
∇f(xt),

β1

1− β1
Dtm

′
t−1 +DtEt

〉]
︸ ︷︷ ︸

II

+
η2L

2
E
[
∥ ∆̄t√

v̂t + ϵ
− β1

1− β1
Dtm

′
t−1 −DtEt∥2

]
︸ ︷︷ ︸

III

+ ηE
[〈
∇f(θt)−∇f(xt),

∆̄t√
v̂t + ϵ

〉]
︸ ︷︷ ︸

IV

, (3)

Bounding term I. We have

I = −ηE
[〈
∇f(θt),

∆̄t√
v̂t−1 + ϵ

〉]
− ηE

[〈
∇f(θt), (

1√
v̂t + ϵ

− 1√
v̂t−1 + ϵ

)∆̄t

〉]
≤ −ηE

[〈
∇f(θt),

∆̄t√
v̂t−1 + ϵ

〉]
+ ηηlKG2E[∥Dt∥1], (4)

where we use Assumption 4.7 on the stochastic gradient magnitude. The last inequality holds by simply bounding the
aggregated local model update by

∥∆̄t∥ ≤ 1

n

n∑
i=1

∥ηl
K∑

k=1

g
(k)
t,i ∥ ≤ ηlKG,

and the fact that for any vector in Rd, the l2 norm is upper bounded by the l1 norm.
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Regarding the first term in (4), we have

− ηE
[
⟨∇f(θt),

∆̄t√
v̂t−1 + ϵ

]
= −ηE

[
⟨ ∇f(θt)√

v̂t−1 + ϵ
, ∆̄t − ηlK∇f(θt) + ηlK∇f(θt)⟩

]
= −ηηlKE

[∥∇f(θt)∥2√
v̂t−1 + ϵ

]
+ ηE

[
⟨ ∇f(θt)√

v̂t−1 + ϵ
,−∆̄t + ηlK∇f(θt)⟩

]
(a)

≤ − ηηlK√
4η2

l (1+q2)3K2

(1−q2)2 G2 + ϵ
E
[
∥∇f(θt)∥2

]
+ η

〈 ∇f(θt)√
v̂t−1 + ϵ

,E
[
− 1

n

n∑
i=1

K∑
k=1

ηlg
(k)
t,i + ηlK∇f(θt)

]〉
(b)
= − ηηlK√

4η2
l (1+q2)3K2

(1−q2)2 G2 + ϵ
E
[
∥∇f(θt)∥2

]

+ η
〈 √

ηl∇f(θt)

(v̂t−1 + ϵ)1/4
,E

[ √
ηl

n(v̂t−1 + ϵ)1/4
(−

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i ) +K∇f(θt))

]〉
︸ ︷︷ ︸

V

,

where (a) uses Lemma F.7 and (b) is due to Assumption 4.2 that g(k)t,i is an unbiased estimator of ∇fi(θ
(k)
t,i ). To bound term

V, we use the similar proof structure as in the proof of Lemma F.3. Specifically, we have

V ≤ ηlK

2
√
ϵ
E
[
∥∇f(θt)∥2

]
+

ηl
2K

√
ϵ
E
[
∥ 1
n

n∑
i=1

K∑
k=1

(∇fi(θ
(k)
t,i )−∇fi(θt))∥2

]
≤ ηlK

2
√
ϵ
E
[
∥∇f(θt)∥2

]
+

ηl
2nK

√
ϵ
E
[ n∑
i=1

∥
K∑

k=1

(∇fi(θ
(k)
t,i )−∇fi(θt))∥2

]
≤ ηlK

2
√
ϵ
E
[
∥∇f(θt)∥2

]
+

ηl
2n

√
ϵ
E
[ n∑
i=1

K∑
k=1

∥∇fi(θ
(k)
t,i )−∇fi(θt)∥2

]
≤ ηlK

2
√
ϵ
E
[
∥∇f(θt)∥2

]
+

ηlL
2

2n
√
ϵ
E
[ n∑
i=1

K∑
k=1

∥θ(k)t,i − θt∥2
]
,

where the last inequality is a result of the L-smoothness assumption on the loss function fi(x). Applying Lemma F.1 to the
consensus error, we can further bound term V by

V ≤ ηlK

2
√
ϵ
E
[
∥∇f(θt)∥2

]
+

ηlKL2

2
√
ϵ

[
5η2l K(σ2 + 6Kσ2

g) + 30η2l K
2E[∥∇f(θt)∥2]

]
≤ 47ηlK

64
√
ϵ
E
[
∥∇f(θt)∥2

]
+

5η3l K
2L2

2
√
ϵ

(σ2 + 6Kσ2
g),

when we choose ηl ≤ 1
8KL . Further, if we set ηl ≤

√
15(1−q2)

√
ϵ

14(1+q2)1.5KG , we have

4η2l (1 + q2)3K2

(1− q2)2
G2 + ϵ ≤ 60

196
ϵ+ ϵ =

64

49
ϵ.

Hence, as 47
64 < 3

4 , we can establish from (4) that

I ≤ −ηηlK

8
√
ϵ
E
[
∥∇f(θt)∥2

]
+

5ηη3l K
2L2

2
√
ϵ

(σ2 + 6Kσ2
g) + ηηlKG2E[∥Dt∥1]. (5)
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Bounding term II. By Lemma F.6, we know that ∥Et∥ ≤ 2ηlqKG
1−q2 , and by Lemma F.4, ∥m′

t∥ ≤ ηlKG. Thus, we have

II ≤ η
(
E
[
⟨∇f(θt),

β1

1− β1
Dtm

′
t−1 +DtEt⟩

]
+ E

[
⟨∇f(xt)−∇f(θt),

β1

1− β1
Dtm

′
t−1 +DtEt⟩

])
≤ ηE

[
∥∇f(θt)∥∥

β1

1− β1
Dtm

′
t−1 +DtEt∥

]
+ η2 LE

[
∥

β1

1−β1
m′

t−1 + Et√
v̂t−1 + ϵ

∥∥ β1

1− β1
Dtm

′
t−1 +DtEt∥

]
≤ ηηlC1KG2E[∥Dt∥1] +

η2η2l C
2
1LK

2G2

√
ϵ

E[∥Dt∥1], (6)

where C1 := β1

1−β1
+ 2q

1−q2 , and the second inequality is due to the smoothness of f(θ).

Bounding term III. This term can be bounded as follows:

III ≤ η2LE
[
∥ ∆̄t√

v̂t + ϵ
∥2
]
+ η2LE

[
∥ β1

1− β1
Dtm

′
t−1 −DtEt∥2

]
≤ η2L

ϵ
E
[
∥∆̄t∥2

]
+ η2LE

[
∥Dt(

β1

1− β1
m′

t−1 − Et)∥2
]

≤ η2L(2η2l K
2 + 120η4l K

4L2)

ϵ
E
[
∥∇f(θt)∥2

]
+

4η2η2l KL

nϵ
σ2

+
20η2η4l K

3L3

ϵ
(σ2 + 6Kσ2

g) + η2η2l C
2
1LK

2G2E[∥Dt∥2], (7)

where we apply Lemma F.2 and use similar argument as in bounding term II.

Bounding term IV. Lastly, for term IV, we have for some ρ > 0,

IV = ηE
[〈
∇f(θt)−∇f(xt),

∆̄t√
v̂t−1 + ϵ

〉]
+ ηE

[〈
∇f(θt)−∇f(xt), (

1√
v̂t + ϵ

− 1√
v̂t−1 + ϵ

)∆̄t

〉]
(a)

≤ ηρ

2ϵ
E
[
∥∆̄t∥2

]
+

η

2ρ
E
[
∥∇f(θt)−∇f(xt)∥2

]
+ η2LE

[
∥

β1

1−β1
m′

t−1 + Et√
v̂t−1 + ϵ

∥∥Dt∆t∥
]

(b)

≤ ρη(η2l K
2 + 60η4l K

4L2)

ϵ
E
[
∥∇f(θt)∥2

]
+

2ρηη2l K

ϵn
σ2 +

10ρηη4l K
3L2

ϵ
(σ2 + 6Kσ2

g)

+
η3L2

2ρ
E
[
∥

β1

1−β1
m′

t−1 + Et√
v̂t−1 + ϵ

∥2
]
+

η2η2l C1LK
2G2

√
ϵ

E[∥Dt∥]

≤ ρηη2l K
2(60η2l K

2L2 + 1)

ϵ
E
[
∥∇f(θt)∥2

]
+

2ρηη2l K

ϵn
σ2 +

10ρηη4l K
3L2

ϵ
(σ2 + 6Kσ2

g)

+
η3L2

ρϵ

[ β2
1

(1− β1)2
E
[
∥m′

t∥2
]
+ E

[
∥Et∥2

]]
+

η2η2l C1LK
2G2

√
ϵ

E[∥Dt∥1], (8)

where (a) is a consequence of Young’s inequality (ρ will be specified later) and the smoothness Assumption 4.1, and (b) is
based on Lemma F.2.

After we have bounded all four terms in (3), the next step is to gather the ingredients by taking the telescope sum over
t = 1, ..., T . For the ease of presentation, we first do this for the third term in (8). According to Lemma F.4 and Lemma F.6,
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summing over t = 1, ..., T , we conclude

T∑
t=1

η3L2

ρϵ

[ β2
1

(1− β1)2
E[∥m′

t∥2] + E[∥Et∥2]
]

≤ η3β2
1L

2

ρ(1− β1)2ϵ

[
2η2l K

2(60η2l K
2L2 + 1)

T∑
t=1

E
[
∥∇f(θt)∥2

]
+ 4

Tη2l K

n
σ2 + 20Tη4l K

3L2(σ2 + 6Kσ2
g)
]

+
η3q2L2

ρ(1− q2)2ϵ

[
8η2l K

2(60η2l K
2L2 + 1)

T∑
t=1

E
[
∥∇f(θτ )∥2

]
+

16Tη2l K

n
σ2 + 80Tη4l K

3L2(σ2 + 6Kσ2
g)
]

≤ 2η3η2l C2K
2L2

ρϵ
(60η2l K

2L2 + 1)

T∑
t=1

E
[
∥∇f(θt)∥2

]
+

4Tη3η2l C2KL2

ρnϵ
σ2 +

20Tη3η4l C2K
3L4

ρϵ
(σ2 + 6Kσ2

g), (9)

with C2 :=
β2
1

(1−β1)2
+ 4q2

(1−q2)2 .

Putting together. We are in the position to combine pieces together to get our final result by integrating (5), (6), (7), (8) and
(9) into (3) and taking the telescoping sum over t = 1, ..., T . After re-arranging terms, when ηl ≤ min

{
1

8KL ,
(1−q2)

√
ϵ

4(1+q2)1.5KG

}
,

we have

E[f(xT+1)− f(x1)]

≤ −ηηlK

8
√
ϵ

T∑
t=1

E
[
∥∇f(θt)∥2

]
+

5Tηη3l K
2L2

2
√
ϵ

(σ2 + 6Kσ2
g) + ηηlKG2

T∑
t=1

E[∥Dt∥1]

+ ηηlC1KG2
T∑

t=1

E[∥Dt∥1] +
η2η2l C

2
1LK

2G2

√
ϵ

T∑
t=1

E[∥Dt∥1]

+
η2L(2η2l K

2 + 120η4l K
4L2)

ϵ

T∑
t=1

E
[
∥∇f(θt)∥2

]
+

4Tη2η2l KL

nϵ
σ2

+
20Tη2η4l K

3L3

ϵ
(σ2 + 6Kσ2

g) + η2η2l C
2
1LK

2G2
T∑

t=1

E[∥Dt∥2]

+
ρηη2l K

2(60η2l K
2L2 + 1)

ϵ

T∑
t=1

E
[
∥∇f(θt)∥2

]
+

2Tρηη2l K

ϵn
σ2 +

10Tρηη4l K
3L2

ϵ
(σ2 + 6Kσ2

g)

+
2η3η2l C2K

2L2

ρϵ
(60η2l K

2L2 + 1)

T∑
t=1

E
[
∥∇f(θt)∥2

]
+

4Tη3η2l C2KL2

ρnϵ
σ2

+
20Tη3η4l C2K

3L4

ρϵ
(σ2 + 6Kσ2

g) +
η2η2l C1LK

2G2

√
ϵ

T∑
t=1

E[∥Dt∥1]

= Υ1 ·
T∑

t=1

E
[
∥∇f(θt)∥2

]
+Υ2 · (σ2 + 6Kσ2

g) + Υ3 · σ2

+Υ4 ·
T∑

t=1

E[∥Dt∥1] + η2η2l C
2
1LK

2G2
T∑

t=1

E[∥Dt∥2], (10)
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where

Υ1 = −ηηlK

8
√
ϵ

+
η2L(2η2l K

2 + 120η4l K
4L2)

ϵ

+
ρηη2l K

2(60η2l K
2L2 + 1)

ϵ
+

2η3η2l C2K
2L2

ρϵ
(60η2l K

2L2 + 1)

≤ −ηηlK

8
√
ϵ

+
2η2η2l K

2L

ϵ
+

120η2η4l K
4L3

ϵ
+

2ρηη2l K
2

ϵ
+

4η3η2l C2K
2L2

ρϵ
, (11)

Υ2 =
5Tηη3l K

2L2

2
√
ϵ

+
20Tη2η4l K

3L3

ϵ
+

10Tρηη4l K
3L2

ϵ
+

20Tη3η4l C2K
3L4

ρϵ
,

Υ3 =
4Tη2η2l KL

nϵ
+

2Tρηη2l K

nϵ
+

4Tη3η2l C2KL2

ρnϵ
,

Υ4 = ηηl(C1 + 1)KG2 +
η2η2l C

2
1LK

2G2

√
ϵ

+
η2η2l C1LK

2G2

√
ϵ

,

where to bound Υ1 we use the fact that ηl ≤ 1
8KL . We now look at the upper bound (11) of Υ1 which contains 5 terms. In

the following, we choose ρ ≡ Lη in (8) and (9). Suppose ϵ < 1. Then, when the local learning rate satisfies

ηl ≤
1

K
min

{ 1

8L
,

(1− q2)
√
ϵ

4(1 + q2)1.5G
,

√
ϵ

128ηL
,

√
ϵ

256C2ηL
,
( √

ϵ

7680η

)1/3 1
L

}
≤

√
ϵ

8KL
min

{ 1√
ϵ
,
2(1− q2)L

(1 + q2)1.5G
,

1

max{16, 32C2}η
,

1

3η1/3

}
,

each of the last four terms can be bounded by ηηlK
64

√
ϵ
. Thus, under this learning rate setting,

Υ1 ≤ −ηηlK

16
√
ϵ
.

Taking the above into (10), we arrive at

ηηlK

16
√
ϵ

T∑
t=1

E
[
∥∇f(θt)∥2

]
≤ f(x1)− E[f(xT+1)] + Υ2 · (σ2 + 6Kσ2

g)

+ Υ3 · σ2 +Υ4 ·
d√
ϵ
+

η2η2l C
2
1LK

2G2d

ϵ
,

where Lemma F.8 on the difference sequence Dt is applied. Consequently, we have

1

T

T∑
t=1

E
[
∥∇f(θt)∥2

]
≲

f(x1)− E[f(xT+1)]

ηηlTK
+ Υ̃2 · (σ2 + 6Kσ2

g) + Υ̃3 · σ2

+
(C1 + 1)G2d

T
√
ϵ

+
2ηηlC

2
1LKG2d

Tϵ
+

ηηlC
2
1LKG2d

Tϵ

≤ f(x1)− E[f(xT+1)]

ηηlTK
+ Υ̃2 · (σ2 + 6Kσ2

g) + Υ̃3 · σ2

+
(C1 + 1)G2d

T
√
ϵ

+
3ηηlC

2
1LKG2d

Tϵ
,

where we make simplification at the second inequality using the fact that C1 ≤ C2
1 since C1 ≥ 1. Moreover, Υ̃2 and Υ̃3 is

defined as (recall that we have chosen ρ ≡ Lη)

Υ̃2 =
5η2l KL2

2
√
ϵ

+
20ηη3l K

2L3

ϵ
+

10ηη3l K
2L3

ϵ
+

20ηη3l C2K
2L3

ϵ

≤ 5η2l KL2

2
√
ϵ

+
ηη3l (30 + 20C2)K

2L3

ϵ
,

Υ̃3 =
4ηηlL

nϵ
+

2ηηlL

nϵ
+

4ηηlC2L

nϵ
≤ ηηlL(6 + 4C2)

nϵ
.
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Finally, to connect the virtual iterates xt with the actual iterates θt, note that x1 = θ1, and f(xT+1) ≥ f(θ∗) since
θ∗ = argminθ f(θ). Replacing Υ̃2 and Υ̃3 with above upper bounds, this eventually leads to the bound

1

T

T∑
t=1

E
[
∥∇f(θt)∥2

]
≲

f(θ1)− f(θ∗)

ηηlTK
+

[5η2l KL2

2
√
ϵ

+
ηη3l (30 + 20C2

1 )K
2L3

ϵ

]
(σ2 + 6Kσ2

g)

+
ηηlL(6 + 4C2

1 )

nϵ
σ2 +

(C1 + 1)G2d

T
√
ϵ

+
3ηηlC

2
1LKG2d

Tϵ
,

which gives the desired result. Here we use the fact that C2 ≤ C2
1 . This completes the proof.

F.2. Proof of Theorem 4.6: Fed-EF-SGD

Proof. Now, we analyze the variant of Fed-EF with SGD as the central server update rule. The proof follows the same
routine as the one for Fed-EF-AMS, but is simpler since there are no moving average terms that need to be handled. Note
that for this algorithm, we do not need Assumption 4.7 that the stochastic gradients are uniformly bounded.

For Fed-EF-SGD, consider the virtual sequence

xt+1 = θt+1 − ηēt+1

= θt − η∆̃t − ηēt+1

= θt −
η

n

n∑
i=1

(∆̃t,i + et+1,i)

= θt − η∆̄t − ηēt

= xt − η∆̄t, (12)

where the second last equality follows from the update rule that ∆̃t,i + et+1,i = ∆t,i + et,i for all i ∈ [n] and t ∈ [T ].

By the smoothness Assumption 4.1, we have

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2.

Taking expectation w.r.t. the randomness at round t gives

E[f(xt+1)]− f(xt)

≤ −ηE
[
⟨∇f(xt), ∆̄t⟩

]
+

η2L

2
E
[
∥∆̄t∥2

]
= −ηE

[
⟨∇f(θt), ∆̄t⟩

]
+

η2L

2
E
[
∥∆̄t∥2

]
+ ηE

[
⟨∇f(θt)−∇f(xt), ∆̄t⟩

]
. (13)

We can bound the first term in (13) using similar technique as bounding term I in the proof of Fed-EF-AMS. Specifically,
we have

−ηE
[
⟨∇f(θt), ∆̄t⟩

]
= −ηE

[
⟨∇f(θt), ∆̄t − ηlK∇f(θt) + ηlK∇f(θt)⟩

]
= −ηηlKE

[
∥∇f(θt)∥2

]
+ ηE

[
⟨∇f(θt),−∆̄t + ηlK∇f(θt)⟩

]
.

With ηl ≤ 1
8KL , applying Lemma F.3, we have

−ηE
[
⟨∇f(θt), ∆̄t⟩

]
≤ −ηηlKE

[
∥∇f(θt)∥2

]
+

3ηηlK

4
E
[
∥∇f(θt)∥2

]
+

5ηη3l K
2L2

2
(σ2 + 6Kσ2

g)

= −ηηlK

4
E
[
∥∇f(θt)∥2

]
+

5ηη3l K
2L2

2
(σ2 + 6Kσ2

g).
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The second term in (13) can be bounded using Lemma F.2 as

η2L

2
E
[
∥∆̄t∥2

]
≤ η2η2l K

2L(60η2l K
2L2 + 1)E

[
∥∇f(θt)∥2

]
+

2η2η2l KL

n
σ2 + 10η2η4l K

3L3(σ2 + 6Kσ2
g).

The last term in (13) can be bounded similarly as VI in Fed-EF-AMS by

ηE
[
⟨∇f(θt)−∇f(xt), ∆̄t⟩

]
≤ ηρ

2
E
[
∥∆̄t∥2

]
+

η

2ρ
E
[
∥∇f(θt)−∇f(xt)∥2

]
(a)

≤ η2

2
E
[
∥∆̄t∥2

]
+

η2L2

2
E
[
∥ēt∥2

]
(14)

(b)

≤ η2L

2

[
2η2l K

2(60η2l K
2L2 + 1)E

[
∥∇f(θt)∥2

]
+ 4

η2l K

n
σ2 + 20η4l K

3L2(σ2 + 6Kσ2
g)
]

+
η2L

2

[4q2η2l K2(60η2l K
2L2 + 1)

1− q2

t∑
τ=1

(
1 + q2

2
)t−τE

[
∥∇f(θτ )∥2

]
+

16η2l q
2K

(1− q2)2n
σ2 +

80η4l q
2K3L2

(1− q2)2
(σ2 + 6Kσ2

g)
]
,

where (a) uses Young’s inequality and (b) uses Lemma F.2 and Lemma F.5. When taking telescoping sum of this term over
t = 1, ..., T , again using the geometric summation trick, we further obtain

η

T∑
t=1

E
[
⟨∇f(θt)−∇f(xt), ∆̄t⟩

]
≤ η2η2l C1K

2L(60η2l K
2L2 + 1)

T∑
t=1

E
[
∥∇f(θt)∥2

]
+

2Tη2η2l C1KL

n
σ2 + 10Tη2η4l C1K

3L3(σ2 + 6Kσ2
g),

where C1 = 1 + 4q2

(1−q2)2 . Now, taking the summation over all terms in (13), we get

E[f(xt+1)]− f(x1) ≤
(
− ηηlK

4
+ η2η2l (C1 + 1)K2L(60η2l K

2L2 + 1)
) T∑

t=1

E
[
∥∇f(θt)∥2

]
+

2Tη2η2l C1KL

n
σ2 +

2Tη2η2l (C1 + 1)KL

n
σ2 + 10Tη2η4l (C1 + 1)K3L3(σ2 + 6Kσ2

g).

Since ηl ≤ 1
8KL , we know that 60η2l K

2L2 + 1 < 2. Therefore, provided that the local learning rate is such that

ηl ≤
1

2KL ·max{4, η(C1 + 1)}
,

we have

ηηlK

8

T∑
t=1

E
[
∥∇f(θt)∥2

]
≤ f(x1)− E[f(xt+1)] +

2Tη2η2l (C1 + 1)KL

n
σ2

+ 10Tη2η4l (C1 + 1)K3L3(σ2 + 6Kσ2
g),
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leading to

1

T

T∑
t=1

E
[
∥∇f(θt)∥2

]
≲

f(x1)− E[f(xt+1)]

ηηlTK
+

2ηηl(C1 + 1)L

n
σ2

+ 10ηη3l (C1 + 1)K2L3(σ2 + 6Kσ2
g)

≤ f(θ1)− f(θ∗)

ηηlTK
+

2ηηl(C1 + 1)L

n
σ2

+ 10ηη3l (C1 + 1)K2L3(σ2 + 6Kσ2
g),

which concludes the proof.

F.3. Intermediate Lemmas

In our analysis, we will make use of the following lemma on the consensus error. Note that this is a general result holding
for algorithms (both Fed-EF-SGD and Fed-EF-AMS) with local SGD steps.

Lemma F.1 ((Reddi et al., 2021)). For ηl ≤ 1
8LK , for any round t, local step k ∈ [K] and client i ∈ [n], under

Assumption 4.1 to Assumption 4.2, it holds that

E
[
∥θ(k)t,i − θt∥2

]
≤ 5η2l K(σ2 + 6Kσ2

g) + 30η2l K
2E

[
∥∇f(θt)∥2

]
.

We then state some results that bound several key ingredients in our analysis.

Lemma F.2. Denote ∆̄t =
1
n

∑n
i=1 ∆t,i. Under Assumption 4.1 to Assumption 4.2, for ∀t, the following bounds hold:

1. Bound by local gradients:

E
[
∥∆̄t∥2

]
≤ η2l

n2
E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

2
]
+

η2l K

n
σ2.

2. Bound by global gradient:

E
[
∥∆̄t∥2

]
≤ (2η2l K

2 + 120η4l K
4L2)E

[
∥∇f(θt)∥2

]
+ 4

η2l K

n
σ2 + 20η4l K

3L2(σ2 + 6Kσ2
g).

Proof. By definition, we have

E
[
∥∆̄t∥2

]
= E

[
∥ 1
n

n∑
i=1

K∑
k=1

ηlg
(k)
t,i ∥

2
]

≤ η2l
n2

E
[
∥

n∑
i=1

K∑
k=1

(g
(k)
t,i −∇fi(θ

(k)
t,i )∥

2
]
+

η2l
n2

E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

2
]

≤ η2l K

n
σ2 +

η2l
n2

E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

2
]
,

where the second line is due to the variance decomposition, and the last inequality uses Assumption 4.2 on independent and
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unbiased stochastic gradients. This proves the first part. For the second part,

E
[
∥∆̄t∥2

]
= E

[
∥ 1
n

n∑
i=1

K∑
k=1

ηlg
(k)
t,i −Kηl∇f(θt) +Kηl∇f(θt)∥2

]
≤ 2η2l K

2E
[
∥∇f(θt)∥2

]
+ 2η2l E

[
∥ 1
n

n∑
i=1

K∑
k=1

g
(k)
t,i − K

n

n∑
i=1

∇fi(θt)∥2
]

= 2η2l K
2E

[
∥∇f(θt)∥2

]
+

2η2l
n2

E
[
∥

n∑
i=1

K∑
k=1

(g
(k)
t,i −∇fi(θt))∥2

]
≤ 2η2l K

2E
[
∥∇f(θt)∥2

]
+

2η2l
n2

E
[
∥

n∑
i=1

K∑
k=1

(g
(k)
t,i −∇fi(θ

(k)
t,i ) +∇fi(θ

(k)
t,i )−∇fi(θt))∥2

]
≤ 2η2l K

2E
[
∥∇f(θt)∥2

]
+

2η2l
n2

E
[
∥

n∑
i=1

K∑
k=1

(g
(k)
t,i −∇fi(θ

(k)
t,i ) +∇fi(θ

(k)
t,i )−∇fi(θt))∥2

]
︸ ︷︷ ︸

A

.

The expectation A can be further bounded as

A ≤ 2E
[
∥

n∑
i=1

K∑
k=1

(g
(k)
t,i −∇fi(θ

(k)
t,i ))∥

2
]
+ 2E

[
∥

n∑
i=1

K∑
k=1

(∇fi(θ
(k)
t,i )−∇fi(θt))∥2

]
(a)

≤ 2nKσ2 + 2nK

n∑
i=1

K∑
k=1

E
[
∥∇fi(θ

(k)
t,i )−∇fi(θt)∥2

]
(b)

≤ 2nKσ2 + 2nKL2
n∑

i=1

K∑
k=1

E
[
∥θ(k)t,i − θt∥2

]
(c)

≤ 60η2l n
2K4L2E

[
∥∇f(θt)∥2

]
+ 2nKσ2 + 10η2l n

2K3L2(σ2 + 6Kσ2
g),

where (a) is implied by Assumption 4.2 that each local stochastic gradient g(k)t,i can be written as g(k)t,i = ∇fi(θ
(k)
t,i ) + ξ

(k)
t,i ,

where ξkt,i is a zero-mean random noise with bounded variance σ2, and all the noises for t ∈ [T ], i ∈ [n], k ∈ [K] are
independent. The inequality (b) is due to the smoothness Assumption 4.1, and (c) follows from Lemma F.1. Therefore, we
obtain

E[∥∆̄t∥2] ≤ (2η2l K
2 + 120η4l K

4L2)E[∥∇f(θt)∥2] + 4
η2l K

n
σ2 + 20η4l K

3L2(σ2 + 6Kσ2
g),

which completes the proof of the second claim.

Lemma F.3. Under Assumption 4.1 and Assumption 4.2, when ηl ≤ 1
8KL , Fed-EF-SGD admits

E
[
⟨∇f(θt),−∆̄t + ηlK∇f(θt)⟩

]
≤ 3ηlK

4
E
[
∥∇f(θt)∥2

]
+

5η3l K
2L2

2
(σ2 + 6Kσ2

g).
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Proof. It holds that

E
[
⟨∇f(θt),−∆̄t + ηlK∇f(θt)⟩

]
=

〈
∇f(θt),E

[
− 1

n

n∑
i=1

K∑
k=1

ηlg
(k)
t,i + ηlK∇f(θt)

]〉
=

〈√
ηl∇f(θt),

√
ηlE

[
− 1

n

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t ) +K∇f(θt)

]〉
(a)

≤ ηlK

2
E
[
∥∇f(θt)∥2

]
+

ηl
2K

E
[
∥ 1
n

n∑
i=1

K∑
k=1

(∇fi(θ
(k)
t,i )−∇fi(θt))∥2

]
≤ ηlK

2
E
[
∥∇f(θt)∥2

]
+

ηl
2n

n∑
i=1

K∑
k=1

E
[
∥∇fi(θ

(k)
t,i )−∇fi(θt)∥2

]
(b)

≤ ηlK

2
E
[
∥∇f(θt)∥2

]
+

ηlL
2

2n

n∑
i=1

K∑
k=1

E
[
∥θ(k)t,i − θt∥2

]
(c)

≤ ηlK

2
E
[
∥∇f(θt)∥2

]
+

ηlKL2

2

[
5η2l K(σ2 + 6Kσ2

g) + 30η2l K
2E

[
∥∇f(θt)∥2

]
where (a) is due to ⟨a, b⟩ ≤ α

2 a
2 + 1

2αb
2 for any a, b ∈ R and α > 0, and (b) is a consequence of Assumption 4.1, and (c) is

due to Lemma F.1. If ηl ≤ 1
8KL , we have that η2l ≤ 1

64K2L2 , bounding the last term by 15
64ηlKE

[
∥∇f(θt)∥2

]
. Hence, we

obtain

E
[
⟨∇f(θt),−∆̄t + ηlK∇f(θt)⟩

]
≤ 47ηlK

64
E
[
∥∇f(θt)∥2

]
+

5η3l K
2L2

2
(σ2 + 6Kσ2

g),

where the proof is completed since 47
64 < 3

4 .

Lemma F.4. Under Assumption 4.1 to Assumption 4.2 we have:

∥m′
t∥ ≤ ηlKG, for ∀t,

T∑
t=1

E
[
∥m′

t∥2
]
≤ (2η2l K

2 + 120η4l K
4L2)

T∑
t=1

E
[
∥∇f(θt)∥2

]
+

+ 4
Tη2l K

n
σ2 + 20Tη4l K

3L2(σ2 + 6Kσ2
g).

Proof. For the first part, by Assumption 4.7 we know that

∥m′
t∥ = (1− β1)∥

t∑
τ=1

βt−τ
1 ∆̄t∥

= (1− β1)

t∑
τ=1

βt−τ
1

ηl
n

n∑
i=1

K∑
k=1

∥g(k)t,i ∥

≤ ηlKG.

For the second claim, by Lemma F.2 we know that

E
[
∥∆̄t∥2

]
≤ (2η2l K

2 + 120η4l K
4L2)E

[
∥∇f(θt)∥2

]
+ 4

η2l K

n
σ2 + 20η4l K

3L2(σ2 + 6Kσ2
g).
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Let ∆̄t,j denote the j-th coordinate of ∆̄t. By the updating rule of Fed-EF, we have

E
[
∥m′

t∥2
]
= E

[
∥(1− β1)

t∑
τ=1

βt−τ
1 ∆̄τ∥2

]
≤ (1− β1)

2
d∑

j=1

E
[
(

t∑
τ=1

βt−τ
1 ∆̄τ,j)

2
]

(a)

≤ (1− β1)
2

d∑
j=1

E
[
(

t∑
τ=1

βt−τ
1 )(

t∑
τ=1

βt−τ
1 ∆̄2

τ,j)
]

≤ (1− β1)

t∑
τ=1

βt−τ
1 E

[
∥∆̄τ∥2

]
≤ (2η2l K

2 + 120η4l K
4L2)(1− β1)

t∑
τ=1

βt−τ
1 E

[
∥∇f(θt)∥2

]
+ 4

η2l K

n
σ2 + 20η4l K

3L2(σ2 + 6Kσ2
g),

where (a) is due to Cauchy-Schwartz inequality. Summing over t = 1, ..., T , we obtain

T∑
t=1

E
[
∥m′

t∥2
]
≤ (2η2l K

2 + 120η4l K
4L2)(1− β)

T∑
t=1

t∑
τ=1

βt−τ
1 E

[
∥∇f(θt)∥2

]
+

+ 4
Tη2l K

n
σ2 + 20Tη4l K

3L2(σ2 + 6Kσ2
g)

≤ (2η2l K
2 + 120η4l K

4L2)

T∑
t=1

E
[
∥∇f(θt)∥2

]
+

+ 4
Tη2l K

n
σ2 + 20Tη4l K

3L2(σ2 + 6Kσ2
g),

which concludes the proof.

Lemma F.5. Under Assumption 4.2, Assumption 4.3 and Assumption 4.7, we have for ∀t and each local worker ∀i ∈ [n],

∥et,i∥2 ≤ 4η2l q
2K2G2

(1− q2)2
, ∀t,

E[∥ēt+1∥2] ≤
4q2η2l K

2(60η2l K
2L2 + 1)

1− q2

t∑
τ=1

(
1 + q2

2
)t−τE

[
∥∇f(θτ )∥2

]
+

16η2l q
2K

(1− q2)2n
σ2 +

80η4l q
2K3L2

(1− q2)2
(σ2 + 6Kσ2

g).

Proof. To prove the second claim, we start by using Assumption 4.3 and Young’s inequality to get

∥ēt+1∥2 = ∥∆̄t + ēt −
1

n

n∑
i=1

C(∆t,i + et,i)∥2

≤ q2∥∆̄t + ēt∥2

≤ q2(1 + ρ)∥ēt∥2 + q2(1 +
1

ρ
)∥∆̄t,i∥2

≤ 1 + q2

2
∥ēt∥2 +

2q2

1− q2
∥∆̄t∥2, (15)
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where (15) is derived by choosing ρ = 1−q2

2q2 and the fact that q < 1. Now by recursion and the initialization e1,i = 0, ∀i,
we have

E
[
∥ēt+1∥2

]
≤ 2q2

1− q2

t∑
τ=1

(
1 + q2

2
)t−τE

[
∥∆̄τ∥2

]
≤ 4q2η2l K

2(60η2l K
2L2 + 1)

1− q2

t∑
τ=1

(
1 + q2

2
)t−τE

[
∥∇f(θτ )∥2

]
+

16η2l q
2K

(1− q2)2n
σ2 +

80η4l q
2K3L2

(1− q2)2
(σ2 + 6Kσ2

g),

which proves the second argument, where we use Lemma F.1 to bound the local model update. In addition, we know that
∥∆t∥ ≤ ηlKG by Assumption 4.7 for any t.

The absolute bound ∥et,i∥2 ≤ 4η2
l q

2
CK

2G2

(1−q2C)
2 follows from (15) by a similar recursion argument used on local error et,i, and

the fact that qC ≤ max{qC , qA} = q.

Lemma F.6. Under Assumption 4.2, Assumption 4.3 and Assumption 4.7, for the moving average error sequence Et, it
holds that

∥Et∥2 ≤ 4η2l q
2K2G2

(1− q2)2
, for ∀t,

T∑
t=1

E
[
∥Et∥2

]
≤ 8q2η2l K

2(60η2l K
2L2 + 1)

(1− q2)2

T∑
t=1

E
[
∥∇f(θτ )∥2

]
+

16Tη2l q
2K

(1− q2)2n
σ2 +

80Tη4l q
2K3L2

(1− q2)2
(σ2 + 6Kσ2

g).

Proof. The first argument can be easily deduced by the definition of Et that

∥Et∥ = (1− β1)∥
t∑

τ=1

βt−τ
1 ēt∥

≤ ∥et,i∥ ≤ 2ηlqKG

1− q2
.

Denote the quantity

Kt :=

t∑
τ=1

(
1 + q2

2
)t−τE

[
∥∇f(θτ )∥2

]
.

By the same technique as in the proof of Lemma F.4, denoting ēt,j as the j-th coordinate of ēt, we can bound the accumulated
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error sequence by

E
[
∥Et∥2

]
= E

[
∥(1− β1)

t∑
τ=1

βt−τ
1 ēτ∥2

]
≤ (1− β1)

2
d∑

j=1

E
[
(

t∑
τ=1

βt−τ
1 ēτ,j)

2
]

(a)

≤ (1− β1)
2

d∑
j=1

E
[
(

t∑
τ=1

βt−τ
1 )(

t∑
τ=1

βt−τ
1 ē2τ,j)

]
≤ (1− β1)

t∑
τ=1

βt−τ
1 E

[
∥ēτ∥2

]
(b)

≤ 16η2l q
2K

(1− q2)2n
σ2 +

80η4l q
2K3L2

(1− q2)2
(σ2 + 6Kσ2

g)

+
4(1− β1)q

2η2l K
2(60η2l K

2L2 + 1)

1− q2

t∑
τ=1

βt−τ
1 Kτ ,

where (a) is due to Cauchy-Schwartz inequality and (b) is a result of Lemma F.5. Summing over t = 1, ..., T and using the
technique of geometric series summation leads to

T∑
t=1

E
[
∥Et∥2

]
≤ 16Tη2l q

2K

(1− q2)2n
σ2 +

80Tη4l q
2K3L2

(1− q2)2
(σ2 + 6Kσ2

g)

+
4(1− β1)q

2η2l K
2(60η2l K

2L2 + 1)

1− q2

T∑
t=1

t∑
τ=1

βt−τ
1 Kτ

≤ 16Tη2l q
2K

(1− q2)2n
σ2 +

80Tη4l q
2K3L2

(1− q2)2
(σ2 + 6Kσ2

g)

+
4q2η2l K

2(60η2l K
2L2 + 1)

1− q2

T∑
t=1

t∑
τ=1

(
1 + q2

2
)t−τE

[
∥∇f(θτ )∥2

]
≤ 16Tη2l q

2K

(1− q2)2n
σ2 +

80Tη4l q
2K3L2

(1− q2)2
(σ2 + 6Kσ2

g)

+
8q2η2l K

2(60η2l K
2L2 + 1)

(1− q2)2

T∑
t=1

E
[
∥∇f(θτ )∥2

]
.

The desired result is obtained.

Lemma F.7. Under Assumption 4.7, it holds that ∀t ∈ [T ], ∀i ∈ [d], v̂t,i ≤ 4η2
l (1+q2)3K2

(1−q2)2 G2.

Proof. For any t, by Lemma F.5 and Assumption 4.7 we have

∥∆̃t∥2 = ∥C(∆t + et)∥2

≤ ∥C(∆t + et)− (∆t + et) + (∆t + et)∥2

≤ 2(q2 + 1)∥∆t + et∥2

≤ 4(q2 + 1)(η2l K
2G2 +

4η2l q
2K2G2

(1− q2)2
)

=
4η2l (1 + q2)3K2

(1− q2)2
G2.
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Consider the updating rule of v̂t = max{vt, v̂t−1}. We know that there exists a j ∈ [t] such that v̂t = vj . Thus, we have

v̂t,i = (1− β2)

j∑
τ=1

βj−τ
2 g̃2t,i ≤

4η2l (1 + q2)3K2

(1− q2)2
G2,

which proves the claim.

The next Lemma is analogue to Lemma 5 in Li et al. (2022b).

Lemma F.8. Let Dt :=
1√

v̂t−1+ϵ
− 1√

v̂t+ϵ
be defined as above. Then,

T∑
t=1

∥Dt∥1 ≤ d√
ϵ
,

T∑
t=1

∥Dt∥2 ≤ d

ϵ
.

Proof. By the updating rule of Fed-EF-AMS, v̂t−1 ≤ v̂t for ∀t. Therefore, by the initialization v̂0 = 0, we have

T∑
t=1

∥Dt∥1 =

T∑
t=1

d∑
i=1

(
1√

v̂t−1,i + ϵ
− 1√

v̂t,i + ϵ
)

=

d∑
i=1

(
1√

v̂0,i + ϵ
− 1√

v̂T,i + ϵ
)

≤ d√
ϵ
.

For the sum of squared l2 norm, note the fact that for a ≥ b > 0, it holds that

(a− b)2 ≤ (a− b)(a+ b) = a2 − b2.

Thus,

T∑
t=1

∥Dt∥2 =

T∑
t=1

d∑
i=1

(
1√

v̂t−1,i + ϵ
− 1√

v̂t,i + ϵ
)2

≤
T∑

t=1

d∑
i=1

(
1

v̂t−1,i + ϵ
− 1

v̂t,i + ϵ
)

≤ d

ϵ
,

which gives the desired result.

F.4. Proof of Theorem 4.10: Partial Participation

Proof. We can use a similar proof structure as previous analysis for full participation Fed-EF-SGD as in Section F.2. Denote
Mt as the active client set in round t and ∆̃t,Mt

= 1
m

∑
i∈Mt

∆̃t,i. We first define the following virtual iterates:

xt+1 = θt+1 − η
1

m

n∑
i=1

et+1,i = θt − η∆̃t,Mt
− η

1

m

∑
i∈Mt

et+1,i − η
1

m

∑
i/∈Mt

et+1,i

= θt − η∆̄t,Mt − η
1

m

∑
i∈Mt

et,i − η
1

m

∑
i/∈Mt

et,i (16)

= θt − η∆̄t,Mt − η
1

m

n∑
i=1

et,i

= xt − η∆̄t,Mt
.
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Here, (16) follows from the partial participation setup where there is no error accumulation for inactive clients. The
smoothness of loss functions implies

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2.

Taking expectation w.r.t. the randomness at round t, we have

E[f(xt+1)]− f(xt)

≤ −ηE
[
⟨∇f(xt), ∆̄t,Mt

⟩
]
+

η2L

2
E
[
∥∆̄t,Mt

∥2
]

= −ηE
[
⟨∇f(θt), ∆̄t,Mt⟩

]︸ ︷︷ ︸
I

++
η2L

2
E
[
∥∆̄t,Mt∥2

]
︸ ︷︷ ︸

II

+ ηE
[
⟨∇f(xt)−∇f(θt), ∆̄t,Mt⟩

]︸ ︷︷ ︸
III

. (17)

Note that the expectation is also with respect to the randomness in the client sampling procedure. For the first term, we may
adopt the similar idea of the proof of Lemma F.3. Since the client sampling is random, we have E[∆̄t,Mt

] = E[∆̄t]. Thus,

I = −ηE
[
⟨∇f(θt), ∆̄t,Mt⟩

]
= −ηE

[
⟨∇f(θt), ∆̄t − ηlK∇f(θt) + ηlK∇f(θt)⟩

]
= −ηηlKE

[
∥∇f(θt)∥2

]
+ ηηl

〈√
K∇f(θt),−

1

n
√
K

n∑
i=1

K∑
k=1

(
∇fi(θ

(k)
t,i )−∇f(θt)

)〉
(a)
= −ηηlKE

[
∥∇f(θt)∥2

]
+ ηηlE

[K
2
∥∇f(θt)∥2

+
1

2Kn2
∥

n∑
i=1

K∑
k=1

(∇fi(θ
(k)
t,i )−∇f(θt))∥2 −

1

2Kn2
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

2
]

(b)

≤ −ηηlKE
[
∥∇f(θt)∥2

]
+

ηηlK

2
E
[
∥∇f(θt)∥2

]
+

ηηlKL2

2

[
5η2l K(σ2 + 6Kσ2

g) + 30η2l K
2E

[
∥∇f(θt)∥2

]]
− ηηl

2Kn2
E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

2
]

≤ −ηηlK

4
E
[
∥∇f(θt)∥2

]
+

5ηη3l K
2L2

2
(σ2 + 6Kσ2

g)−
ηηl

2Kn2
E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

2
]
,

when ηl ≤ 1
8KL , where (a) is a result of the fact that 2⟨z1, z2⟩ = ∥z1∥2 + ∥z2∥2 − ∥z1 − z2∥2, and (b) is because of

Assumption 4.1 and Lemma F.1.

For term II, denoting ∆t = [∆t,1, ...,∆t,n]
T , we have

E
[
∥∆̄t,Mt

∥2
]
= E∆t

[
E
[
∥ 1

m

n∑
i=1

1{i ∈ Mt}∆t,i∥2
∣∣∆t

]]
=

1

m2
E
[m
n

n∑
i=1

∥∆t,i∥2 +
m(m− 1)

n(n− 1)

∑
i̸=j

⟨∆t,i,∆t,i⟩
]

=
1

m2
E
[m(m− 1)

n(n− 1)
∥

n∑
i=1

∆t,i∥2 +
m(n−m)

n(n− 1)

n∑
i=1

∥∆t,i∥2
]
.

Invoking Lemma F.2 and Lemma F.1 respectively, we obtain

II ≤ η2η2l KL

2m
σ2 +

η2η2l L

2n(n− 1)
E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

]2
+ C ′

[5η2η2l K
2m

(σ2 + 6Kσ2
g) +

15η2η2l K
2

m
E
[
∥∇f(θt)∥2

]]
,
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with C ′ = n−m
n−1 . Furthermore, we have that

III ≤ 2η2LE
[
∥ 1

m

n∑
i=1

et,i∥2
]
+

η2L

2
E
[
∥∆̄t,Mt

∥2
]
.

The second term is the same as term II. We now bound the first term. Denote ẽt,i = et,i +∆t,i − ∆̃t,i, we have

E
[
∥ 1

m

n∑
i=1

et+1,i∥2
]
=

1

m2
Eet

[
EMt

[
∥

n∑
i=1

1{i ∈ Mt}ẽt,i +
n∑

i=1

1{i /∈ Mt}et,i∥2
∣∣et︸ ︷︷ ︸

A

]]
.

By the updating rule of et,i, the inner expectation, conditional on et = [et,1, ..., et,n]
T , can be computed as

A =
m

n

n∑
i=1

∥ẽi,t∥2 +
m(m− 1)

n(n− 1)

n∑
i ̸=j

ẽt,iẽt,j +
n−m

n

n∑
i=1

∥ei,t∥2

+
(n−m)(n−m− 1)

n(n− 1)

n∑
i̸=j

et,iet,j +
2m(n−m)

n(n− 1)

n∑
i ̸=j

ẽt,iet,j

=
m

n
∥

n∑
i=1

ẽt,i∥2 −
m(n−m)

n(n− 1)

n∑
i ̸=j

ẽt,iẽt,j +
n−m

n
∥

n∑
i=1

ei,t∥2

− m(n−m)

n(n− 1)

n∑
i ̸=j

et,iet,j +
2m(n−m)

n(n− 1)

n∑
i̸=j

ẽt,iet,j

=
m

n
∥

n∑
i=1

ẽt,i∥2 +
n−m

n
∥

n∑
i=1

ei,t∥2 −
m(n−m)

n(n− 1)

n∑
i ̸=j

(ẽt,iẽt,j + et,iet,j − 2ẽt,iet,j)

=
m

n
∥

n∑
i=1

ẽt,i∥2 +
n−m

n
∥

n∑
i=1

ei,t∥2

− m(n−m)

n(n− 1)
∥

n∑
i=1

(ẽt,i − et,i)∥2 +
m(n−m)

n(n− 1)

n∑
i=1

(∥ẽt,i∥2 + ∥et,i∥2)

≤ m

n
∥

n∑
i=1

ẽt,i∥2 +
n−m

n
∥

n∑
i=1

et,i∥2 +
m(n−m)

n(n− 1)

n∑
i=1

(∥ẽt,i∥2 + ∥et,i∥2).

Therefore, by Definition 3.1 and Assumption 4.3 we obtain

E
[
∥ 1

m

n∑
i=1

et+1,i∥2
]

≤ mq2

n
E[∥ 1

m

∑
i∈G

(et,i +∆t,i)∥2] +
n−m

n
E[∥ 1

m

n∑
i=1

et,i∥2]

+
(n−m)

mn(n− 1)

n∑
i=1

((2q2 + 1)∥et,i∥2 + 2q2∥∆t,i∥2)

≤ m(1 + γ)q2 + (n−m)

n
E[∥ 1

m

n∑
i=1

et,i∥2 +
m(1 + 1/γ)q2

n
E[∥ 1

m

n∑
i=1

∆t,i∥2]

+
(n−m)

mn(n− 1)

n∑
i=1

((2q2 + 1)∥et,i∥2 + 2q2∥∆t,i∥2).
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We have by Lemma F.1 and the recursion of et,i (similar to the proof of Lemma F.5) that

E[∥et,i∥2] ≤
20q2η2l K

(1− q2)2
(σ2 + 6Kσ2

g) +
60η2l q

2K2

1− q2

t∑
τ=1

(
1 + q2

2
)t−τE

[
∥∇f(θτ )∥2

]
,

E[∥∆t,i∥2] ≤ 5η2l K(σ2 + 6Kσ2
g) + 30η2l K

2E
[
∥∇f(θt)∥2

]
,

which implies

(n−m)

mn(n− 1)

n∑
i=1

((2q2 + 1)∥et,i∥2 + 2q2∥∆t,i∥2)

≤ (n−m)

m(n− 1)

[70q2η2l K
(1− q2)2

(σ2 + 6Kσ2
g) +

180η2l q
2K2

1− q2

t∑
τ=1

(
1 + q2

2
)t−τE

[
∥∇f(θτ )∥2

]
+

60η2l q
2K2

(1− q2)2
E
[
∥∇f(θt)∥2

]]
.

Recall q = max{qA, qC}. Let γ = (1− q2)/2q2. We have

m(1 + γ)q2 + (n−m)

n
= 1− (1− q2)m

2n
< 1,

m(1 + 1/γ)q2

n
=

m(1 + q2)q2

n(1− q2)
≤ 2mq2

n(1− q2)
.

By the recursion argument used before, applying Lemma F.2 (adjusted by an n2/m2 factor) we obtain

E
[
∥ 1

m

n∑
i=1

et+1,i∥2
]

≤ 2mq2

n(1− q2)

t∑
τ=1

(
1− (1− q2)m

2n

)t−τ n2

m2

[ η2l
n2

E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
τ,i )∥

2
]
+

η2l K

n
σ2

]
+

2n(n−m)

(1− q2)m2(n− 1)

[70q2η2l K
(1− q2)2

(σ2 + 6Kσ2
g) +

180η2l q
2K2

1− q2

t∑
τ=1

(
1 + q2

2
)t−τE

[
∥∇f(θτ )∥2

]
+

60η2l q
2K2

(1− q2)2
E
[
∥∇f(θt)∥2

]]
≤ 2η2l q

2

(1− q2)mn

t∑
τ=1

(
1− (1− q2)m

2n

)t−τE
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
τ,i )∥

2
]
+

4η2l q
2Kn

(1− q2)2m2
σ2

+
280η2l q

2(n−m)K

(1− q2)3m2
(σ2 + 6Kσ2

g) +
720η2l q

2(n−m)K2

(1− q2)2m2

t∑
τ=1

(
1 + q2

2
)t−τE

[
∥∇f(θτ )∥2

]
+

240η2l q
2(n−m)K2

(1− q2)3m2
E
[
∥∇f(θt)∥2

]
.

Summing over t = 1, ..., T gives

T∑
t=1

E
[
∥ 1

m

n∑
i=1

et+1,i∥2
]

≤ 4η2l q
2

(1− q2)2m2

T∑
t=1

E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

2
]
+

4Tη2l q
2Kn

(1− q2)2m2
σ2

+
280Tη2l q

2(n−m)K

(1− q2)3m2
(σ2 + 6Kσ2

g) +
1680η2l q

2(n−m)K2

(1− q2)3m2

T∑
t=1

E
[
∥∇f(θt)∥2

]
.
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Now we turn back to (17). By taking the telescoping sum, we have

E[f(xt+1)]− f(x1)

≤ −ηηlK

4

T∑
t=1

E
[
∥∇f(θt)∥2

]
+

5Tηη3l K
2L2

2
(σ2 + 6Kσ2

g)−
ηηl

2Kn2

T∑
t=1

E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

2
]

+
Tη2η2l KL

m
σ2 +

η2η2l L

n(n− 1)

T∑
t=1

E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

]2
+

5Tη2η2l C
′K

m
(σ2 + 6Kσ2

g) +
30η2η2l C

′K2

m

T∑
t=1

E
[
∥∇f(θt)∥2

]
+

8η2η2l q
2L

(1− q2)2m2

T∑
t=1

E
[
∥

n∑
i=1

K∑
k=1

∇fi(θ
(k)
t,i )∥

2
]
+

8Tη2η2l q
2KLn

(1− q2)3m2
σ2

+
560Tη2η2l q

2(n−m)KL

(1− q2)3m2
(σ2 + 6Kσ2

g) +
3360η2η2l q

2(n−m)K2L

(1− q2)3m2

T∑
t=1

E
[
∥∇f(θt)∥2

]
.

When the learning rates are chosen such that

ηl ≤ min
{1

8
,

mL

500C ′η
,

m2

53760(n−m)C1η
,
(1− q2)2m2

32q2n2η
,

1

32max{C1, 1}η

} 1

KL
,

we can get

1

T

T∑
t=1

E
[
∥∇f(θt)∥2

]
≲

f(θ1)− f(θ∗)

ηηlTK
+
[ηηlL

m
+

8ηηlC1Ln

m2

]
σ2

+
[5η2l KL2

2
+

5ηηlC
′

m
+

560ηηlC1(n−m)L

m2

]
(σ2 + 6Kσ2

g),

where C1 = q2/(1 − q2)3. Denote B = n/m. When choosing η = Θ(
√
Km), ηl = Θ( 1

K
√
TB

), the rate can be further
bounded by

1

T

T∑
t=1

E
[
∥∇f(θt)∥2

]
= O

(√B(f(θ1)− f(θ∗))√
TKm

+ (
1√

TKmB
+

√
B√

TKm
)σ2

+ (
1

TKB
+

1√
TKmB

+

√
B√

TKm
)(σ2 + 6Kσ2

g)
)
,

which can be further simplified by ignoring smaller terms as

1

T

T∑
t=1

E
[
∥∇f(θt)∥2

]
= O

( √
n√
m

(f(θ1)− f(θ∗)√
TKm

+
1√

TKm
σ2 +

√
K√
Tm

σ2
g

))
.

This completes the proof.

We remark that, when applying Lemma F.2 to bound term II and III , we may also use the global gradient bound instead of
the local gradient bound. (Accordingly, term I should be bounded by Lemma F.3 exactly). Besides some minor differences,
this will lead to smaller high order term (O(1/T

3
2 )) but the asymptotic rate O(

√
K√
Tm

) as T → ∞ would be the same.

F.5. Proof of Theorem 4.4: Directly Using Biased Compressors Without EF

Proof. We first clarify some (slightly modified) notations. Since we use the biased compression directly, there are no error
compensation terms as in previous analysis. The update rule is simply

θt+1 = θt − η∆̃t,

47



Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

where ∆̃t =
1
n

∑n
i=1 ∆̃t,i :=

1
n

∑n
i=1 C(∆t,i) is the average of compressed local model updates. Denote bt,i = ∆̃t,i −∆t,i

as the difference (bias) between the true local model update of client i in round t, and b̄ = 1
n

∑n
i=1 bt,i. By Assumption 4.3,

we have

E[∥b̄t∥2] = E
[
∥ 1
n

n∑
i=1

∆̃t,i −
1

n

n∑
i=1

∆t,i∥2
]
≤ q2E[∥∆̄t∥2]. (18)

Our analysis starts with the smoothness Assumption 4.1, where

f(θt+1) ≤ f(θt) + ⟨∇f(θt), θt+1 − θt⟩+
L

2
∥θt+1 − θt∥2.

Taking expectation w.r.t. the randomness at round t gives

E[f(θt+1)]− f(θt) ≤ −ηE
[
⟨∇f(θt), ∆̃t⟩

]
+

η2L

2
E
[
∥∆̃t∥2

]
. (19)

The second term in (19) admits the following:

η2L

2
E
[
∥∆̃t∥2

]
=

η2L

2
E
[
∥∆̄t + b̄t∥2

]
≤ (1 + q2)η2LE[∥∆̄t∥2]

≤ (1 + q2)η2L
[
(2η2l K

2 + 120η4l K
4L2)E

[
∥∇f(θt)∥2

]
+ 4

η2l K

n
σ2 + 20η4l K

3L2(σ2 + 6Kσ2
g)
]
,

where the last inequality uses Lemma F.2. We can bound the first term in (19) by

− ηE
[
⟨∇f(θt), ∆̃t⟩

]
= −ηE

[
⟨∇f(θt), ∆̄t + b̄t − ηlK∇f(θt) + ηlK∇f(θt)⟩

]
= −ηηlKE

[
∥∇f(θt)∥2

]
+ η E

[
⟨∇f(θt),−∆̄t + ηlK∇f(θt)⟩

]︸ ︷︷ ︸
VI

+η E
[
⟨∇f(θt),−b̄t⟩

]︸ ︷︷ ︸
VII

.

For the second term in the above, by Lemma F.3, with ηl ≤ 1
8KL , we have

VI ≤ 3ηlK

4
E
[
∥∇f(θt)∥2

]
+

5η3l K
2L2

2
(σ2 + 6Kσ2

g).

Regarding term VII, by Assumption 4.3, Young’s inequality and (18), we obtain

VII ≤ ηlK

16
E[∥∇f(θt)∥2] +

16q2

ηlK
E[∥∆̄t∥2]

≤ ηlK

16
E[∥∇f(θt)∥2] + 16q2

[
(2ηlK + 120η3l K

3L2)E
[
∥∇f(θt)∥2

]
+ 4

ηl
n
σ2 + 20η3l K

2L2(σ2 + 6Kσ2
g)
]
.

When the learning rates admit ηl ≤ 1
8KLmax{1,8(1+q2)η} and q ≤ 1

32 , taking the summation over all terms in (19) we get

E[f(θt+1)]− f(θt)

≤ −ηηlK

8
E
[
∥∇f(θt)∥2

]
+

4η2η2l (1 + q2)KL

n
σ2 + 20η2η4l (1 + q2)K3L3(σ2 + 6Kσ2

g)

+
64ηηlq

2

n
σ2 + (320q2 + 3)ηη3l K

2L2(σ2 + 6Kσ2
g).
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We now take the telescope summation from round 1 to T and re-organize terms to obtain

1

T

T∑
t=1

E
[
∥∇f(θt)∥2

]
≲

f(θ1)− E[f(θt+1)]

ηηlTK
+

4ηηl(1 + q2)L

n
σ2 +

64q2

Kn
σ2

+ 20ηη3l (1 + q2)K2L3(σ2 + 6Kσ2
g) + (320q2 + 3)η2l KL2(σ2 + 6Kσ2

g).

Set ηl = Θ( 1
K

√
T
) and η = Θ(

√
Kn), we have

1

T

T∑
t=1

E
[
∥∇f(θt)∥2

]
= O

( 1 + q2√
TKn

+
1 + q2

TK
(σ2 +Kσ2

g) +
q2σ2

Kn

)
.

This completes the proof.

Note that if we consider unbiased compressors, i.e., E[bt,i|∆t,i] = 0, ∀t, i, then term VII equals zero which eliminates the
bias term in the final convergence rate. The resultant convergence rate would match the analysis of Haddadpour et al. (2021).

49



Analysis of Error Feedback in Federated Non-Convex Optimization with Biased Compression

Algorithm 3 Fed-EF Scheme with Two-Way Compression

1: Input: learning rates η, ηl, hyper-parameters β1, β2, ϵ
2: Initialize: central server parameter θ1 ∈ Rd ⊆ Rd; e1,i = 0 the accumulator for each worker;

m0 = 0, v0 = 0, v̂0 = 0 ; ϕ1 = H̃t = 0; θ(1)0,i = θ1 for all i ∈ [n]

3: for t = 1, . . . , T do
4: parallel for worker i ∈ [n] do:

5: Receive H̃t from the server and set θ(1)t,i = θ
(1)
t−1,i + H̃t { Download compression }

6: for k = 1, . . . ,K do
7: Compute stochastic gradient g(k)t,i at θ(k)t,i

8: Local update θ
(k+1)
t,i = θ

(k)
t,i − ηlg

(k)
t,i

9: end for
10: Compute the local model update ∆t,i = θ

(K+1)
t,i − θt

11: Send compressed adjusted local update ∆̃t,i = C(∆t,i + et,i) to central server
12: Update the error et+1,i = et,i +∆t,i − ∆̃t,i

13: end parallel
14: Central server do:
15: Global aggregation ∆̃t =

1
n

∑n
i=1 ∆̃t,i

16: Compress H̃t = C(∆̃t + ϕt) { Fed-EF-SGD }

17: mt = β1mt−1 + (1− β1)∆̃t { Fed-EF-AMS }

18: vt = β2vt−1 + (1− β2)∆̃
2

t , v̂t = max(vt, v̂t−1)

19: Compress H̃t = C( mt√
v̂t+ϵ

+ ϕt)

20: Update server error accumulator ϕt+1 = ϕt + (θt+1 − θt)− H̃t

21: Update global model θt+1 = θt − ηH̃t and broadcast H̃t to clients
22: end for

G. Two-Way Compression in Fed-EF
As discussed in Section 3, our Fed-EF scheme can also extend to two-way compression, for both uploading (clients-to-server)
and downloading (server-to-clients) channels. This can lead to even more communication reduction in practice. The steps
can be found in Algorithm 3. The general approach is: 1) the clients transmit ∆̃t,i to the server which are compressed; 2)

the server again compresses the aggregated update ∆̃t and broadcast the compressed H̃t to the clients, also using an error
feedback at the central node. Note that this approach requires the clients to additionally store the model at the beginning of
each round.

Next, we briefly demonstrate that Algorithm 3 has the same order of convergence rate as Algorithm 1. For simplicity, we
will focus on two-way compressed Fed-EF-SGD here, while same arguments hold for Fed-EF-AMS. Assume the same
conditions as in Theorem 4.6. To study the convergence of Algorithm 3, we consider a series of virtual iterates as

θ̃t+1 = θt+1 − ηϕt+1 = θt − η(H̃t + ϕt+1)

= θt −
1

n

n∑
i=1

∆̃t,i − ϕt

= θ̃t − ∆̃t,

where we use the fact of EF that ϕt+1 + H̃t = ϕt + ∆̃t. Then we can construct a similar sequence xt as in (12) associated
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with θ̃t by

xt+1 = θ̃t+1 − ηēt+1 = xt − η∆̄t.

We can then apply same analysis to derive the convergence bound as in Section F.2. The only difference is in (14), where the
second term becomes

η2L2

2
E
[
∥ēt + ϕt∥2

]
≤ η2L2E

[
∥ēt∥2

]
+ η2L2E

[
∥ϕt∥2

]
. (20)

The first term can be bounded in the same way as in (14). Regarding the second term, we can use a similar trick as Lemma F.5
that under Assumption 4.3,

∥ϕt+1∥2 = ∥ϕt + ∆̃t − C(ϕt + ∆̃t)∥2

≤ q2C∥ϕt + ∆̃t∥2

≤ 1 + q2C
2

∥ϕt∥2 +
2q2C

1− q2C
∥∆̃t∥2.

Then, by recursion and the geometric sum, ∥ϕt+1∥2 can be bounded by the second term in above up to a constant. We can
write

E
[
∥∆̃t∥2

]
≤ E

[
∥∆̄t + ēt − ēt+1∥2

]
≤ 3(E

[
∥∆̄t∥2

]
+ E

[
∥ēt∥2

]
+ E

[
∥ēt+1∥2

]
).

As a result, it holds that E
[
∥ϕt∥2

]
= Θ(E

[
∥ēt∥

]2
) since E

[
∥ēt∥2

]
= Θ(E

[
∥∆̄t∥

]2
) by Lemma F.2 and Lemma F.5.

Therefore, (20) has same order as (14). Since other parts of the proof are the same, we conclude that two-way compression
does not change the asymptotic convergence rate of Fed-EF.
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