
Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Zichang Liu 1 Jue Wang 2 Tri Dao 3 Tianyi Zhou 4 Binhang Yuan 5 Zhao Song 6 Anshumali Shrivastava 1

Ce Zhang 5 Yuandong Tian 7 Christopher Ré 3 Beidi Chen 8 7

Abstract
Large language models (LLMs) with hundreds of
billions of parameters have sparked a new wave
of exciting AI applications. However, they are
computationally expensive at inference time. Spar-
sity is a natural approach to reduce this cost, but
existing methods either require costly retraining,
have to forgo LLM’s in-context learning ability, or
do not yield wall-clock time speedup on modern
hardware. We hypothesize that contextual sparsity,
which are small, input-dependent sets of attention
heads and MLP parameters that yield approxi-
mately the same output as the dense model for a
given input, can address these issues. We show that
contextual sparsity exists, that it can be accurately
predicted, and that we can exploit it to speed up
LLM inference in wall-clock time without compro-
mising LLM’s quality or in-context learning ability.
Based on these insights, we propose DEJAVU, a
system that uses a low-cost algorithm to predict
contextual sparsity on the fly given inputs to each
layer, along with an asynchronous and hardware-
aware implementation that speeds up LLM
inference. We validate that DEJAVU can reduce the
inference latency of OPT-175B by over 2× com-
pared to the state-of-the-art FasterTransformer,
and over 6× compared to the widely used Hugging
Face implementation, without compromising
model quality. The code is available at https:
//github.com/FMInference/DejaVu.

1 Introduction
Large language models (LLMs), such as GPT-3, PaLM,
and OPT have demonstrated that an immense number of

1Rice University 2Zhe Jiang University 3Stanford Uni-
versity 4University of California, San Diego 5ETH Zurich
6Adobe Research 7Meta AI (FAIR) 8Carnegie Mellon Univer-
sity. Correspondence to: Zichang Liu <zl71@rice.edu>, Tri Dao
<trid@stanford.edu>, Tianyi Zhou <t8zhou@ucsd.edu>, Zhao Song
<zsong@adobe.com>, Beidi Chen <beidic@andrew.cmu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

parameters unleashes impressive performance and emergent
in-context-learning abilities—they can perform a task by
conditioning on input-output examples, without updating
their parameters (Bommasani et al., 2021; Liang et al.,
2022; Brown et al., 2020; Min et al., 2022; Chan et al.,
2022). However, they are very expensive at inference time,
especially for latency-sensitive applications (Pope et al.,
2022). An ideal inference-time model should use less com-
putation and memory while maintaining the performance
and special abilities of pre-trained LLMs. The simplest and
most natural approach is sparsification or pruning, which
has a long history before the LLM era (LeCun et al., 1989).
Unfortunately, speeding up inference-time sparse LLMs in
wall-clock time while maintaining quality and in-context
learning abilities remains a challenging problem.

While sparsity and pruning have been well-studied, they
have not seen wide adoption on LLMs due to the poor
quality and efficiency trade-offs on modern hardware such
as GPUs. First, it is infeasible to retrain or iteratively prune
models at the scale of hundreds of billions of parameters.
Thus, methods in iterative pruning and lottery ticket
hypothesis (Lee et al., 2018; Frankle & Carbin, 2018) can
only be applied to smaller-scale models. Second, it is
challenging to find sparsity that preserves the in-context
learning ability of LLMs. Many works have shown the
effectiveness of task-dependent pruning (Michel et al., 2019;
Bansal et al., 2022), but maintaining different models for
each task conflicts with the task independence goal of LLMs.
Lastly, it is hard to achieve wall-clock time speed-up with
unstructured sparsity due to its well-known difficulty with
modern hardware (Hooker, 2021). For example, recent
development in zero-shot pruning like SparseGPT (Frantar
& Alistarh, 2023) finds 60% unstructured sparsity but does
not yet lead to any wall-clock time speedup.

An ideal sparsity for LLMs should (i) not require model
retraining, (ii) preserve quality and in-context learning
ability, and (iii) lead to speed-up in wall-clock time on
modern hardware. To achieve such demanding requirements,
we go beyond static sparsity in previous works (e.g., struc-
tured/unstructured weight pruning). We instead envision
contextual sparsity, which are small, input-dependent
sets of attention heads and MLP parameters that lead to
(approximately) the same output as the full model for an
input. Inspired by the connections between LLMs, Hidden

1

https://github.com/FMInference/DejaVu
https://github.com/FMInference/DejaVu

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

0 20 40 60 80
Transformer Layer

 0.00
 0.20
 0.40
 0.60
 0.80
 1.00

Co
nt

ex
tu

al
 S

pa
rs

ity

OPT-175B

(a) Contextual Sparsity

1 2 3 4 5 6 7 8
Theoretical Reduction

0.794
0.796
0.798
0.800
0.802
0.804
0.806
0.808
0.810

Ac
cu

ra
cy

Static Sparsity
Non-Contextual Sparsity
Contextual Sparsity

(b) Accuracy-Efficiency Trade-offs
Figure 1. (1) LLMs have up to 85% contextual sparsity for a given
input. (2) Contextual sparsity has much better efficiency-accuracy
trade-offs (up to 7×) than non-contextual sparsity or static sparsity.

Markov Models (Xie et al., 2022; Baum & Petrie, 1966), and
the classic Viterbi algorithm (Viterbi, 1967), we hypothesize
that for pre-trained LLMs,

contextual sparsity exists given any input.

The hypothesis, if true, would enable us to cut off specific
attention heads and MLP parameters (structured sparsity)
on the fly for inference-time, without modifying pre-trained
models. However, there are three challenges.

Existence: It is nontrivial to verify if such contextual sparsity
exists, and naive verification can be prohibitively expensive.

Prediction: Even if contextual sparsity exists, it is challeng-
ing to predict the sparsity for a given input in advance.

Efficiency: Even if the sparsity can be predicted, it might
be difficult to achieve end-to-end wall-clock time speedup.
Taking OPT-175B as an example, the latency of one MLP
block is only 0.2 ms on an 8×A100 80GB machine. Without
a fast prediction and optimized implementation, the overhead
can easily increase the LLM latency rather than reduce it.

In this work, we address these challenges as follows:

Existence: Fortunately, we verify the existence of contextual
sparsity with a surprisingly simple approach. To achieve
essentially the same output, contextual sparsity is on average
85% structured sparse and thereby potentially leads to a 7×
parameter reduction for each specific input while maintain-
ing accuracy (Figure 1(a)). During explorations of contextual
sparsity, we make important empirical observations and build
a theoretical understanding of major components in LLMs
that help address the prediction and efficiency challenge.

Deja Vu

Attentionk

MLPk
Predictor

Predictor

Predictor

Attentionk+1

… …
Figure 2. DEJAVU uses lookahead predictors to side-step prediction
costs: given the input to the attention layer at block k, they (asyn-
chronously) predict the contextual sparsity for the MLP at block k,
and given the input to the MLP at block k, they predict the sparsity
for the attention head at the next layer.

Prediction: We discover that contextual sparsity depends
not only on individual input tokens (i.e., non-contextual
dynamic sparsity) but also on their interactions (contextual
dynamic sparsity). Figure 1(b) shows that with pure dynamic
information, sparsity prediction is inaccurate. Only with
token embeddings with sufficient contextual information
can we predict sparsity accurately. Another finding is that
contextual dynamic sparsity for every layer can be predicted
based on the “similarity” between layer parameters (head-
s/MLP) and the output from the previous layer, which carries
the immediate contextual mixture of token embeddings.

Efficiency: Because at inference time, model parameters are
static, inspired by the classical nearest neighbor search (NNS)
literature and its applications in efficient deep learning, it is
possible to formulate the above similarity-based prediction
as an NNS problem (Indyk & Motwani, 1998b; Zhang et al.,
2018; Chen et al., 2020a). However, as mentioned, the over-
head might be difficult to overcome as we would need to
perform on-the-fly predictions before every layer. Luckily,
we exploit a phenomenon of LLM where token embeddings
change slowly across layers due to residual connections (well-
known in computer vision (He et al., 2016)). Since the inputs
to a few consecutive layers are very similar, we can design
an asynchronous lookahead predictor (Figure 2).

Based on our findings, we present a system, DEJAVU, that
exploits contextual sparsity and realizes efficient LLMs for
latency-sensitive applications.
• In Section 4.1 and Section 4.2, we present a low-cost

learning-based algorithm to predict sparsity on the fly.
Given the input to a specific layer, it predicts a relevant
subset of attention (heads) or MLP parameters in the next
layer and only loads them for the computation.

• In Section 4.3, we propose an asynchronous predictor (simi-
lar to classic branch predictor (Smith, 1998)) to avoid the se-
quential overhead. A theoretical guarantee justifies that the

2

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

cross-layer design suffices for accurate sparsity prediction.

After integrating hardware-aware implementation of sparse
matrix multiply (Section 4.4), DEJAVU (written mostly in
Python) can reduce latency of open-source LLMs such
as OPT-175B by over 2× end-to-end without quality
degradation compared to the state-of-the-art library Faster-
Transformer from Nvidia (written entirely in C++/CUDA),
and over 2× compared to the widely used Hugging Face
implementation at small batch sizes. Furthermore, we show
several ablations on different components of DEJAVU and
its compatibility with quantization techniques.

2 Related Work and Problem Formulation
We first briefly discuss the rich literature on efficient
inference. Then, we introduce the latency breakdown in our
setting. Last, we provide a formal problem formulation.

2.1 Quantization, Pruning, Distillation for Inference

Various relaxations have been studied for decades for
model inference in machine learning. There are three main
techniques: quantization (Han et al., 2015; Jacob et al.,
2018; Nagel et al., 2019; Zhao et al., 2019), pruning or
sparsity (Molchanov et al., 2016; Liu et al., 2018; Hoefler
et al., 2021), and distillation (Hinton et al., 2015; Tang et al.,
2019; Touvron et al., 2021). They are orthogonal areas and
usually excel in different settings. Recently, there is active
research attempting to apply one or a combination of such
techniques in LLM inference (Yao et al., 2022; Park et al.,
2022; Dettmers et al., 2022; Frantar et al., 2022; Frantar &
Alistarh, 2023; Bansal et al., 2022; Xiao et al., 2022). More
discussion is presented in Appendix A.

2.2 LLM Inference Latency Breakdown

The generative procedure of LLMs consists of two phases: (i)
the prompt phase takes an input sequence to generate the keys
and values (KV cache) for each transformer block of LLMs,
which is similar to the forwarding pass of LLMs training;
and (ii) the token generation phase utilizes and updates the
KV cache to generate tokens step by step, where the current
token generation depends on previously generated tokens.

This paper studies the setting where the token generation
phase easily dominates the end-to-end inference time. As
shown in Table 1, generating a sequence of length 128 takes
much longer time than processing a sequence of length 128
as prompt due to I/O latency of loading model parameters.
In addition, Table 2 shows that attention and MLP are both
bottlenecks in LLMs, e.g., in 175B models, loading MLP
parameters takes around 2

3 of the total I/O and attention
heads take the other 1

3 . Further, in the tensor-parallel regime,
there are two communications between GPUs, one after
the attention block, and the other one after the MLP block.
As shown in Table 3, communication between GPUs takes
around 15 % token generation latency. This paper focuses on
making attention and MLP more efficient. Communication

cost implies that the upper bound of such speed-up is around
6×when skipping all transformer blocks.

Table 1. Theoretical breakdown for prompting versus token genera-
tion (tensor model parallelism on 8 A100-80G GPUs).

TFLOPs I/O Compute Latency (ms) I/O Latency (ms)

Prompting 128 44.6 330 GB 17.87 20.6

Token Generation 128 44.6 41 TB 17.87 2600

Table 2. Theoretical breakdown for Attention block versus MLP
block in one transformer layer when generating one token (tensor
model parallelism on 8 A100-80G GPUs).

GFLOPs I/O (GB) Compute Latency (ms) I/O Latency (ms)

Attention Block 1.21 1.12 0.00048 0.07

MLP Block 2.41 2.25 0.00096 0.14

Table 3. Latency breakdown of generating 1 token under the setting
of batch size 1 and prompt length 128 on 8 A100-80GB.

All Reduce MLP Block Attention Block (ms) Others

6 ms 19ms 13ms 2ms

2.3 Problem Formulation

The goal is to reduce the generation latency of LLMs by
exploiting contextual sparsity. In the following, we formally
define the sparsified attention and MLP blocks.

Sparsified MLP: There are two linear layers in one MLP
block,W 1,W 2∈Rd×4d. Denote y∈R1×d as the input to the
MLP block in the current generation step. Let each column
(the weight of i-th neuron) of linear layers be W 1

i , W 2
i ∈

Rd×1. With contextual sparsity, only a small set of them are
required for computation. Let SM ⊆ [4d] denote such set of
neurons for input y. The sparsified MLP computation is

MLPSM
(y)=σ(yW 1

SM
)(W 2

SM
)⊤, (1)

where σ is the activation function, e.g., ReLU, GeLU. Note
that since the computation in the first linear results in sparse
activations, the second linear layer is also sparsified.

Sparsified Attention: LetX∈Rn×d denote the embeddings
of all tokens (e.g., prompts and previously generated tokens).
Let y ∈ R1×d be the input to the Multi-Head-Attention
(MHA) in the current generation step. Suppose there are h
heads. For each i∈ [h], we use WK

i ,W
Q
i ,W

V
i ∈Rd×dh to

denote key, query, value projections for the i-th head, and
WO
i ∈Rdh×d for output projections. With contextual spar-

sity, we denote SA as a small set of attention heads leading to
approximately the same output as the full attention for input
y. Following the notation system in (Alman & Song, 2023),
sparsified MHA computation can be formally written as

MHASA
(y)=

∑
i∈SA

Hi(y)︸ ︷︷ ︸
1×dh

WO
i︸︷︷︸

dh×d

,

whereHi(y) :Rd→Rdh andDi(y)∈R can be written as
Hi(y) :=Di(y)

−1exp(yWQ
i (WK

i)⊤X⊤)XWV
i , (2)

Di(y) :=exp(yWQ
i (WK

i)⊤X⊤)1n.

For both MLP and Attention, given a compute budget, the
goal is to find SM and SA that minimize the error between
the sparse approximation and full computation.

3

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

0 20 40 60 80
Transformer Layer

20%

40%

60%

80%

100%
%

 N
ot

 A
ct

iv
at

ed
 H

ea
d

OPT-30B
OPT-66B
OPT-175B

(a) Contextual sparsity in Attention Head

0 20 40 60 80
Transformer Layer

90%

92%

94%

96%

98%

100%

%
 N

ot
 A

ct
iv

at
ed

 N
eu

ro
ns

OPT-30B
OPT-66B
OPT-175B

(b) Contextual sparsity in MLP Block

Figure 3. In Figure (a), we plot the percentage of not-activated
attention heads. By only keeping heads that yield large output
norms, we can silence over 80% attention heads for a given token.
In Figure (b), we plot the average sparsity we impose on MLP layers.
We can zero out over 95% of MLP parameters for a given token.

3 Pre-trained LLMs are Contextually Sparse
In this section, we present several key observations and the-
oretical understandings of sparsity in LLMs, upon which the
DEJAVU design is based. We first test the contextual sparsity
hypothesis and verify that contextual sparsity exists in pre-
trained LLMs in Section 3.1. Then, we build an understand-
ing of why contextual sparsity happens naturally even when
LLMs are densely trained in Section 3.2. Finally, we present
an observation on residual connections and explain their
relationship to contextual sparsity analytically in Section 3.3.

3.1 Contextual Sparsity Hypothesis

Inspired by prior pruning literature (Molchanov et al., 2016),
we find a surprisingly simple method is sufficient to study and
verify our hypothesis. In this section, we describe the testing
procedure, observation details, and insights of this study.

Verification: Our test is performed on OPT-175B, 66B, and
30B models and various downstream datasets such as Open-
BookQA (Mihaylov et al., 2018) and Wiki-Text (Merity et al.,
2016). We find the contextual sparsity for every input exam-
ple with two forward passes of the model. In the first pass, we
record a subset of parameters, specifically which attention
heads and MLP neurons yield large output norms for the input.
In the second pass, each input example only uses the recorded
subset of parameters for the computation. Surprisingly, these
two forward passes lead to similar prediction or performance
on all in-context learning and language modeling tasks.

Observation: Figure 3 shows that on average, we can impose
up to 80% sparsity on attention heads and 95% sparsity on
MLP neurons. As mentioned in Section 2, OPT-175B model
has 2× MLP parameters than those of attention blocks.
Therefore total sparsity here is around 85%. Since these are
all structured sparsity (heads and neurons), predicting them
accurately could potentially lead to 7× speedup.

Insight: It is intuitive that we can find contextual sparsity in
MLP blocks at inference time because of their activation func-
tions, e.g., ReLU or GeLU (Kurtz et al., 2020). Similar obser-
vations were made by (Li et al., 2022). However, it is surpris-
ing that we can find contextual sparsity in attention layers.
Note that, finding contextual sparsity in attention is not the
same as head pruning. We cross-check that different exam-
ples have different contextual sparsity. Although 80% of the
parameters are not included in the paths for a given example,
they might be used by other examples. Next, we will try to
understand why contextual sparsity exists in attention blocks.

3.2 Token Clustering in Attention Layers

In the previous section, we have verified that there exists
contextual sparsity for a given input in LLMs. In this
section, we try to understand the reason for such phenomena,
especially in attention layers. We first show an in-depth
observation of attention. Then we present a hypothesis that
self-attentions are conceptually clustering algorithms. Last
we show analytical evidence to support this hypothesis.

Observation: Figure 4 shows the attention map of three
different heads from the same layer for an example input.
The next token it should predict is “Truck”. Darker color
represents higher attention scores. We observe that the
middle head is a relatively uniform token-mixing head
while the top and bottom ones are “heavy hitter” attention
heads (with high attention to “like” and “shipping”).
Unsurprisingly, only selecting heavy hitter heads but not
uniform heads does not affect the prediction, since uniform
heads do not model or encode important token interactions.
In the next section, we will also explain in detail how the
criteria for selecting uniform attention heads and heads with
small output norms are highly correlated.

Hypothesis: We hypothesize that the attention head is
performing mean-shift clustering (Derpanis, 2005).

Recall the notation defined in Section 2.3. For i-th head
at current layer, X = [x1, ... ,xn]

⊤ ∈ Rn×d are the token
embeddings in the previous time steps. XWK

i and XWV
i

are the projection of embedding. For an input embedding
y, the output ỹi=Hi(y), whereHi(y) is defined in Eq. 2.

For each i∈ [h], if we letKi(xj ,y) :=exp(yWQ
i (WK

i)⊤xj)
measure the similarity between xj and y, and define

mi(y) :=
∑

jKi(xj ,y)xj∑
jKi(xj ,y)

, then we have ỹi=mi(y)W
V
i . Fur-

ther, if we setWV
i =I and consider the residue connection

followed by layer norm, then in the next layer, the embedding

4

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

La
ye

r L

This fruit shipping company provide different vehicle options like car and [MASK]

Truck

Figure 4. We visualize the attention scores of three different heads
for an exemplary sentence. Head 42 and Head 44 give heavy atten-
tion scores on particular tokens while Head 43 is more uniform.

ŷi of the current token becomes ŷi=Normalize(y+ ỹi) =
Normalize(y+mi(y)), which has a fixed point y=γmi(y)
for any scalar γ. This iteration bears a resemblance to mean-
shift clustering, which simply performs iteration y←mi(y)
until convergence. This has an obvious fixed point y=mi(y).

Therefore, the self-attention head can be regarded as one
mean-shift step to push input embeddings of different tokens
together, if they are already neighbors in a projection space
specified by WQ

i (WK
i)⊤. Different heads learn different

projection spaces to perform clustering. These dynamics
explain the precise reason why token embeddings tend to
cluster after going through more layers, resulting in high
attention scores among cluster members, and low scores for
non-members. Furthermore, the cluster patterns are different
at different heads (More details in Appendix K).

The above analysis not only provides an understanding of
why contextual sparsity exists naturally in pre-trained LLMs,
but also inspires our design of “similarity”-based sparsity
prediction for DEJAVU in Section 4.

3.3 Slowly Changing Embeddings across Layers

We first present our observation that embeddings change
slowly across consecutive layers. Then we provide a detailed
analysis on the phenomenon. Finally, we show its close
connection with contextual sparsity. Details are in Section B.

High similar embeddings in consecutive layers: In
Figure 5(a), we show that for the same given input, the cosine
similarity between embeddings or activations in two consec-
utive layers is exceptionally high on 7 different sizes of OPT
models. Specifically, we collect activations from each layer
while performing OPT model inference on C4 validation
set (Raffel et al., 2019). Taking OPT-175B as an example,
starting from the second layer, the similarity between any
two consecutive layers is around 0.99, which indicates that
when an input is passed through the model, the direction of
its embedding changes slowly. Interestingly, the most drastic
change happens in the first layer. Furthermore, we increase
the gap and investigate the similarity between the embedding
at layer l and at layer l+ n shown in Figure 5(b). As we
increase the gap, the similarity decreases as expected while
the differences in cosine similarity between various choices

12
5m 1.3

b
6.7

b
13

b
30

b
66

b
17

5b
0.95

0.96

0.97

0.98

0.99

1.00

Co
sin

e
Si

m
ila

rit
y

(a) Model Comparison

0 20 40 60 80
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

n = 1
n = 2
n = 4
n = 8

(b) Across Layer

0 20 40 60 80
Transformer Layer

0

500

1000

1500

2000

No
rm

||X||
||F(X)||

(c) Residual Around Attention

0 20 40 60 80
Transformer Layer

0

500

1000

1500

2000

2500

No
rm

||X||
||F(X)||

(d) Residual Around MLP

Figure 5. Slowly Changing Embedding. Figure (a) shows the
median cosine similarity between representations at two consecutive
layers across all layers for different OPT models. All models show
a similarity greater than 95%. Figure (b) shows cosine similarity
stays high even a few layers apart. For the residual connection
X ′=X+F (X) inside each block, we plot the ℓ2 norm of X and
F (X) in Figure (c) and Figure (d). ∥X∥ is significantly higher than
∥F (X)∥, which explains the slowly changing embedding.

of n are smaller at the shallower layer. We plot the mean sim-
ilarity, and the standard deviation is indicated by the shading.
Similar plots on more models are presented in Appendix B.

Connection to residuals: We verify that the high similarity
in embeddings in LLM inference is due to the residual
connection. We first dissect the computation graph inside
each transformer layer to understand the cause behind
this phenomenon. There are two residual connections
inside a transformer layer, one around the attention block,
and the other one around the MLP block. The residual
connection can be written asX+F (X), where F is either
the Multi-Head Attention or two MLP Layers. In Figure 5(c)
and Figure 5(d), indeed we can see that ∥X∥ is significantly
greater than ∥F (X)∥, confirming that embeddings are
changing slowly because the residual norm is large.

Connection to Contextual Sparsity: We take a step deeper
trying to understand the reason behind the large residual
norm with mathematical modeling. We discover that one pos-
sible reason for small ∥F (X)∥ is due to high sparsity. For the
MLP Block, high sparsity may contribute to the small norm
ofF (X) because a large portion of outputs have small norms.
Similar reasoning applies to the Attention Block, and thus
a large number of attention heads yield small norm outputs.

Residual Two Sides Bound: Besides empirical reasoning,

5

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

we formally define the computation of LLMs mathematically.
Under our computation model, we can show that a shrinking
property which is observed by our practical experiments.
Proofs are in Appendix G, H, I.

Lemma 3.1 (Informal). Let 0<ϵ1<ϵ2<1 be the lower and
upper bound of the shrinking factor. Let x be the y be the
output. We have the residual connection y=x+F (x). For
the MLP block F (x), we have ϵ1 ≤∥y−x∥2 ≤ ϵ2. For the
attention block F (x), we have ϵ1≤∥y−x∥2≤ϵ2.

4 DEJAVU

In this section, we present our framework for inference-time
contextual sparsity search for LLMs. We introduce the
sparsity predictor for MLPs in Section 4.1 and for attention
heads in Section 4.2. DEJAVU’s workflow is shown in
Figure 2. Section 4.3 discusses exploiting our observation
on LLMs to avoid the sparse prediction overhead with
theoretical guarantees. In Section 4.4, we present our
optimized implementation that enables end-to-end latency
reduction. More details are presented in Section D.

4.1 Contextual Sparsity Prediction in MLP Blocks

As explained in Section 2, MLP blocks are one of the major
bottlenecks for the LLM generation (23 of the FLOPs and
IOs). In this section, we discuss how we achieve wall-clock
time speed-up with contextual sparsity in the MLP blocks.

Challenge Figure 3(b) shows that for a given token, the
contextual sparsity of 95% is possible. The contextual
sparsity in the MLP block can be identified after computing
the activation. However, this only demonstrates the existence
of contextual sparsity but brings no benefits in terms of
efficiency. A fast and precise prediction is needed to exploit
contextual sparsity for end-to-end efficiency. The naive way
is to select a subset of neurons randomly. Unsurprisingly,
random selection fails to identify the accurate contextual
sparsity, resulting in drastic model degradation.

A Near-Neighbor Search Problem: Recall that we verify
the existence of contextual sparsity by recording which
neurons yield significant norms. Essentially, given the input,
the goal is to search for the neurons that have high inner prod-
ucts with the input, because the activation function “filters"
low activation. Thus, we formulate the contextual sparsity
prediction of an MLP layer as the classical near-neighbor
search problem under the inner product metric.

Definition 4.1 (Approximate MaxIP in MLP). Let c∈(0,1)
and τ ∈ (0,1) denote two parameters. Given an n-vector
dataset W 1 ⊂ Sd−1 on a unit sphere, the objective of the
(c, τ)-MaxIP is to construct a data structure that, given a
query y∈Sd−1 such that maxw∈W 1⟨y,w⟩≥τ , it retrieves a
vector z fromW 1 that satisfies ⟨y,z⟩≥c·maxw∈W 1⟨y,w⟩.
Remark 4.2. Our W 1 (first linear layer) and y (input
embedding) in MLP blocks can be viewed as the dataset and
query in Definition 4.1 respectively.

Design The standard state-of-the-art near-neighbor search
methods and implementations slow down the computa-
tion. Take OPT-175B where d is 12288 as an example.
HNSW (Malkov & Yashunin, 2018) requires more than 10ms,
and FAISS (Johnson et al., 2019) requires more than 4ms,
while the MLP computation is only 0.2ms. The high dimen-
sionality and complications of data structure implementation
on GPU make the search time longer than the MLP computa-
tion. Therefore, we choose a neural network classifier as our
near-neighbor search method to exploit the fast matrix multi-
plication on GPU. For each MLP block, we train a small two-
layer fully connected network to predict contextual sparsity.
Collecting training data is straightforward because we know
the contextual sparsity using dense computation. The training
algorithm is summarized in Algorithm 1. The sparsified com-
putation inW 1 has two steps: (1) Given y, the sparsity predic-
tor SPM predicts a set SM of important neurons in weights
W 1. (2) Compute the sparsified MLP defined in Eq. equa-
tion 1. Note here the sparsity in MLP is highly structured.

Algorithm 1 Sparse Predictor Training
Input: A pre-trained LLM block with parameter set M ,
token embedding set at blockM={xi}i∈[N], threshold t
Sparse Predictor SP
P+←∅,P−←∅
for i=1→N do
P+←P+∪{(xi,mr) |mr∈M,mr(xi)≥ t}
P−←P−∪{(xi,mr) |mr∈M,mr(xi)<t}

end for
SP←TRAIN(P+,P−,L) ▷L is a loss function

4.2 Contextual Sparsity Prediction in Attention Blocks

Attention blocks take around 30% I/Os in the generation. In
this section, we describe how DEJAVU exploits contextual
sparsity to speed up the Attention blocks.

Challenge: As discussed in Section 3.1, only a few heads per-
form important computations for a given input token. Similar
to the MLP blocks, a fast selection of attention heads without
full computation is required to reduce end-to-end latency.
Furthermore, one particular challenge of sparse prediction in
attention blocks is attention’s dependence on previous tokens.
On the one hand, it is unclear whether the past token’s key and
value caches are needed for sparse prediction. On the other
hand, it is unclear how to handle the missing KV cache of past
tokens for the current token computation at the selected head.

A Near-Neighbor Search Problem: Head prediction
can also be formulated as a near-neighbor search problem
based on our understanding in Section 3.2. Since each
head is performing mean-shift clustering, after the first
few layers, the current token embedding alone is sufficient
for the prediction thanks to the token-mixing nature of the
transformer. Therefore, the prediction can be based on the
similarity between y and head parameters.

6

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Approach: We design our attention sparse predictor to be
the same architecture as the MLP sparse predictor. Each head
is regarded as one class and a similar training process is used
(Algorithm 1). Then, similar to how MLP prediction is per-
formed, the attention sparsity predictor SPA selects a set SA
of headsHi (see Eq. equation 2). To address the problem of
missing KV cache for a past token, we exploit the fact that the
generation latency is I/O bounded while computation is essen-
tially “free". Specifically, for the predicted attention head of
input y, we compute the corresponding keys, and values and
store them in the KV cache. But we also save a copy of y for
all the other non-selected heads. Then during the future token
generation, if there is missing KV cache in the selected heads,
we could load stored token embeddings and compute the
keys and values together. This requires almost minimal extra
memory access (the main cost is loading the weight matrices).

4.3 Reducing Overhead with Asynchronous Execution

Sparse prediction overhead may easily increase the end-to-
end latency rather than reduce it despite the reduction in
FLOPs. Therefore, we introduce a look-ahead sparse pre-
diction method, inspired by our observations in Section 3.3.

Challenge: Denote yl ∈ Rd as the input to transformer
layer l. We can write the computation at layer l as ỹl ←
MHAl(yl),ŷl←MLPl(ỹl). With predictors SPlA and SPlM ,
the computation at the transformer layer l can be re-written as

SlA←SPlA(yl), ỹl←MHAlSl
A
(yl),

SlM←SPlM (ỹl), ŷl←MLPlSl
M
(ỹl)

where set SlA is the contextual sparsity for the Attention
block, and set SlM is the contextual sparsity for the MLP
block at l-th layer. Note that the computation at Attention
and MLP blocks have to wait for the sparse predictor
decision. This overhead potentially outweighs the saving
from Attention and MLP blocks in terms of latency.

Approach: In Section 3.3, we present the slowly evolving
embedding phenomenon, which provides opportunities to
relax the sequential computation to parallel computation.
Along with the observation of low computation intensity
during generation, we parallel the sparse prediction with the
computation of each block (See Figure 2). The computation
can be written as follows:

ỹl←MHAlSl
A
(yl), ŷl←MLPlSl

M
(ỹl),

Sl+1
A ←SPlA(yl), Sl+1

M ←SPlM (yl),

We remark Sl+1
A and Sl+1

M can be computed in parallel with
ỹl or ŷl, while the previous 4 steps are sequential.

Theoretical guarantee: The sparse predictor can make fur-
ther cross-layer decisions because of the residual connection.
We present an informal lemma statement regarding cross-
layer prediction. It is well-known that MaxIP is equivalent to
ℓ2 nearest neighbor search. For convenience, we use MaxIP
here. We include more discussions and proofs in Section J.

Lemma 4.3 (Informal). Let ϵ ∈ (0,1). Let yl be input at

l-th layer. Let yl−1 be the input at (l−1)-th layer. Suppose
that ∥yl − yl−1∥2 ≤ ϵ. For any parameters c,τ such that
ϵ <O(cτ). Then we can show that, solving MaxIP(c,τ) is
sufficient to solve MaxIP(0.99c,τ).

4.4 Hardware-efficient Implementation

We describe how DEJAVU is implemented in a hardware-
efficient manner to realize the theoretical speedup of contex-
tual sparsity. Taking into account hardware characteristics
leads to over 2× speedup compared to an optimized dense
model, and 4× faster than a standard sparse implementation.

We highlight some hardware characteristics of GPUs:

• Small-batch generation is bottlenecked by GPU memory
I/Os (NVIDIA, 2022; Ivanov et al., 2021; Dao et al., 2022).
This is because of low arithmetic intensity. For each
element loaded from GPU memory, only a small number
of floating point operations are performed.

• GPUs are block-oriented devices: loading a single byte of
memory takes the same time as loading a block of memory
around that same address (Harris, 2013). The block size
is usually 128 bytes for NVIDIA GPUs (Cook, 2012).

These characteristics present some challenges in implement-
ing contextual sparsity. However, they can be addressed with
classical techniques in GPU programming.

Kernel fusion: A standard implementation of sparse
matrix-vector multiply (e.g., in PyTorch) that separately
indexes a subset of the matrix W 1

SM
before multiplying

with input y would incur 3× the amount of memory I/Os.
Therefore, to avoid such overhead, we fuse the indexing
and the multiplication step. Specifically, we load a subset
of W 1

SM
to memory, along with y, perform the multiply,

then write down the result. This fused implementation (in
Triton (Tillet et al., 2019)) yields up to 4× speedup compared
to a standard PyTorch implementation (Appendix E).

Memory coalescing: In the dense implementation, the
weight matrices of two linear layers in MLP are stored
as (W 1)⊤ and W 2 so that no extra transpose operation is
needed. They are conventionally stored in row-major format.
In the sparse implementation, it allows us to load (W 1

SM
)⊤

optimally (the second dimension is contiguous in memory).
However, for cases where we need to load (W 2

SM
), this

format significantly slows down memory loading, as indices
in SM point to non-contiguous memory. We simply store
these matrices in column-major format (i.e., store (W 2)⊤

in row-major format), then use the same fused kernel above.
Similarly, in attention blocks, we store attention output
projectionWO column-major format.

These two techniques (kernel fusion and memory-
coalescing) make DEJAVU hardware-efficient, yielding up
to 2× speedup end-to-end compared to the state-of-the-art
FasterTransformer (Section 5.1).

7

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

0 20 40 60 80 100
Sparsity percentage (%)

8

9

10

11
 P

er
pl

ex
ity

WikiText
c4

(a) Language Modeling

0 20 40 60 80 100
Sparsity percentage (%)

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

0 20 40 60 80 100
Sparsity percentage (%)

0.4

0.5

0.6

0.7

0.8

0.9
CB
COPA
Lambada
OpenbookQA
PIQA
RTE
Winogrande

(b) Zero-Shot(Left). Five-Shot(Right)

Figure 6. Accuracy Trend for DEJAVU-OPT-175B. This figure shows the accuracy of DEJAVU-OPT-175B on language modeling datasets
and downstream tasks when we set different sparsity at test time. In general, DEJAVU-OPT-175B incurs no accuracy drop until 75% sparsity.

128 256 512 1024
Sequence Length

0

20

40

60

80

100

La
te

nc
y(

m
s)

HuggingFace
FasterTransformer
DejaVu

Figure 7. Average per-token latency (ms) with batch size 1 on 8
A100-80GB with NVLink when generating sequences with prompt
lengths 128, 256, 512, and 1024, using FP16. DEJAVU speeds up
generation by 1.8-2× compared to the state-of-the-art FT and by
4.8-6× compared to the widely used HF implementation.

5 Empirical Evaluation
In Section 5.1, we present the end-to-end results that show
DEJAVU achieves over 2× reduction in token generation
latency compared to the state-of-the-art FasterTransformer
and over 6× compared to Hugging Face with no accuracy
loss. In Section 5.2, we perform a list of ablation studies such
as independent evaluation on the inference-time contextual
sparsity of the MLP block and the Attention block (Details
are presented in Section C). At last, we present the additional
results to demonstrate the future possibility of sparsifying
the entire LLMs via layer skipping in Section C.3.

5.1 End-to-End Result

Experiment Setting: We compare the accuracy of DE-
JAVU-OPT against the original OPT model on two lan-
guage modeling datasets Wiki-Text (Merity et al., 2016)
and C4 (Raffel et al., 2019) and seven few-shot downstream
tasks: CB (de Marneffe et al., 2019), COPA (Gordon et al.,
2012), Lambada (Radford et al., 2019), OpenBookQA (Mi-
haylov et al., 2018), PIQA (Bisk et al., 2020), RTE (Giampic-
colo et al., 2007), Winogrande (ai2, 2019). We use lm-eval-
harness (Gao et al., 2021) for zero-shot and five-shot tasks.
We collect training data for the sparsity predictor using 500
random data points from the C4 training dataset. Our exper-
iments are conducted on NVIDIA A100 80GB GPU servers.

No accuracy drop until 75% sparsity: In Figure 6, we
present DEJAVU-OPT-175B’s accuracy trend. In a zero-shot

setting, the average accuracy across tasks does not drop
until 75% sparsity. A similar trend can be observed for
the five-shot setting, which verifies the model’s ability for
in-context learning. This result is exceptionally encouraging
given our observation in Figure 1(a), where we could impose
85% sparsity when allowed full computation.

Over 2× latency reduction: Figure 7 presents the latency
speed-up for the token generation with OPT-175B at batch
size 1, where DEJAVU achieves the best performance. At
around 75% sparsity, DEJAVU speeds up generation by
1.8-2× compared to the state-of-the-art FasterTransformers
(FT)1 and by 4.8-6× to Hugging Face (HF) implementation2.

5.2 Ablation Results

Contextual Sparsity for Larger Batches: Although this
paper focuses on latency-sensitive settings, we demonstrate
that DEJAVU generalizes to larger batches. we present the
Union contextual sparsity (fraction of neurons/heads that are
not used by any of the inputs in the batch) of different batches
sizes for MLP and Attention blocks, respectively, in Fig-
ure 8 and 11. The union operation is essential to realize a fast
sparse GEMM. Surprisingly the number of MLP neurons and
Attention heads that DEJAVU activated does not grow linearly
with the batch size. This suggests a power law distribution
rather than a uniform distribution of parameter access from
all input examples. This provides an opportunity for poten-
tially extending Dejavu to the high-throughout setting. For
example, we can first pre-process the inputs and batch similar
inputs to enjoy a higher level of union contextual sparsity.

Contextual sparsity on MLP blocks: We study the contex-
tual sparsification of the MLP block in OPT-175B. We leave
the Attention block as dense computation. Table 4 shows
the model performance at 85% sparsity. The MLP sparse
predictor introduces no accuracy loss on both zero-shot tasks
and language modeling. In the training of the MLP sparse
predictor, we observe that the sparse predictor achieves high
validation accuracy. The shallow layer seems easier to model

1http://github.com/NVIDIA/FasterTransformer
2http://github.com/huggingface/transformers

8

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Table 4. Accuracy of zero-shot tasks and language modeling when sparsifying the MLP block and the Attention block separately. The
sparsity is set at 85% for MLP-block and 50% for Attention-block. DEJAVU incurs no accuracy drop across the boards.

Model CB COPA Lambada OpenBookQA PIQA RTE Winogrande Wikitext C4
OPT-175B 0.3523 0.86 0.7584 0.446 0.8096 0.6029 0.7261 10.8221 7.7224

DEJAVU-MLP-OPT-175B 0.3544 0.85 0.7619 0.446 0.8096 0.6065 0.7206 10.7988 7.7393
DEJAVU-Attention-OPT-175B 0.3544 0.86 0.7586 0.4460 0.8063 0.5921 0.7245 10.8696 7.7393

Table 5. DEJAVU-OPT66B on zero-shot downstream task.

Model CB COPA Lambada OpenBookQA PIQA RTE Winogrande

OPT-66B 0.3928 0.87 0.7508 0.426 0.7921 0.6028 0.6890

DEJAVU-OPT-66B 0.4285 0.87 0.7458 0.434 0.7933 0.5884 0.6898

Table 6. DEJAVU-BLOOM on zero-shot downstream task.

CB COPA OpenBookQA PIQA RTE Winogrande Lambada

BLOOM 0.455 0.8 0448 0.79 0.617 0.704 0.677

Dejavu-BLOOM 0.448 0.8 0.44 0.787 0.606 0.710 0.675

0 20 40 60 80 96
Transformer Layer

0.5

0.6

0.7

0.8

0.9

1.0

Un
io

n
Co

nt
ex

tu
al

 S
pa

rs
ity

Batch size
2
4
8
16
32

Figure 8. Union contextual sparsity with larger batch size.

because the predictor has validation accuracy over 99% in the
shallow layers and drops to around 93% in the ending layers.

Contextual sparsity on attention blocks: In this section,
we study the sparse predictor for the Attention block on OPT-
175B and leave the MLP block as dense computation. Table 4
displays the test accuracy on zero-shot tasks and perplexity on
the language modeling datasets. In summary, the Attention
sparse predictor introduces no accuracy loss at around 50%
sparsity. During the training of the Attention sparse predictor,
we observe different trends compared to the MLP sparse
predictor. The validation accuracy is around 93% in the
middle layers and near 99% in the shallow and deep layers.

Contextual Sparsity on Smaller Models: Our main exper-
iments focus on OPT-175B. Here, we verify DEJAVU’s effec-
tiveness on a smaller model, specifically OPT-66B. In Table 5,
we summarize the accuracy on zero-shot task at 50% sparsity.
Similar to DEJAVU-OPT-175B, we notice no accuracy loss.

Contextual Sparsity on Other Models: We expand
the evaluation to another model family. In Table 6, we
summarize the accuracy at attention sparsity 50% and MLP
sparsity 30%. Similar to OPT family, we notice no accuracy
loss. The lower sparsity level in MLP is due to the difference
in activation function.

Non-Contextual Sparsity: As we mentioned in Section 1,
one could predict sparsity without contextual information.
For non-contextual sparsity, we rely on the original

Table 7. DEJAVU-OPT-175B with 4-bit quantization.

CB COPA OpenBookQA PIQA RTE Winogrande Lambada

OPT-175B 0.352 0.86 0.446 0.809 0.602 0.726 0.758

Dejavu-OPT-175B 0.402 0.85 0.450 0.802 0.592 0.726 0.753

OPT-175B + W4A16 0.356 0.85 0.44 0.806 0.574 0.714 0.757

Dejavu-OPT-175B + W4A16 0.365 0.86 0.452 0.805 0.592 0.726 0.754

embedding at the input layer. At every block, we first pass
the original embedding to record a subset of parameters
yielding a large norm. In the second pass, the embedding
at every layer only uses the recorded subset. As shown in
Figure 1, non-contextual prediction is not sufficient and
leads to accuracy losses even at 50% sparsity. This result
verifies our design choices of relying on the activation at
every layer as input to make contextual sparsity predictions.

Compatibility with Quantization: Quantization is another
promising direction for efficient language models. We inves-
tigate the possibility of combining contextual sparsity with
quantization techniques. For DEJAVU-OPT-175B, we set
the entire model sparsity at 75%. For quantization, we apply
4-bit quantization on model weights (W4A16). As shown
in Table 7, the combination of quantization and DEJAVU
almost always achieves better accuracy than DEJAVU or
quantization alone. This suggests that the approximation
errors from these two directions do not get compounded.

6 Conclusion
Our main goal is to make LLM inference efficient so that
their powerful in-context learning abilities can be used
in more application domains. We observe that contextual
sparsity can be accurately predicted with lightweight
learning-based algorithms. This motivated us to design
DEJAVU that uses asynchronous lookahead predictors and
hardware-efficient sparsity to speed up LLM inference in
wall-clock time. Our encouraging empirical results validate
that contextual sparsity can reduce inference latency by
over 2× compared to the state-of-the-art FasterTransformer
without model quality drops. Our method is a step towards
making LLMs more accessible to the general community,
which could unlock exciting new AI applications.

Acknowledgements
We would like to thank Ryan Spring, Laurel Orr, Guangxuan
Xiao, Eric Han, Xun Huang, Daniel Y. Fu, Benjamin Spector,
Ruan Silva, Diana Liskovich, and the anonymous reviewers
for helpful discussions and feedback. We acknowledge the
generous support by Together Computer, which enabled the
necessary partial computations in this work.

9

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

References
Winogrande: An adversarial winograd schema challenge

at scale. 2019.

Allen-Zhu, Z. and Li, Y. What can resnet learn efficiently,
going beyond kernels? Advances in Neural Information
Processing Systems, 32, 2019.

Alman, J. and Song, Z. Fast attention requires bounded
entries. arXiv preprint arXiv:2302.13214, 2023.

Alman, J., Liang, J., Song, Z., Zhang, R., and Zhuo, D. By-
pass exponential time preprocessing: Fast neural network
training via weight-data correlation preprocessing. arXiv
preprint arXiv:2211.14227, 2022.

Alon, N., Matias, Y., and Szegedy, M. The space complexity
of approximating the frequency moments. In Proceedings
of the twenty-eighth annual ACM symposium on Theory
of computing, pp. 20–29, 1996.

Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Li, C.,
Li, D., Zheng, E., Ruwase, O., Smith, S., Zhang, M.,
Rasley, J., et al. Deepspeed-inference: Enabling efficient
inference of transformer models at unprecedented scale.
In 2022 SC22: International Conference for High Per-
formance Computing, Networking, Storage and Analysis
(SC), pp. 646–660. IEEE Computer Society, 2022.

Andoni, A. and Razenshteyn, I. Optimal data-dependent
hashing for approximate near neighbors. In Proceedings
of the forty-seventh annual ACM symposium on Theory
of computing (STOC), pp. 793–801, 2015.

Andoni, A., Indyk, P., Nguyen, H. L., and Razenshteyn, I.
Beyond locality-sensitive hashing. In Proceedings of the
twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pp. 1018–1028. SIAM, 2014.

Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I., and
Schmidt, L. Practical and optimal lsh for angular distance.
In Advances in Neural Information Processing Systems
(NIPS), pp. 1225–1233. Curran Associates, 2015.

Andoni, A., Laarhoven, T., Razenshteyn, I., and Waingarten,
E. Optimal hashing-based time-space trade-offs for
approximate near neighbors. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 47–66. SIAM, 2017.

Andoni, A., Indyk, P., and Razenshteyn, I. Approximate
nearest neighbor search in high dimensions. arXiv
preprint arXiv:1806.09823, 7, 2018.

Arya, S. and Mount, D. M. Approximate nearest neighbor
queries in fixed dimensions. In SODA, volume 93, pp.
271–280. Citeseer, 1993.

Balduzzi, D., Frean, M., Leary, L., Lewis, J., Ma, K. W.-D.,
and McWilliams, B. The shattered gradients problem:
If resnets are the answer, then what is the question? In
International Conference on Machine Learning, pp.
342–350. PMLR, 2017.

Bansal, H., Gopalakrishnan, K., Dingliwal, S., Bodapati, S.,
Kirchhoff, K., and Roth, D. Rethinking the role of scale for
in-context learning: An interpretability-based case study
at 66 billion scale. arXiv preprint arXiv:2212.09095, 2022.

Baum, L. E. and Petrie, T. Statistical inference for proba-
bilistic functions of finite state markov chains. The annals
of mathematical statistics, 37(6):1554–1563, 1966.

Bello, I., Fedus, W., Du, X., Cubuk, E. D., Srinivas, A., Lin,
T.-Y., Shlens, J., and Zoph, B. Revisiting resnets: Im-
proved training and scaling strategies. Advances in Neural
Information Processing Systems, 34:22614–22627, 2021.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. A
neural probabilistic language model. Journal of machine
learning research (JMLR), 3(Feb):1137–1155, 2003.

Bisk, Y., Zellers, R., Bras, R. L., Gao, J., and Choi, Y.
Piqa: Reasoning about physical commonsense in natural
language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Black, S., Biderman, S., Hallahan, E., Anthony, Q., Gao,
L., Golding, L., He, H., Leahy, C., McDonell, K., Phang,
J., Pieler, M., Prashanth, U. S., Purohit, S., Reynolds, L.,
Tow, J., Wang, B., and Weinbach, S. GPT-NeoX-20B:
An open-source autoregressive language model. In
Proceedings of the ACL Workshop on Challenges &
Perspectives in Creating Large Language Models, 2022.
URL https://arxiv.org/abs/2204.06745.

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora,
S., von Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A.,
Brunskill, E., et al. On the opportunities and risks of foun-
dation models. arXiv preprint arXiv:2108.07258, 2021.

Boutsidis, C., Woodruff, D. P., and Zhong, P. Optimal
principal component analysis in distributed and streaming
models. In STOC’16—Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing, 2016.

Boytsov, L., Novak, D., Malkov, Y., and Nyberg, E. Off the
beaten path: Let’s replace term-based retrieval with k-nn
search. In Proceedings of the 25th ACM international on
conference on information and knowledge management
(CIKM), pp. 1099–1108, 2016.

Brand, J. v. d., Peng, B., Song, Z., and Weinstein, O. Training
(overparametrized) neural networks in near-linear time.
In ITCS, 2021.

10

https://arxiv.org/abs/2204.06745

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Brand, J. v. d., Song, Z., and Zhou, T. Algorithm and
hardness for dynamic attention maintenance in large
language models. arXiv preprint arXiv:2304.02207, 2023.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chan, S. C., Santoro, A., Lampinen, A. K., Wang, J. X.,
Singh, A. K., Richemond, P. H., McClelland, J., and
Hill, F. Data distributional properties drive emergent
in-context learning in transformers. In Advances in Neural
Information Processing Systems, 2022.

Chang, W.-C., Yu, F. X., Chang, Y.-W., Yang, Y., and Kumar,
S. Pre-training tasks for embedding-based large-scale
retrieval. arXiv preprint arXiv:2002.03932, 2020.

Charikar, M., Chen, K., and Farach-Colton, M. Finding
frequent items in data streams. In International Collo-
quium on Automata, Languages, and Programming, pp.
693–703. Springer, 2002.

Chen, B., Xu, Y., and Shrivastava, A. Fast and accurate
stochastic gradient estimation. Advances in Neural
Information Processing Systems, 32, 2019.

Chen, B., Medini, T., Farwell, J., Tai, C., Shrivastava, A., et al.
Slide: In defense of smart algorithms over hardware accel-
eration for large-scale deep learning systems. Proceedings
of Machine Learning and Systems, 2:291–306, 2020a.

Chen, B., Dao, T., Winsor, E., Song, Z., Rudra, A., and Ré,
C. Scatterbrain: Unifying sparse and low-rank attention.
Advances in Neural Information Processing Systems, 34:
17413–17426, 2021a.

Chen, B., Liu, Z., Peng, B., Xu, Z., Li, J. L., Dao, T., Song,
Z., Shrivastava, A., and Re, C. Mongoose: A learnable lsh
framework for efficient neural network training. In Inter-
national Conference on Learning Representations, 2021b.

Chen, H., Chillotti, I., Dong, Y., Poburinnaya, O., Razen-
shteyn, I., and Riazi, M. S. {SANNS}: Scaling up
secure approximate k-nearest neighbors search. In 29th
{USENIX} Security Symposium ({USENIX} Security 20),
pp. 2111–2128, 2020b.

Chen, L. On the hardness of approximate and exact (bichro-
matic) maximum inner product. In 33rd Computational
Complexity Conference (CCC), 2018.

Cho, J. H. and Hariharan, B. On the efficacy of knowledge
distillation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 4794–4802, 2019.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. PaLM: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Clarkson, K. L. and Woodruff, D. P. Low-rank approximation
and regression in input sparsity time. In STOC, 2013.

Cohen, M. B. Nearly tight oblivious subspace embeddings
by trace inequalities. In Proceedings of the twenty-seventh
annual ACM-SIAM symposium on Discrete algorithms,
pp. 278–287. SIAM, 2016.

Cook, S. CUDA Programming: A Developer’s Guide to
Parallel Computing with GPUs. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1st edition,
2012. ISBN 9780124159334.

Cox, M. and Cox, T. Multidimensional scaling, 315–347.
Handbook of data visualization. Springer, Berlin,
Germany, 2008.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C.
Flashattention: Fast and memory-efficient exact attention
with io-awareness. In Advances in Neural Information
Processing Systems, 2022.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
Locality-sensitive hashing scheme based on p-stable distri-
butions. In Proceedings of the twentieth annual symposium
on Computational geometry (SoCG), pp. 253–262, 2004.

de Marneffe, M.-C., Simons, M., and Tonhauser, J. The
commitmentbank: Investigating projection in naturally
occurring discourse. 2019.

Deng, Y., Li, Z., and Song, Z. Attention scheme inspired soft-
max regression. arXiv preprint arXiv:2304.10411, 2023a.

Deng, Y., Mahadevan, S., and Song, Z. Randomized and
deterministic attention sparsification algorithms for
over-parameterized feature dimension. arxiv preprint:
arxiv 2304.03426, 2023b.

Derpanis, K. G. Mean shift clustering. Lecture Notes, 32:
1–4, 2005.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Llm. int8 (): 8-bit matrix multiplication for transformers
at scale. arXiv preprint arXiv:2208.07339, 2022.

Dong, S., Lee, Y. T., and Ye, G. A nearly-linear time
algorithm for linear programs with small treewidth: A
multiscale representation of robust central path. In
Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, pp. 1784–1797, 2021.

Dong, Y., Indyk, P., Razenshteyn, I., and Wagner, T. Learning
space partitions for nearest neighbor search. In Interna-
tional Conference on Learning Representations, 2019.

11

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Fang, J., Yu, Y., Zhao, C., and Zhou, J. Turbotransformers:
an efficient gpu serving system for transformer models.
In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pp.
389–402, 2021.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. arXiv preprint
arXiv:1803.03635, 2018.

Frantar, E. and Alistarh, D. Massive language models
can be accurately pruned in one-shot. arXiv preprint
arXiv:2301.00774, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. arXiv preprint arXiv:2210.17323,
2022.

Frei, S., Cao, Y., and Gu, Q. Algorithm-dependent gen-
eralization bounds for overparameterized deep residual
networks. Advances in neural information processing
systems, 32, 2019.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff, N.,
Phang, J., Reynolds, L., Tang, E., Thite, A., Wang, B.,
Wang, K., and Zou, A. A framework for few-shot lan-
guage model evaluation, September 2021. URL https:
//doi.org/10.5281/zenodo.5371628.

Gao, Y., Mahadevan, S., and Song, Z. An over-parameterized
exponential regression. arXiv preprint arXiv:2303.16504,
2023a.

Gao, Y., Song, Z., and Yang, X. Differentially private
attention computation. arXiv preprint arXiv:2305.04701,
2023b.

Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B. The
third PASCAL recognizing textual entailment challenge.
In Proceedings of the ACL-PASCAL Workshop on Textual
Entailment and Paraphrasing, pp. 1–9, Prague, June
2007. Association for Computational Linguistics. URL
https://aclanthology.org/W07-1401.

Gionis, A., Indyk, P., Motwani, R., et al. Similarity search
in high dimensions via hashing. In Vldb, volume 99, pp.
518–529, 1999.

Gordon, A., Kozareva, Z., and Roemmele, M. SemEval-2012
task 7: Choice of plausible alternatives: An evaluation
of commonsense causal reasoning. In *SEM 2012: The
First Joint Conference on Lexical and Computational Se-
mantics – Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of the
Sixth International Workshop on Semantic Evaluation
(SemEval 2012), pp. 394–398, Montréal, Canada, 7-8

June 2012. Association for Computational Linguistics.
URL https://aclanthology.org/S12-1052.

Gu, Y. and Song, Z. A faster small treewidth sdp solver.
arXiv preprint arXiv:2211.06033, 2022.

Gu, Y., Song, Z., Yin, J., and Zhang, L. Low rank matrix
completion via robust alternating minimization in nearly
linear time. arXiv preprint arXiv:2302.11068, 2023.

Hall, R. and Attenberg, J. Fast and accurate maximum inner
product recommendations on map-reduce. In Proceedings
of the 24th International Conference on World Wide Web
(WWW), pp. 1263–1268, 2015.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Harris, M. How to access global memory efficiently in
CUDA C/C++ kernels. NVIDIA, Jan, 2013.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

He, Y., Liu, P., Wang, Z., Hu, Z., and Yang, Y. Filter pruning
via geometric median for deep convolutional neural
networks acceleration. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pp. 4340–4349, 2019.

Hinton, G., Vinyals, O., Dean, J., et al. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015.

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N., and Peste,
A. Sparsity in deep learning: Pruning and growth for
efficient inference and training in neural networks. J.
Mach. Learn. Res., 22(241):1–124, 2021.

Hooker, S. The hardware lottery. Communications of the
ACM, 64(12):58–65, 2021.

Hu, H., Song, Z., Weinstein, O., and Zhuo, D. Training
overparametrized neural networks in sublinear time.
arXiv preprint arXiv:2208.04508, 2022.

Indyk, P. and Motwani, R. Approximate nearest neighbors:
towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing (STOC), pp. 604–613, 1998a.

Indyk, P. and Motwani, R. Approximate nearest neighbors:
towards removing the curse of dimensionality. In
Proceedings of the thirtieth annual ACM symposium on
Theory of computing, pp. 604–613, 1998b.

12

https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://aclanthology.org/W07-1401
https://aclanthology.org/S12-1052

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Indyk, P. and Wagner, T. Approximate nearest neighbors
in limited space. In Conference On Learning Theory, pp.
2012–2036. PMLR, 2018.

Ivanov, A., Dryden, N., Ben-Nun, T., Li, S., and Hoefler,
T. Data movement is all you need: A case study on
optimizing transformers. Proceedings of Machine
Learning and Systems, 3:711–732, 2021.

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard,
A., Adam, H., and Kalenichenko, D. Quantization and
training of neural networks for efficient integer-arithmetic-
only inference. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2704–2713,
2018.

Jiang, S., Song, Z., Weinstein, O., and Zhang, H. A faster
algorithm for solving general lps. In Proceedings of the
53rd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 823–832, 2021.

Johnson, J., Douze, M., and Jégou, H. Billion-scale
similarity search with GPUs. IEEE Transactions on Big
Data, 7(3):535–547, 2019.

Johnson, W. B. and Lindenstrauss, J. Extensions of
lipschitz mappings into a hilbert space. Contemporary
mathematics, 26(189-206):1, 1984.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. In ICLR, 2020.

Kurtz, M., Kopinsky, J., Gelashvili, R., Matveev, A., Carr, J.,
Goin, M., Leiserson, W., Moore, S., Shavit, N., and Alis-
tarh, D. Inducing and exploiting activation sparsity for fast
inference on deep neural networks. In III, H. D. and Singh,
A. (eds.), Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 5533–5543. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/kurtz20a.html.

Laurent, B. and Massart, P. Adaptive estimation of a
quadratic functional by model selection. Annals of
Statistics, pp. 1302–1338, 2000.

LeCun, Y., Denker, J., and Solla, S. Optimal brain damage.
Advances in neural information processing systems, 2,
1989.

Lee, M., He, X., Yih, W.-t., Gao, J., Deng, L., and Smolensky,
P. Reasoning in vector space: An exploratory study of
question answering. In ICLR, 2016.

Lee, N., Ajanthan, T., and Torr, P. H. Snip: Single-shot
network pruning based on connection sensitivity. arXiv
preprint arXiv:1810.02340, 2018.

Lee, Y. T., Song, Z., and Zhang, Q. Solving empirical risk
minimization in the current matrix multiplication time. In
Conference on Learning Theory, pp. 2140–2157. PMLR,
2019.

Li, P., Li, X., and Zhang, C.-H. Re-randomized densification
for one permutation hashing and bin-wise consistent
weighted sampling. Advances in Neural Information
Processing Systems, 32, 2019.

Li, S., Song, Z., Xia, Y., Yu, T., and Zhou, T. The closeness
of in-context learning and weight shifting for softmax
regression. arXiv preprint, 2023a.

Li, X. and Li, P. C-MinHash: Improving minwise hashing
with circulant permutation. In Chaudhuri, K., Jegelka,
S., Song, L., Szepesvari, C., Niu, G., and Sabato, S.
(eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 12857–12887. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/li22m.html.

Li, Z., You, C., Bhojanapalli, S., Li, D., Rawat, A. S.,
Reddi, S. J., Ye, K., Chern, F., Yu, F., Guo, R., and
Kumar, S. Large models are parsimonious learners:
Activation sparsity in trained transformers, 2022. URL
https://arxiv.org/abs/2210.06313.

Li, Z., Song, Z., and Zhou, T. Solving regularized exp, cosh
and sinh regression problems. arXiv preprint, 2303.15725,
2023b.

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D.,
Yasunaga, M., Zhang, Y., Narayanan, D., Wu, Y., Kumar,
A., et al. Holistic evaluation of language models. arXiv
preprint arXiv:2211.09110, 2022.

Liu, Z., Sun, M., Zhou, T., Huang, G., and Darrell, T.
Rethinking the value of network pruning. arXiv preprint
arXiv:1810.05270, 2018.

Liu, Z., Xu, Z., Ji, A., Zhang, J., Li, J., Chen, B., and
Shrivastava, A. Halos: Hashing large output space for
cheap inference. Proceedings of Machine Learning and
Systems, 4:110–125, 2022.

Lu, Y., Dhillon, P., Foster, D. P., and Ungar, L. Faster ridge
regression via the subsampled randomized hadamard
transform. In Advances in neural information processing
systems (NIPS), pp. 369–377, 2013.

Malkov, Y., Ponomarenko, A., Logvinov, A., and Krylov,
V. Approximate nearest neighbor algorithm based on
navigable small world graphs. Information Systems, 45:
61–68, 2014.

13

https://proceedings.mlr.press/v119/kurtz20a.html
https://proceedings.mlr.press/v119/kurtz20a.html
https://proceedings.mlr.press/v162/li22m.html
https://proceedings.mlr.press/v162/li22m.html
https://arxiv.org/abs/2210.06313

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Malkov, Y. A. and Yashunin, D. A. Efficient and robust ap-
proximate nearest neighbor search using hierarchical nav-
igable small world graphs. IEEE transactions on pattern
analysis and machine intelligence, 42(4):824–836, 2018.

Meng, X. and Mahoney, M. W. Low-distortion subspace
embeddings in input-sparsity time and applications to
robust linear regression. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pp.
91–100, 2013.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models, 2016.

Michel, P., Levy, O., and Neubig, G. Are sixteen heads
really better than one? Advances in neural information
processing systems, 32, 2019.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In EMNLP, 2018.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role
of demonstrations: What makes in-context learning work?
arXiv preprint arXiv:2202.12837, 2022.

Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J.
Pruning convolutional neural networks for resource ef-
ficient inference. arXiv preprint arXiv:1611.06440, 2016.

Nagel, M., Baalen, M. v., Blankevoort, T., and Welling,
M. Data-free quantization through weight equalization
and bias correction. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp.
1325–1334, 2019.

Nelson, J. and Nguyên, H. L. Osnap: Faster numerical linear
algebra algorithms via sparser subspace embeddings.
In 2013 ieee 54th annual symposium on foundations of
computer science, pp. 117–126. IEEE, 2013.

Neyshabur, B. and Srebro, N. On symmetric and asymmetric
lshs for inner product search. In International Conference
on Machine Learning (ICML), pp. 1926–1934. PMLR,
2015.

NVIDIA. Fastertransformer. https://github.com/
NVIDIA/FasterTransformer.

NVIDIA. Gpu performance background user’s
guide, 2022. URL https://docs.nvidia.
com/deeplearning/performance/
dl-performance-gpu-background/index.
html.

Park, G., Park, B., Kwon, S. J., Kim, B., Lee, Y., and Lee,
D. nuqmm: Quantized matmul for efficient inference of
large-scale generative language models. arXiv preprint
arXiv:2206.09557, 2022.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J., Bradbury,
J., Levskaya, A., Heek, J., Xiao, K., Agrawal, S., and
Dean, J. Efficiently scaling transformer inference. arXiv
preprint arXiv:2211.05102, 2022.

Qin, L., Song, Z., and Wang, Y. Fast submodular function
maximization. CoRR, abs/2305.08367, 2023a.

Qin, L., Song, Z., Zhang, L., and Zhuo, D. An online and
unified algorithm for projection matrix vector multipli-
cation with application to empirical risk minimization. In
AISTATS, 2023b.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv e-prints, 2019.

Razenshteyn, I., Song, Z., and Woodruff, D. P. Weighted
low rank approximations with provable guarantees. In
Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pp. 250–263, 2016.

Sarlos, T. Improved approximation algorithms for large
matrices via random projections. In 2006 47th annual
IEEE symposium on foundations of computer science
(FOCS), pp. 143–152. IEEE, 2006.

Seo, M., Lee, J., Kwiatkowski, T., Parikh, A. P., Farhadi,
A., and Hajishirzi, H. Real-time open-domain question
answering with dense-sparse phrase index. In ACL, pp.
4430–4441, 2019.

Shrivastava, A., Song, Z., and Xu, Z. Sublinear least-squares
value iteration via locality sensitive hashing. arXiv
preprint arXiv:2105.08285, 2021.

Smith, J. E. A study of branch prediction strategies. In
25 years of the international symposia on Computer
architecture (selected papers), pp. 202–215, 1998.

Sohler, C. and Woodruff, D. P. Subspace embeddings
for the l1-norm with applications. In Proceedings of
the forty-third annual ACM symposium on Theory of
computing, pp. 755–764, 2011.

Song, Z. and Ye, M. Efficient asynchronize stochas-
tic gradient algorithm with structured data. CoRR,
abs/2305.08001, 2023.

Song, Z. and Yu, Z. Oblivious sketching-based central path
method for linear programming. In International Confer-
ence on Machine Learning, pp. 9835–9847. PMLR, 2021.

14

https://github.com/NVIDIA/FasterTransformer
https://github.com/NVIDIA/FasterTransformer
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-gpu-background/index.html

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Song, Z., Woodruff, D. P., and Zhong, P. Low rank approx-
imation with entrywise l1-norm error. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pp. 688–701, 2017.

Song, Z., Woodruff, D. P., and Zhong, P. Relative error
tensor low rank approximation. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 2772–2789. SIAM, 2019.

Song, Z., Zhang, L., and Zhang, R. Training multi-layer
over-parametrized neural network in subquadratic time.
arXiv preprint arXiv:2112.07628, 2021.

Song, Z., Wang, W., and Yin, C. Fast and efficient
matching algorithm with deadline instances. CoRR,
abs/2305.08353, 2023a.

Song, Z., Yang, X., Yang, Y., and Zhang, L. Sketching meets
differential privacy: fast algorithm for dynamic kronecker
projection maintenance. In International Conference on
Machine Learning (ICML), 2023b.

Tang, R., Lu, Y., Liu, L., Mou, L., Vechtomova, O., and Lin,
J. Distilling task-specific knowledge from bert into simple
neural networks. arXiv preprint arXiv:1903.12136, 2019.

Tillet, P., Kung, H.-T., and Cox, D. Triton: an interme-
diate language and compiler for tiled neural network
computations. In Proceedings of the 3rd ACM SIGPLAN
International Workshop on Machine Learning and
Programming Languages, pp. 10–19, 2019.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image trans-
formers & distillation through attention. In International
Conference on Machine Learning, pp. 10347–10357.
PMLR, 2021.

Veit, A., Wilber, M. J., and Belongie, S. Residual networks
behave like ensembles of relatively shallow networks. Ad-
vances in neural information processing systems, 29, 2016.

Viterbi, A. Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm. IEEE trans-
actions on Information Theory, 13(2):260–269, 1967.

Wang, B. and Komatsuzaki, A. GPT-J-6B: A
6 billion parameter autoregressive language
model. https://github.com/kingoflolz/
mesh-transformer-jax, May 2021.

Wang, R. and Woodruff, D. P. Tight bounds for lp oblivious
subspace embeddings. 2018.

Wang, X., Xiong, Y., Wei, Y., Wang, M., and Li, L. Lightseq:
A high performance inference library for transformers.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational

Linguistics: Human Language Technologies: Industry
Papers, pp. 113–120, 2021.

Woodruff, D. P. Sketching as a tool for numerical linear
algebra. Foundations and Trends® in Theoretical
Computer Science, 10(1–2):1–157, 2014.

Xiao, G., Lin, J., Seznec, M., Demouth, J., and Han, S.
Smoothquant: Accurate and efficient post-training
quantization for large language models. arXiv preprint
arXiv:2211.10438, 2022.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T.
An explanation of in-context learning as implicit
bayesian inference. In International Conference
on Learning Representations, 2022. URL https:
//openreview.net/forum?id=RdJVFCHjUMI.

Xue, H.-J., Dai, X., Zhang, J., Huang, S., and Chen, J. Deep
matrix factorization models for recommender systems.
In IJCAI, pp. 3203–3209, 2017.

Yao, Z., Aminabadi, R. Y., Zhang, M., Wu, X., Li, C., and
He, Y. Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. arXiv preprint
arXiv:2206.01861, 2022.

Yu, G.-I., Jeong, J. S., Kim, G.-W., Kim, S., and Chun, B.-G.
Orca: A distributed serving system for {Transformer-
Based} generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
22), pp. 521–538, 2022.

Zandieh, A., Han, I., Daliri, M., and Karbasi, A. Kdeformer:
Accelerating transformers via kernel density estimation.
arXiv preprint arXiv:2302.02451, 2023.

Zhang, L. Speeding up optimizations via data structures:
Faster search, sample and maintenance. Master’s thesis,
Carnegie Mellon University, 2022.

Zhang, M., Wang, W., Liu, X., Gao, J., and He, Y. Navi-
gating with graph representations for fast and scalable
decoding of neural language models. Advances in neural
information processing systems, 31, 2018.

Zhao, R., Hu, Y., Dotzel, J., De Sa, C., and Zhang, Z.
Improving neural network quantization without retraining
using outlier channel splitting. In International conference
on machine learning, pp. 7543–7552. PMLR, 2019.

15

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Contents: In Section A, we present an extended discussion on LLM inference and related works. In Section B, we provide
more observation plots for slowly changing activation and further observation on the possibility of sparsifying LLMs via layer
skipping. In Section C, we provide experiment details. In Section D, we demonstrate implementation details. In Section E,
we provide detailed benchmarks regarding our implementation. In Section F, we define some basic notations and definitions.
In Section G, we define subspace embedding and show the norm preserving. In Section H, we introduce distances, angles, and
inner product. In Section I, we provide the distance between different functions. In Section J, we provide the Near-neighbor
Search data structure. In Section K, we discuss self-attention as a clustering algorithm in depth.

A Related Work
Generative LLM inference. Taking OPT-175B as an example, assume 6 A100 80GB PCIe, based on the hardware
specifications, we compare two main phases of inference time LLM, namely prompting and token generation in Table 1, and
two major components, namely Multi-Head-Attention block and MLP block in Table 2. In practice, the token generation
phase usually dominates the end-to-end test latency due to IO latency. Generating only two tokens is about the same latency as
prompting. Further, during token generation, the MLP block is 2×more expensive in both FLOPs and IO access. The hardware
is often at low utilization because memory reads and writes are more limited on modern hardware than tensor core computation.

Given the rapid development of LLM, there is an emergence of systems that are specialized for LLM inference, such as
Faster Transformer (NVIDIA), Orca (Yu et al., 2022), LightSeq (Wang et al., 2021), PaLM inference (Pope et al., 2022),
TurboTransformers (Fang et al., 2021), and Deepspeed-Inference (Aminabadi et al., 2022). In practice, the token generation
phase usually dominates the end-to-end inference time. Although the state-of-the-art systems introduce some helpful system
optimizations for speedup, there is a lack of careful algorithm and system co-design to unleash the full potential of hardware
efficiency during the LLM inference computation.

Near-neighbor Search for Efficient Deep Neural Networks. Near-neighbor Search is a well-studied problem with wide
applications in recommendation system (Xue et al., 2017; Hall & Attenberg, 2015), question answering (Boytsov et al., 2016;
Seo et al., 2019; Chang et al., 2020) and natural language processing (Bengio et al., 2003; Lee et al., 2016). There has been a
line of work using Near-neighbor Search techniques such as Locality-sensitive hashing (Gionis et al., 1999) and Graph-based
indexing (Malkov et al., 2014) for efficient deep neural network training or inference (Zhang et al., 2018; Chen et al., 2019;
2020a; Kitaev et al., 2020; Chen et al., 2021b;a; Liu et al., 2022).

Quantization, pruning, distillation for LLM inference. Various system relaxations have been studied for decades for
model inference in machine learning. For example, quantization (Han et al., 2015; Jacob et al., 2018; Nagel et al., 2019; Zhao
et al., 2019), pruning (Molchanov et al., 2016; Liu et al., 2018; He et al., 2019; Hoefler et al., 2021), and distillation (Hinton
et al., 2015; Cho & Hariharan, 2019; Tang et al., 2019; Touvron et al., 2021) have been applied to speed up the inference of
the machine learning model. Active research has recently attempted to apply such techniques in LLM inference. For example,
zeroQuant (Yao et al., 2022) and nuQmm (Park et al., 2022) implement customized CUDA kernels to support tenor-wise
or group-wise quantization for LLM inference; LLM.int8 (Dettmers et al., 2022) adopts a mixed INT8/FP16 computation to
diminish the influence of activation outliers; SmoothQuant (Xiao et al., 2022) enables efficient 8-bit weight and activation for
LLM inference; GPTQ (Frantar et al., 2022) adopts a one-shot weight quantization method based on approximate second-order
information for accuracy and efficiency; SparseGPT (Frantar & Alistarh, 2023) introduces an approximate sparse regression
solver to enable the sparsity in LLM inference; (Bansal et al., 2022) has reported that a small set of attention heads can perform
primitive induction operations associated with in-context learning, and use this property to prune LLM for acceleration.

Residual connections in neural networks. Residual connection shows great advantages for neural network generalization,
it provides additional paths for activations to reach the latter parts of the neural network by skipping some layers (He et al.,
2016). The advancement of residual connections can be viewed as ensembles of multiple shallow neural networks (Veit
et al., 2016). Plenty of active research has discussed the effectiveness of residual connections (Balduzzi et al., 2017; Bello
et al., 2021; Allen-Zhu & Li, 2019; Frei et al., 2019). However, as far as we know, there is no former work that leverages
the property of residual connections to improve the efficiency of LLM inference.

B Additional Observation on Slowly Changing Observation
First, we present more plots on the cosine similarity between representations. Figure 9 plots the cosine similarity between
activation across layers on OPT family. It is evident that similarity is high for the larger models.

There are two residual connections inside a transformer layer, one around the attention block, and the other one around the
MLP block. The residual connection can be written asX+F (X), where F is either the Multi-Head Attention or two MLP
Layer. Figure 10 plots the cosine similarity betweenX andX+F (X), which is close to 1.0, and the cosine similarity between

16

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

0 5 10 15 20
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0
Co

sin
e

Si
m

ila
rit

y

n = 1
n = 2
n = 4
n = 8

(a) OPT-1.3B

0 5 10 15 20 25 30
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

n = 1
n = 2
n = 4
n = 8

(b) OPT-6.7B

0 5 10 15 20 25 30 35
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

n = 1
n = 2
n = 4
n = 8

(c) OPT-13B

0 10 20 30 40
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

n = 1
n = 2
n = 4
n = 8

(d) OPT-30B

0 10 20 30 40 50 60
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

n = 1
n = 2
n = 4
n = 8

(e) OPT-66B

0 20 40 60 80
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

n = 1
n = 2
n = 4
n = 8

(f) OPT-175B

Figure 9. Cosine similarity between layer l and layer l+1 for various model.

X and F (X), which is close to 0.0. This happens because ∥X∥ is significantly greater than ∥F (X)∥, shown in the purple.
In the first layer, ∥F (X)∥ is larger, which explains the low cosine similarity. The magnitude of theL2 norm is different across
models, however, we observe a similar trend with models of different sizes. There exists a normalization layer before F (X)
and the layer normalization scale ∥X∥ to a consistent magnitude across layers (e.g. 85 for OPT-30B, 110 for OPT175B),
but not necessarily scale down ∥X∥.

C Additional Experiment Detail
C.1 Large Batch Size

To help understand where the speed-up comes from when batch size is greater than 1, we present the Union Contextual Sparsity
(fraction of neurons/heads that are not used by any of the inputs in the batch) of different batches sizes for MLP and Attention
blocks, respectively, in Figure 11. Union Contextual Sparsity is calculated as 1.0 - the union of activated MLP neurons or
Attention heads in the batch / total neurons or heads. The union operation is essential to realize a fast sparse GEMM.

Surprisingly the number of MLP neurons/Attention heads that DEJAVU activated does not grow linearly with the batch size.
This suggests a power law distribution rather than a uniform distribution of parameter access from all input examples. Further,
a larger batch size can easily lead to out-of-memory for long sequence settings due to the limited GPU memory, the giant
large model size, and the stored KV cache. For example, the total GPU memory of 8 80GB A100 is 640GB. Model parameters
are around 350GB for OPT175B. The KV cache for a batch size 32 with a sequence longer than 1920 tokens has already
filled up the GPU memory.

C.2 Near Neighbor classifier

In the DEJAVU framework, any near-neighbor search method under the inner product metric would be sufficient to predict
a sparsity pattern. "Training predictor" is to reduce the cost of on-the-fly prediction, rather than training the model itself.

17

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Residual At Attention

Cos(X, X+F(X))
Cos(X, F(X))

0 5 10 15 20
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Residual At MLP

Cos(X, X+F(X))
Cos(X, F(X))

0

20

40

60

80

100

120

No
rm

	X	
	F(X)	
	LN(X)	

0

20

40

60

80

100

120

L2
 N

or
m

	X	
	F(X)	
	LN(X)	

(a) OPT-1.3b

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
sin

e
Si

m
ila

rit
y

Residual At Attention

Cos(X, X+F(X))
Cos(X, F(X))

0 5 10 15 20 25 30
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Residual At MLP

Cos(X, X+F(X))
Cos(X, F(X))

0

50

100

150

200

250

No
rm

	X	
	F(X)	
	LN(X)	

0

50

100

150

200

250

L2
 N

or
m

	X	
	F(X)	
	LN(X)	

(b) OPT-6.7b

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Residual At Attention

Cos(X, X+F(X))
Cos(X, F(X))

0 10 20 30 40
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Residual At MLP

Cos(X, X+F(X))
Cos(X, F(X))

0

50

100

150

200

No
rm

	X	
	F(X)	
	LN(X)	

0

50

100

150

200

L2
 N

or
m

	X	
	F(X)	
	LN(X)	

(c) OPT-13B

0.00

0.25

0.50

0.75

1.00

Co
sin

e
Si

m
ila

rit
y

Residual At Attention

Cos(X, X+F(X))
Cos(X, F(X))

0 10 20 30 40
Transformer Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Residual At MLP

Cos(X, X+F(X))
Cos(X, F(X))

0

100

200

300

No
rm

	X	
	F(X)	
	LN(X)	

0

100

200

300

L2
 N

or
m

	X	
	F(X)	
	LN(X)	

(d) OPT-30B

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e
Si

m
ila

rit
y

Residual At Attention

Cos(X, X+F(X))
Cos(X, F(X))

0 10 20 30 40 50 60
Transformer Layer

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Residual At MLP

Cos(X, X+F(X))
Cos(X, F(X))

0

100

200

300

400

No
rm

	X	
	F(X)	
	LN(X)	

0

100

200

300

400

L2
 N

or
m

	X	
	F(X)	
	LN(X)	

(e) OPT-66B

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e
Si

m
ila

rit
y

Residual At Attention

Cos(X, X+F(X))
Cos(X, F(X))

0 20 40 60 80
Transformer Layer

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e
Si

m
ila

rit
y

Residual At MLP

Cos(X, X+F(X))
Cos(X, F(X))

0

500

1000

1500

2000

No
rm

	X	
	F(X)	
	LN(X)	

0

500

1000

1500

2000

2500

L2
 N

or
m

	X	
	F(X)	
	LN(X)	

(f) OPT-175B

Figure 10. Cosine similarity between X and F (X), and the cosine similarity between X and X ′ in orange color. L2 norm of X and F (X)
and X after layer normalization in purple on the right. Except on the first layer, ∥X∥ is significantly higher than ∥F (X)∥. ∥F (X)∥ is
higher at the first layer, which corresponds to the low cosine similarity at the first layer.

For example, in our exploration stage mentioned in Section 4.1, we adopt HNSW, a state-of-art near-neighbor search method,
to predict MLP sparse pattern, and we can see from the following table there is no drop in the perplexity at 90 % sparsity
ratio. However, due to the high dimensionality of embedding and HNSW’s reliance on CPU, the time HNSW took to identify
the sparsity pattern is 10ms, which is longer than the MLP computation.

In our paper, we choose a neural network classifier as our near neighbor search method to take advantage of the fast matrix
multiplication on GPU. And training such classifiers to predict sparsity patterns is not only cheaper in terms of training cost
but also inherently different from the method concept.

18

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

0 20 40 60 80 96
Transformer Layer

0.5

0.6

0.7

0.8

0.9

1.0

Un
io

n
Co

nt
ex

tu
al

 S
pa

rs
ity

Batch size
2
4
8
16
32

(a) MLP

0 20 40 60 80 96
Transformer Layer

0.4

0.5

0.6

0.7

0.8

0.9

Un
io

n
Co

nt
ex

tu
al

 S
pa

rs
ity

Batch size
2
4
8
16
32

(b) Attention

Figure 11. Union contextual sparsity with larger batch size.

OPT-1.3B OPT-1.3B + HNSW
Hellaswag 0.4154 0.4314

C4 14.2 14.4

Table 8. Sparsify from the Depth: Skipping or parallel entire transformer blocks may not lead to catastrophic drop in accuracy at test time.
Model COPA Hellaswag Lambada OpenBookQA PIQA Winogrande
OPT-175B 0.8600 0.7814 0.7584 0.4460 0.8096 0.7261
- Parallel 2 0.8300 0.7737 0.7762 0.4520 0.8030 0.7096
- Parallel 4 0.5200 0.2519 0 0.2720 0.5092 0.4870
- Skip 2/8 0.8000 0.7112 0.6387 0.4220 0.7840 0.6630
- Skip 2/4 0.6900 0.4409 0.0240 0.3400 0.6882 0.5383

Bloom 0.8000 0.7460 0.6771 0.4480 0.7949 0.7040
- Parallel 2 0.8100 0.7404 0.6992 0.4360 0.7813 0.7048
- Parallel 4 0.6200 0.3176 0.1325 0.2720 0.5593 0.5217
- Skip 2/8 0.7900 0.6829 0.5936 0.4120 0.7699 0.6614
- Skip 2/4 0.6600 0.5538 0.3023 0.3580 0.7046 0.5549

C.3 Future Possibility: Skipping Layer

Deja Vu currently sparsifies from the perspective of model width. Here, we explore the possibility of sparsification from
model depth. As observed in Section 3, we show that the activation of large language models changes slowly across blocks.
This property can be leveraged to increase the efficiency of a trained model by parallelizing, reordering, or skipping certain
intermediate sub-blocks without significantly impacting the overall accuracy.

Setting Wiki(ppl) C4(ppl)

Baseline 11.57 10.17
Skip every 2 layers 21.16 16.58
Skip every 4 layers 13.45 11.37

Improving the inference efficiency of Transformer models is a challenging task due to their sequential execution of
Transformer layers. Each sub-block depends on the output of the previous one, leading to low hardware efficiency, particularly
during the token generation phase where each forward pass is computed for only one token. However, the sequential execution
of blocks and sub-blocks yields computation bubbles, and the latter involves a large amount of communication overhead.
Here, we present an interesting observation that can potentially alleviate these challenges. We found that the activation of
the model changes slowly across blocks. Specifically, the cosine similarity of activations between adjacent blocks is often
above 0.99. This suggests that the blocks might take the previous activation as input – parallelize or reorder the blocks –
without significantly affecting the output. Slowly changing activations suggest that it may be possible to parallelize, reorder,
or even skip blocks while maintaining a similar output. Some existing models, such as GPT-J (Wang & Komatsuzaki, 2021),
GPT-NeoX (Black et al., 2022), and PaLM (Chowdhery et al., 2022) already placed the Attention block and MLP block

19

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

in parallel in training to facilitate parallel computation and reduce the communication overhead.

Here we investigate the possibility at inference time. And surprisingly, we found parallelizing those blocks for models that
are trained in a sequence manner will not hurt the performance of downstream tasks significantly. And surprisingly, we found
parallelizing those blocks for models that are trained in a sequence manner will not hurt the performance of downstream
tasks significantly. TableC.3 presents some preliminary results of OPT-175B and Bloom

Given the activation y and Transformer layer l, we have:
ỹl←yl+MHAl(yl)

ŷl← ỹl+MLPl(ỹl)
Parallelizing two blocks refers to placing the Attention and MLP blocks in parallel, i.e.:

ŷl←y+MHAl(yl)+MLPl(yl)
Parallelizing four blocks then parallelize the blocks of two Transformer layers, defined as follows:

ŷl+1←yl+MHAl(yl)+MLPl(yl)+MHAl+1(yl)+MLPl+1(yl)
Skipping layers is straightforward, which drops an entire Transformer layer for every n layers.

We are surprised to find that parallel two layers preserve accuracy on a series of tasks across models. Besides, randomly
skipping 25% layers doesn’t lead to catastrophic quality. Our findings suggest from the downstream task perspective, the
activation patterns within the model are relatively consistent across different blocks, providing a potential avenue for future
research on model compression and optimization.

D Implementation Details
Figure 12 presents a more detailed workflow of DEJAVU. The left diagram shows how an input y performs the sparse MHA
with selected indices 0,3, predicted by the head predictor. Similarly, the right diagram shows how an input y performs the
sparse MLP with selected indices 0,2, predicted by the neuron predictor of that layer.

Selected Head Index
!! = {0,3}

Attention with ""!
,""!

$,""!
%

$

%&($)

""!
' 	Output Projection

)%*"!($)

%(($)

"""
) 	

!*= {0,2}$

σ($"""
+)

"""
+

MLP""($)

Selected Neurons Index

Sparsified Attention Sparsified MLP

Figure 12. Detailed diagram on the sparsified computation process of MLP and Attention. Notation refers to Section 2.3

Next, we will present a general explanation of two optimizations we used in DEJAVU implementation. Kernel fusion: A
standard implementation of sparse matrix-vector multiply (e.g., Wx in PyTorch) that separately indexes a subset of the
matrixW [idx,:] before multiplying with input xwould incur 3× the amount of memory IOs: one to load a subset ofW from
GPU memory, one to write that subset to a different contiguous region in memory, and one to load that (now contiguous)
subset in again to multiply with x. Similarly, to use sparse matrix multiply routines (e.g., cuSparse), we would first need
to convertW [idx,:] to sparse format, again incurring more memory IOs. We instead fuse the indexing and the multiplication
step: we load a subset of W [idx,:] to memory, along with x, perform the multiply, then write down the result. This fused
implementation (in Triton (Tillet et al., 2019)) yields up to 4× speedup compared to a standard PyTorch implementation
(Section E). Memory coalescing: the weight matrices are conventionally stored in row-major format. This allows us to load

20

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

W [idx,:] optimally (as the second dimension is contiguous in memory). However, for cases where we need to loadW [:,idx]
(attention output projection and the 2nd weight matrix in the MLP) this format significantly slows down memory loading,
as idx could contain indices pointing to non-contiguous memory. A simple solution is to store these matrices in column-major
format (i.e., storingW⊤ in contiguous row-major format), then use the same fused kernel above. This transposition is done
once when loading the model, and incurs no added cost during generation.

E Benchmarking Sparse MLP and Sparse Attention

0.2 0.4 0.6 0.8
MLP density

100

200

300

400

Ti
m

e
(u

s)

Sparse MLP benchmark

Dense MLP
Sparse MLP baseline (PyTorch)
Sparse MLP - Deja vu

Figure 13. Speed benchmarking of the MLP layer of OPT-175B on 8xA100s. Our sparse implementation is up to 4.5× faster than the
baseline implementation in PyTorch. Our sparse MLP implementation remains faster than dense MLP for density up to 0.8.

We validate that our hardware-aware implementation of sparse MLP and sparse attention (Section 4.4) yields wall-clock
speed up compared to both dense MLP/attention and compared to the standard implementation in PyTorch.

Recall that our implementation fuses the sparse indexing and the multiplication (W 1
SM

)⊤y for weight matrices (W 1)⊤ and
input vector y. In cases where we need to indexW 2

SM
, we store the transpose ofW 2 to ensure memory coalescing. For the

baseline implementation in PyTorch, we index (W 1
SM

)⊤ as a separate operation before multiplying with y, which incurs
more memory reads/writes.

Similarly, we fuse the sparse indexing and the multiplication (WQ
SA

)⊤y, (WK
SA

)⊤y, (WV
SA

)⊤y for weight matrices (WQ)⊤,
(WK)⊤, (WV)⊤ and input vector y. Note we usually concatenate all three matrices in the standard implementation, but we sep-
arate them here for clarity. In cases where we need to indexWO

SA
, we store the transpose ofWO to ensure memory coalescing.

In Figure 13 and Figure 14, our sparse MLP and attention implementations are 4-5× faster than the baseline implementation
in Pytorch, and remains faster than the dense version for density up to 0.8.

F Notations and Basic Definitions
For a positive integer n, let [n] :={1,2,···,n}. For a matrixA∈Rn×n, letAi,: andA:,j be two column vectors corresponding
to the i-th row and the j-th column ofA respectively, andAi,j be the entry at the i-th row and the j-th column. For a vector
x∈Rn, let

√
x∈Rn denote the vector with the i-th entry being

√
xi and diag(x)∈Rn×n denote the diagonal matrix with

the i-th diagonal entry being xi. For two matricesA,W ∈Rn×n, let ∥A∥W :=(
∑n
i=1

∑n
j=1Wi,jA

2
i,j)

1/2 andW ◦A denote
the matrix where (W ◦A)i,j=Wi,jAi,j . For matrixW ∈Rn×n, letDWi :=diag(Wi,:) with i∈ [n].
For two vectors x∈Rn and w∈Rn≥0, let ∥x∥w := (

∑n
i=1wix

2
i)

1/2. For a vector x, we denote ∥x∥2 := (
∑n
i=1x

2
i)

1/2 as its

21

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

0.2 0.4 0.6 0.8
Attention density

100

200

300
Ti

m
e

(u
s)

Sparse attention benchmark

Dense attention
Sparse attention baseline (PyTorch)
Sparse attention - Deja vu

Figure 14. Speed benchmarking of the attention layer of OPT-175B on 8xA100s. Our sparse implementation is up to 5× faster than the
baseline implementation in PyTorch. Our sparse attention implementation remains faster than dense MLP for density up to 0.8.

ℓ2 norm. We denote ∥x∥p :=(
∑n
i=1|xi|p)1/p as its ℓp norm. For a square matrixA, we denote tr[A] as the trace of matrixA.

For a matrixA∈Rn×k (suppose n≥k), we use ∥A∥ to denote its spectral norm, i.e., ∥A∥=supx∥Ax∥2/∥x∥2. We use ∥A∥F
to denote its Frobenius norm ∥A∥F :=(

∑n
i=1

∑k
j=1A

2
i,j)

1/2.

Suppose matrix A ∈ Rn×k has SVD decomposition UΣV ⊤ where U ∈ Rn×k (this matrix has orthonormal columns),
Σ∈Rk×k is a diagonal matrix, and V ∈Rk×k. We call columns ofU are singular vectors. We useA†∈Rk×n to denote the
Moore-Penrose pseudoinverse, thenA†=V Σ−1U⊤. Suppose Σ∈Rk×k is sorted diagonal matrix, let σ1,···,σk denote the
diagonal entries of Σ. Then we call σi the i-th singular value of matrix, and we write it as σi(A).

For any symmetric matrixB∈Rk×k, we define its eigenvalue decomposition asUΛU⊤, where Λ is a diagonal matrix. Let
λ1,···,λk denote the entries on diagonal of Λ∈Rk×k. We say λi is the i-th eigenvalue. Usually we write it as λi(B).

The connection between eigenvalues and singular values is

σ2
i (A)=λi(A

⊤A)

We use notationA⪰ 0 to denote that matrixA is positive semidefinite (psd). Mathematically, A⪰ 0 means for all vectors
x, we have x⊤Ax≥0.

Similarly, for two squarer matricesA andB, we useA⪰B to denote the case where for all vectors x, x⊤Ax≥x⊤Bx.

We use Pr[] and E[] for probability and expectation. We denote max{a,b} as the maximum between a and b. We denote
min{a,b} (resp. max{a,b}) as the minimum (reps. maximum) between a and b.

Throughout, for non-negative real numbers a and b, we use the notation a=(1±ϵ)b if a∈ [(1−ϵ)b,(1+ϵ)b].

G Subspace Embeddings and Norm Preserving
In Section G.1, we show the norm preserving of the soft-max functions. In Section G.2, we show the norm preserving of the
ReLU function. In Section G.3, we introduce the folded Guassian distribution. In Section G.4, we introduce the ℓ2 subspace
embedding. In Section G.5, we introduce the ℓ1 subspace embedding. In Section G.6, we introduce different sketching
matrices for subspace embedding.

22

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

G.1 Soft-Max Functions

LetK ∈Rs×d and V ∈Rd×s. Inspired by the softmax unit in the attention scheme of large language models. The softmax
related regression has been studied in many settings (Zandieh et al., 2023; Alman & Song, 2023; Brand et al., 2023; Li et al.,
2023b; Deng et al., 2023b;a; Gao et al., 2023a; Li et al., 2023a; Gao et al., 2023b). In this work, we follow the standard
softmax definition. We define σ1 :Rs→Rs to be a softmax function, i.e., for any vector y∈Rs, the σ(y) can be written as

σ1(y)i=
exp(yi)∑d
j=1exp(yj)

, ∀i∈ [d]

The standard softmax is ℓ1 version. In this work, we also consider the ℓ2 generalization. We define σ2 :Rs→Rs to be a
softmax function (ℓ2 version), i.e., for any vector y∈Rs, the σ(y) can be written as

σ2(y)i=
exp(yi)

(
∑d
j=1exp(2yj))

1/2
, ∀i∈ [d]

We define function f :Rd→Rd

f(x)=V ·(σ(K ·x)) (3)

Definition G.1. We say X ⊂Rd is a rank-k subspace, if there is an orthonormal basis U ∈Rd×k, for any x∈X , there is
y∈Rk such that

x=Uy.

We can have

Lemma G.2. Let τ ∈ (0,1). Let X ⊂Rd denote a subspace with rank k. Let f be defined based on σ2 function. Let V is
a random Gaussian matrices with d≥Ω(ϵ−2(k+log(1/δ))) rows. Let V =τV , then we have with probability 1−δ

(1−ϵ)τ∥x∥2≤∥f(x)∥≤(1+ϵ)τ∥x∥2.
for all unit vectors x∈X .

Further, if d=O(k+log(1/δ)), then we have
0.5τ∥x∥2≤∥f(x)∥≤2τ∥x∥2.

Remark G.3. The above condition implies that f is a shrinking operator but also not shrinking arbitrarily small.

Proof. Given d≥Ω(ϵ−2(k+log(1/δ))), by using Lemma G.11 , we have
(1−ϵ)∥y∥2≤∥V y∥2≤(1+ϵ)∥y∥2

As the input of the function f here is the output of a softmax function (ℓ2 version), we know that ∥y∥2=1.

Thus, we have
(1−ϵ)≤∥V y∥2≤(1+ϵ)

By rescaling V , we have
(1−ϵ)∥x∥2≤∥V y∥2≤(1+ϵ)∥x∥2.

Lemma G.4. Let τ ∈ (0,1). Let X ⊂Rd denote a subspace with rank k. Let f be defined based on σ1 function. Suppose
V is a random Gaussian matrix with d≥Ω((k+log(1/δ))) rows. Let V = 1

2τV .

Then we have
1

4
√
s
τ ·∥x∥2≤∥f(x)∥2≤τ ·∥x∥2

for all unit vectors x.

Proof. By property of subspace embedding, we know that if d≥Ω(ϵ−2(s+log(1/δ))),
(1−ϵ)∥y∥2≤∥V y∥2≤(1+ϵ)∥y∥2

By property of function of f , we know we only need to care ∥y∥1=1, this implies that
1√
s
∥y∥1≤∥y∥2≤∥y∥1

23

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

On one hand, we have
∥V y∥2≤ (1+ϵ)·∥y∥2

≤ (1+ϵ)·∥y∥1
= (1+ϵ), (4)

where the first step follows from ∥V y∥2≤ (1+ϵ)∥y∥2, the second step follows from ∥y∥2≤∥y∥1 and the last step follows
from ∥y∥1=1.

On the other hand, we have
∥V y∥2≥ (1−ϵ)∥y∥2

≥ 1√
s
(1−ϵ)∥y∥1

=
1√
s
(1−ϵ), (5)

where the first step follows from (1−ϵ)∥y∥2≤∥V y∥2, the second step follows from 1√
s
∥y∥1≤∥y∥2 and the last step follows

from ∥y∥1=1.

Combining Eq. (5)and Eq. (4) together, we have

(1−ϵ) 1√
s
≤∥V y∥2≤(1+ϵ)

Choosing ϵ=1/2, we have
1

2
√
s
≤∥V y∥2≤2.

By V = 1
2τV and ∥x∥2=1, we have

1

4
√
s
τ∥x∥2≤∥V y∥2≤τ∥x∥2.

G.2 ReLU Functions

We use ϕ :R→R to denote ReLU function, i.e., ϕ(z)=max{z,0}.
We define function g :Rd→Rd

g(x)=V ·(ϕ(K ·x)) (6)

LetK∈Rs×d and V ∈Rd×s.
Lemma G.5. Let X ⊂Rd denote a rank-k subspace. Let K denote a random Gaussian matrix. Let V denote a random
Gaussian matrix. Let s≥Ω(ϵ−2klog(1/(δϵ))). Let d≥Ω(ϵ−2(k+log(1/δ))). Then we know with high probability 1−δ,
for all unit vector x∈X

(1−ϵ)∥x∥2≤∥f(x)∥2≤(1+ϵ)∥x∥2

Proof. Suppose s≥Ω(ϵ−2log(1/δ)).

Using Lemma G.6, Fact G.7, we can show that for each fixed
(1−ϵ)∥x∥2≤∥ϕ(Kx)∥2≤(1+ϵ)∥x∥2

holds with probability 1−δ.

By a standard ϵ-net argument (Lemma G.9), the net points inX is at most (10/ϵ)O(k).

Taking a union bound over all the net points, we can show that for all x∈X
(1−ϵ)∥x∥2≤∥ϕ(Kx)∥2≤(1+ϵ)∥x∥2

holds with probability 1−δ/2 and s≥Ω(ϵ−2klog(1/(δϵ))).

Further, we using Lemma G.11, we can show that
(1−ϵ)∥ϕ(Kx)∥2≤∥f(x)∥2≤(1+ϵ)∥ϕ(Kx)∥2

holds with probability 1−δ/2.

Combining together,
(1−ϵ)2∥x∥2≤∥f(x)∥2≤(1+ϵ)2∥x∥2

24

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

holds with probability 1−δ.

Rescaling the ϵ, we complete the proof.

G.3 Folded Gaussian Distribution

We state a standard tool from literature,

Lemma G.6 (Lemma 1 on page 1325 of Laurent and Massart (Laurent & Massart, 2000)). LetX ∼X 2
k be a chi-squared

distributed random variable with k degrees of freedom. Each one has zero means and σ2 variance.

Then,
Pr[X−kσ2≥(2

√
kt+2t)σ2]≤ exp(−t)

Pr[kσ2−X≥2
√
ktσ2]≤ exp(−t)

Further if k≥Ω(ϵ−2t) and t≥Ω(log(1/δ)), then we have
Pr[|X−kσ2|≤ϵkσ2]≤δ.

We prove the following property,

Fact G.7. Let h,q ∈Rp be fixed vectors and h ̸=0,W ∈Rm×p be random matrix with i.i.d. entries Wi,j ∼N (0, 2m), and
vector v∈Rm defined as vi=ϕ((Wh)i)=1(W (h+q))i≥0(Wh)i. Then,

• |vi| follows i.i.d. from the following distribution: with half probability |vi|=0, and with the other half probability |vi|
follows from folded Gaussian distributions |N (0, 2∥h∥

2

m)|.

• m∥v∥2

2∥h∥2 is in distribution identical to χ2
ω (chi-square distribution of order ω) where ω follows from binomial distribution

B(m,1/2).

Proof. We assume each vectorWi is generated by first generating a gaussian vector g∼N (0, 2Im) and then settingWi=±g
where the sign is chosen with half-half probability. Now, |⟨Wi,h⟩|= |⟨g,h⟩| only depends on g, and is in distribution identical
to |N (0, 2∥h∥

2

m)|. Next, after the sign is determined, the indicator 1⟨Wi,h+q⟩≥0 is 1 with half probability and 0 with another
half. Therefore, |vi| satisfies the aforementioned distribution. As for ∥v∥2, letting ω∈{0,1,...,m} be the variable indicator
how many indicators are 1 , then ω∼B(m,1/2) and m∥v∥2

2∥h∥2 ∼χ2
ω .

G.4 ℓ2 subspace embedding

We define a standard notion in sketching technique.3

Definition G.8 (ℓ2 subspace embedding (Sarlos, 2006)). A (ϵ,δ,ℓ2)-subspace embedding for the column space of an n×d
matrixA is a matrix S for which

Pr[∀x∈Rd,∥SAx∥22=(1±ϵ)∥Ax∥22]≥1−δ.
The above condition is equivalent to

Pr[∥U⊤U−U⊤S⊤SU∥≤ϵ]≥1−δ.
where theU is the orthonormal basis ofA.

For the reason of above conditions are equivalent, we refer the readers to the survey (Woodruff, 2014).

We state a standard tool in literature,

Lemma G.9 (Lemma 5 in (Woodruff, 2014)). LetX ⊂Rd be rank k. For any γ∈ (0,1), there is a γ-netN ofX for which
|N |≤(1+4/γ)k.

3We remark that sketching technique has widely applied to many applications such as linear regression, low-rank approximation (Clarkson
& Woodruff, 2013; Nelson & Nguyên, 2013; Lu et al., 2013; Boutsidis et al., 2016; Cohen, 2016; Razenshteyn et al., 2016; Song et al., 2017;
2019), linear programming (Song & Yu, 2021; Dong et al., 2021; Jiang et al., 2021; Gu & Song, 2022), semi-definite programming (Gu &
Song, 2022; Song et al., 2023b), empirical risk minimization(Lee et al., 2019; Qin et al., 2023b), training over-parameterized neural network
(Brand et al., 2021; Song et al., 2021; Alman et al., 2022; Hu et al., 2022; Zhang, 2022).

25

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

G.5 ℓ1 subspace embedding

When p=1, using Cauchy random variables, Sohler and Woodruff (Sohler & Woodruff, 2011) showed there exist ℓ1 oblivious
subspace embeddings with O(dlogd) rows and κ=O(dlogd). This approach was generalized by using p-stable random
variables in work of Meng and Mahoney (Meng & Mahoney, 2013) to ℓp-norms when 1<p<2, where they showed there
exist ℓp oblivious subspace embeddings with O(dlogd) rows and κ=O((dlogd)1/p). Unlike the case when p=2, due to
the large distortion

In (Wang & Woodruff, 2018), they show for every 1≤p<2, any oblivious subspace embedding with dimension r has distortion
κ=Ω(1

(1
d)

1/p·log2/pr+(r
n)1/p−1/2). They also give sparse oblivious subspace embeddings for every 1≤p<2which are optimal

in dimension and distortion, up to poly (logd) factors. Importantly for p=1, they achieve r=O(dlogd),κ=O(dlogd) and
s=O(logd) non-zero entries per column.

Definition G.10 (ℓ1 subspace embedding). Let 0<α<β be parameters. We will say a matrix S is an ℓ1 subspace embedding
for an n×dmatrixA if there are constants c1,c2>0 so that for all x∈Rd,

∥Ax∥≤∥SAx∥1≤dc1∥Ax∥1,
and S has at most dc2 rows.

G.6 Random Matrices

Matrices b Time forR·A Reference
Random Gaussian ϵ−2(d+log(1/δ)) Tmat(b,n,d) Thm. 6 of (Woodruff, 2014)

SRHT ϵ−2(
√
d+
√
logn)2log(d/δ) ndlog(ϵ−1d(logn)) Thm. 7 of (Woodruff, 2014)

AMS ϵ−2(d+log(1/δ)) Tmat(b,n,d) Follow from JL guarantee
Count-sketch ϵ−2δ−1d2 nnz(A) Thm. 9 of (Woodruff, 2014)

Sparse embedding ϵ−2d· poly log(d/(ϵδ)) ϵ−1nnz(A) poly log(d/(ϵδ)) Thm. 10 (2) of (Woodruff, 2014)
Sparse embedding ϵ−2d1+γ ϵ−1nnz(A)poly(1/γ) Thm. 10 (1) of (Woodruff, 2014)

Table 9. Summary for different sketching matrices for subspace embedding. The sketching matrix R has size b×n. The vectors are from the
column subspace of matrix A with size n×d.ϵ∈(0,1) is the error parameter, and δ∈(0,1) is the probability parameter. Tmat (a,b,c) denotes
the running time of fast matrix multiplication of two matrices with size a×b and b×c. In the first sparse embedding matrix, each column has
s≥ϵ−1 poly log(d/(ϵδ)) non-zero entries; In the second sparse embedding matrix, each column has s≥ϵ−1 poly (1/γ) non-zero entries,
γ>0 is a tunable parameter that gives different trade-offs, and δ can be as small as 1/ poly (d). For count-sketch matrices, the subspace
embedding guarantee is proved from JL moment property, instead of directly from JL guarantee.

Lemma G.11 (Theorem 6 of (Woodruff, 2014)). Let 0< ϵ,δ < 1 and S = 1√
k
R ∈Rk×n where the entries Ri,j of R are

independent standard normal random variables. Then if k=Θ(ϵ−2(d+log(1/δ))), then for any fixed n×dmatrixA, with
probability 1−δ,S is a (1±ϵ)ℓ2-subspace embedding forA, that is, simultaneously for all x∈Rd,∥SAx∥2=(1±ϵ)∥Ax∥2.
HereC>0 is an absolute constant.

We consider several standard sketching matrices:

1. Random Gaussian matrices.

2. Subsampled randomized Hadamard/Fourier transform (SRHT) matrices (Lu et al., 2013).

3. AMS sketch matrices (Alon et al., 1996), random {−1,+1} per entry.

4. Count-Sketch matrices (Charikar et al., 2002), each column only has one non-zero entry, and is−1,+1 half probability
each.

5. Sparse embedding matrices (Nelson & Nguyên, 2013), each column only has s non-zero entries, and each entry is
− 1√

s
,+ 1√

s
half probability each.

6. Uniform sampling matrices.

Definition G.12 (Random Gaussian matrix). We sayR∈Rb×n is a random Gaussian matrix if all entries are sampled from
N (0,1/b) independently.

26

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Definition G.13 (Subsampled randomized Hadamard/Fourier transform matrix (Lu et al., 2013)). We say R∈Rb×n is a
subsampled randomized Hadamard transform (SRHT) matrix 4 if it is of the formR=

√
n/bSHD, whereS∈Rb×n is a random

matrix whose rows are b uniform samples (without replacement) from the standard basis of Rn,H∈Rn×n is a normalized
Walsh-Hadamard matrix, andD∈Rn×n is a diagonal matrix whose diagonal elements are i.i.d. Rademacher random variables.

Definition G.14 (AMS sketch matrix (Alon et al., 1996)). Let h1,h2,···,hb be b random hash functions picking from a 4-wise
independent hash familyH={h : [n]→{− 1√

b
,+ 1√

b
}}. ThenR∈Rb×n is a AMS sketch matrix if we setRi,j=hi(j)

Definition G.15 (Count-sketch matrix (Charikar et al., 2002)). Let h : [n]→ [b] be a random 2-wise independent hash function
and σ : [n]→{−1,+1} be a random 4-wise independent hash function. Then R∈Rb×n is a count-sketch matrix if we set
Rh(i),i=σ(i) for all i∈ [n] and other entries to zero.

Definition G.16 (Sparse embedding matrix I (Nelson & Nguyên, 2013)). We sayR∈Rb×n is a sparse embedding matrix
with parameter s if each column has exactly s non-zero elements being±1/

√
s uniformly at random, whose locations are

picked uniformly at random without replacement (and independent across columns) 5.

Definition G.17 (Sparse embedding matrix II (Nelson & Nguyên, 2013)). Let h : [n]× [s]→ [b/s] be a random 2-wise
independent hash function and σ : [n]×[s]→{−1,1} be a 4-wise independent. ThenR∈Rb×n is a sparse embedding matrix
II with parameter s if we setR(j−1)b/s+h(i,j),i=σ(i,j)/

√
s for all (i,j)∈ [n]×[s] and all other entries to zero 6.

Definition G.18 (Uniform sampling matrix). We sayR∈Rb×n is a uniform sampling matrix if it is of the formR=
√
n/bSD,

where S ∈Rb×n is a random matrix whose rows are b uniform samples (without replacement) from the standard basis of
Rn, andD∈Rn×n is a diagonal matrix whose diagonal elements are i.i.d. Rademacher random variables.

H Distances, Angles, and Inner Product
Most of the properties in this section are very standard in literature, e.g., see (Gu et al., 2023).

LetU ∈Rn×k denote an orthonormal basis, we useU⊥∈Rn×(n−k) denote the matrix such thatUU⊤+U⊥U
⊤
⊥ =In.

Definition H.1. LetX∈Rn×k and Y ∈Rn×k.

For any matrixX , and for orthogonal matrix Y (Y ⊤Y =Ik) we define

• tanθ(Y,X) :=∥Y ⊤
⊥ X(Y ⊤X)−1∥

For orthogonal matrices Y andX (Y ⊤Y =Ik andX⊤X=Ik), we define

• cosθ(Y,X) :=σmin(Y
⊤X).

– It is obvious that cos(Y,X)=1/∥(Y ⊤X)−1∥ and cos(Y,X)≤1.

• sinθ(Y,X) :=∥(I−Y Y ⊤)X∥.

– It is obvious that sinθ(Y,X)=∥Y⊥Y ⊤
⊥ X∥=∥Y ⊤

⊥ X∥ and sinθ(Y,X)≤1.

• dist(Y,X) :=minQ∈Ok
∥Y Q−X∥

whereOk is the set of k×k orthogonal matrices.

Lemma H.2 (Structural lemma for orthogonal matrices). LetX,Y ∈Rn×k be orthogonal matrices. Then
(Y ⊤X)⊥= Y ⊤

⊥ X.

Proof. Let us first compute the Gram of Y ⊤X , which is
X⊤Y Y ⊤X=X⊤(I−Y⊥Y ⊤

⊥)X

=X⊤X−X⊤Y⊥Y
⊤
⊥ X

= Ik−X⊤Y⊥Y
⊤
⊥ X,

4In this case, we require logn o be an integer.
5For our purposes the signs need only be O(logd)-wise independent, and each column can be specified by a O(logd)-wise independent

permutation, and the seeds specifying the permutations in different columns need only be O(logd)-wise independent.
6This definition has the same behavior as sparse embedding matrix I for our purpose

27

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

where the first step follows from Y⊥Y
⊤
⊥ +Y Y ⊤=I , the second step follows from simple algebra, and the last step follows

fromX is an orthogonal matrix, soX⊤=X−1.

This means that (Y ⊤X)⊥=Y ⊤
⊥ X .

Lemma H.3 (Orthogonal and inverse share singular vectors). Let A∈Rk×k be non-singular, then A⊥ and A−1 have the
same set of singular vectors. Consequently, ∥A⊥A

−1∥=∥A⊥∥∥A−1∥.

Proof. Let A ∈ Rk×k and A⊤A+A⊤
⊥A⊥ = Ik, we will show that ∥A⊥A

−1∥ = ∥A⊥∥∥A−1∥. Let x ∈ Rk be the unit
eigenvector ofA that realizes the spectral norm, note that

∥A⊥x∥22= 1−∥A∥2,
we argue that x corresponds to the smallest singular value ofA⊥ via contradiction. Suppose there exists some unit vector
y with ∥A⊥y∥2 < ∥A⊥x∥2, by definition, we know that ∥A⊥y∥22+ ∥Ay∥22 = 1, this means that ∥Ay∥2 > ∥Ax∥2 = ∥A∥,
contradicts the definition of spectral norm. Similarly, if z is the unit vector that realizes the spectral norm ofA⊥, then it is
also singular vector corresponds to the smallest singular value ofA, or equivalently, the spectral norm ofA−1. Our above
argument essentially implies that A⊥ and A−1 have the same set of singular vectors. The proof is then straightforward:
supposeA⊥z=λz andA−1z=µz, then

A⊥A
−1z=A⊥µz

= µ(A⊥z)

= λµz,
where the first step follows from our assumption, the second step follows fromµ is a real number and a real number multiplying
a matrix is commutative and follows from the associative property, and the third step follows from our assumption.

Thus, we have ∥A⊥A
−1∥=∥A⊥∥∥A−1∥, and we have proved the assertion.

Lemma H.4. LetX,Y ∈Rn×k be orthogonal matrices, then

tanθ(Y,X)=
sinθ(Y,X)

cosθ(Y,X)
.

Proof. Due to Lemma H.2, we have (Y ⊤X)⊥=Y ⊤
⊥ X . Thus, tanθ(Y,X)=∥(Y ⊤X)⊥(Y

⊤X)−1∥. The proof then follows
straightforwardly from Lemma H.3.

Lemma H.5. LetX,Y ∈Rn×k be orthogonal matrices, then sin2θ(Y,X)+cos2θ(Y,X)=1.

Proof. Recall that cosθ(Y,X)= 1
∥(Y ⊤X)−1∥ and sinθ(Y,X)= ∥Y ⊤

⊥ X∥, by Lemma H.2, we know that (Y ⊤X)⊥ =Y ⊤
⊥ X ,

therefore sinθ(Y,X) = ∥(Y ⊤X)⊥∥. Let A := Y ⊤X , by Lemma H.3, we know that A⊥ and A−1 have the same singular
vectors, or equivalently, the singular vector realizing ∥A⊥∥ corresponds to the smallest singular value ofA. Let z∈Rk be
the unit singular vector with singular value ∥A⊥∥, then

z⊤A⊤Az+z⊤A⊤
⊥A⊥z= 1,

∥A⊥∥2+σ2
min(A)= 1,

cos2θ(Y,X)+sin2θ(Y,X)= 1.
This completes the proof.

H.1 Angle is close

Lemma H.6. Let ϵ∈(0,0.1) Let x denote a unit vector, i.e., ∥x∥2=1.

Let z=(x+y)/∥x+y∥2.

If ∥y∥2≤ϵ·∥x∥2, then √
1−⟨x,z⟩2≤2

√
ϵ

Proof. We have
∥x+y∥2≥ ∥x∥2−∥y∥2

≥ 1−ϵ
where the first step follows from triangle inequality.

28

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

We also have
∥x+y∥2≤ ∥x∥2+∥y∥2

≤ 1+ϵ (7)

We have
(1−ϵ)2≥1−2ϵ (8)

We also have
1

(1+ϵ)2
≥1−3ϵ (9)

where ϵ∈(0,0.1).
Combining Eq. (8) and Eq. (9), we have

1

(1+ϵ)2
·(1−ϵ)2≥ (1−2ϵ)·(1−3ϵ)

= 1−5ϵ+6ϵ2

≥ 1−5ϵ+ϵ
= 1−4ϵ (10)

where the first step follows from Eq. (8) and Eq. (9) and the rest of them follow from simple algebra.

Finally, we have

1−⟨x,z⟩2= 1−⟨x, x+y

∥x+y∥2
⟩2

= 1− 1

∥x+y∥22
⟨x,x+y⟩2

= 1− 1

∥x+y∥22
·(∥x∥22+⟨x,y⟩)2

= 1− 1

∥x+y∥22
·(1+⟨x,y⟩)2

≤ 1− 1

(1+ϵ)2
·(1+⟨x,y⟩)2

≤ 1− 1

(1+ϵ)2
·(1−ϵ)2

≤ 1−(1−4ϵ)
= 4ϵ,

where the first step follow the definition of z, the second step follows from the reorganization, the third step follows from
the definition of inner product, the fourth step follows from ∥x∥2=1, the fifth step follows from Eq. (7), the sixth step follows
from 1+⟨x,y⟩≥1−|⟨x,y⟩|≥1−∥x∥2 ·∥y∥2≥1−ϵ, the seventh step follows from Eq. (10) and the last step follows from
simple algebra.

I Function Approximations
We first we show the function approximation for two operators in Section I.1, which means that there are two functions. Then
we show the function approximations for four operators in Section I.2.

I.1 Function Approximations for Two Operators

Lemma I.1. Let f1 :Rd→Rd and let f2 :Rd→Rd.

Assume the the following conditions

• Condition 1a. f1 is a linear function

• Condition 1b. ∥f1(x)∥2≤ϵ1∥x∥2 (f1 is shrinking)

• Condition 1c. ∥f1(x)−f1(y)∥2≤L1∥x−y∥2 (f1 is Lipschitz)

29

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

• Condition 2a. f2 is a linear function

• Condition 2b. ∥f2(x)∥2≤ϵ2∥x∥2 (f2 is shrinking)

• Condition 2c. ∥f2(x)−f2(y)∥2≤L2∥x−y∥2 (f2 is Lipschitz)

We define three functions

•
g1(x)=: (I+f1)·(I+f2)(x)

= x+f2(x)+f1(x+f2(x))

•
g2(x)=: (I+f2)·(I+f1)(x)

= x+f1(x)+f2(x+f1(x))

•
g3(x)=: (I+f1+f2)(x)

= x+f1(x)+f2(x)

Then we can show that

• Part 1. ∥g1(x)−g2(x)∥2≤2ϵ1ϵ2∥x∥2(if f1 and f2 are linear functions)

• Part 2. ∥g1(x)−g2(x)∥2≤(ϵ2 ·L1+ϵ1 ·L2)∥x∥2 (if f1 and f2 are Lipschitz functions)

• Part 3. ∥g1(x)−g3(x)∥2≤ϵ1ϵ2∥x∥2 (if f1 is a linear function)

• Part 4. ∥g1(x)−g3(x)∥2≤ϵ2 ·L1∥x∥2 (if f1 is a Lipschitz function)

• Part 5. ∥g2(x)−g3(x)∥2≤ϵ1ϵ2∥x∥2 (if f2 is a linear function)

• Part 6. ∥g2(x)−g3(x)∥2≤ϵ1 ·L2∥x∥2 (if f2 is a Lipschitz function)

Proof. Part 1.

We have
∥g1(x)−g2(x)∥2≤ ∥g1(x)−g3(x)∥2+∥g3(x)−g2(x)∥2

≤ ϵ1ϵ2∥x∥2+ϵ1ϵ2∥x∥2
= 2ϵ1ϵ2∥x∥2

where the first step follows from triangular inequality, the second step follows from Part 3 and Part 5 and the last step follows
from simple algebra.

Part 2.

We have
∥g1(x)−g2(x)∥2≤ ∥g1(x)−g3(x)∥2+∥g3(x)−g2(x)∥2

≤ ϵ2 ·L1∥x∥2+ϵ1 ·L2∥x∥2
= (ϵ2 ·L1+ϵ1 ·L2)∥x∥2

where the first step follows from triangular inequality, the second step follows from Part 4 and Part 6 and the last step follows
from simple algebra.

Part 3.

30

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

We have
∥g1(x)−g3(x)∥2= ∥f1(x+f2(x))−f1(x)∥2

= ∥f1(x+f2(x)−x)∥2
= ∥f1(f2(x))∥2
≤ ϵ1 ·∥f2(x)∥2
≤ ϵ1 ·ϵ2 ·∥x∥2,

where the first step follows from the definition of g1 and g3, the second step follows from the fact that f1 is a linear function, the
third step follows from simple algebra, the fourth step follows from Condition 1b and the last step follows from Condition 2b.

Part 4.

∥g1(x)−g3(x)∥2= ∥f1(x+f2(x))−f1(x)∥2
≤L1 ·∥x+f2(x)−x∥2
=L1 ·∥f2(x)∥2
≤L1 ·ϵ2∥x∥2,

where the first step follows from definition of g1 and g3, the second step follows from Condition 1c, the third step follows
from simple algebra and the last step follows from Condition 2b.

Part 5.

We have
∥g2(x)−g3(x)∥2= ∥f2(x+f1(x))−f2(x)∥2

= ∥f2(x+f1(x)−x)∥2
= ∥f2(f1(x))∥2
≤ ϵ2 ·∥f1(x)∥2
≤ ϵ2 ·ϵ1 ·∥x∥2,

where the first step follows from the definition of g2 and g3, the second step follows from the fact that f2 is a linear function, the
third step follows from simple algebra, the fourth step follows from Condition 2b and the last step follows from Condition 1b.

Part 6.

∥g2(x)−g3(x)∥2= ∥f2(x+f1(x))−f2(x)∥2
≤L2 ·∥x+f1(x)−x∥2
=L2 ·∥f1(x)∥2
≤L2 ·ϵ1∥x∥2,

where the first step follows from definition of g1 and g3, the second step follows from Condition 2c, the third step follows from
simple algebra and the last step follows from Condition 1b.

I.2 Function Approximations for Four Operators

Lemma I.2. For each i∈ [4], we assume the following conditions

• i(a) fi is a linear function

• i(b) ∥fi(x)∥2≤ϵi∥x∥2 (fi is shriking)

• i(c) ∥fi(x)−fi(y)∥2≤Li∥x−y∥2 (fi is Lipschitz)

We define three functions

• g1(x) :=(I+f1)·(I+f2)·(I+f3)·(I+f4)(x)

• g2(x) :=(I+f1)·(I+f3)·(I+f2)·(I+f4)(x)

• g3(x) :=(I+f1+f2+f3+f4)(x)

31

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Then, we can show that

• Part 1. ∥g1(x)−g2(x)∥2≤2(ϵ1ϵ2+ϵ1ϵ3+ϵ1ϵ4+ϵ2ϵ3+ϵ2ϵ4+ϵ3ϵ4+ϵ1ϵ2ϵ3+ϵ1ϵ2ϵ4+ϵ1ϵ3ϵ4+ϵ2ϵ3ϵ4+ϵ1ϵ2ϵ3ϵ4)∥x∥2
(if fi, ∀i∈ [4] are linear functions)

• Part 2. ∥g1(x)− g2(x)∥2 ≤ (2L1ϵ2 + 2L1ϵ3 + 2L1ϵ4 +L2ϵ3 + 2L2ϵ4 + 2L3ϵ4 + 2L1ϵ2ϵ3 + 2L1ϵ2ϵ4 + 2L1ϵ3ϵ4 +
L2ϵ3ϵ4+2L1ϵ2ϵ3ϵ4+L3ϵ2+L3ϵ2ϵ4)∥x∥2 (if fi, ∀i∈ [4] are Lipschitz functions)

• Part 3. ∥g1(x)−g3(x)∥2≤ (ϵ1ϵ2+ϵ1ϵ3+ϵ1ϵ4+ϵ2ϵ3+ϵ2ϵ4+ϵ3ϵ4+ϵ1ϵ2ϵ3+ϵ1ϵ2ϵ4+ϵ1ϵ3ϵ4+ϵ2ϵ3ϵ4+ϵ1ϵ2ϵ3ϵ4)∥x∥2
(if fi, ∀i∈ [4] are linear functions)

• Part 4. ∥g1(x)− g3(x)∥2 ≤ (L1ϵ2 +L1ϵ3 +L1ϵ4 +L2ϵ3 +L2ϵ4 +L3ϵ4 +L1ϵ2ϵ3 +L1ϵ2ϵ4 +L1ϵ3ϵ4 +L2ϵ3ϵ4 +
L1ϵ2ϵ3ϵ4)∥x∥2 (if fi, ∀i∈ [4] are Lipschitz functions)

• Part 5. ∥g2(x)−g3(x)∥2≤ (ϵ1ϵ2+ϵ1ϵ3+ϵ1ϵ4+ϵ2ϵ3+ϵ2ϵ4+ϵ3ϵ4+ϵ1ϵ2ϵ3+ϵ1ϵ2ϵ4+ϵ1ϵ3ϵ4+ϵ2ϵ3ϵ4+ϵ1ϵ2ϵ3ϵ4)∥x∥2
(if fi, ∀i∈ [4] are linear functions)

• Part 6.∥g2(x)− g3(x)∥2 ≤ (L1ϵ2 + L1ϵ3 + L1ϵ4 + L2ϵ4 + L3ϵ2 + L3ϵ4 + L1ϵ2ϵ3 + L1ϵ2ϵ4 + L1ϵ3ϵ4 + L3ϵ2ϵ4 +
L1ϵ2ϵ3ϵ4)∥x∥2
(if fi, ∀i∈ [4] are Lipschitz functions)

Proof. Part 1.

We have
∥g1(x)−g2(x)∥2≤ ∥g1(x)−g3(x)∥2+∥g3(x)−g2(x)∥2

≤ 2(ϵ1ϵ2+ϵ1ϵ3+ϵ1ϵ4+ϵ2ϵ3+ϵ2ϵ4+ϵ3ϵ4+ϵ1ϵ2ϵ3+ϵ1ϵ2ϵ4+ϵ1ϵ3ϵ4+ϵ2ϵ3ϵ4+ϵ1ϵ2ϵ3ϵ4)∥x∥2
where the first step follows from triangular inequality and the last step follows from Part 3 and Part 5.

Part 2.

We have
∥g1(x)−g2(x)∥2≤ ∥g1(x)−g3(x)∥2+∥g3(x)−g2(x)∥2

≤ (2L1ϵ2+2L1ϵ3+2L1ϵ4+L2ϵ3+2L2ϵ4+2L3ϵ4+2L1ϵ2ϵ3+2L1ϵ2ϵ4+2L1ϵ3ϵ4+

L2ϵ3ϵ4+2L1ϵ2ϵ3ϵ4+L3ϵ2+L3ϵ2ϵ4)∥x∥2
where the first step follows from triangular inequality and the last step follows from Part 4 and Part 6.

Part 3. We have
∥g1(x)−g3(x)∥2= ∥(I+f1)·(I+f2)·(I+f3)·(x+f4(x))−(I+f1+f2+f3+f4)(x))∥2

= ∥(x+f4(x)+f3(x+f4(x))+f2(x+f4(x)+
f3(x+f4(x)))+f1(x+f4(x)+f3(x+f4(x))+f2(x+f4(x)+f3(x+f4(x))))

−(I+f1+f2+f3+f4)(x)))∥2
= ∥f3(f4(x))+f2(f4(x)+f3(x+f4(x)))+f1(f4(x)+
f3(x+f4(x))+f2(x+f4(x)+f3(x+f4(x)))))∥2

= ∥f3(f4(x))+f2(f4(x))+f2(f3(x))+f2(f3(f4(x)))+
f1(f4(x))+f1(f3(x))+f1(f3(f4(x)))+f1(f2(x))+f1(f2(f4(x)))

+f1(f2(f3(x)))+f1(f2(f3(f4(x)))))∥2
≤ ∥f3(f4(x))∥2+∥f2(f4(x))∥2+∥f2(f3(x))∥2+∥f2(f3(f4(x)))∥2+
∥f1(f4(x))∥2+∥f1(f3(x))∥2+∥f1(f3(f4(x)))∥2+∥f1(f2(x))∥2+∥f1(f2(f4(x)))∥2+
∥f1(f2(f3(x)))∥2+∥f1(f2(f3(f4(x))))∥2
≤ (ϵ3ϵ4+ϵ2ϵ4+ϵ2ϵ3+ϵ2ϵ3ϵ4+ϵ1ϵ4+ϵ1ϵ3+ϵ1ϵ3ϵ4+ϵ1ϵ2+ϵ1ϵ2ϵ4+ϵ1ϵ2ϵ3+ϵ1ϵ2ϵ3ϵ4)∥x∥2
= (ϵ1ϵ2+ϵ1ϵ3+ϵ1ϵ4+ϵ2ϵ3+ϵ2ϵ4+ϵ3ϵ4+ϵ1ϵ2ϵ3+ϵ1ϵ2ϵ4+ϵ1ϵ3ϵ4+ϵ2ϵ3ϵ4+ϵ1ϵ2ϵ3ϵ4)∥x∥2,

where the first step follows from the definition of g1 and g3, the second step follows from simple algebra, the third step follows
from reorganization, the fourth step follows from the fact that all fi,∀i∈ [4] are linear function, the fifth step follows from
triangular inequality, the sixth step follows from i(b) and the last step follows from reorganization.

32

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Part 4. We have

∥g1(x)−g3(x)∥2= ∥(I+f1)·(I+f2)·(I+f3)·(x+f4(x))−(I+f1+f2+f3+f4)(x))∥2
= ∥x+f4(x)+f3(x+f4(x))+f2(x+f4(x)+
f3(x+f4(x)))+f1(x+f4(x)+f3(x+f4(x))+f2(x+f4(x)+f3(x+f4(x))))

−(I+f1+f2+f3+f4)(x))∥2
= ∥f3(x+f4(x))+f2(x+f4(x)+f3(x+f4(x)))

+f1(x+f4(x)+f3(x+f4(x))+f2(x+f4(x)+f3(x+f4(x))))

−f1(x)−f2(x)−f3(x))∥2
= ∥f3(x+f4(x))−f3(x)+f2(x+f4(x)+f3(x+f4(x)))−f2(x)

+f1(x+f4(x)+f3(x+f4(x))+f2(x+f4(x)+f3(x+f4(x))))−f1(x)∥
≤L3∥x+f4(x)−x∥2+L2∥x+f4(x)+f3(x+f4(x))−x∥2

+L1∥x+f4(x)+f3(x+f4(x))+f2(x+f4(x)+f3(x+f4(x)))−x∥2
≤L3∥f4(x)∥2+L2∥f4(x)+f3(x+f4(x))∥2

+L1∥f4(x)+f3(x+f4(x))+f2(x+f4(x)+f3(x+f4(x)))∥2
≤L3ϵ4∥x∥2+L2ϵ4∥x∥2+L2ϵ3∥x+f4(x)∥2

+L1ϵ4∥x∥2+L1ϵ3∥x+f4(x)∥2+L1ϵ2∥x+f4(x)+f3(x+f4(x))∥2
≤L3ϵ4∥x∥2+L2ϵ4∥x∥2+L2ϵ3∥x∥+L2ϵ3ϵ4∥x∥2

+L1ϵ4∥x∥2+L1ϵ3∥x∥2+L1ϵ3ϵ4∥x∥2+L1ϵ2∥x∥2+L1ϵ2ϵ4∥x∥2+L1ϵ2ϵ3∥x+f4(x)∥2
≤L3ϵ4∥x∥2+L2ϵ4∥x∥2+L2ϵ3∥x∥+L2ϵ3ϵ4∥x∥2

+L1ϵ4∥x∥2+L1ϵ3∥x∥2+L1ϵ3ϵ4∥x∥2+L1ϵ2∥x∥2+L1ϵ2ϵ4∥x∥2+L1ϵ2ϵ4∥x∥2+L1ϵ2ϵ3ϵ4∥x∥2
= (L3ϵ4+L2ϵ4+L2ϵ3+L2ϵ3ϵ4+L1ϵ4+L1ϵ3+L1ϵ3ϵ4+L1ϵ2+L1ϵ2ϵ4+L1ϵ2ϵ3+L1ϵ2ϵ3ϵ4)∥x∥2
= (L1ϵ2+L1ϵ3+L1ϵ4+L2ϵ3+L2ϵ4+L3ϵ4+L1ϵ2ϵ3+L1ϵ2ϵ4+L1ϵ3ϵ4+L2ϵ3ϵ4+L1ϵ2ϵ3ϵ4)∥x∥2

where the first step follows from the definition of g1 and g3, the second step follows from simple algebra, the third step follows
from simple algebra, the fourth step follows from reorganization, the fifth step follows from the fact that all fi,∀i∈ [4] are Lips-
chitz functions, the sixth step follows from simple algebra, the seventh step follows from i(b), the eighth step follows from trian-
gular inequality, the ninth step follows from i(b), the tenth step follows from i(b) and the last step follows from reorganization.

Part 5. We have

∥g2(x)−g3(x)∥2= ∥(I+f1)·(I+f3)·(I+f2)·(x+f4(x))−(I+f1+f2+f3+f4)(x))∥2
= ∥(x+f4(x)+f2(x+f4(x))+f3(x+f4(x)+
f2(x+f4(x)))+f1(x+f4(x)+f2(x+f4(x))+f3(x+f4(x)+f2(x+f4(x))))

−(I+f1+f2+f3+f4)(x)))∥2
= ∥f2(f4(x))+f3(f4(x))+
f3(f2(x+f4(x)))+f1(f4(x))+f1(f2(x+f4(x)))+f1(f3(x+f4(x)+f2(x+f4(x)))))∥2
≤ (ϵ2ϵ4+ϵ3ϵ4+ϵ3ϵ2+ϵ3ϵ2ϵ4+ϵ1ϵ4+ϵ1ϵ2+ϵ1ϵ2ϵ4+ϵ1ϵ3+ϵ1ϵ3ϵ4+ϵ1ϵ3ϵ2+ϵ1ϵ3ϵ2ϵ4)∥x∥2
= (ϵ1ϵ2+ϵ1ϵ3+ϵ1ϵ4+ϵ2ϵ3+ϵ2ϵ4+ϵ3ϵ4+ϵ1ϵ2ϵ3+ϵ1ϵ2ϵ4+ϵ1ϵ3ϵ4+ϵ2ϵ3ϵ4+ϵ1ϵ2ϵ3ϵ4)∥x∥2,

where the first step follows from the definition of g2 and g3, the second step follows from simple algebra, the third step follows
from the fact that all fi,∀i∈ [4] are linear function, the fourth step follows from triangular inequality and i(b), and the last
step follows from reorganization.

33

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Part 6. We have
∥g2(x)−g3(x)∥2= ∥(I+f1)·(I+f3)·(I+f2)·(x+f4(x))−(I+f1+f2+f3+f4)(x))∥2

= ∥(x+f4(x)+f2(x+f4(x))+f3(x+f4(x)+f2(x+f4(x)))
+f1(x+f4(x)+f2(x+f4(x))+f3(x+f4(x)+f2(x+f4(x))))

−(I+f1+f2+f3+f4)(x)))∥2
= ∥f2(x+f4(x))−f2(x)+f3(x+f4(x)+f2(x+f4(x)))−f3(x)

+f1(x+f4(x)+f2(x+f4(x))+f3(x+f4(x)+f2(x+f4(x))))−f1(x)∥2
≤ ∥f2(x+f4(x))−f2(x)∥2+∥f3(x+f4(x)+f2(x+f4(x)))−f3(x)∥2

+∥f1(x+f4(x)+f2(x+f4(x))+f3(x+f4(x)+f2(x+f4(x))))−f1(x)∥2
≤L2ϵ4∥x∥2+L3ϵ4∥x∥2+L3ϵ2∥x+f4(x)∥2

+L1ϵ4∥x∥2+L1ϵ2∥x+f4(x)∥2+L1ϵ3∥x+f4(x)+f2(x+f4(x))∥2
≤L2ϵ4∥x∥2+L3ϵ4∥x∥2+L3ϵ2∥x∥2+L3ϵ2ϵ4∥x∥2

+L1ϵ4∥x∥2+L1ϵ2∥x∥2+L1ϵ2ϵ4∥x∥2+L1ϵ3∥x∥+L1ϵ3ϵ4∥x∥2+L1ϵ3ϵ2∥x∥2+L1ϵ3ϵ2ϵ4∥x∥2
= (L1ϵ2+L1ϵ3+L1ϵ4+L2ϵ4+L3ϵ2+L3ϵ4+L1ϵ2ϵ3+L1ϵ2ϵ4+L1ϵ3ϵ4+L3ϵ2ϵ4+L1ϵ2ϵ3ϵ4)∥x∥2

where the first step follows from the definition of g2 and g3, the second step follows from simple algebra, the third step follows
from reorganization, the fourth step follows from triangular inequality, the fifth step follows from the fact that all fi,∀i∈ [4] are
Lipschitz functions and i(b), the sixth step follows from triangular inequality, and the last step follows from reorganization.

J Nearest Neighbor Search Data Structure
We use the reduction-based approximate MaxIP method with LSH data-structure to achieve sublinear iteration cost. Note
that we choose this method due to its clear theoretical guarantee on the retrieval results. It is well-known that an LSH
data-structures is used for approximate nearest neighbor problem. The following definition of approximate nearest neighbor
search is very standard in literature (Arya & Mount, 1993; Indyk & Motwani, 1998a; Datar et al., 2004; Andoni et al., 2014;
2015; Andoni & Razenshteyn, 2015; Indyk & Wagner, 2018; Andoni et al., 2017; 2018; Dong et al., 2019; Chen et al., 2020b;
Li & Li, 2022; Li et al., 2019).

J.1 LSH and MaxIP

We start with the defining the Approximate Nearest Neighbor (ANN) problem (Arya & Mount, 1993; Indyk & Motwani,
1998a; Datar et al., 2004; Andoni et al., 2014; 2015; Andoni & Razenshteyn, 2015; Indyk & Wagner, 2018; Andoni et al.,
2017; 2018; Dong et al., 2019; Chen et al., 2020b) as:

Definition J.1 (Approximate Nearest Neighbor (ANN)). Let c>1 and r∈(0,2) denote two parameters. Given an n-vector
set Y ⊂Sd−1 on a unit sphere, the objective of the (c,r)-Approximate Nearest Neighbor (ANN) is to construct a data structure
that, for any query x∈Sd−1 such that miny∈Y ∥y−x∥2≤r, it returns a vector z from Y that satisfies ∥z−x∥2≤c·r.

The ANN problem can be solved via locality sensitive hashing (LSH) (Indyk & Motwani, 1998a; Datar et al., 2004; Indyk
& Wagner, 2018). In this paper, we use the standard definitions of LSH (see Indyk and Motwani (Indyk & Motwani, 1998a)).

Definition J.2 (Locality Sensitive Hashing). Let c > 1 denote a parameter. Let p1,p2 ∈ (0,1) denote two parameters and
p1 > p2. We say a function familyH is (r,c ·r,p1,p2)-sensitive if and only if, for any vectors x,y ∈Rd, for any h chosen
uniformly at random fromH, we have:

• if ∥x−y∥2≤r, then Prh∼H[h(x)=h(y)]≥p1,

• if ∥x−y∥2≥c·r, then Prh∼H[h(x)=h(y)]≤p2.

Next, we show that LSH solves ANN problem with sublinear query time complexity.

Theorem J.3 (Andoni, Laarhoven, Razenshteyn and Waingarten (Andoni et al., 2017)). Let c>1 and r∈(0,2) denote two
parameters. One can solve (c,r)-ANN on a unit sphere in query timeO(d·nρ) using preprocessing timeO(dn1+o(1)) and
spaceO(n1+o(1)+dn), where ρ= 2

c2
− 1
c4
+o(1).

34

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Here we write o(1) is equivalent to O(1/
√
logn). Note that we could reduce d to no(1) with Johnson–Lindenstrauss

Lemma (Johnson & Lindenstrauss, 1984). Besides, we could achieve better ρ using LSH in (Andoni & Razenshteyn, 2015)
if we allowed to have more proprocessing time.

In this work, we focus on a well-known problem in computational complexity: approximate MaxIP. In this work, we follow
the standard notation in (Chen, 2018) and define the approximate MaxIP problem as follows:

Definition J.4 (Approximate MaxIP). Let c∈(0,1) and τ ∈(0,1) denote two parameters. Given an n-vector dataset Y ⊂Sd−1

on a unit sphere, the objective of the (c,τ)-MaxIP is to construct a data structure that, given a query x ∈ Sd−1 such that
maxy∈Y ⟨x,y⟩≥τ , it retrieves a vector z from Y that satisfies ⟨x,z⟩≥c·maxy∈Y ⟨x,y⟩.

In many applications, it is more convenient to doing inner product search in a transformed/projected space compared to doing
inner product search in the original space. Thus, we propose the following definitions (Definition J.5 and Definition J.6)

Definition J.5 (Projected MaxIP). Let ϕ,ψ :Rd→Rk denote two transforms. Given a data set Y ⊆Rd and a point x∈Rd,
we define (ϕ,ψ)-MaxIP as follows:

(ϕ,ψ)-MaxIP(x,Y) :=max
y∈Y
⟨ϕ(x),ψ(y)⟩

Definition J.6 (Projected approximate MaxIP). Let ϕ,ψ : Rd → Rk denote two transforms. Given an n-vector dataset
Y ⊂Rd so that ψ(Y)⊂Sk−1, the goal of the (c,ϕ,ψ,τ)-MaxIP is to construct a data structure that, given a query x∈Rd and
ϕ(x)∈Sk−1 such that maxy∈Y ⟨ϕ(x),ψ(y)⟩≥τ , it retrieves a vector z∈Y that satisfies ⟨ϕ(x),ψ(z)⟩≥c·(ϕ,ψ)-MaxIP(x,Y).

J.2 Connections

Fact J.7. Let x̃ denote the vector that ⟨x̃,x⟩≥1− 1
2ϵ

2, where both x̃ and x are unit vectors. We have
∥x̃−x∥2≤ϵ

Proof.
∥x̃−x∥2= (∥x̃∥22+∥x∥22−2⟨x,x̃⟩)1/2

= (2−2⟨x,x̃⟩)1/2

≤ (2−2(1− 1

2
ϵ2))1/2

= ϵ

Now, we complete the proof.

Lemma J.8. Let x̃ denote the vector that ⟨x̃,x⟩≥1− 1
2ϵ

2, where both x̃ and x are unit vectors. Let 0.01c·τ >ϵ.
Suppose there is a z∈Y , where ∥z∥2=1, such that

⟨x,z⟩≥c·max
y∈Y
⟨x,y⟩

Note that maxy∈Y ⟨x,y⟩≥τ . Then, we can find a z∈Y such that

⟨x̃,z⟩≥ 1

2
c·max
y∈Y
⟨x,y⟩

Proof. We have
⟨x̃,z⟩= ⟨x,z⟩+⟨x̃−x,z⟩

≥ ⟨x,z⟩−|⟨x̃−x,z⟩|
≥ ⟨x,z⟩−∥x̃−x∥2 ·∥z∥2
≥ ⟨x,z⟩−ϵ
≥ c·max

y∈Y
⟨x,y⟩−ϵ

≥ 0.99·c·max
y∈Y
⟨x,y⟩

where the first step follows from simple algebra, the second step follows from the fact that ⟨x, y⟩ ≥ −|⟨x, y⟩|, the
third step follows from the property of inner product, the fourth step follows from Fact J.7, the fifth step follows from
⟨x,z⟩≥c·maxy∈Y ⟨x,y⟩ and the final step follows from the fact that 0.01c·τ >ϵ.

35

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

J.3 Efficient Transformations

We have learned from that (c,τ)-MaxIP on a unit sphere Sd−1 using LSH for ANN. Therefore, the next step is to transform
the direction search procedure in iterative optimization algorithm into a MaxIP on a unit sphere. To achieve this, we formulate
the direction search as a projected approximate MaxIP (see Definition J.5). We start with presenting a pair of transformation
ϕ0,ψ0 :Rd→Rd+1 such that, given a function g :Rd→R, for any x,y in a convex setK, we have

ϕ0(x) :=[∇g(x)⊤,x⊤∇g(x)]⊤, ψ0(y) :=[−y⊤,1]⊤. (11)

In this way, we show that
⟨y−x,∇g(x)⟩= −⟨ϕ0(x),ψ0(y)⟩,

argmin
y∈Y
⟨y−x,∇g(x)⟩= argmax

y∈Y
⟨ϕ0(x),ψ0(y)⟩ (12)

Therefore, we could transform the direction search problem into a MaxIP problem.

Next, we present a standard transformations (Neyshabur & Srebro, 2015) that connects the MaxIP to ANN in unit sphere.
For any x,y∈Rd, we propose transformation ϕ1,ψ1 :Rd→Rd+2 such that

ϕ1(x)=
[
(D−1

x x)⊤ 0
√
1−∥xD−1

x ∥22
]⊤

ψ1(y)=
[
(D−1

y y)⊤
√

1−∥yD−1
y ∥22 0

]⊤
(13)

HereDx,Dy are some constant that make sure both x/Dx and y/Dy have norms less than 1. Under these transformations,
both ϕ1(x) and ψ1(y) have norm 1 and argmaxy∈Y ⟨ϕ1(x),ψ1(y)⟩=argmaxy∈Y ⟨x,y⟩.
Combining transformations in Eq. (11) and Eq. (13), we obtain query transform ϕ :Rd→Rd+3 with form ϕ(x)=ϕ1(ϕ0(x))
and data transform ϕ :Rd→Rd+3 with form ψ(y)=ψ1(ψ0(y)). Using ϕ and ψ, we transform the direction search problem in
optimization into aMaxIP in unit sphere. Moreover, given a set Y ⊂Rd and a query x∈Rd, the solution z of (c,ϕ,ψ,τ)-MaxIP
over (x,Y) has the propriety that ⟨z−x,∇g(x)⟩≤c·miny∈Y ⟨y−x,∇g(x)⟩. Thus, we could approximate the direction search
with LSH based MaxIP data-structure.

Note that only MaxIP problem with positive inner product values could be solved by LSH. We found the direction search
problem naturally satisfies this condition. We show that if g is convex, given a set S⊂Rd, we have mins∈S⟨∇g(x),s−x⟩≤0
for any x∈B(S), where B is the convex hull of S. Thus, maxy∈Y ⟨ϕ0(x),ψ0(y)⟩ is non-negative following Eq. (12).

J.4 Data Structures

In this section, we present a formal statement that solves (c,τ)-MaxIP problem on unit sphere using LSH for (c,r)-ANN.

Theorem J.9. Let c ∈ (0,1) and τ ∈ (0,1). Given a set of n-vector set Y ⊂ Sd−1 on the unit sphere, there exists a data
structure withO(dn1+o(1)) preprocessing time andO(n1+o(1)+dn) space so that for any query x∈Sd−1, we takeO(d·nρ)
query time to retrieve the (c,τ)-MaxIP of x in Y with probability at least 0.97, where ρ := 2(1−τ)2

(1−cτ)2 −
(1−τ)4
(1−cτ)4 +o(1)

Proof. We know that ∥x−y∥22=2−2⟨x,y⟩ for all x,y∈Sd−1. In this way, if we have a LSH data-structure for (c,r)-ANN.
It could be used to solve (c,τ)-MaxIP with τ=1−0.5r2 and c= 1−0.5c2r2

1−0.5r2 . Next, we write c2 as

c2=
1−c(1−0.5r2)

0.5r2
=

1−cτ
1−τ

.

Next, we show that if the LSH is initialized following Theorem J.3, it takes query timeO(d·nρ), spaceO(n1+o(1)+dn) and
preprocessing timeO(dn1+o(1)) to solve (c,τ)-MaxIP through solving (c,r)-ANN, where

ρ=
2

c2
− 1

c4
+o(1)=

2(1−τ)2

(1−cτ)2
− (1−τ)4

(1−cτ)4
+o(1).

In practice, c is increasing as we set parameter τ close to MaxIP(x,Y). There is also another LSH data structure (Andoni
& Razenshteyn, 2015) with longer preprocessing time and larger space that could solve the (c,τ)-MaxIP with similar query

7It is obvious to boost probability from constant to δ by repeating the data structure log(1/δ) times.

36

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

time complexity. We refer readers to Section 8.2 in (Shrivastava et al., 2021) for more details8. Moreover, Corollary J.9 could
be applied to projected MaxIP problem.

Theorem J.10. Let c∈ (0,1) and τ ∈ (0,1). Let ϕ,ψ :Rd→Rk denote two transforms. Let Tϕ denote the time to compute
ϕ(x) and Tψ denote the time to compute ψ(y). Given a set of n-points Y ∈Rd with ψ(Y)⊂Sk−1 on the sphere, one can
construct a data structure with O(dn1+o(1)+Tψn) preprocessing time and O(n1+o(1)+dn) space so that for any query
x∈Rd with ϕ(x)∈Sk−1, we take query time complexityO(d·nρ+Tϕ) to solve (c,ϕ,ψ,τ)-MaxIP with respect to (x,Y) with

probability at least 0.9, where ρ := 2(1−τ)2
(1−cτ)2 −

(1−τ)4
(1−cτ)4 +o(1).

Proof. The preprocessing phase can be decomposed in two parts.

• It takesO(Tψn) time to transform every y∈Y into ψ(y).

• It takesO(O(dn1+o(1)) time andO(dn1+o(1)+dn) to index every ψ(y) into LSH using Theorem J.9.

The query phase can be decomposed in two parts.

• It takesO(Tϕ) time to transform every x∈Rd into ϕ(x).

• It takesO(d·nρ) time perform query for ϕ(x) in LSH using Theorem J.9.

K Self-attention layer as a clustering algorithm
The self-attention layer in the Transformer looks like mean-shift clustering. Suppose {(xj ,vj)} are a bunch of key and value
pairs and q is the query. Note that q=Wqx, k=Wkx and v=Wvx are computed by three projection matrices Wk, Wq

andWv from a common x. Then from self-attention we have:

v=
∑
j

pjvj=

∑
jexp(x

⊺W ⊺
qWkxj)Wvxj∑

jexp(x
⊺W ⊺

qWkxj)
=Wv

∑
jexp(x

⊺W ⊺
qWkxj)xj∑

jexp(x
⊺W ⊺

qWkxj)
(14)

where∼(q,kj) :=exp(q⊺kj)=exp(x⊺W ⊺
qWkxj) and pj=∼(q,kj)/

∑
j∼(q,kj).

On the other hand, mean-shift clustering looks like the following:

m(x)=

∑
jK(xj ,x)xj∑
jK(xj ,x)

(15)

where K(xj ,x) is a kernel matrix that measure the similarity between xj and x. According to the mean-shift algorithm,
in the next iteration, we will simply replace x withm(x).

So in some sense, self-attention is just to do some kind of clustering for the input embeddingq andk, plus a transformation of the
embedding to another place. The term “projection” is due to the fact that there is a projection matrixWv on x for the next level.

Residue connection and LayerNorm. Compared to mean-shift, Transformer layer has residue connection. Therefore, for
single-headed attention, what you actually get is v+x, followed by a LayerNorm. For the residue connection, the mean-shift
analog already shows the outputm(x) contains x+ part. The reason why we need residue connection is that the self-attention
part might only model the “change” of x in the mean-shift picture, rather than the full update of x.

L The role of self-attention
Consider we have a vocabulary of sizem and d dimensional embedding space. In practice, many papers in NLP have reported
clustering behaviors of word embeddings: such a clustering of word embedding naturally occurs after training.

An explanation for the above phenomenon is that, by grouping these word embedding together, we might generalize better, since
similarity in word now can transfer (e.g., A linked to B, B linked to C, then A might link to C as well) and generalization follows.

Let’s treat it as a fact and focus on how this is achieved and how self-attention plays a role here.

8Recently, there a line of work that use fast MaxIP data structure to speedup the iterative-type optimization algorithms (Shrivastava et al.,
2021; Song & Ye, 2023; Qin et al., 2023a; Song et al., 2023a).

37

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

L.1 The capacity of embedding layer

First let us take a look at the following pairwise distance constraints between word embedding (e.g., some words should
be close to each other, some should be far away from each other) as the following:

∥xi−xj∥=D(i,j) (16)

where D(i,j) is large for i and j that should be far apart and D(i,j) is small for i and j that are close to each other. In
visualization, this is called Multidimensional Scaling (MDS) (Cox & Cox, 2008).

Note that in neural network training, the constraint (Eqn. 16) is not directly enforced during training, but the clustering
naturally happens. Since we talk about capacity, how we achieve Eqn. 16 doesn’t matter for now.

In general we cannot find a fixed low-dimensional embedding (d≪m) to satisfy these constraints, since we only havemd
parameters (m vectors, each has d entries), butm2 constraint. So two vectors that are supposed to be close may not be close
enough (but hopefully they remain close to each other).

L.2 The role of self-attention

For this, the self-attention mechanism comes to the rescue, trading model-size with additional computation. It fulfills what
(static) embedding cannot achieve: to further group the embedding vectors together in a multi-layer structure.

Note that one sentence never covers all d vocabularies. Once the words in the sentence are picked, they are grouped together
via self-attention layers to collectively represent a concept that can be useful for the task.

L.3 How the clustering happens through self-attention?

Now one fundamental questions arise: How the static clustering of embedding happens during end-to-end training? In
practice, no one explicitly enforces the MDS constraint (Eqn. 16).

Let’s start with a simple example. we have two unit embedding: x and y with the normalization condition that ∥x∥2 =1
and ∥y∥2=1, and a simple self-attention layer (without projection) which output z:

z=(1−p)x+py (17)

Where the attention map is:

p=
ex

⊺y

ex⊺x+ex⊺y
=

1

1+e1−x⊺y
(18)

Note that here we attend to x so 0<p<1/2 always. The last two is due to normalization condition.

Now we consider a loss function L=− 1
2∥z∥

2
2. The intuition behind is that “for some reason, we found that z is a good

representation for our task, and want to make sure its length is as long as possible”.

Under this context, what would be the gradient rule for x and y? Will they cluster together?

The answer is yes! We could compute
∂z

∂x
= (1−p)I+ ∂p

∂x
(y−x)⊺ (19)

∂z

∂y
= pI+

∂p

∂y
(y−x)⊺ (20)

Let t :=1−x⊺y and define the following function with respect to t:

f(t) :=(x−y)⊺z=(1−2p)(1−x⊺y)>0 (21)

Therefore, we can compute the gradient for x and gradient for y:

−gx := −∂L
∂x

=−∂z
∂x

∂L

∂z
=(1−p)2x+p(1−p)(1−f(t))y (22)

−gy := −∂L
∂y

=−∂z
∂y

∂L

∂z
=p2y+p(1−p)(1−f(t))x (23)

Note that since x and y are kept to be normalized, the term (1−p)2x in ∂L/∂x is gone (and similarly p2y for gy). So how
x and y move depends on the sign of 1−f(t).
With some computation, we could see 0<f(t)< 1 when t < 1.5424. In summary, if x⊺y>−0.4576, then the (negative)
gradient of x pushes it towards y and pushes x towards y, and the clustering of static embedding happens during training.
Note that since both x and y are normalized,−1≤x⊺y≤1, so this is a quite loose condition and can be easily satisfied.

38

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

L.4 Multiple embeddings

People might wonder what happen to multiple unit embeddings x,y1,y2, ... ,yK? In this case, we can similarly define
self-attention probability pi (note that here we consider the case that every embedding attends to x):

pi :=
ex

⊺yi

ex⊺x+
∑
je

x⊺yj
=

ex
⊺yi

1+
∑
je

x⊺yj
(24)

Define pS :=
∑K
i=1pi=1− 1

1+
∑

je
x⊺yj

<1 and we have:

z=(1−pS)x+
∑
i

piyi (25)

Let p̃i := pi/pS be the (normalized) probability on yi and ȳ := 1
pS

∑
ipiyi=

∑
i p̃iyi be the weighted mean of {yi} other

than x, then we have:
z=(1−pS)x+pSȳ (26)

Now we can still compute the partial derivative:
∂pj
∂x

= pj [−pSȳ+yj] (27)

∂pj
∂yi

= pi[−pj+I(i=j)]x (28)

which gives
∂z

∂x
= (1−pS)I+

∑
j

∂pj
∂x

(yj−x)⊺ (29)

∂z

∂yi
= piI+

∑
j

∂pj
∂yi

(yj−x)⊺ (30)

After some manipulation, we have:
∂z

∂x
=(1−pS)[I+pSȳ(ȳ−x)⊺]+pSQ (31)

whereQ :=
∑
j p̃j(yj−ȳ)(yj−ȳ)⊺ is the weighted covariance matrix of data points {yj}.

Similar to the two unit case, we want to check−gx to see how the embedding x changes over time.

−gx = −∂L
∂x

=−∂z
∂x

∂L

∂z
(32)

= (1−pS)2x+pS
[
(1−2pS)x⊺ȳ−(1−pS)+pS∥ȳ∥2

]
ȳ+pSQz

If things are already quite clustered, then ∥ȳ∥≈ 1 (usually ∥ȳ∥2< 1 since sphere is a convex set), Qz≈ 0 (since Q spans
on the tangent space of z at the sphere and z is perpendicular to it), and we have:

−gx≈(1−pS)2x+pS(1−2pS)(x⊺ȳ−1)ȳ (33)
It is clear that x⊺ȳ<1. When pS>1/2, which is high likely for largeK, then−gx has positive component of ȳ and x will
move towards ȳ.

On the other hand, we could also check
∂z

∂yi
=pi[I+(1−pS)x(ȳ−x)⊺]+pix(yi−ȳ)⊺ (34)

which gives an expression of−gy:
· (35)

With the same argument, it moves towards ȳ (so all yi will cluster together) and towards x.

When there is aWk andWq before the embedding, following the same logic, only the column subspace ofWk (orWq) will
be clustered together. On the other hand, the value part will be different in order to enable encoding of more complicated
concepts based on co-occurrence of multiple tokens.

M Link self-attention with generative models.
Consider the following self-attention structure. Consider an embedding matrixX∈Rn×d and for embedding xi and xj , let

yij=ϕ(xi;xj) :=(1−βij)xi+βijxj , βij :=
ex

⊺
i xj

ex
⊺
i xi+ex

⊺
i xj

(36)

39

Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time

Here ϕ(xi;xj) :=xi+βij(xj−xi) is the self-attention operation. More properties of this operator ϕ need to be explored.
Then we want to maximize the following objective:

max
X,∥xi∥2=1

∑
ijk

P(k|i,j)y⊺
ijxk (37)

or more formally, using a softmax to avoid trivial solution xi≡x, we have:

max
X,∥xi∥2=1

J := max
X,∥xi∥2=1

∑
ijk

P(k|i,j)logδijk, δijk :=
ey

⊺
ijxk∑

ke
y⊺
ijxk

(38)

which is:

max
X,∥xi∥2=1

∑
ijk

P(k|i,j)

[
y⊺
ijxk−log

∑
k

ey
⊺
ijxk

]
(39)

We can compute its gradient update. Here we assume the index k never appears in index i and j (encoding and decoding
matrices are decoupled), then by gradient rule, we have:

ẋk=
∂L

∂xk
=P⊥

xk

∑
ij

P(k|i,j)(1−δijk)yij (40)

where P⊥
xk

is the projection matrix that projects a vector to the orthogonal complement space of xk. The projection is due
to the constraint ∥xk∥2=1. If the training converges (ẋk=0), then we know that∑

ij

P(k|i,j)(1−δijk)yij=γxk (41)

for some γ>0 (note that γ<0 will be an unstable stationary point).

Depending on different structure of the generative model specified by P (k|i,j), we might end up learning different embedding
matrixX .

The first thing we want to check is independency. Assume that for some specific token k and i, we have P(k|i,j)=P(k|i)
for any j, which means that the frequency of token k has nothing to do with the second entry j. Furthermore, token k is not
connected with other token i′ ̸= i, i.e, P(k|i′,j)≡0. If we just let δijk=δ>0, then we have:

P(k|i)
∑
j

yij=γ
′xk (42)

which yields
P(k|i)nxi+

∑
j

βij(xj−xi)=γ′xk (43)

And we could possibly show that
∑
jβij(xj−xi)≈ 0 since βij =1/(1+e1−x⊺

i xj) applies equal weights for embeddings
around xi and they cancel out. Therefore, xk is aligned with xi.

Another thing we might want to check is identification of two tokens. Assume that there exists two tokens j1 and j2 and
specific k and i, so that P(k|i,j1)=P(k|i,j2). For other k,i,j combination P(k|i,j)≡0, then we have:

P(k|i,j1)yij1 =γ1xk (44)
(not sure how to continue).

If we haveWq ,Wk andWv , then the formulation doesn’t change that much. The only difference here is that now

βij :=
ex

⊺
iWpqxj

ex
⊺
iWpqxi+ex

⊺
iWpqxj

(45)

and y⊺
ijxk now becomes y⊺

ijWvxk.

40

