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Abstract

Homotopy optimization is a traditional method
to deal with a complicated optimization problem
by solving a sequence of easy-to-hard surrogate
subproblems. However, this method can be very
sensitive to the continuation schedule design and
might lead to a suboptimal solution to the original
problem. In addition, the intermediate solutions,
often ignored by classic homotopy optimization,
could be useful for many real-world applications.
In this work, we propose a novel model-based
approach to learn the whole continuation path
for homotopy optimization, which contains infi-
nite intermediate solutions for any surrogate sub-
problems. Rather than the classic unidirectional
easy-to-hard optimization, our method can simul-
taneously optimize the original problem and all
surrogate subproblems in a collaborative manner.
The proposed model also supports real-time gen-
eration of any intermediate solution, which could
be desirable for many applications. Experimen-
tal studies on different problems show that our
proposed method can significantly improve the
performance of homotopy optimization and pro-
vide extra helpful information to support better
decision-making.

1. Introduction
Homotopy optimization (Blake & Zisserman, 1987; Yuille,
1989; Allgower & Georg, 1990), also called continuation
optimization, is a general optimization strategy for solv-
ing complicated and highly non-convex optimization prob-
lems which can be found in many machine learning appli-
cations (Jain & Kar, 2017). This method first constructs a
simple surrogate of the original optimization problem, and
then gradually solves a sequence of easy-to-hard surrogates
to approach the optimal solution of the original complicated
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problem. The simplest surrogate subproblem could be easily
solved, and its solution will serve as a good initial one for
the next subproblem. In this way, we can eventually find
a good initial and then a (nearly) optimal solution for the
original hard-to-solve optimization problem.

The idea of homotopy optimization is straightforward but it
also suffers several drawbacks. First, the optimization per-
formance could heavily depend on the continuation schedule
of the surrogate subproblems, which is not easy to design for
a new problem (Dunlavy & O’Leary, 2005). It also needs
to iteratively solve each subproblem in sequence, which
could lead to undesirable long run time in practice (Iwakiri
et al., 2022). In addition, the existing homotopy optimiza-
tion methods only focus on finding the final solution to the
original problem. However, the intermediate solutions for
homotopy surrogate subproblems could be useful for many
real-world applications.

In this work, to tackle the drawbacks mentioned above, we
propose a novel continuation path learning (CPL) method
to find the whole solution path for homotopy optimization,
which contains infinite solutions for all intermediate sub-
problems. The key idea is to build a learnable model that
maps any valid continuation level to its corresponding so-
lution, and then optimize all of them simultaneously in a
collaborative manner. In this way, the whole path model can
be learned in a single run without sensitive schedule design
and iterative optimization. With the learned path model,
we can easily generate the solution for any intermediate ho-
motopy level, which could be useful for many applications.
Our main contributions can be summarized as follows:

• We propose a novel model-based approach to learn
the whole continuation path for homotopy optimiza-
tion, which is significantly different from the existing
methods that iteratively solve a sequence of finite sub-
problems.

• We develop an efficient learning method to train the
path model concerning all homotopy levels simulta-
neously. The proposed model can generate solutions
for any intermediate subproblem in real time, which is
desirable for many real-world applications.

• We empirically demonstrate that our proposed CPL
method can achieve promising performances on var-
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Figure 1. Continuation Path Learning: a) The classical homotopy optimization method sequentially solves a set of easy-to-hard
smoothed subproblems, which helps find the optimal solution for the original problem. b) We propose to simultaneously learn the whole
continuation path, which contains the intermediate solutions for all homotopy subproblems. c) The solutions for homotopy subproblems
could have better generalization performance for learning-based problems.

ious problems, including non-convex optimization,
noisy regression, and neural combinatorial optimiza-
tion. 1

2. Related Work
Homotopy Optimization, also called continuation or gradu-
ated optimization method (Blake & Zisserman, 1987; Yuille,
1989; Allgower & Georg, 1990), is a general optimiza-
tion strategy for solving non-convex optimization problems.
This method sequentially constructs and solves a set of
smoothed subproblems that gradually deform from an easy-
to-solve problem to the original complicated problem as
shown in Figure 1(a). It would help to find a better solution
for the original non-convex problem (Wu, 1996; Dunlavy
& O’Leary, 2005). This method has also been widely used
for solving nonlinear equations (Eaves, 1972; Wasserstrom,
1973; Allgower & Georg, 1990), and it is closely related
to simulated annealing for optimization (Kirkpatrick et al.,
1983; Van Laarhoven & Aarts, 1987; Ingber, 1993).

Homotopy Optimization in Machine Learning The ho-
motopy optimization methods have been widely used in
different machine learning applications over the past three
decades, such as for computer vision (Terzopoulos, 1988;
Gold et al., 1994; Brox & Malik, 2010; Hruby et al., 2022),
statistical learning (Chapelle et al., 2006; Kim & De la
Torre, 2010), curriculum learning (Bengio, 2009; Bengio
et al., 2009; Kumar et al., 2010; Graves et al., 2017), and
efficient model training (Chaudhari et al., 2016; Gargiani
et al., 2020; Guo et al., 2020). A few works have been
proposed to study its theoretical property in different set-
tings (Mobahi & Fisher III, 2015b;a; Hazan et al., 2016;
Anandkumar et al., 2017; Iwakiri et al., 2022). Although
the homotopy optimization method can usually help to find
a better solution, it might suffer from a long run time due to

1The source code can be found in https://github.com/
Xi-L/CPL.

the iterative optimization structure. Recently, Iwakiri et al.
(2022) have proposed a novel single loop algorithm for fast
Gaussian homotopy optimization.

Most homotopy optimization methods only care about the
final solution for the original problem, but the intermediate
optimal solutions could also be useful for flexible decision-
making. A few works have been proposed to find a single
solution for a specific smooth intermediate subproblem for
better generalization performance (Chaudhari et al., 2016;
Gulcehre et al., 2017). In statistical learning, efficient meth-
ods have been proposed to find the whole set of finite tun-
ing points that fully characterize the homotopy path for
LASSO (Efron et al., 2004; Rosset & Zhu, 2007; Tibshirani
& Taylor, 2011) and SVM (Hastie et al., 2004) by leverag-
ing the specific piece-wise linear structure. However, these
methods do not work for general homotopy optimization
problems.

Model-based Optimization Many model-based methods
have been proposed to improve different optimization al-
gorithms’ performance. Bayesian optimization builds a
surrogate model to approximate the unknown black-box
optimization problem and uses it to guide the optimiza-
tion process (Shahriari et al., 2016; Garnett, 2022). Latent
space modeling (Gómez-Bombarelli et al., 2018; Tripp et al.,
2020) is another powerful approach for reconstructing the
original complicated optimization problem into a much eas-
ier form to solve. It is also possible to accelerate the opti-
mization algorithm by learning the problem structure (Sener
& Koltun, 2020) or dividing the search space (Wang et al.,
2020; Eriksson et al., 2019). Recently, a few model-based
approaches have been proposed to learn the Pareto set for
multi-objective optimization problems (Yang et al., 2019;
Dosovitskiy & Djolonga, 2020; Lin et al., 2020; Navon et al.,
2021; Lin et al., 2022a;b). In this work, we propose a novel
method to learn the whole continuation path for homotopy
optimization as shown in Figure 1(b), and use it to improve
the optimization performance for different applications.
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3. Homotopy Optimization
In this section, we introduce the classical homotopy opti-
mization method and a recently proposed single-loop Gaus-
sian homotopy algorithm.

3.1. Classical Homotopy Optimization

We are interested in the following minimization problem:

min
x∈X

f(x), (1)

where x ∈ X ⊂ Rd is the decision variable, and f : X → R
is the objective function to minimize. The objective func-
tion f(x) could be highly non-convex and has a complicated
optimization landscape. Therefore, it cannot be easily op-
timized with a simple local minimization method such as
gradient descent.

To tackle this problem, homotopy optimization method (All-
gower & Georg, 1990; Dunlavy & O’Leary, 2005) considers
a family of function H : X × T → R parameterized by the
continuation level t ∈ T = [0, 1] such that:

H(x, t = 0) = g(x) H(x, t = 1) = f(x),∀x ∈ X ,
(2)

where g : X → R is another easy-to-optimize objective
function on the same decision space X . The function
H(x, t) is also called a homotopy that gradually transforms
g(x) to f(x) by increasing t from 0 to 1. An illustration of
the continuation function can be found in Figure 1(a).

The key idea of homotopy optimization is to define a suit-
able continuation function H(x, t) such that the minimizer
for H(x, 0) = g(x) is already known or easy to find, and
the H(x, t) with t = 0 → 1 be a sequence of smoothed
functions transforming from g(x) to the target objective
function f(x). Rather than directly optimizing the com-
plicated target function f(x), we can progressively solve
a sequence of coarse-to-fine smoothed optimization sub-
problems from H(x, 0) to H(x, 1) with a warm start from
previously obtained solution as shown in Algorithm 1. In
this way, we can find a better solution for the target objective
function H(x, 1) = f(x).

In practice, the performance of homotopy optimization heav-
ily depends on two crucial components:

• A proper design of the initial and continuation function
for the given problem;

• A suitable schedule to progressively solve the sequence
of easy-to-hard subproblems.

However, there is no clear and principled guideline for the
continuation construction (Mobahi & Fisher III, 2015a). The

Algorithm 1 Classical Homotopy Optimization Algorithm

1: Input: continuation function H(x, t), a predefined se-
quence 0 = t0 < t1 < . . . tK = 1

2: x0 = a minimizer of H(x, t0)
3: for k = 1 to K do
4: xk = local minimizer of H(x, tk), initialized at

xk−1

5: end for
6: Output: xK

homotopy optimization process could be time-consuming
since we have to run a local search algorithm to find xk for
each subproblem (Iwakiri et al., 2022). The continuation
and schedule design will become much more complicated if
we want to find a solution for a specific homotopy level un-
known in advance, such as for better generalization (Chaud-
hari et al., 2016; Gulcehre et al., 2017).

3.2. Single Loop Gaussian Homotopy Algorithm

Algorithm 2 Single Loop Gaussian Homotopy Algorithm

1: Input: Gaussian homotopy function GH(x, t), initial
solution x0, initial homotopy level t0

2: for k = 1 to K do
3: xk = xk−1 − η1∇xGH(xk−1, tk−1)

4: (optional) query Gt =
∂GH(xk−1,tk−1)

∂t
5: update tk ={

γtk−1 (SLGHr)
max{0,min{tk−1 − η2Gt, γtk−1}} (SLGHd)

6: end for
7: Output: xK

To alleviate the time-consuming local optimization at each
homotopy iteration, Iwakiri et al. (2022) recently proposed
a novel single loop algorithm for the popular Gaussian ho-
motopy method (Blake & Zisserman, 1987).

The Gaussian homotopy function GH(x, t) with t ∈ [0, 1]
for f(x) can be defined as:

GH(x, t) = Eu∼N(0,Id)[f(x+ β(1− t)u)]

=

∫
f(x+ β(1− t)y)k(y)dy,

(3)

where parameter β > 0 controls the max range of homo-
topy effect, N(0, Id) is the d-dimensional standard Gaus-
sian distribution, and k(y) = (2π)−d/2 exp(−||y||2/2)
is the Gaussian kernel. Instead of iteratively optimizing
GH(x, t) with a sequence of t as in previous works (Wu,
1996; Mobahi & Fisher III, 2015b;a; Hazan et al., 2016),
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Iwakiri et al. (2022) proposed to directly optimize:

min
x∈X ,t∈T

GH(x, t) (4)

with respect to both x and t at the same time. By leveraging
the theoretical properties of the heat equation (Widder, 1976)
and partial differential equation (Evans, 2010), they also
showed that the Gaussian homotopy functionGH(x, t) will
be always optimized at (x∗, 1) where x∗ is the optimal
solution for f(x). This property validates the approach to
optimize GH(x, t) with respect to t.

The single loop Gaussian homotopy (SLGH) optimization
algorithm is shown in Algorithm 2. At each iteration, the
decision variable xk is updated by gradient descent, and
the homotopy level tk is updated by either a fixed ratio de-
creasing rule (e.g., SLGHr with γ = 0.999) or a derivative
update rule (e.g., SLGHd). This algorithm could be faster
than the classical homotopy optimization algorithm with a
double loop structure (Iwakiri et al., 2022). However, the
performance of SLGH is still sensitive to the homotopy
schedule (e.g., the setting of γ). It might not work for a gen-
eral homotopy optimization problem other than Gaussian
homotopy, and can not easily obtain the solutions for any
intermediate subproblem or the whole homotopy path.

4. Continuation Path Learning
4.1. Why Continuation Path Learning

Both classical homotopy optimization algorithms and the
recently proposed SLGH method only focus on finding a sin-
gle solution for the original optimization problem. In many
real-world applications, an intermediate solution xt∗ for a
smooth homotopy subproblem H(xt∗ , t∗) could be desir-
able such for robust generalization performance (Chaudhari
et al., 2016; Gulcehre et al., 2017).Finding a solution with
a proper regularization v.s. performance trade-off is also
an important issue in machine learning (Efron et al., 2004;
Hastie et al., 2004). However, the optimal homotopy level
t∗ is usually unknown in advance.

In this work, we propose a novel model-based approach to
learn the whole continuation path that contains solutions
for all gradually smooth homotopy subproblems. With the
learned path model, decision-makers can easily select their
preferred solution(s) on the solution path as shown in Fig-
ure 2. In addition, even if the goal is to find a single solution
with a given homotopy level (e.g., t = 1 for the original
problem), CPL can also efficiently generate a good initial so-
lution by collaboratively learning all subproblems together.
It is a strong alternative to the sequential and unidirectional
information passing in classical homotopy optimization.

Path Model

Figure 2. Continuation Path Model takes any valid homotopy
level t as input, and generate its corresponding solution xϕ(t)
on the continuation path. Decision-makers can easily obtain any
predictive homotopy solution by adjusting the input level t.

4.2. Continuation Path Model

For the homotopy function H(x, t), the number of con-
tinuation levels t ∈ T and their corresponding subprob-
lems could be infinite. Let x∗

0 be the minimizer for
H(x, 0) = g(x), we can define a path x∗(t) continuous
in t such that x∗(0) = x∗

0 and ∇H(x∗(t), t) = 0 for all
t ∈ T = [0, 1] (Wu, 1996). This path simply goes through a
set of stationary points for H(x, t) from x∗

0 with gradually
increasing t. The homotopy optimization algorithms trace
the solutions from x∗(0) to x∗(1). In practice, the solution
x∗(1) could be a good local minimizer for H(x, 1) = f(x)
if not the global one (Mobahi & Fisher III, 2015a;b). The
existence and uniqueness of this path can be guaranteed for
the Gaussian homotopy function (3) under mild conditions:
Theorem 4.1 (Existence of Continuation Path (Wu, 1996)).
Let f be a well-behaved function and H(x, t) be its Gaus-
sian homotopy function (3). Then for any stationary point
x0 ofH(x, 0), there is a continuous and differentiable curve
x∗(t) on t ∈ T = [0, 1] such that x∗(0) = x0 and x∗(t) is
a stationary solution of H(x, t),∀t ∈ T .

To be well-behaved, a sufficient condition is that the func-
tion f is twice continuously differentiable while f and its
derivatives should all be integrable for the Gaussian homo-
topy function (3) (Wu, 1996). We assume such continuation
path x∗(t) always exists in this work.

According to the definition, x∗(t) is a continuous curve
that contains solutions for all (infinite) homotopy levels
t ∈ T . The discrete set of stationary solutions obtained
by a classical homotopy optimization {x1,x2, . . . ,xK} =
{x∗(t1),x

∗(t2), . . . ,x
∗(tK)} is a finite subset on the solu-

tion path {x∗(t)|t ∈ T }. In this work, we propose to build
a model xϕ(t) with learnable parameter ϕ to approximate
the whole continuation path x∗(t). Our goal is to find the
optimal ϕ∗ such that:

xϕ∗(t) = x∗(t) = argmin
x

H(x, t),∀t ∈ T . (5)

As shown in Figure 2, the continuation path model maps
any valid homotopy level t to its corresponding solution
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xϕ(t). With the ideal model parameters ϕ∗, the output
xϕ∗(t) should be the optimal solutions for each intermediate
subproblem H(x, t), and hence xϕ∗(t) well approximates
the continuation path x∗(t). Once such a model is obtained,
we can easily get the corresponding solution xϕ∗(t′) =
argminxH(x, t′) for any specific continuation parameter
t′. In this work, we set xϕ(t) as a neural network model
and ϕ is its model parameters.

4.3. Learning the Continuation Path

Once we have the continuation path model xϕ(t), the next
step is to find the optimal parameters ϕ∗ with respect to all
homotopy level t ∈ T . Since the number of homotopy levels
is infinite, our goal is to optimize the following expectation:

min
ϕ

EtH(xϕ(t), t), (6)

where each term H(xϕ(t), t) is a composition of continua-
tion path model xϕ(t) and the homotopy function H(x, t).
In this way, we reformulate the classic unidirectional ho-
motopy optimization problem (e.g., Algorithm 1) into the
single loop model training problem (6) that simultaneously
learn the whole continuation path. It should be noticed that
our method changes the optimization variables from the
original decision variable x to model parameter ϕ.

It is difficult to directly optimize the problem (6) since the
expectation term could be hard to compute in most cases. In
this work, we propose to learn the model parameters with
stochastic gradient descent as shown in Algorithm 3. At
each step, we optimize the following stochastic optimization
problem with Monte Carlo sampling:

min
ϕ

1

M

M∑
m=1

H(xϕ(tm), tm), {tm}Mm=1 ∼ PT , (7)

where {t1, . . . , tM} are M independent identically dis-
tributed (i.i.d.) samples from distribution PT . Without any
prior knowledge, we can simply set PT to be a uniform dis-
tribution on T . It is also possible to use other distributions
or further adaptively adjust the distribution to incorporate
extra information along the optimization process.

A crucial step of the proposed method is to find a valid
gradient direction to update the model parameters at each
iteration. We can decompose the gradient ∇ϕH(xϕ(t), t)
with the chain rule:

∇ϕH(xϕ(t), t) =
∂xϕ(t)

∂ϕ
· ∇xH(x = xϕ(t), t), (8)

where ∂xϕ(t)
∂ϕ is the Jacobian matrix of the path model with

output vector xϕ(t), and ∇xH(x, t) is the gradient of the
homotopy function with respect to decision variables x. In
this work, since the path model is a neural network, the

Algorithm 3 Gradient-based Continuation Path Learning

1: Input: continuation function H(x, t), a path model
xϕ(t) with learnable parameters ϕ

2: for i = 1 to I do
3: randomly sample a set of {tm}Mm=1 ∼ PT
4: ϕ← ϕ− η

M

∑M
m=1∇ϕH(x = xϕ(tm), tm)

5: end for
6: (optional) xt′ = local minimizer ofH(x, t′), initialized

at xϕ(t
′) with chosen homotopy level t′

7: Output: path model xϕ(t)

Jacobian matrix ∂xϕ(t)
∂ϕ can be easily calculated with back-

propagation. If the homotopy function is also differentiable
with a known gradient formulation∇xH(x, t), we can use
standard gradient descent to optimize the model parameters.

In many real-world applications, however, the gradient of
the homotopy function could be unknown or hard to com-
pute (Iwakiri et al., 2022). In these cases, we can use a
zeroth-order optimization (also called derivative-free opti-
mization) method (Duchi et al., 2015; Nesterov & Spokoiny,
2017) with approximate gradients for model training. For
a general homotopy function, we can adopt a simple evolu-
tionary strategy (ES) (Hansen & Ostermeier, 2001; Beyer &
Schwefel, 2002) to approximate the gradient:

∇xH(x, t) =
1

σK

K∑
k=1

(H(x+ σu(k), t)−H(x, t))u(k),

(9)

where {u(1), . . . ,u(K)} are K i.i.d. d-dimensional Gaus-
sian vectors sampled from N(0, Id) and σ is a fixed control
parameter. This simple gradient estimation is also closely
related to Gaussian smoothing (Nesterov & Spokoiny, 2017;
Gao & Sener, 2022).

For the Gaussian homotopy function (3), according to (Nes-
terov & Spokoiny, 2017), its gradient can be written as:

∇xGH(x, t) (10)

=
1

β(1− t)
Eu∼N(0,Id)([f(x+ β(1− t)u)− f(x)]u).

Therefore, its gradient can be approximated by:

∇xGH(x, t) (11)

=
1

β(1− t)K

K∑
k=1

(f(x+ β(1− t)u(k))− f(x))u(k),

where {u(1), . . . ,u(K)} ∼ N(0, Id) are K i.i.d. Gaussian
vectors as in the ES approximate gradient (9), while we
now only query the value for the original function f but
not the homotopy function H(x, t). A similar zeroth-order
approximation with batch size K = 1 has been used and
analyzed in Iwakiri et al. (2022) for the SLGH algorithm.
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4.4. Optional Local Search

Decision-Maker

Pick

Figure 3. Optional Local Search: Decision-makers can easily
pick their favorite solutions from the learned continuation path.
An optional local search can help to find a better solution if needed.

The previous subsections mainly focus on learning the
whole continuation path. In some applications, the decision-
maker might only be interested in a single solution, such as
xϕ(t = 1) for the original optimization problem. By learn-
ing the whole continuation path xϕ(t) for all homotopy
levels together, CPL actually exchanges the information
among different homotopy subproblems simultaneously via
the path model. In this case, our learned continuation path
model can act as a warm start for any homotopy subprob-
lem, which is more flexible than the gradual unidirectional
information passing in classical homotopy optimization. An
optional fast local search could help to find a better solution
as in Algorithm 3 and Figure 3. This step is equal to the
final iteration of the classical homotopy optimization algo-
rithm. In the next section, we empirically show that CPL
can indeed find better initial solutions.

5. Bridging Homotopy Optimization and
Parametric Optimization

Our proposed continuation path learning approach indeed
provides a novel view to bridge homotopy optimization
and parametric optimization. We discuss several interesting
connections in this section.

5.1. CPL as Parametric Optimization

A general parametric optimization problem is defined as:

min
x∈X

f(x,β), (12)

where x ∈ X is the decision variable, β ∈ B is the problem
parameter (also called the context), and f : X × B → R.
Classical works on parametric optimization mainly focus
on the sensitivity of objective value to the problem param-
eter (Bank et al., 1983; Bonnans & Shapiro, 2013; Still,
2018). A typical metric is the value function

v(β) = min
x
f(x,β) (13)

that describes the change of optimal value with respect to
the problem parameter β.

In our work, we propose to build a model to approxi-
mate the whole continuation path xϕ∗(t) = x∗(t) =
argminxH(x, t) with every homotopy level t. If we treat
the homotopy level t as the problem parameter, we can
define the value function for homotopy optimization

v(t) = min
x
H(x, t) = H(x = xϕ∗(t), t) (14)

for all valid t. With CPL’s model-based reformulation, we
can now use the well-studied parametric optimization ap-
proach as a novel view to analyze homotopy optimization
methods.

In addition, the classic value function approach mainly
addresses the change of optimal value v(β) with respect
to the parameter β. The direct differentiation of v(β)
could be difficult since the optimal solution x is often un-
available (Mehmood & Ochs, 2020; 2021). By modeling
x∗(t) = xϕ∗(t), the homotopy objective v(t) = H(x =
xϕ∗(t), t) can be easily differentiated and optimized by
gradient-based optimization methods. The solution model
xϕ(t) (in addition to the objective value) may also provide
useful information to support decision-making. It could
be interesting to extend the solution model method for a
general value function approach.

5.2. Connection to Amortized Optimization

There is an exciting and important research direction
on learning to optimize (or called Amortized Optimiza-
tion) (Amos, 2022; Chen et al., 2022), which focuses on
making implicit or explicit inferences from a given problem
context to its solution. Some recent works directly predict
the optimal solution from problem parameters with specific
structures (Liu et al., 2022). Conceptually, they are simi-
lar to the value function approach but also with a solution
model.

A recent work (Li et al., 2023) proposes a classic iterative
homotopy optimization method to accelerate the learning-to-
optimize approach. Our proposed CPL method can be useful
to further improve its performance. If we treat the homotopy
level as an additional problem parameter, it is possible to
learn the continuation path for a set of problems via a single
model. The viewpoint of the value function approach may
also provide useful insight for designing better methods.

5.3. Problem Reformulation and Difficulty

Our proposed CPL approach reformulates the original opti-
mization problem into continuation model training which
might have more parameters to optimize, but we believe it
can deal with the homotopy optimization more easily. First
of all, there could be infinite homotopy levels and corre-
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Figure 4. The original and Gaussian homotopy (GH) versions of the Ackley (a,b), Ronsenbrock (c,d), and Himmelblau (e,f) optimization
problems. The original optimization problems are all non-convex, and the GH surrogate problems are much smoother and easier to solve.

Table 1. Results of gradient descent algorithm, Gaussian homotopy optimization algorithms, and our proposed continuation path learning
(CPL) algorithm on three widely-used optimization problems. The optimal value is 0 for all problems. CPL can obtain the best solutions
for all problems with the same number of function evaluations.

Algorithms Ackley Rosenbrock Himmelblau

Gradient Descent GD 12.63 0.2840 1.6× 10−4

Homotopy Optimization GradOpt(γ = 0.5) 0.014 0.0336 14.14
GradOpt(γ = 0.8) 0.081 0.0370 80.51
SLGHr(γ = 0.995) 6.650 0.0327 6.9× 10−5

SLGHr(γ = 0.995) 0.017 0.0419 0.21

Continuation Path Learning CPL(95% path model training) 0.022 0.0421 1.7× 10−3

CPL(path model + local search) 0.006 0.0018 2.3× 10−6

sponding intermediate solutions for the original problem,
which is hard to handle using classic iterative optimization
approaches. Our proposed CPL method can learn the whole
continuation path via a single model, which is a novel and
principled way to deal with this problem. In addition, the
existing homotopy optimization methods could be sensitive
to the progressive schedule design, and also suffer from high
computational overheads due to the iterative optimization
structure (Iwakiri et al., 2022). In contrast, our model-based
CPL approach can be easily trained by a gradient-based
optimization algorithm and obtain promising results. The
reason why a large deep neural network can be easily trained
by stochastic gradient descent is still an open research ques-
tion. For the problem transformation in CPL, some findings
from the smooth parametrization work such as Levin et al.
(2022) would be useful for further studies.

6. Experimental Studies
In this section, we empirically evaluate different aspects
of our proposed continuation path learning (CPL) method
for solving non-convex optimization, noisy regression, and
neural combinatorial optimization problem. Due to the
page limit, we only report the main results in this section.
Detailed experimental settings, extra experimental results,
and more discussions for each problem can be found in
Appendix A,B, and C respectively.

6.1. Non-convex Optimization

We first test CPL’s performance on three widely-used syn-
thetic test benchmark problems, namely the Ackley func-
tion (Ackley, 1987), the Rosenbrock function (Rosenbrock,
1960), and the Himmelblau function (Himmelblau et al.,
1972). The original and Gaussian homotopy versions of
these functions are shown in Figure 4. The original opti-
mization functions are non-convex and hence hard to be
directly optimized by simple gradient descent algorithms.
In contrast, their Gaussian homotopy versions are much
smoother and easier to optimize.

We mainly follow the experimental setting from Iwakiri
et al. (2022), and compare CPL with a simple gradient de-
scent algorithm (GD), a classical Gaussian optimization
algorithm (GradOpt) (Hazan et al., 2016) with two smooth-
ing parameters (γ = 0.5 and 0.8), and the recently proposed
single loop Gaussian homotopy algorithm with fixed ratio
update (SLGHr) (Iwakiri et al., 2022) with γ = 0.995 and
0.999. The total numbers of function evaluations are 1, 000,
20, 000, and 2, 000 for the Ackley, Rosenbrock, and Him-
melblau optimization problem respectively. For CPL, since
the goal is to optimize the original optimization problem,
we use 95% function evaluations for path model training
and the rest 5% for gradient-based local search with initial
solution xϕ(t = 1). In other words, CPL has the same
number of function evaluations as other methods.
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Figure 5. Prediction performance v.s. homotopy level t on four different noisy nonlinear regression problems. CPL can successfully learn
the whole continuation path for all problems. With the learned path, the decision-maker can easily locate the optimal homotopy level t
with the minimum prediction loss for each problem.

According to the results reported in Table 1, the classic ho-
motopy optimization methods are sensitive to the scheduling
design and hyperparameters, which would be hard to tune
for a new problem. Indeed, all the homotopy optimization
methods are carefully fine-tuned as in Iwakiri et al. (2022),
but no single method can consistently achieve good per-
formance on all problems. In contrast, our proposed CPL
method with only the model training step (95% evaluations)
can already generate promising xϕ(t = 1) solutions that
have similar performances with other homotopy optimiza-
tion algorithms. With extra gradient-based local search (the
rest 5% evaluations), CPL can achieve significantly better
solutions for all test problems. These results confirm that
learning the whole continuation path in a collaborative man-
ner with knowledge transfer can be helpful for solving the
original complicated problem. It is a strong alternative to
the classical homotopy optimization methods.

6.2. Noisy Regression

In this subsection, we consider the following noisy nonlinear
regression problem:

min
α∈Rd

t||ŷ − ψ(X̂)α||22 + (1− t)||α||2, (15)

where X̂ ∈ Rn×p is a matrix of predictors, ŷ ∈ Rn is a
noisy response vector, and ψ : Rp → Rd is a nonlinear
mapping to the feature space. Given a noisy data set with
n data points {X̂, ŷ}, our goal is to find the optimal pa-
rameters α∗ = argminα ||y − ψ(X)α||22 for the noiseless
{X,y}. The noisy regression problem (15) is a proper
homotopy surrogate controlled by the continuation level
t. When t = 0, the problem reduces to minα∈Rd ||α||2
which has a trivial solution α = 0d. When t = 1, it is
the standard regression problem minα∈Rd ||ŷ − ψ(X̂)α||22
without the regularization term ||α||2, which could overfit
to the noisy data. To have the best prediction performance
on the noiseless {X,y}, we need to find the solution for
the homotopy optimization problem (15) with a proper but
unknown t ∈ T = [0, 1].

Our proposed CPL method can learn the whole continuation
path for this problem. We build a simple fully connected
neural network α(t) = hϕ(t) as the path model which
maps any valid homotopy level t to its solution α(t), and
reformulate the noisy regression problem into:

min
ϕ
t||ŷ − ψ(X̂)hϕ(t)||22 + (1− t)||hϕ(t)||2. (16)

Then the path model can be trained by simple gradient de-
scent to obtain the optimal model parameters ϕ. We learn
the continuation path for four different noisy regression
problems and report their results in Figure 5. CPL success-
fully learns the continuation path for all problems, which
can be used to directly locate the optimal homotopy level t.
The problem details can be found in Appendix B.

6.3. Neural Combinatorial Optimization

The CPL method can also improve the generalization per-
formance for a neural combinatorial optimization (NCO)
solver (Vinyals et al., 2015; Kool et al., 2019), which learns
to directly predict the solution for a combinatorial opti-
mization problem. We use the popular traveling salesman
problem (TSP) to motivate our approach. A Euclidean
TSP instance s is a fully connected graph with n nodes
(cities) where each city has its own two-dimensional loca-
tion y. The traveling cost between two cities i and j can
be defined as the distance cij = ||yi − yj ||2. The goal of
TSP is to find a valid tour with the shortest cost to visit
all cities exactly once and then return to the starting city.
We can represent a valid tour as a permutation of all cities
π = (π1, · · · , πi, · · · , πn), πi ∈ {1, · · · , n}, and the ob-
jective is to find the optimal tour to minimize:

l(π|s) = cπnπ1
+

n−1∑
i=1

cπiπi+1
. (17)

We can construct a smoother homotopy subproblem by grad-
ually changing the cost between city pairs (Coy et al., 2000):

ĉij(t) = ctij , t ∈ T = [0, 1]. (18)
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Figure 6. Homotopy Subproblems for TSP: (a) When t = 0, we have the smoothest subproblem where all the distances are the same. In
this case, all valid tours will have the same length and be equally optimal, so solving TSP could be trivial. (b)-(d) When t increases, we
have more rugged subproblems that gradually transform back to the original problem. (e) When t = 1, we have the original problem.

Table 2. Results of generalization performance on the realistic TSPLib instances (with 51 to 200 cities). All learning-based methods are
trained on synthetic and uniformly distributed TSP instances with 100 cities. The full table can be found in Table 6.

OR-Tools Wu et al. (Wu et al., 2021) DACT DACT(long) AM-S POMO CPL

Optimal Gap 3.34% 4.17% 3.90% 2.07% 22.83% 2.15% 1.72%

We always normalize the original cost matrix such that cij ∈
[0, 1] and hence all ĉij(t) ∈ [0, 1], and we also normalize
the smoothed cost matrix to have the same mean with the
original cost matrix

∑
ĉij(t) =

∑
cij =

∑
c̄. The cost

matrices with different values of t are shown in Figure 6.
With the smoothed costs, we can define the continuation
function of the tour π for problem instance s as:

H(π, t|s) = ctπnπ1
+
∑n−1

i=1
ctπiπi+1

, t ∈ T = [0, 1].

(19)
For t = 0, all valid tours have the same total cost H(π, t =
0|s) = nc̄, and the optimization problem becomes trivial to
solve. For t = 1, we have the original objective function
H(π, t = 1|s) = l(π|s).

With the above homotopy idea, we can build a CPL-
enhanced solver for neural combinatorial optimization. As
shown in Figure 7, our model can easily generate multiple
solutions on the continuation path for the smoothed subprob-
lems (e.g., tm ∈ [0, 1]) to make a multi-shot prediction that
might contain solutions with better generalization perfor-
mance. By leveraging this property, CPL can obtain a robust
generalization performance on unseen TSPlib instances with
unseen sizes and distributions as shown in Table 2. Model
details and more results can be found in Appendix. C.

7. Conclusion and Limitation
Conclusion We have proposed a novel continuation path
learning (CPL) method to approximate the whole continu-
ation path for homotopy optimization. The experimental
results have shown that CPL can successfully learn the solu-
tion path for different applications. In addition, compared
with the classical homotopy optimization method, CPL can
achieve similar or even better performance for the original

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Continuation Level t

0

500

1000

1500

2000

2500

Co
un

ts
 o

f O
pt

im
al

 S
ol

ut
io

ns

Figure 7. CPL inference and counts of optimal solutions. For
10, 000 random 100-city TSP instances, the model with t = 1 can
only generate the best solutions for roughly 25% instances. We
leverage solutions on the continuation path (t ∈ [0, 1)) to achieve
better overall performance.

complicated problem. We believe CPL could be a novel and
promising method for homotopy optimization.

Limitation A limitation of CPL is that we need to build
and train a model for learning the continuation path. The
suitable model design will mainly depend on the given prob-
lem, and some domain knowledge might also be required
for efficient model building. Additional theoretical analyses,
such as problem transformation and the relation to the value
function approach, are important future works.
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We provide detailed experimental settings, extra experimental results, and more discussions in this Appendix.

A. Synthetic Test Benchmarks
A.1. Problem Definition

In this experiment, we evaluate the proposed continuation path learning (CPL) method with other homotopy optimization
algorithms on the following three widely-used non-convex optimization problems.

Ackley Optimization Problem (Ackley, 1987):

f(x, y) = −20e−0.2
√

0.5(x2+y2) − e0.5(cos 2πx+cos 2πy) + e+ 20. (20)

Rosenbrock Optimization Problem (Rosenbrock, 1960):

f(x, y) = 100(y − x2)2 + (1− x)2. (21)

Himmelblau Optimization Problem (Himmelblau et al., 1972):

f(x, y) = (x2 + y − 11)2 + (x+ y2 − 7)2. (22)

A.2. Experimental Setting

We compare CPL with a simple gradient descent algorithm (GD), a classical Gaussian optimization algorithm
(GradOpt) (Hazan et al., 2016) with two smoothing parameters (γ = 0.5 or 0.8), and the recently proposed single
loop Gaussian homotopy algorithm with fixed ratio update (SLGHr) (Iwakiri et al., 2022) with γ = 0.995 or 0.999. We
report the results of these algorithms with fine-tuned hyperparameters from Iwakiri et al. (2022).

For our proposed CPL method, we build a simple fully connected (FC) neural network as the continuation path model. It
has two hidden layers each with 128 hidden nodes. Since the model’s gradient can be decomposed with the simple chain
rule as in Section 4.3, it can be easily optimized by the (zeroth-order) gradient descent algorithm similar to other homotopy
optimization algorithms. CPL can learn to approximate the whole continuation path simultaneously, hence it does not
require any predefined continuation schedule or smoothing parameter.

We use Gaussian homotopy (GH) as the homotopy method and mainly follow the experimental setting from Iwakiri et al.
(2022) for each optimization problem.

Ackley The Ackley optimization problem does not have an analytical form for its Gaussian homotopy function, and
hence we use the zeroth-order method to approximate its Gaussian homotopy gradient (11). The total number of function
evaluations is 1, 000 for all algorithms. CPL uses 950 evaluations for path model training and 50 evaluations for final local
search with homotopy level t = 1.

Rosenbrock The Gaussian homotopy function of the Rosenbrock optimization problem has the following analytical
form (Mobahi & Ma, 2012; Iwakiri et al., 2022):

GH(x, y, t) =Eux,uy [f(x+ β(1− t)ux, y + β(1− t)uy)] (23)

=100x4 + [−200y + 600β2(1− t)2 + 1]x2 − 2x+ 100y2 − 200β2(1− t)2y
+ 300β4(1− t)2 + 101β2(1− t)2 + 1.

Therefore, we can use the simple first-order gradient method for CPL and all the other homotopy optimization algorithms.
The total number of function evaluations is 20, 000. For CPL, 19, 000 evaluations are used for path model training, and the
rest 1, 000 is for the final local search with homotopy level t = 1. We set β = 1.5 according to Iwakiri et al. (2022).
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Himmelblau Similar to the Ronsebrock problem, since the himmelblau optimization problem is polynomial, it has an
analytical Gaussian homotopy function:

GH(x, y, t) =Eux,uy
[f(x+ β(1− t)ux, y + β(1− t)uy)] (24)

=x4 + (2y + 6β2(1− t)2 − 21)x2 + (2y2 + 2β2(1− t)2 − 14)x

+ y4 + (6β2(1− t)2 − 13)y2 + (2β2(1− t)2 − 22)y

+ 6β4(1− t)4 − 34β2(1− t)2 + 170

We also use the first-order gradient method to optimize this problem for all algorithms. The total number of function
evaluations is 2, 000. CPL has 1, 900 evaluations for model training and 100 for the final local search with t = 1. The
parameter β is set to 2 as in Iwakiri et al. (2022).

A.3. Computational Cost

Table 3. Runtime of gradient, descent, SLGH, and CPL with CPU or GPU.

Problem Ackley Himmelblau Rosenbrock
# Iteration 1,000 2,000 20,000

Gradient Descent 0.9s 1.6s 11.2s
SLGH 0.9s 1.7s 12.6s

CPL (CPU) 0.9s 1.8s 13.2s
CPL (GPU) 1.6s 2.8s 15.4s

The CPL model training can be easily done by highly efficient deep learning frameworks such as PyTorch. For these
non-convex optimization benchmarks, depending on the number of iterations, CPL typically needs 1 to 15 seconds to train
the model while the run times for other model-free methods are 1 to 13 seconds. It should be pointed out that CPL can learn
the whole continuation path while the other methods are to find a single final solution. In addition, the CPL training on GPU
(RTX-3080) is actually slower than its counterpart on CPU. For such a small model, the reason could be the cost of data
transformation from RAM to GPU is larger than the speedup of GPU over CPU.

A.4. Effect of the Model Size

Table 4. CPL performance on the original problem with different model sizes.
Baseline Single Hidden Layer Two Hidden Layers Three Hidden Layers

Model Size SLGH 16 128 1024 16-16 128-128 (this paper) 1024-1024 16-16-16 128-128-128 1024-1024-1024

Ackley 6.650 2.605 0.478 0.261 0.089 0.006 0.005 0.024 0.007 0.006
Himmelblau 6.9e-5 84.25 11.92 3.8e-05 19.46 2.3e-6 2.8e-6 8.74 2.1e-6 2.6e-6
Rosenbrock 0.0327 0.0548 0.0409 0.0282 0.0371 0.0018 0.0023 0.0220 0.0016 0.0019

The performance of CPL depends on the neural network architectures. Indeed, different optimization problems and
applications could require different CPL models. A general guideline is that the model should be large enough to learn the
continuation path for the given problem. Therefore, we should care about the model size and also problem-specific structure.

We report the results for different models with various sizes in Table 4. Based on the results, a very small model (such
as those with single hidden layers) is not able to learn the whole continuation path, and hence has poor performance. On
the other hand, once the model has sufficient capacity (such as those three-layer models with more than 128 hidden units),
further increasing the model size will not lead to significantly better performance. Therefore, it is important to choose a
suitable model size for a given problem.
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B. Noisy Regression
In this experiment, we test our proposed CPL method on the following four different noisy regression problems.

F1 This problem has the following ground truth function relation between x and y:

y = 0.5 sin(x) + 0.3 cos(2x) + 2 cos(3x), (25)

where x ∈ [−5, 5]. For the noisy regression, we report ŷ = y + 0.1ε where ε ∼ N(0, 1) as the noise response value, and set
ψ(x) = [sin(x), cos(2x), cos(3x)]. Therefore, the optimal α = [0.5, 0.3, 2].

F2 This problem has the following ground truth function relation between x and y:

y = cos(x) + 0.2 sin(2x) + 0.5 sin(3x), (26)

where x ∈ [−5, 5]. For the noisy regression, we report ŷ = y + 0.1ε where ε ∼ N(0, 1) as the noise response value, and set
ψ(x) = [cos(x), sin(2x), sin(3x)]. Therefore, the optimal α = [1, 0.2, 0.5].

F3 This problem has the following ground truth function relation between x and y:

y = e0.25x − 0.2 cos(x) + 0.5 sin(4x), (27)

where x ∈ [−5, 5]. For the noisy regression, we report ŷ = y + 0.1ε where ε ∼ N(0, 1) as the noise response value, and set
ψ(x) = [e0.25x, cos(x), sin(4x)]. Therefore, the optimal α = [1,−0.2, 0.5].

F4 This problem has the following ground truth function relation between x and y:

y = 2 ∗ ln 0.25|x|+ 3 sin(6x) + 4 cos(0.5x), (28)

where x ∈ [−5, 5]. For the noisy regression, we report ŷ = y + 0.1ε where ε ∼ N(0, 1) as the noise response value, and set
ψ(x) = [ln 0.25|x|, sin(6x), cos(0.5x)]. Therefore, the optimal α = [2, 3, 4].
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Figure 8. Continuation Path Learning Model for Neural Combinatorial Optimization: Our proposed CPL model can learn to construct
different solutions for the smoothed subproblems on the continuation path for a given problem instance. In inference, it leverages these
solutions to make a multi-shot prediction for better performance.

C. Continuation Path Learning for Neural Combinatorial Optimization
C.1. Continuation-based constructive NCO model

In this experiment, we focus on learning the continuation path for constructive neural combinatorial optimization
(NCO) (Vinyals et al., 2015; Bello et al., 2017). This approach learns the policy model with parameter θ to construct a
solution (e.g., a tour π = (π1, · · · , πi, · · · , πn), πi ∈ {1, · · · , n}) for a combinatorial optimization problem instance s (e.g.,
TSP) in an auto-regressive manner:

pθ(π|s) =
∏n

i=1 pθ(πi|s, π1:i−1). (29)

In contrast to a policy with constant parameters θ, we propose to build a policy model with dynamic parameters θ(t)
conditioned on the continuation level t:

pθ(t)(π|s) =
∏n

i=1 pθ(t)(πi|s, π1:i−1), (30)

such that it can generate different tours for different smoothed subproblems as in Figure 8. By assigning different t, we can
easily obtain solutions of different smoothed subproblems on the continuation path for a given instance.

The proposed continuation path learning idea and the policy model framework are general and can be used for any
constructive NCO model. We use the seminal Attention Model (Kool et al., 2019) as our constructive model. The recent
work shows that only changing (part of) the AM decoder parameters is sufficient to construct solutions with significantly
better performance (Hottung et al., 2022) or with very different trade-offs among different objectives (Lin et al., 2022a).
Therefore, we also propose to let only part of the AM decoder parameters depend on the continuation level t:

[WQ(t),W Proj(t)] = MLP(t), (31)

where WQ(t) and W proj(t) are the query and projection parameters for the Multi-Head Attention (MHA) (Vaswani et al.,
2017) layer in the AM decoder. More advanced model structures such as multiplicative interactions (Jayakumar et al., 2020)
and hypernetwork (Schmidhuber, 1992; Ha et al., 2017) can be used to learn the conditioned parameters, but we find a
simple MLP model is good enough for our model.

To construct a valid tour, our proposed model first tasks the problem instance s (e.g., the graph with n fully connected
nodes for TSP) as input to the AM encoder and obtains the n d-dimensional node embedding [h1, · · · ,hn] for each city.
For selecting the i-th city into the tour, the AM decoder combines the embedding of the first selected node hπ1

and the
most current selected node hπi−1

to obtain the query embedding hQ(t) = WQ(t)[hπ1
,hπi−1

]. Following the setting of
POMO (Kwon et al., 2020), we do not include an extra graph embedding. The query embedding will be further updated by
the multi-head attention with all node embedding:

ĥQ = MHA(Q = hQ(t),K =WK [h1, · · · ,hn], V =WV [h1, · · · ,hn])W
proj(t), (32)
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where W proj(t) projects the multi-head output of MHA into an d-dimensional embedding. With the query embedding ĥQ

and the embedding hi for each city, we can calculate the logit for each city:

logitj =

{
C · tanh( ĥ

T
Qhj√
d

) if j ̸= πp′ ∀p′ < i,

−∞ otherwise.
(33)

The logits are further clipped into [−C,C] for all non-selected nodes with C = 10 as in (Kool et al., 2019) and all already
selected nodes are masked in −∞. The policy model can autoregressively construct a valid tour by following the probability
pθ(t)(πt = j|s,π1:i−1) = elogitj/

∑
k∈{j ̸=πp′∀p′<i} e

logitk .

In the proposed model, the node embedding [h1, · · · ,hn] and the key K and value V of MHA are shared by all continuation
level t ∈ T = [0, 1]. Therefore, we only need to calculate them once and then can repeatedly reuse them to construct
solutions for different continuation levels t. The whole model structure is similar to multi-objective optimization model
proposed in (Lin et al., 2022a) but is to learn the continuation path for a single objective function.

C.2. Model training

We have proposed the smoothed subproblems (e.g., (19)) and the policy model to construct feasible solutions (e.g.,(30))
for different continuation levels. Now the goal is to properly train the model so that the generated solutions are on the
continuation path (e.g., the optimal solution for each subproblem) of the original problem (17). The training goal can be
defined as:

min
θ
J (θ) = Eπ∼pθ(t)(·|s),t∼T ,s∼SH(π, t|s), (34)

where S is the set of problem instances, T = [0, 1] is the valid continuation level, and π ∼ pθ(t)(·|s) is the tour generated
by the stochastic policy model with respect to the sampled s and t.

We follow our proposed gradient-based continuation path learning method in Algorithm 3 to train the policy model. The
gradient is approximated with REINFORCE (Williams, 1992) and POMO (Kwon et al., 2020) rollout:

∇J (θ) ≈ 1

MBN

M∑
m=1

B∑
i=1

N∑
j=1

[(H(πj
i , tm|si)− b(si|tm))∇θ(tm) log pθ(tm)(π

j
i |si)], (35)

with M sampled continuation levels, B problem instances, and N solutions with diverse started nodes for each instance. We
use the shared baseline b(si|tm) = 1

N

∑N
j=1H(πj

i , tm|si) for each instance as in POMO (Kwon et al., 2020).

C.3. Inference from the continuation path

Algorithm 4 CPL Inference

1: Input: instance s, continuation path model pθ(t)(π|s), number of
sampled solutions M

2: t1, t2 . . . , tM ∼ T = [0, 1]
3: πtm ← GreedyRollout(pθ(tm)(·|s)) ∀tm
4: πbest = argminπ∈{πt1 ,...,πtM

}H(π, t = 1|s)
5: Output: πbest
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Figure 9. CPL inference and counts of optimal solutions. For 10, 000 random 100-city TSP instances, the model with t = 1 can only
generate the best solutions for roughly 25% instances. We leverage solutions on the continuation path (t ∈ [0, 1)) to achieve better overall
performance.

Due to the one-shot prediction mechanism and generalization gap, for a new encountered problem instance s, the generated
solution π1 with t = 1 might not be the optimal solution for the original objective H(π, t = 1|s) as shown in Figure 9.
With our proposed model, we can easily generate multiple solutions on the continuation path for the smoothed subproblems
(e.g., tm ∈ T = [0, 1]) to make a multi-shot prediction that might contain solutions with better generalization performance.
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The inference method is summarized in Algorithm 4. For each problem instance s, we sample a set of M continuation
levels tm, and construct their solutions with POMO rollout (Kwon et al., 2020). The solution with the best original objective
value (not the smoothed value) will be chosen as the final solution.

C.4. Experimental Setting

Problem Setting We evaluate the proposed continuation path learning (CPL) method on both randomly generated TSP
and CVRP instances that are widely used in neural combinatorial optimization (Kool et al., 2019), as well as more realistic
benchmark problems following the suggestion in (Accorsi et al., 2022).

Model setting We use the Attention Model (AM) (Kool et al., 2019) as our policy network for construction-based neural
combinatorial optimization. The model has a computation-heavy encoder to produce embedding for each node (e.g., city for
TSP), and a lightweight decoder to autoregressively generate a valid solution (e.g., tour) based on the node embeddings. The
same model structure is used for solving different problems.

We follow the hyperparameters setting from POMO (Kwon et al., 2020). For the encoder, there are 6 multi-head attention
layers with 128-dimensional embedding, and each has 8 heads with 16-dimensional key/value/query embeddings. The
fully connected linear sub-layer has dimension 512 in each attention layer. We build our CPL model based on the new
POMO (Kwon et al., 2020) codebase 2 under the MIT License, where it uses InstanceNorm for the normalization layers and
does not include graph embedding as an output for the decoder.

Only the parameters for the query token and projection operator are conditioned on the continuation level, and the other
parameters are all fixed and shared for all smooth subproblems. In this way, all the key/value embeddings for each node
need to be calculated only once, and can be repeatedly reused to construct solutions for different smoothed subproblems.

MLP Model

Figure 10. Conditional parameters generation.

We use a hypernetwork (Ha et al., 2017) to generate the continuation conditional parameters WQ(t) and W proj(t) as
illustrated in Figure 10. It first takes the continuation level t as input for a MLP model to generate a low dimensional
embedding e ∈ Rd. Then the embedding e is linearly projected with a parameter tensor W ∈ Rn1×n2×d to the target
parameters WQ(t) ∈ Rn1×n2. The number of trainable parameters (e.g., MLP parameters and W ) is much smaller than a
full hypernetwork. In this work, we use a simple 2-layer MLP with 128 neurons at each hidden layer, and let d = 4 for the
embedding.

Training and Inference. The optimizer we use is Adam with learning rate η = 10−4, weight decay ω = 10−6 and batch
size B = 64. At each training epoch, we randomly generate 100, 000 problem instances on the fly as training data, and train
the model for 1, 000 epoch. At each batch (e.g., with batch size B = 64), we randomly sample M = 2 continuation levels,
and draw N (e.g., the number of nodes) trajectories for each problem instance with POMO rollout. In this way, the total
update step is matched with 2, 000 in POMO without continuation path learning. We train our model on a single RTX 3080
GPU, which takes roughly 16 minutes for a training epoch with TSP100. For inference with M continuation levels, we
always let t1 = 1 and sample the rest M − 1 levels from [0, 1).

2https://github.com/yd-kwon/POMO/tree/master/NEW py ver
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C.5. Travelling salesman problem (TSP)

Problem setup A TSP instance contains the locations of N cities. We need to find a tour with the shortest length to visit
all cities once and return to the starting city.

Instance generation We follow the setting in AM (Kool et al., 2019) to randomly generate cities from [0, 1]2 with uniform
distribution.

C.6. Capacitated vehicle routing problem (CVRP)

Problem setup For a CVRP instance, in addition to the locations of N nodes, each node (city/customer) has a demand
di to be served. A vehicle with a fixed capacity C from an extra depot node will make multiple round trips to handle the
demand for each customer. No demand split is allowed and each city can be visited only once. For a nontrivial and solvable
problem instance, we have max di ≤ C <

∑N
i=1 di. Therefore, the vehicle needs to go back to the depot node to refill its

capacity multiple times. The optimal solution is a tour with the shortest length that satisfies the demands of all cities.

Instance generation Similar to the TSP instance, we uniformly generate the customer nodes and depot nodes from the
unit square [0, 1]2. For the demands, following AM (Kool et al., 2019), we first randomly sample d̂i from the discrete set
{1, 2, . . . , 9} and then normalize it to di = d̂i

D , where D = 30, 40, 50 for N = 20, 50, 100. The vehicle has a capacity 1.

A series of smoothed subproblems can be constructed similarly to the TSP instances in Section 6.3. Now we have an
(N + 1)× (N + 1) matrix that contains the distance among nodes (N customer nodes and 1 depot node). The capacity and
all demands are unchanged in the smoothed subproblems.

C.7. Resutls on Random TSP and CVRP Instances

The experimental results on random TSP and CVRP instances with different sizes are shown in Table 5. Following the
setting in (Kool et al., 2019), for each problem with different sizes, 10, 000 randomly generated instances are used as the
testing data. We compare CPL with (1) an exact solver Concorde (Applegate et al., 2006); (2) two widely-used heuristic
solvers LKH3 (Helsgaun, 2000; 2017) and OR-Tools (Perron & Furnon, 2019); (3) five learning-based improvement
methods NeuRewriter (Chen & Tian, 2019), Neural 2-Opt (d O Costa et al., 2020), Neural Large Neighborhood Search
(NLNS) (Hottung & Tierney, 2020), Learning Improvement Heuristics in Wu et al. (Wu et al., 2021), and DACT (Ma et al.,
2021); and (4) four constructive neural combinatorial optimization methods Graph Convolutional Network (GCN) with
beam search (Joshi et al., 2019), AM (Kool et al., 2019) with greedy and sampling rollout, MDAM (Xin et al., 2021) with
beam search and POMO (Kwon et al., 2020). Similar to other NCO works, we report the average results (Cost), optimal
gap (Gap), and the total run time (Time) for solving all 10, 000 instances. It should be noticed that, even averaging over
10, 000 random instances, the baseline performance could still be slightly different. Therefore we mainly use the gap for
comparison as in the most related works (Kwon et al., 2020; Ma et al., 2021).

According to the results in Table 5, our proposed CPL method can consistently improve the POMO performance by
leveraging the multi-shot prediction on the continuation path. For TSP, it achieves nearly 0% optimality gap to the
exact Concorde solver for instances with 20 and 50 nodes, and a 0.08% gap for TSP100. These results are comparable
with the powerful DACT solver with much faster running time, and outperform other learning-based solvers. For the
challenging CVRP, CPL’s improvements over POMO are much more significant. The 0.08% to 0.16% optimality gaps to the
well-developed LKH3 are promising given the fast inference time and minimal specific domain knowledge required by CPL.

CPL needs a longer run time than POMO due to the multi-shot prediction, which is the cost for its better performance.
However, it still only takes tens of seconds to a few minutes to solve 10, 000 instances on a single GPU, which is much faster
than the learning-based improvement method on multiple GPUs (Ma et al., 2021). How to design a better continuation path
construction and sampling method to further improve the performance-time ratio for CPL could be interesting future work.
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Table 5. Experimental results on TSP and CVRP with random instances

TSP

TSP20 TSP50 TSP100
Method Cost Gap Time Cost Gap Time Cost Gap Time

Concorde 3.83 - (5m) 5.69 - (13m) 7.76 - (1h)
LKH3 3.83 0.00% (42s) 5.69 0.00% (6m) 7.76 0.00% (25m)
OR Tools 3.86 0.94% (1m) 5.85 2.87% (5m) 8.06 3.86% (23m)

Neural 2-Opt 3.83 0.00% (15m) 5.79 0.12% (29m) 7.83 0.87% (41m)
Wu et al.(T=5k) 3.83 0.00% (1h) 5.70 0.20% (1.5h) 7.97 1.42% (2h)
DACT (T=10k) 3.83 0.00% (10m) 5.70 0.00% (1h) 7.77 0.09% (2.5h)

GCN-beam search 3.83 0.01% (12m) 5.69 0.01% (18m) 7.87 1.39% (40m)
AM-greedy 3.84 0.19% (1s) 5.76 1.21% (1s) 8.03 3.51% (2s)
AM-sampling 3.83 0.07% (1m) 5.71 0.39% (5m) 7.92 1.98% (22m)
MDAM-beam search 3.84 0.00% (3m) 5.70 0.03% (14m) 7.79 0.38% (44m)
POMO 3.83 0.00% (3s) 5.69 0.03% (16s) 7.78 0.15% (1m)
CPL (4 sols.) 3.83 0.00% (10s) 5.69 0.01% (1m) 7.77 0.09% (3m)
CPL (8 sols.) 3.83 0.00% (19s) 5.69 0.00% (2m) 7.77 0.08% (7m)

CVRP

CVRP20 CVRP50 CVRP100
Method Cost Gap Time Cost Gap Time Cost Gap Time

LKH3 6.12 - (2h) 10.38 - (7h) 15.68 - (12h)
OR Tools 6.42 4.84% (2m) 11.22 8.12% (12m) 17.14 9.34% (1h)

NeuRewriter 6.16 - (22m) 10.51 - (18m) 16.10 - (1h)
NLNS 6.19 - (7m) 10.54 - (24m) 15.99 - (1h)
Wu et al.(T=5k) 6.12 0.39% (2h) 10.45 0.70% (4h) 16.03 2.47% (5h)
DACT (T=10k) 6.13 -0.08% (35m) 10.39 0.14% (1.5h) 15.71 0.19% (4.5h)

AM-greedy 6.40 4.45% (1s) 10.93 5.34% (1s) 16.73 6.72% (3s)
AM-sampling 6.24 1.97% (3m) 10.59 2.11% (7m) 16.16 3.09% (30m)
MDAM-beam search 6.14 0.18% (5m) 10.48 0.98% (15m) 15.99 2.23% (1h)
POMO 6.14 0.21% (5s) 10.42 0.45% (26s) 15.73 0.32% (2m)
CPL (4 sols.) 6.13 0.14% (16s) 10.40 0.26% (1m) 15.72 0.21% (7m)
CPL (8 sols.) 6.13 0.08% (33s) 10.39 0.12% (3m) 15.71 0.16% (14m)

21



Continuation Path Learning for Homotopy Optimization

C.8. Generalization Performance on Realistic TSP Benchmark

We test our proposed continuation path learning (CPL) method’s performance on the TSPLib benchmark problems as shown
in Table 6. These problem instances have different city distributions and different sizes from 50 to 200. We mainly compare
CPL with the heuristic solver OR-Tools (Perron & Furnon, 2019), two improvement-based NCO methods Wu et al. (Wu
et al., 2021) and DACT (Ma et al., 2021), and two construction-based NCO methods AM (Kool et al., 2019) with sampling
and POMO (Kwon et al., 2020). All these methods except POMO need to continuously interact with the problem instances
(e.g., with 3, 000 to 10, 000 steps) or generate a large number of candidate solutions for selection (e.g., 10, 000 for AM with
sampling). For all methods, we follow the setting in DACT (Ma et al., 2021) to report results on the first five instances (have
sizes 51 to 76) with models trained on 50 cities, and the results for the rest instances (have sizes 99 to 200) with models
trained on 100 cities.

According to the results, CPL with 8 continuation solutions can further improve the POMO’s already very competitive
overall performance from 2.15% to 1.72%. This overall result is even better than those for DACT with the strong setting
(e.g., with T = 10k steps and 4 augmentations). Following DACT (Ma et al., 2021), we also report the average optimality
gap for instances with different sizes. CPL generally has good performance for instances with sizes from 50 to 150, which is
close to the training size (50 and 100). However, its performance drastically decreases for instances with larger numbers of
cities that are far from the training set. This limitation is shared among other construction-based and improvement-based
neural combinatorial optimization methods.

C.9. Generalization Performance on Realistic CVRP Benchmark

Table 7 shows the results on 22 realistic CVRPLIB benchmark problems (Uchoa et al., 2017). They have quite different
sizes and depot/nodes distributions to the instances our model has learned (uniformly distributed depot and 100 nodes), so
the generalization ability is important for a good performance. In this case, CPL with 8 continuation solutions can further
improve POMO and achieve a 4.95% average optimality gap. This result is better than the powerful DACT improvement
solver with t = 5k improvement steps for each instance, but is outperformed by DACT with the strongest setting (t = 10k
with 6 augmentations). The construction, improvement, and search methods are not necessarily competitors.
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Table 6. Experimental results on TSPLib with 50 to 200 cities.
Instance OR-Tools Wu et al. DACT DACT AM-S POMO CPL

(T = 3k, M=1k) (T=3k) (T=10k, Aug. ×4) (T=10K) (T=8)

eil51 2.35% 1.17% 1.64% 0.00% 2.11% 0.23% 0.00%
berlin52 5.34% 2.57% 0.03% 0.03% 1.67% 0.00% 0.00%

st70 1.19% 0.89% 0.44% 0.30% 2.22% 0.00% 0.00%
eil76 4.28% 4.65% 2.42% 1.67% 3.35% 0.74% 0.19%
pr76 2.72% 1.37% 1.02% 0.03% 2.84% 0.09% 0.02%
rat99 1.73% 8.51% 4.05% 0.74% 9.50% 4.62% 2.39%

KroA100 0.78% 2.08% 0.86% 0.45% 79.49% 1.05% 0.68%
KroB100 3.91% 5.78% 0.27% 0.25% 9.30% 0.78% 0.73%
KroC100 4.02% 3.17% 1.06% 0.84% 8.04% 0.38% 0.17%
KroD100 1.61% 5.00% 3.54% 0.12% 10.02% 1.92% 1.25%
KroE100 2.40% 3.29% 2.17% 0.32% 3.10% 1.39% 1.02%

rd100 3.53% 0.06% 0.08% 0.00% 1.93% 0.00% 0.09%
eil101 5.56% 4.61% 3.66% 2.86% 3.97% 0.16% 0.00%
lin105 3.09% 2.48% 3.41% 0.69% 32.13% 0.77% 0.70%
pr107 1.74% 3.87% 5.86% 3.81% 43.26% 1.35% 0.90%
pr124 5.91% 2.97% 1.56% 1.22% 4.41% 0.08% 0.08%

bier127 3.76% 3.48% 4.08% 2.46% 1.71% 4.31% 5.00%
ch130 2.85% 4.89% 6.63% 1.93% 2.96% 0.10% 0.02%
pr136 5.62% 6.33% 5.54% 4.54% 4.90% 0.74% 0.93%
pr144 1.28% 1.40% 3.44% 2.49% 8.77% 0.50% 0.66%
ch150 3.08% 3.55% 3.60% 1.23% 3.45% 0.44% 0.41%

KroA150 4.03% 4.51% 6.93% 3.91% 9.98% 0.79% 0.69%
KroB150 5.52% 5.40% 6.10% 2.82% 9.87% 1.94% 1.49%

pr152 2.92% 2.17% 4.48% 3.59% 13.47% 1.23% 0.87%
u159 8.79% 7.67% 6.84% 3.16% 7.38% 1.00% 0.97%

rat195 2.84% 9.90% 6.93% 4.99% 16.57% 9.60% 6.50%
d198 1.16% 4.99% 12.27% 8.75% 331.58% 21.9% 20.1%

KroA200 1.27% 7.01% 3.60% 1.25% 15.64% 2.05% 1.78%
KroB200 3.67% 7.05% 10.51% 5.66% 18.54% 4.25% 2.29%

Avg. Gap for [50,100) 2.93% 3.19% 1.60% 0.46% 3.61% 0.95% 0.43%
Avg. Gap for [100,150) 3.29% 3.53% 3.01% 1.57% 15.29% 0.97% 0.87%
Avg. Gap for (150,200] 3.70% 5.81% 6.81% 3.93% 47.39% 4.80% 3.89%
Avg. Gap for All 3.34% 4.17% 3.90% 2.07% 22.83% 2.15% 1.72%
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Table 7. Experimental results on CVRPLIB instances with different sizes and distributions

Instance (Depot, Nodes) OR-Tools DACT DACT AM-S POMO CPL
Type (T=5k) (T=10k, 6 aug.) (T=10K) (T=8)

X-n101-k25 (R, R) 6.57% 2.09% 1.47% 32.95% 6.73% 3.95%
X-n106-k14 (E, C) 3.72% 2.93% 1.87% 6.78% 2.27% 2.15%
X-n110-k13 (C, R) 7.87% 1.43% 0.13% 3.15% 1.22% 0.89%
X-n115-k10 (C, R) 4.50% 3.29% 1.68% 7.52% 9.96% 4.33%
X-n120-k6 (E, RC) 6.83% 3.50% 2.38% 4.54% 9.32% 8.47%
X-n125-k30 (R, C) 5.63% 6.51% 5.44% 35.16% 5.78% 4.17%
X-n129-k18 (E, RC) 8.37% 2.93% 2.55% 4.00% 2.16% 1.02%
X-n134-k13 (R, C) 21.61% 6.98% 2.63% 20.13% 3.98% 2.29%
X-n139-k10 (C, R) 12.02% 2.54% 2.08% 4.30% 3.24% 2.63%
X-n143-k7 (E, R) 11.27% 7.80% 3.55% 8.88% 4.34% 2.72%
X-n148-k46 (R, RC) 7.80% 2.69% 2.22% 79.53% 9.78% 4.73%
X-n153-k22 (C, C) 8.01% 11.04% 6.53% 78.11% 14.4% 11.4%
X-n157-k13 (R, C) 2.57% 4.64% 3.12% 16.30% 8.66% 7.76%
X-n162-k11 (C, RC) 6.31% 4.43% 2.62% 6.37% 6.00% 5.93%
X-n167-k10 (E, R) 9.34% 5.37% 3.47% 8.41% 3.61% 3.08%
X-n172-k51 (C, RC) 10.74% 6.23% 3.41% 85.37% 10.7% 7.01%
X-n176-k26 (E, R) 8.99% 10.29% 5.93% 20.39% 10.6% 6.84%
X-n181-k23 (R, C) 2.94% 3.41% 2.08% 6.45% 5.57% 4.42%
X-n186-k15 (R, R) 7.75% 5.99% 4.94% 6.01% 6.58% 6.03%
X-n190-k8 (E, C) 6.53% 7.97% 6.73% 46.61% 6.68% 6.15%
X-n195-k51 (C, RC) 13.76% 7.00% 4.36% 79.26% 13.7% 7.98%
X-n200-k36 (R, C) 4.15% 5.93% 5.89% 26.25% 5.97% 4.87%

Average Optimality Gap 8.06% 5.23% 3.41% 26.66% 6.88% 4.95%
* Three types of depot positions: C-Central, E-Eccenric/Corner, R-Random.
* Three types of node distributions: R-Random, C-Clustered, RC-Mixed Random and Clustered.
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