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Figure 1. We explore the subject-specific concept neurons in a pre-trained text-to-image diffusion model. Concatenating multiple clusters
of concept neurons representing different persons, objects, and backgrounds can flexibly generate all related concepts in a single image.

Abstract

Human brains respond to semantic features of pre-
sented stimuli with different neurons. This raises
the question of whether deep neural networks
admit a similar behavior pattern. To investigate
this phenomenon, this paper identifies a small
cluster of neurons associated with a specific sub-
ject in a diffusion model. We call those neurons
the concept neurons. They can be identified by
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statistics of network gradients to a stimulation
connected with the given subject. The concept
neurons demonstrate magnetic properties in inter-
preting and manipulating generation results. Shut-
ting them can directly yield the related subject
contextualized in different scenes. Concatenating
multiple clusters of concept neurons can vividly
generate all related concepts in a single image.
Our method attains impressive performance for
multi-subject customization, even four or more
subjects. For large-scale applications, the con-
cept neurons are environmentally friendly as
we only need to store a sparse cluster of int
index instead of dense float32 parameter values,
reducing storage consumption by 90% compared
with previous customized generation methods.
Extensive qualitative and quantitative studies on
diverse scenarios show the superiority of our
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method in interpreting and manipulating diffusion
models.

1. Introduction
The sophisticated structure of human brains allows mirac-
ulous cognitive and imaginative capabilities. Research has
found that concept neurons in the human medial temporal
lobe respond to semantic features of different presented
stimuli separately (Bausch et al., 2021; Thiebaut de Schotten
& Forkel, 2022). Those neurons encode temporal as well
as abstract relations among elements of experience across
spatiotemporal gaps and are thought to be the key to high-
level intelligence (Bausch et al., 2021).

It is then curious to know, as one of the most successful
artificial intelligence systems, do modern deep neural
networks (LeCun et al., 2015) admit a similar structure
of concept neurons. Specifically, to mimic the imaginative
ability of the human brain, do generative diffusion models
(Ho et al., 2020; Dhariwal & Nichol, 2021) encode different
subjects separately with their neurons? This paper is
about to answer this question from the perspective of
subject-driven generation (Kumari et al., 2022; Ruiz et al.,
2022). We propose to find a small cluster of neurons,
which are parameters in the attention layer of a pretrained
text-to-image diffusion model (Rombach et al., 2022),
such that changing values of those neurons can generate
a corresponding subject in different contents, based on
the semantics in the input text prompt. We attribute
these neurons as the concept neurons connected to the
corresponding subject in the diffusion models. Finding
them can advance our understanding of the underlying
mechanism of deep diffusion networks and provide an
original methodology for subject-driven generation.

We then study the interpretability of those concept neurons
from several perspectives. We first investigate the robustness
of concept neurons to changes in their values. We optimize
a concept-implanting loss (Ruiz et al., 2022) on the concept
neurons using float32, float16, quaternary, and binary
(shutting those concept neurons directly without training)
digital accuracy correspondingly. The results show similar
performance among all the settings, demonstrating the
strong robustness of concept neurons in controlling the
target subject. While binary digital accuracy requires no
further training and minimum storage space, we use it
as our default subject-driven generation method. This
method further admits fascinating additivity—concatenating
concept neurons of multiple subjects directly can generate
them all in the results, which may be the first to discover
such a simple yet effective affine semantic structure in the
parameter space of diffusion models. Further fine-tuning
based on the concatenating can promote the multi-concept

generation capability to a new milestone: we are the first
to manage to generate four different diverse subjects in one
image in the domain of subject-driven generation. Finally,
thanks to their sparsity and robustness, the concept neurons
can be efficiently used in large-scale applications. Storing
the information to construct a given subject costs around
only 10% of memory compared with previous subject-
driven methods (Ruiz et al., 2022; Kumari et al., 2022),
which is extremely economical and environment-friendly
for commercial usage in mobile devices. Extensive studies
on diverse categories, ranging from human portraits, scenes,
decorations, etc., demonstrate the superiority of over method
in interpretability and multi-concept generation capability.

2. Preliminaries and Background

Diffusion Models. Diffusion models (Ho et al., 2020;
Dhariwal & Nichol, 2021; Rombach et al., 2022; Song
et al., 2020) are parametric neural networks that learn image
distributions by gradual denoising. To further explore the
extensibility of diffusion models, many works have been
devoted to diffusion-based conditional generation, which
can be broadly classified into two categories. The first one is
the approach known as classifier-guidance (Liu et al., 2023),
which utilizes a classifier to promote the sampling process
of the pre-trained unconditional model. Despite the low cost,
the generation effect is less competitive. The second one
is known as the classifier-free approach (Ho & Salimans,
2022), which directly collects a large amount of data pairs
for joint optimization under the guarantee of conditional
probabilistic derivation. This approach can yield stunningly
detailed results but requires a huge amount of data and
computation resources. Owing to advances in language
(Radford et al., 2021) and cross-modal foundation models
(Radford et al., 2021), much text-to-image work (Saharia
et al., 2022; Ramesh et al., 2022; Nichol et al., 2021) with
classifier-free techniques is beginning to emerge, facilitating
explicit control on the corresponding semantics and style.
However, the expressiveness of text is still limited, and more
work wants to utilize additional, conditional information
(e.g., reference image, grounding (Li et al., 2023) and sketch
(Voynov et al., 2022)) to guide the global control further.

Text-to-Image Diffusion Model. A text-to-image diffu-
sion model (Yu et al., 2022; Saharia et al., 2022; Rombach
et al., 2022) x̂θ will guide this denoising procedure with a
text prompt describing the image content. Typically, it is
trained by denoising a noised image xt = αtx+ σtϵ as

E(x,c)∼pdata,t,ϵ[ωt∥x̂θ(xt, t, c)− x∥22]. (1)

Here (x, c) are (image, text prompts) pairs sampled from
data; ϵ are standard Gaussian noise added to the noised
image; αt, ωt, and σt are hyper-parameter scalars to
control the noise schedule evolved by time variable t from
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0, 1, · · · , T . After training, the model x̂θ can generate
various images described by the text prompts by denoising
standard Gaussian noises. Throughout this work, we use
Stable Diffusion V1.4 (Rombach et al., 2022) as the default
text-to-image diffusion model due to its state-of-the-art
performance and easy availability. However, Cones can also
be simply applied to most text-to-image diffusion models
like Imagen (Saharia et al., 2022) and DALLE-2 (Ramesh
et al., 2022).

Customized Generation. The purpose of customized
generation, as first proposed in DreamBooth (Ruiz et al.,
2022), is to implant a given subject into the diffusion
model and bind it with a unique text identifier to indicate
its presence; so that the model can generate various
renditions of the subject vividly guided by text prompts (Lu
et al., 2020; Lee et al., 2019). To capture the subject X ,
we need a few (usually 3 to 5) images of this subject
{X i}si=1 causally taken from different point-views and
conditions. As in previous work (Ruiz et al., 2022), the
subject X can be implanted to the diffusion model x̂θ by
minimizing a concept-preserving loss Lcon together with
a prior-preserving loss Lpr in the parameter space θ ∈ Θ.
Let X i

t = αtX i + σtϵ, ϵ ∼ N (O, I), and cX be the text
prompt ‘A V ∗ [category name]’ for this subject, then the
subject-preserving loss is

Lsub = EX i,ϵ,t[ωt∥x̂θ(X i
t , t, c

X )−X i∥22]. (2)

It explicitly binds the subject with the text identifier V ∗. To
avoid over-fitting and language-drift (Ruiz et al., 2022), we
further need the prior-preserving loss

Lpr = E(xpr,cpr),ϵ,t[ωt∥x̂θ(x
pr
t , t, cpr)− xpr∥22], (3)

where (xpr, cpr) are image text prompt pairs with different
subjects but the same category as the subject to implant. The
full objective function is a combination of them as

Lcon = Lsub + λLpr. (4)

3. Method
Our purpose here is to locate the corresponding neurons
that control the generation of the given subject and use
those neurons to guide customized generation (Ruiz et al.,
2022; Kumari et al., 2022). For a diffusion model x̂θ,θ =
(θ1, · · · ,θn)T ∈ Θ ⊂ RN , where N is the parameter
volume, we want to find a small collection of neurons θH =
(θh1

, · · · ,θhn
)T , 1 ≤ h1 < h2 < · · · < hn ≤ N,n ≪

N, so that changes in them alone is enough to produce
renditions of the given subject in different contexts, based
on the text prompts.

This task significantly differs from previous customized
generation work and is much more challenging. Here we

not only pursue the generation quality of the subject but are
also eager for the underline mechanism of how the diffusion
model memorizes subjects in its parameter space. So our
primary focus is on the interpretability of network neurons
and how they influence the generation.

Advantages. Such methodology will allow significant
practical advantages. As we will show in Sec. 3.1, simple
statistics of network gradients can efficiently identify those
concept neurons. Once locating them, we can directly
add concept neurons of multiple subjects to generate them
all together in the results, demonstrating the powerful
interpretability of Cones as is discussed in Sec. 3.2. A
couple of fine-tuning steps based on the above addition
results can further enhance the generation in visual quality
and multi-subject capability. To the best of our knowledge,
this is the first method to manage to generate four different
diverse subjects in one image. We will discuss this in
detail in Sec. 3.3. Another superiority of Cones is its
storage efficiency. Thanks to the sparsity and robust
binary representation of concept neurons, storing concept
neurons consumes only around 10% memory of Custom
Diffusion (Kumari et al., 2022) and 0.05% memory of
Dreembooth (Ruiz et al., 2022). This storage-friendly
property enables large-scale commercial applications of
customized generation.

3.1. Concept Neurons for a Given Subject

In this section, we analyze how neurons in a text-to-
image diffusion model react to different subjects and locate
the concept neurons corresponding to a given subject.
While previous research shows that the K-V attention
layer (Kumari et al., 2022) dominates the subject generation
process, we follow its setting and limit the search for concept
neurons in the parameters of the K-V attention layers. In
what follows, we always assume that Θ is the parameter
family for K-V attention layers.

Cones is inspired by Functional magnetic resonance imaging
(fMRI) (Huettel et al., 2004) in medicine. It measures
the small changes in blood flow that occur with brain
activity. Research believes that different concepts, like
visual objects or elements of experience, will induce blood-
oxygen-level-dependent contrast (Logothetis et al., 2001;
Kwong et al., 1992; Sharoh et al., 2019) in brain neurons
of the human medial temporal lobe separately. Those
brain neurons that prefer a specific concept are called brain
concept neurons (Bausch et al., 2021) for this concept, and
they dominate the brain response to this concept. We thus
wonder whether there is also a preference for concept in the
neurons of a pretrained diffusion model and whether they
are responsible for generating this concept.

Specifically, we want to find a couple of neurons that,
scaling down their absolute value, can reconstruct the
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subject while maintaining prior information of the model,
thus being able to generate the given subject in diverse
contexts. This is equivalent to decreasing the value of the
concept-implanting loss in Eq. (4). We do not consider the
effect of scaling up for numerical reasons (values of scaling
up can be up to infinity while scaling down is bounded
by the initial values of neurons). Let θ = θh denote the
h-element of the whole parameter vector θ for simplicity.
Scaling it by factor α will produce concept-implanting loss
Lcon(αθ). Let ρ = (1 − α)(θ ∂Lcon

∂θ )−1. We can rewrite it
as

Lcon(αθ) = Lcon(θ(1− ρθ
∂Lcon

∂θ
)). (5)

Through Taylor expansions (Rudin et al., 1976), we know
that

Lcon(αθ) ≈ Lcon(θ)− ρθ2
∂Lcon

∂θ

2

< Lcon(θ) (6)

as long as 0 < ρ ≪ 1. To make Eq. (5) is a scaling down,
we need (when 0 < ρ ≪ 1)

0 < α = 1− ρθ
∂Lcon

∂θ
< 1 ⇔ θ

∂Lcon

∂θ
> 0. (7)

In conclusion, θLcon

∂θ > 0 will indicate whether scal-
ing down the h-th parameter will decrease the concept-
implanting loss and thus identify whether θh is a concept
neuron for the given subject X . Rigorously, we can have
the following theorem.

Theorem 3.1 (Identification of Concept Neurons). For
a given parameter θ ∈ θ, slightly scaling down it can
decrease the concept-implanting loss, which is equivalent to

θ
∂Lcon

∂θ
> 0, (8)

and the decreasing value is proportional to (θ ∂Lcon

∂θ )2. Thus
θ is a concept neuron if and only if θ ∂Lcon

∂θ > 0.

Following this theorem, a naive method to detect whether
θ ∈ θ is a concept neuron can be that we sample K different
values θ1, · · · , θK ranging from zero to θ, and if

θ1
∂Lcon

∂θ
(θ1) + · · · θK ∂Lcon

∂θ
(θK) > τ > 0, (9)

where ∂Lcon

∂θ (θk) is the gradient at point θ = θi, k ∈ [K]
and τ is a constant hyper-parameter, then θ is a concept
neuron.

We deduce a self-adaptive sampling method for the choices
of θ1, · · · , θK . We set θ1 = θ, and

θk+1 = θk(1− ρθk
∂Lcon

∂θ
(θk)), k = 1, · · · ,K − 1. (10)

It will sample more densely in the neighborhood where
|θ ∂Lcon

∂θ | is small, thus ambiguous to indicate the valuence,

while sparsely when the valuence is obvious. Parameters
with more ambiguous regions will tend to be excluded from
concept neurons. Thus the identification of concept neurons
will be more cautious and robust.

For all the parameters θ of the diffusion model x̂θ, we
can use Algorithm 1 to compute a concept neuron mask
parallelistically to indicate whether each neuron is or not
a concept neuron. The main computation Eq. (11) can
be further accelerated using the Newton-Leibniz law of
the calculus (Rudin et al., 1976). We use this accelerated
version in practice. See appendix for detail.

Algorithm 1 Computing Concept Neuron Mask
Input: Concept-implanting loss function Lcon, parameter
θ ∈ Rn, maximum sampling number K, hyper-parameter
0 < ρ ≪ 1 and τ > 0.
Set: k = 1 and θk = θ.
repeat

compute

θk+1 = θk ⊙ (1− ρθk ⊙∇θLcon(θ
k)); (11)

update k = k + 1;
until k = K − 1.
Compute: Mp = θ1 ⊙ ∇θLcon(θ

1) + · · · + θK ⊙
∇θLcon(θ

K);
Set: M = 1− (Mp > τ).
Output: Binary concept neuron mask M to indicate
whether each neuron is a concept neuron, 1 for not and 0
for is.

3.2. Interpretability of Concept Neurons

In this section, we explore various aspects of the inter-
pretability of concept neurons. Based on our findings, we
propose a new customized generation method, Cones, which
implants the subject into a diffusion model by shutting the
corresponding concept neurons.

Concept Neurons Indeed Responsible for Generation of
the Corresponding Subject. In Fig. 2, which shows the
attention map of the diffusion model x̂θ before and after
shutting the concept neurons corresponding to the given
subject. We visualize the attention of each word in the
text prompt. Shutting the concept neurons immediately
draw the outline of the given subject in the attention
map corresponding to the text identifier and subsequently
generate the subject in the final output. This shows the
strong connections between concept neurons and the given
subject in the network representations.

Float32, Float16, Quaternary, and Binary Changes to
the Concept Neurons Report Equal Effects. By our
motivation, changes to concept neurons should decrease the
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Figure 2. Attention maps before and after shutting subject-specific concept neurons. Shutting concept neurons draws the outline of given
subject at the attention map of the text identifier V 1∗.

Reference Binary Quaternary Float16 Float32

On a sunny day, the V1∗ teddybear is sitting on the beach.

Figure 3. Results of optimizing the concept-implanting loss on
concept neurons with float32, float16, quaternary, and binary
digital accuracy. Binary digital accuracy corresponds to shutting
the concept neuron without any further tuning. We can observe
close performance for all cases. This demonstrates the strong
robustness of controlling the subject generation of concept neurons.

concept-implanting loss and thus generate the given subject.
To demonstrate the strong interpretability and robustness of
concept neurons, we study the effects of changes in different
digital accuracy. We optimize the concept-implanting loss
on the concept neurons and freeze the remains. We set
the digital accuracy of the optimization to float32, float16,
quaternary, and binary, in turn. We find close performance
in all those cases, as is shown in Fig. 3. This demonstrates
the strong robustness of concept neurons controlling the
generation of the target subject.

Due to the strong performance and interpretability of
binary digital accuracy, we name it Cones for customized
generation and use it as our default method to implant
the subject into diffusion models with concept neurons.
Under this setting, we will first compute the concept neuron
mask for a given subject and directly multiply it to the
network parameter θ. The modified network x̂M⊙θ can
then generate the target subject. This omits any further
optimization on the concept neurons and is thus efficient
and robust.

Additivity of Concept Neurons for Multi-Subject Gener-
ation. The concept neurons admit additivity. Direct
joining concept neurons of multiple different subjects
will yield concept neurons to generate the combination
of them. This is the first time we manage to find an
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(a) Disentanglement (b) Similarity

Figure 4. Disentanglement of concept neurons. (a) The intersection
of concept neurons for two different subjects is sparsely distributed.
(b) The concatenation of concept neurons for two different subjects
is similar to the result of computing concept neurons from a joint
loss of both subjects.

Neuron

Subject #1. Subject #2. Naive #1+#2.

A V1∗ cat. A V2∗ wooden pot. A V1∗ cat playing with
a V2∗ wooden pot.

Figure 5. Additivity of concept neurons. Directly concatenating
concept neurons of a subject cat and a subject wooden pot can
vividly generate them both in the output under the direction of the
text prompt. More results of additivity can be found in Sec. 4.

intrinsic affine semantic structure in the parameter space
of diffusion models. In Fig. 5, we report the result of
directly concatenating the concept neurons for a subject
cat and wooden pot. After shutting the concatenated
neurons, the diffusion model can immediately generate
the two subjects together when accepting text prompts of
the two corresponding identifiers as inputs. We will give
more examples of the additivity for two and three concepts
in Sec. 4. Directly concatenating concept neurons can be an
efficient method for customized multi-subject generations.
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3.3. Collaboratively Capturing Multiple Concepts

For better generation quality and multi-subject generating
capability, we can further fine-tune the concept neurons after
concatenating. We calculate the sum of concept-implanting
losses for all the involved subjects as a multi-concept-
implanting loss. We then replace Lcon in Algorithm 1 with
it and limit the computation in the concatenation of concept
neurons for single subjects, as is shown in Fig. 6. This
step will eliminate subtle conflicts in the concatenation of
concept neurons due to inaccuracy in previous computations.
The computed results can be more powerful in generating
multi-subject. As we will show in Sec. 4, this is the
first work to generate up to four different diverse subjects
contextualized in one image.

Empirically we find the above pipeline slightly better than
learning the concept neurons for multi-subject from scratch,
i.e., searching concept neurons in the whole K-V attention
layers. This could be due to the increasing difficulty and
instability of learning a loss landscape of complicated
components. Besides, as we will show later, concept
neurons enjoy good disentanglement; learning based on
their concatenation could be stable and efficient.

Disentanglement of Concept Neurons. Concept
neurons are well disentangled, which may be part of the
reason for their additivity. Fig. 4 illustrates the concept
neurons for the cat and wooden pot in Fig. 5 (in layer
upblocks.2.attentions.1.transformerblocks.0.attn1.tov
of the StableDiffusion V1.4). We can find that the shared
neurons between two independent concepts are very sparse,
counting merely 2.42% of the total concept neurons. We
also report the differences between the concatenating two
clusters of concept neurons and the result of learning from
scratch. We can find the result of learning from scratch is
close to the concatenation—they share 53.27% neurons.
Thus when only two subjects are involved, learning based
on concatenation performs similarly to learning from
scratch. When involving more subjects, the increasing
complexity of loss function often spoils learning from
scratch. Learning from concatenation, on the other hand,
provides a much more comfortable starting point and
reduces the overall difficulty of the task.

3.4. Efficient Storage

Previous customized generation methods (Ruiz et al., 2022;
Kumari et al., 2022)demand to save the parameters of the
diffusion model in full digital accuracy. This can cost
considerably for large-scale applications in mobile devices.
While the concept neurons are sparse and binary, we only
need to record a small collection of indices for them. Those
indices can be stored with int instead of float data type,
thus further reducing the storage consumption. As we will
discuss in Sec. 4, Cones requires no more than 10% memory
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Figure 6. Illustration of collaborative capturing of multi-subject.
Here we fine-tune the concatenation of concept neurons of multiple
subjects to find a finer concept neuron mask.

of previous customized generation methods.

4. Experiments
4.1. Implementation and Experiment Details

Evaluation Metrics, Datasets, and Implementation De-
tails. We evaluate Cones with two famous metrics for
customized generation proposed in Textual Inversion (Gal
et al., 2022). (1) Image alignment, which measures the
visual similarity between the generated images and the
target concept. Specifically, we use the CLIP (Radford
et al., 2021) model (ViT-L/14, consistent with the text
encoder in Stable Diffusion V1.4) to calculate the CLIP-
space cosine-similarity between the generated images and
the target subject. For multi-subject generation, we calculate
the image alignment of the generated images and each target
subject separately and finally calculate the mean value. (2)
Text alignment, which evaluates the ability of Cones to
edit the target subjects with text prompts. To this end, we
use a variety of prompts with different settings to generate
images, including modifying the background, style, and
attributes. We calculate the average CLIP-space embedding
of the generated images and compute their cosine similarity
with the CLIP-space embedding of the textual prompts,
where we omit the text identifier in textual prompts. All
images used in the paper are downloaded from anonymous e-
commerce websites or Unsplash, like the dataset of Custom
Diffusion (Kumari et al., 2022). Implementation details are
reported in Appendix B.

Competing Methods. To evaluate our generation
quality and multi-subject generation capability, we compare
Cones with three competitors. They are Dreambooth (Ruiz
et al., 2022) that fine-tunes all parameters in the diffusion
model; Text Inversion (Gal et al., 2022) that adds a
new token for each new concept and only updates the
new token embedding during fine-tuning; and Custom
Diffusion (Kumari et al., 2022) that optimizes the newly
added token embedding in text encoder and a few parameters
in diffusion model, namely the key and value mapping from
text to latent features in the cross-attention (Yu et al., 2022;
Vaswani et al., 2017) layers.
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(a) One subject.

(b) Two subjects.

(c) Three subjects.

(d) Four subjects.

Reference images Cones (Ours) Custom Diffusion Dreambooth

A V1∗ tortoise plushy printed on a sweater.

A V1∗ cat is playing with V2∗ wooden pot on a table,
and a rose in the V2∗ wooden pot.

A V1∗ chair with a V2∗ teddybear sitting on it,
and the V2∗ teddybear is wearing V3∗sunglasses.

A V1∗ woman is wearing V2∗ earrings on her ear,
and V3∗ sunglasses on her face, with V4∗ lake in the background.

Figure 7. Comparison of multi-subject generation ability. First row: compared with other methods, ours can better generate the “sweater”
in the prompt. Second row: Our method better reflects the semantics of “playing”, while Dreambooth loses the details of the wooden pot.
Third row: our generated images have a higher visual similarity with the target subject, and better semantics alignment with “sitting” and
“wearing”. Dreambooth fails to generate “chair”. Fourth row: Cones (Ours) maintains high visual similarity for all subjects.

4.2. Qualitative Evaluation

To demonstrate the effectiveness of Cones, we conduct
experiments on authentic images of diverse categories,
including objects, backgrounds, portraits, etc.. As shown in
Fig. 7, we show the results of generating several subjects
in the same scene for the following four settings: (1) single
subject: tortoise plushy, (2) two subjects: cat + wooden
pot, (3) three subjects: chair + teddybear + sunglasses,
(4) four subjects: woman + earrings + sunglasses + lake.
For each method and subject setting, we sample 20 output
images using 20 random seeds. We then select the best two
of the 20 images as candidates for comparison. We omit
Textual Inversion as it performs much less competitively.
We thus put the generated results of Textual Inversion
in Fig. A12. As shown in Fig. 7 (a), Cones is on-par with two
other methods for visual similarity, but Cones has higher
alignment with the input prompt than other methods for
the single subject. As more subjects are composed together,

Cones can generate images with good visual accuracy for all
subjects. In contrast, the other two methods will make some
subjects disappear or become less similar to the reference
images.

Tuning-Free Comparison. By concatenating two clusters
of concept neurons, we can realize the composition of the
two concepts without further fine-tuning. While Custom
Diffusion also provides a tuning-free method to composite
multiple subjects (the “constraint optimization” method),
we compare our concatenation of concept neurons with
it in Fig. 8. It is easy to see that the concatenation of
concept neurons significantly outperforms the tuning-free
composition of the Custom Diffusion in visual quality and
subject-generation accuracy.

4.3. Quantitative Evaluation and User Study

Quantitative Evaluation. We evaluate 20 prompts for
each concept group and generate 50 images per prompt.
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Man

Lake

Sunglasses

Reference images Concatenating concept neurons Constraint optimization in Custom Diffusion

A V1∗ man with a V2∗ lake in the background.

A V1∗ man is wearing V3∗ sunglasses on face.

A V1∗ man is wearing V3∗ sunglasses on his face, with a V2∗ lake in the background.

Figure 8. Comparison of tuning-free subject generation methods. For Cones, we concatenate concept neurons of multiple subjects directly.
For Custom Diffusion, we use the “constraint optimization” method of it to composite multiple subjects.

For the multi-subject generation, we represent the image
alignment as the mean of the visual similarity between
the generated image and all target concepts. As shown in
Tab. 1, For the single subject generation, our visual accuracy
is comparable to Custom Diffusion, slightly lower than
Dreambooth. Yet Cones has higher text alignment, which
means Cones captures those subjects better and is more
faithful to the prompt itself. When the number of involved
subjects increases, Cones outperforms the competitors in all
metrics.

User Study. We conduct a user study to further evaluate
Cones. Two questions are designed to measure the image
alignment and text alignment of all the methods. For text
alignment, we ask the users “which image is most consistent
with the textual description in the prompt”. For image
alignment, we ask the user “Which image is the most similar
to the provided reference images”. We hire 50 annotators to
answer each of those questions. Details of how we conduct
user study can be found in appendix. As shown in Tab. A3,
Cones performs the best in all cases, earning the most votes,
except for image alignment in the single subject generation.

Sparsity and Storage. Thanks to the sparsity of concept
neurons, we only need to record a small collection of indexes
for them in attention layers. Those indices can be stored
with int instead of float data type. As shown in Tab. 2,

Method Text-alignment Image-alignment

Single-
Subject

Textual Inversion 0.312 0.744
DreamBooth 0.344 0.731
Custom Diffusion 0.352 0.722
Cones (Ours) 0.361 0.725

Two-
Subjects

Textual Inversion 0.264 0.630
DreamBooth 0.283 0.673
Custom Diffusion 0.314 0.685
Cones (Ours) 0.337 0.698

Three-
Subjects

Textual Inversion 0.223 0.584
DreamBooth 0.263 0.631
Custom Diffusion 0.289 0.669
Cones (Ours) 0.301 0.685

Four-
Subjects

Textual Inversion 0.219 0.553
DreamBooth 0.238 0.597
Custom Diffusion 0.269 0.632
Cones (Ours) 0.285 0.653

Table 1. Quantitative comparisons. Cones performs the best except
for image alignment in the single subject case. This could be due
to that the image alignment metric is easy to overfit as is pointed
out in Custom Diffusion (Kumari et al., 2022). DreamBooth and
Textual Inversion employ plenty of parameters in the learning,
while Cones only involves the deactivation of a few parameters.

we show the storage required by Cones for multi-subject
generation, and the sparsity of the corresponding concept
neurons. Here sparsity means the percentage of concept
neurons in all the neurons of the attention layers. We can
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Method Storage Sparsity

Dreambooth 3.3GB –
Custom Diffusion 72MB –
Ours (single subject) 1.43MB± 0.34MB 1.32% ± 0.29%
Ours (two subjects) 3.41MB ± 0.56MB 2.43% ± 0.44%
Ours (three subjects) 4.96MB ± 0.70MB 4.54% ± 0.59%
Ours (four subjects) 7.75MB± 0.56MB 7.01% ± 0.26%

Table 2. Storage cost and sparsity of concept neurons. As the
number of target subjects increases, we need to store more indexes
of concept neurons. We save more than 90% of the storage space
compared with Custom Diffusion,

find that Cones costs much less storage compared with the
competitors.

5. Conclusion
This paper reveals concept neurons in the parameter space
of diffusion models. We find that for a given subject,
there is a small cluster of concept neurons that dominate
the generation of this subject. Shutting them will yield
renditions of the given subject in different contexts based on
the text prompts. Concatenating them for different subjects
can generate all the subjects in the results. Further fine-
tuning can enhance the multi-subject generation capability,
which is the first to manage to generate up to four different
subjects in one image. Comparison with state-of-the-art
competitors demonstrates the superiority of using concept
neurons in visual quality, semantic alignment, multi-subject
generation capability, and storage consumption.
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Appendix

A. Proof
A.1. Proof to Theorem 3.1

This is easy to see from Eqs. (5) to (7).

A.2. Further Acceleration of Eq. (11)

Let γ = ξθ and γ = ξ ⊙ θ. Using γ to replace θ as the parameter of x̂θ, and independent variable of Lcon, then by
Newton-Leibniz law of calculus, we have

∂Lcon(γ)

∂ξ
=

∂Lcon(γ)

∂γ

∂γ

∂ξ
= θ

∂Lcon(γ)

∂γ
, (A12)

∇ξLcon(ξ ⊙ θ) = θ ⊙∇γLcon(γ) = θ ⊙∇θLcon(θ)|θ=γ . (A13)

Thus it is easy to see, the gradient descent over function

Lcon(ξ ⊙ θ) (A14)

will yield update rule

ξk+1 = ξk − β∇ξLcon(ξ ⊙ θ) = ξk − βθ ⊙∇γLcon(γ
k), (A15)

γk+1 = ξk+1 ⊙ θ = ξk ⊙ θ − βθ2 ⊙∇γLcon(γ
k) = γk − βθ2 ⊙∇γLcon(γ

k), (A16)

where θ2 = θ ⊙ θ. When learning rate β is small, ξ is initialized as 1, and iteration step k is not large, γk ≈ θ, thus

γk+1 ≈ γk − β(γk)2 ⊙∇γLcon(γ
k) = γk ⊙ (1− βγk ⊙∇γLcon(γ

k)). (A17)

Note that this is actually Eq. (11) and our sampling rule in Eq. (10).

Thus, we can accelerate the computation of neuron concepts by setting γ = ξ ⊙ θ, initializing ξ at 1, and conducting
gradient descent on Lcon(ξ ⊙ θ) with learning rate β and optimization variable ξ. When

ξK ≈ 1− β(γ1 ⊙∇γLcon(γ
1) + γk ⊙∇γLcon(γ

k)), (A18)

we have
Mp =

1

β
(1− ξK). (A19)

So the concept neuron mask can be computed as

M = 1− (Mp > τ) = 1− (ξK < 1− βτ). (A20)

Thus we can use Algorithm A2 to compute the concept neuron mask in practice.

B. Experiment Setups
We supplement the experimental Setups of each method in this section. Consistent with the Custom Diffusion (Kumari
et al., 2022) setting, we use Stable Diffusion V1.4 as the pretrained model. For a fair comparison, we use 50 steps of
DPM-Solver (Lu et al., 2022) sampler with a scale 7.5 for all above methods. All experiments are conducted using an A-100
GPU. For the three methods, except for Textual Inversion, training steps increase linearly as the number of involved subjects
increases, and we initialize the identifier with the same rare occurring token as in Custom Diffusion.

Algorithm A2 Accelerated Computation of Concept Neuron Mask
Input: Concept-implanting loss function Lcon with parameter θ ∈ Rn replaced by θ = ξ ⊙ θ, training step K, learning
rate 0 < ρ ≪ 1 and τ > 0.
Execute: K-step gradient descent updates to variable ξ with loss function Lcon(ξ ⊙ θ) and learning rate ρ.
Compute: Mp = 1

ρ (1− ξ).
Set: M = 1− (Mp > τ).
Output: Binary concept neuron mask M to indicate whether each neuron is a concept neuron, 1 for not and 0 for is.
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Textual Inversion DreamBooth Custom Diffusion Ours

Text
Alignment

Image
Alignment

Text
Alignment

Image
Alignment

Text
Alignment

Image
Alignment

Text
Alignment

Image
Alignment

Single Subject 18.83% 26.17% 26.17% 28.00% 26.83% 20.67% 28.17% 25.17%

Two Subjects 14.83% 18.17% 25.33% 25.67% 29.00% 27.00% 30.83% 29.17%

Three Subjects 10.67% 12.00% 24.67% 23.50% 30.83% 30.16% 34.17% 34.33%

Four Subjects 8.83% 7.83% 20.17% 22.67% 33.17% 34.17% 37.83% 35.33%

Table A3. User study results. The value represents the percentage of users that think the image generated by the corresponding method is
the best. The results show that our method is the most preferred by users for multi-subject generation, on both image and text alignment.

B.1. Textual Inversion

We train with the recommended1 batch size of 4, a learning rate of 0.005 (scaled by batch size for an effective learning rate
of 0.02) for 5,000 steps. The new token embedding is initialized with the category name. When some categories require
multiple tokens to represent, we choose to use an approximation word to summarize the multiple tokens, such as replacing
”wooden pot” with ”pot”.

B.2. Dreambooth

We use the third-party implementation of huggingface (von Platen et al., 2022) for Dreambooth2. Training is with a batch
size of 1, learning rate 5× 10−6, and training steps of 800.

B.3. Custom Diffusion

We use the official implementation3 for Custom Diffusion, which is consistent with paper, i.e., the batch size is set to 4,
training steps is set to 600 and the basic learning rate is 10−5 and scaled by batch size for an effective learning rate of
4× 10−5.

B.4. Cones (Ours)

Our experiments are conducted on an A-100 GPU with a batch size of 2. We use Algorithm A2 to find the concept neurons.
The base learning rate is set to 3× 10−5. we further scale the base learning rate of 6× 10−5 by the number of GPUs and
the batch size.For the single-subject generation, the base learning rate is set to 2× 10−5, which can get better results. We
train 1,000 steps for a single subject.

B.5. User Study

For one- to four-subject generation tasks, we design three different subject combinations for each task. This will yield 12
subject combinations in total. For each subject combination, we design four different text prompts to generate images. Each
text prompt will be combined with 50 random seeds to generate 50 outputs. The best 2 are selected to represent the result of
the corresponding text prompt. We conduct this procedure to all four methods, which results in 48 image octuples. Each
octuple contains two best images generated by each method with each text prompt and subject combination. The results of
user study can be found in Tab. A3.

C. More Results
C.1. Sequential Training Comparison

As shown in Fig. A9, we also evaluate Cones of sequential training on two subjects. Specifically, we optimize the concept-
implanting loss for the second subject while shutting the corresponding concept neurons of the first subject. In the case of
sequential training, we observe severe forgetting of the first concept for Custom Diffusion and DreamBooth, while Cones
performs much better.

1https://github.com/rinongal/textual inversion
2https://github.com/huggingface/diffusers/tree/main/examples/dreambooth
3https://github.com/adobe-research/custom-diffusion
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Target Images

Cones (Ours)

Custom Diffusion

Dreambooth

Generated images

Figure A9. Sequential training results. The model learns ”dog” and ”chair” sequentially. It can be seen that the other two methods have
severe forgetting of ”dog”. Cones retains better for both subjects.

C.2. Style Conversion

As shown in Fig. A10, Cones is able to express a certain style through text guidance and can also be fine-tuned on a fixed
style.

C.3. Editing Performance

As shown in Fig. A11, Cones can capture more similarity in the generation results with the textual descriptions when editing
images with text prompts, like expression switching and changing object colors, as well as adding a background.

C.4. Overfitting on the training prompt template

During fine-tuning, the target images are trained with the text prompt ”photo of a V1* class”, where V1* is the text identifier
of the subject, and class is the class to which the subject belongs. As mentioned in Custom Diffusion (Kumari et al.,
2022), after fine-tuning the models, the generations shift towards the target images and have less diversity compared to the
pretrained model with the prompt ”photo of a V1* class”. However, as shown in Fig. A13, the images generated by Cones
have more diversity, which proves that Cones alleviates overfitting.

C.5. More results on multi subjects

As mentioned in Custom Diffusion (Kumari et al., 2022), the pretrained model encounters difficulty generating multiple
subjects described in a single text prompt. As shown in Fig. A14, when Cones incorporates the Attend-and-Excite (Feng
et al., 2022; Chefer et al., 2023) method to address this issue, it generates better results.
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Generated subject Style subject Impainting results

A watercolor painting of a V2* cat
wearing a V3* sunglasses. V1* art A V1* art painting of a V2* cat

wearing a V3* sunglasses.

Figure A10. Style conversion results. The first column is the style conversion of the image through the knowledge of the pretrained model,
the second column is a specific style, and the third column is the result of our generation in the specific style.

A V1* man with
V2* sunglasses on face.

Generated subject Edited subject

A V1* man is smiling, with V2* sunglasses
on face, with blue hat on head,

with Eiffel Tower in the background.

A V1* man is laughing, with V2* sunglasses
on face, with pink hat on head,

with Eiffel Tower in the background.

Figure A11. Editing results.

C.6. Interpolation results between various subjects

We conduct interpolation experiments in Fig. A15, where we can find a good semantic continuity among the interpolation
points, and all intermediate points produce good visual results. This indicates that the concept neurons locate in the region
of high semantic density and continuity.

C.7. Faliure modes

We show failure cases in Fig. A16, which may occur when juxtaposed displaying two subjects. This seems to be a common
issue in Stable Diffusion as is pointed out in recent studies (Chefer et al., 2023; Feng et al., 2022). Also, more involved
subjects usually decrease the success rate, we observe significantly more failure cases when generating five or more subjects.
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(a) One subject.

(b) Two subjects.

(c) Three subjects.

(d) Four subjects.

Reference images Textual Inversion

A V1∗ tortoise plushy
printed on a sweater.

A V1∗ cat is playing with
V2∗ wooden pot on a table.

A V1∗ teddybear wearing V2∗
sunglasses is sitting on the V3∗ chair.

A V1∗ woman is wearing V2∗ earrings on her ear,
and V3∗ sunglasses on her face, with V4∗ lake in the background.

Figure A12. Multi-subject generation using Textual Inversion. We observe that Textual Inversion struggles with the composition of
multiple subjects.
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Figure A13. Overfitting on the training prompt template. The fourth column corresponds to the training data, and it can be seen that even
without the text identifier, the generations of Custom Diffusion still retain some characteristics of the target images.The generations of
Cones after finetuning has more diversity similar to the pretrained model.
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Target Images

V1∗ flowers next to a V2∗ cat. A V2∗ cat with V3∗ sunglasses.

A V4∗ barrel with a V2∗ cat sitting inside it,
which is wearing V3∗ sunglasses.

V1∗ flowers in a V4∗ barrel
and a V2∗ cat is playing with it.

V1∗ flowers next to a V2∗ cat,
which is wearing V3∗ sunglasses.

A V4∗ barrel decorated with V1∗ flowers,
and a V2∗ cat wearing V3∗ sunglasses.

Figure A14. More results of multi-subject generation
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Figure A15. Interpolation results between the activation of various subjects. We generate images by interpolating the activation of the two
subjects, the horizontal axis represents the different weights of the two subjects, and the middle image represents the equal weight of the
two subjects.
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Figure A16. Failure cases.
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