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Abstract

Safe reinforcement learning (RL) trains a con-
straint satisfaction policy by interacting with the
environment. We aim to tackle a more challeng-
ing problem: learning a safe policy from an of-
fline dataset. We study the offline safe RL prob-
lem from a novel multi-objective optimization
perspective and propose the ϵ-reducible concept
to characterize problem difficulties. The inherent
trade-offs between safety and task performance in-
spire us to propose the constrained decision trans-
former (CDT) approach, which can dynamically
adjust the trade-offs during deployment. Exten-
sive experiments show the advantages of the pro-
posed method in learning an adaptive, safe, ro-
bust, and high-reward policy. CDT outperforms
its variants and strong offline safe RL baselines
by a large margin with the same hyperparameters
across all tasks, while keeping the zero-shot adap-
tation capability to different constraint thresholds,
making our approach more suitable for real-world
RL under constraints.

1. Introduction
Learning high-reward policies from offline datasets has been
a prevalent topic in reinforcement learning (RL) and has
shown great promise in broad applications (Fu et al., 2020;
Prudencio et al., 2022). Various learning paradigms are
proposed to extract as much information as possible from
pre-collected trajectories while preventing the policy from
overfitting (Kostrikov et al., 2021; Sinha et al., 2022). How-
ever, in the real world, many tasks can hardly be formulated
by solely maximizing a scalar reward function, and the exis-
tence of various constraints restricts the domain of feasible
solutions (Gulcehre et al., 2020). For example, though nu-
merous self-driving datasets are collected (Sun et al., 2020),
it is hard to define a single reward function to describe
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the task (Lu et al., 2022). The optimal driving policies
should satisfy a set of constraints, such as traffic laws and
physical dynamics. Simply maximizing the reward may
cause constraint violations and catastrophic consequences
in safety-critical applications (Chen et al., 2021a).

Safe reinforcement learning aims to obtain a reward-
maximizing policy within a constrained manifold (Garcıa
& Fernández, 2015; Brunke et al., 2021), showing advan-
tages to satisfy the safety requirements in real-world applica-
tions (Ray et al., 2019; Gu et al., 2022). However, most deep
safe RL approaches focus on the safety during deployment,
i.e., after training, while ignoring the constraint violation
costs during training (Xu et al., 2022b). The requirement of
collecting online interaction samples brings challenges in
ensuring training safety, because it is a non-trivial task to
prevent the agent from executing unsafe behaviors during
the learning process. Though carefully designed correction
systems or even human interventions can be used as a safety
guard to filter unsafe action in training (Saunders et al.,
2017; Dalal et al., 2018; Wagener et al., 2021), it could be
expensive to be applied due to the low sample efficiency of
many RL approaches (Xie et al., 2021).

This paper studies the problem of learning constrained poli-
cies from offline datasets such that the safety requirements
can be met both in training and deployment. Several recent
works tackle the problem by bridging the ideas in offline
RL and safe RL domains, such as using pessimistic esti-
mations (Xu et al., 2022a) or the stationary distribution
correction technique (Liu et al., 2020; Lee et al., 2022). A
constrained optimization formulation and Lagrange multipli-
ers are usually adopted when updating the policy, targeting
to find the most rewarding policy while satisfying the con-
straints (Le et al., 2019). However, these approaches require
setting a constant constraint threshold before training, and
thus the trained agents can not be adapted to other con-
straint conditions. We believe the capability of adapting
the trained policy to different constraint thresholds is im-
portant for many practical applications, because imposing
stricter constraints is usually at the cost of sacrificing the
task performance and inducing conservative behaviors (Liu
et al., 2022b). Therefore, we aim to study a training scheme
such that the trained agent can dynamically adjust its con-
straint threshold, such that we can control its deployment
conservativeness without further fine-tuning or re-training.
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We also observe that the taxonomy of of�ine safe RL
datasets is not adequately discussed in the literature, while
we believe the characterization of a dataset can signi�cantly
in�uence the problem dif�culty. We provide a novel view
of the of�ine safe RL problem using tools from the multi-
objective optimization (MOO) domain, which unveils the
inherent trade-off between safety performance and task re-
ward. The trade-offs can be described by a function with
respect to the dataset and the constraint threshold, which in-
spires us to propose the Constrained Decision Transformer
(CDT) approach. CDT leverages the return-conditioned se-
quential modeling framework (Chen et al., 2021b) to achieve
zero-shot adaptation to different constraint thresholds at de-
ployment while maintaining safety and high reward. The
main contributions are summarized as follows:

• We study the of�ine safe RL problem beyond a single
pre-de�ned constraint threshold from a novel MOO per-
spective. The insights suggest the limitations of exist-
ing of�ine safe RL training paradigms and motivate us
to propose CDT by leveraging the return-conditioned
sequential modeling capability of Transformer.

• We propose three key techniques in CDT that are impor-
tant in learning an adaptive and safe policy. To the best
of our knowledge, CDT is the �rst successful of�ine
safe RL approach that can achieve zero-shot adaptation
to different safety requirements after training, without
solving a constrained optimization.

• Extensive experiments show that CDT outperforms the
baselines and its variants in terms of both safety and
task performance by a large margin. CDT can general-
ize to different cost thresholds without re-training the
policy, while all the prior methods fail.

2. Related Work
Safe RL.Constrained optimization techniques are usually
adopted to solve safe RL problems (Garc�a & Fernández,
2015; Sootla et al., 2022; Yang et al., 2021; Flet-Berliac &
Basu, 2022; Ji et al., 2023). Lagrangian-based methods use
a multiplier to penalize constraint violations (Chow et al.,
2017; Tessler et al., 2018; Stooke et al., 2020; Chen et al.,
2021c). Correction-based approaches project unsafe actions
to the safe set, aiming to incorporate domain knowledge
of the problem to achieve safe exploration (Zhao et al.,
2021; Luo & Ma, 2021). Another line of work performs
policy optimization on surrogate policy spaces via low-order
Taylor approximations (Achiam et al., 2017; Yang et al.,
2020) or variational inference (Liu et al., 2022a). However,
ensuring zero constraint violations during training is still a
challenging problem.

Of�ine RL. Of�ine RL targets learning policies from col-
lected data without further interaction with the environ-

ment (Ernst et al., 2005). Many regularization and con-
straint methods for of�ine RL are proposed to address the
state-action distribution shift problem between the static
dataset and physical world (Levine et al., 2020; Prudencio
et al., 2022). One type of approach limits the discrepancy
between learned policy and behavioral policy (Fujimoto
et al., 2019; Kumar et al., 2019; Peng et al., 2019; Nair et al.,
2020; Fujimoto & Gu, 2021). Another way is to use value
regularization as implicit constraints(Wang et al., 2020),
e.g., optimizing the policy based on a conservative value
estimation (Kumar et al., 2020). In addition to the above
pessimism mechanism, stationary distribution correction
(DICE)-style methods train the policy by importance sam-
pling, which reduces the estimation variance (Nachum et al.,
2019b;a; Zhang et al., 2020a). Recent research also shows
the great success of leveraging the power of Transformer to
perform behavior cloning style policy optimization (Janner
et al., 2021; Chen et al., 2021b; Furuta et al., 2022).

Of�ine RL with safety constraints. Several recent works
study the of�ine safe RL problem, aiming to achieve zero
constraint violations during training (Le et al., 2019). They
utilize the ideas from both of�ine RL and safe RL, such as
using the DICE-style technique to formulate the constrained
optimization problem (Polosky et al., 2022; Lee et al., 2022).
Lagrangian-based approaches are also explored due to their
simplicity of combining with existing of�ine RL methods,
and are shown to be effective when using conservative cost
estimation (Xu et al., 2022a). However, how to adapt a
trained safe policy to various constraint thresholds is rarely
discussed in the literature.

3. Preliminaries
3.1. CMDP and Safe RL

Safe RL can be described under the Constrained Markov De-
cision Process (CMDP) framework (Altman, 1998). A �nite
horizon CMDPM is de�ned by the tuple(S; A ; P; r; c; � 0),
whereS is the state space,A is the action space,P : S �
A�S �! [0; 1] is the transition function,r : S �A�S �! R
is the reward function, and� 0 : S �! [0; 1] is the initial state
distribution. CMDP augments MDP with an additional ele-
mentc : S � A � S �! [0; Cmax ] to characterize the cost
for violating the constraint, whereCmax is the maximum
cost. Note that this work can be directly applied to multi-
ple constraints and partially observable settings, but we use
CMDP with a single constraint for ease of demonstration.

A safe RL problem is speci�ed by a CMDP and a constraint
threshold� �! [0; + 1 ). Let � : S � A ! [0; 1] denote the
policy and� = f s1; a1; r 1; c1:::; sT ; aT ; rT ; cT g denote the
trajectory, whereT = j� j is the maximum episode length.
We denoteR(� ) =

P T � 1
t =0 r t as the reward return of the

trajectory� andC(� ) =
P T � 1

t =0 ct as the cost return. The
goal of safe RL is to �nd the policy that maximizes the re-
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ward return while limiting the cost incurred from constraint
violations to the threshold� :

max
�

E� � �
�
R(� )]; s:t: E� � �

�
C(� )] � �: (1)

In the of�ine setting, the agent can not collect more data by
interaction but only access pre-collected trajectories from
arbitrary and unknown policies, which brings challenges to
solving this constrained optimization problem.

3.2. Decision Transformer for Of�ine RL

Decision Transformer (DT) (Chen et al., 2021b) is a type
of sequential modeling technique to solve of�ine RL prob-
lems, without considering the constraint in Eq. (1). Unlike
classical of�ine RL approaches that parametrize a single
state-conditioned policy� (ajs), DT takes in a sequence of
reward returns, states, and actions as input tokens, and out-
puts the same length of predicted actions. Given a trajectory
� of lengthT, the reward return at timestept is computed
by Rt =

P T
t 0= t r t 0, then we obtain 3 types of tokens for DT:

reward returnsR = f R1; :::; RT g, statess = f s1; :::; sT g,
and actionsa = f a1; :::; aT g. The input sequence for
DT at timestept is speci�ed by a context lengthK 2
f 1; :::; t � 1g, and the tokens areR � K :t = f RK ; :::; Rt g,
s� K :t = f sK ; :::; st g anda� K :t � 1 = f aK ; :::; at � 1g. The
DT policy is parametrized by the GPT architecture (Radford
et al., 2018) with a causal self-attention mask, such that the
action sequences are generated in an autoregressive manner.
Namely, DT generates a deterministic action at timestep
t by ât = � DT(R � K :t ; s� K :t ; a� K :t � 1). Then the policy
can be trained by minimizing the loss between the predicted
actions and the ground-truth actions in a sampled batch of
data. Typically, DT uses the cross-entropy loss for discrete
action spaces and the`2 loss for continuous action spaces.

4. Method
4.1. The Of�ine Safe RL Problem

In this section, we revisit the of�ine safe RL problem and
investigate its taxonomy based on collected datasets' cost
threshold and properties. DenoteT = f � 1; � 2; :::g as a
dataset of trajectories. For the sake of subsequent analysis,
we make the assumption that the dataset is bothcleanand
reproducible, meaning that any trajectory in the dataset can
be reliably reproduced by a policy. This is an important
precondition, as characterizing noisy datasets that contain
outliers in highly stochastic environments is challenging
and lies beyond the discussion scope of this paper.

To describe a datasetT with both reward and cost metrics,
we introduce the Pareto Frontier (PF), Inverse Pareto Fron-
tier (IPF), and the Reward Frontier (RF) functions that are
inspired by the MOO domain. The PF of a datasetT is
computed by the maximum reward of trajectories under cost

threshold� 2 [0; 1 ):

PF(�; T ) = max
� 2T

R(� ); s:t: C(� ) � �:

Similarly, the IPF of a datasetT is de�ned by the maximum
reward beyond cost threshold� 2 [0; 1 ):

IPF(�; T ) = max
� 2T

R(� ); s:t: C(� ) � �:

The RF is de�ned by the maximum reward with cost� 2 C,
whereC := f C(� ) : � 2 T g is the set of all the possible
episodic cost inT :

RF(�; T ) = max
� 2T

R(� ); s:t: C(� ) = �:

Note that their constraints and domains of� are different.
All the functions characterize the shape of the dataset. RF
is “local” since it represents the highest reward of a cost
and is only de�ned on reachable cost values in datasetT .
On the other hand, PF and IPF are “global”, since PF/IPF is
the supremum of all the RF values w.r.t costs smaller/larger
than a cost threshold. They are both de�ned on a continuous
space of� . It is also easy to observe that the Pareto frontier
PF(�; T ) is a non-deceasing function of� , which suggests
the trade-offs between safety and task performance: �nding
a policy with a small cost return usually needs to sacri�ce the
reward. Based on the de�nition of PF and IPF, we introduce
� -reducible to characterize the property of the dataset.

De�nition 1 (� -reducible). An of�ine safe RL datasetT is
� -reducible w.r.t. threshold� if: PF(�; T ) = IPF(�; T ) + � .

It is worth noticing that� 2 R rather thanR� 0. A positive
� means that there does not exist any trajectory� 2 T that
can achieve a higher reward thanPF(�; T ) even if removing
the safety constraint, so the optimal policy is more likely to
be an interior point within the safety boundary. A negative
� indicates that the reward of most rewarding trajectories in
T is upper bounded byPF(�; T ) � � , and thus the agent has
a high chance for violating safety constraint if the policy
greedily maximizes the reward. In this case, the optimal
policy will likely be on the safety constraint boundary.

Fig. 1 shows an example of the cost-reward return plots
of two datasetsT1 andT2. Note that althoughT1 andT2

are collected in the same environment,(�; T1) and(�; T2)
denote two different of�ine safe RL problems. We observe
that the� -reducible property can characterize the task dif-
�culty. For instance, problem(�; T2) is usually easier to
solve than(�; T1), because(�; T2) could bereducedto an
of�ine RL problem by simply maximizing the reward with-
out considering the cost constraint. We have the following
conjecture regarding the task dif�culty:

Suppose problem(�; T ) is � -reducible, then the smaller� ,
the more dif�cult to �nd the optimal solution.
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We empirically validate the hypothesis by experiments over
different � -reducible problems, and interestingly, we �nd
thatstandard of�ine RL algorithms can achieve safe per-
formance with high-reward in large-� -reducible problems
without solving constrained optimizations. However, their
performance deteriorates when the problem(�; T ) pos-
sesses a smaller� value. Detailed results and discussions
can be found in Appendix A.

Remark1 (Applicability). It is important to note that the
comparison of� -reducible values is only valid within a
single task under the same CMDP. Comparisons across
different tasks are not meaningful as a smaller� value in
one task does not necessarily imply that this dataset is more
challenging than another dataset related to a different task
with a larger� .

Remark2 (Limitations). The concept of� -reducibility may
fall short when characterizing the complexity of noisy
datasets or datasets related to highly-stochastic tasks. This
is primarily because noisy datasets may include outlier tra-
jectories with improbable high rewards and low costs. Simi-
larly, in a highly-stochastic environment, the initial state dis-
tribution can signi�cantly in�uence the �nal reward and cost.
As such, the dataset is also likely to contain high-reward,
low-cost trajectories due to “lucky” initial conditions.

Remark3 (Relation to Temptation). The concept of re-
ducibility aligns with the temptation de�nition in safe RL
literature (Liu et al., 2022b), as both describe the reward
and cost trade-offs. However, they differ in their operational
domains. Temptation focuses on the policy space and its ex-
pected returns, �agging a problem as tempting if it has high-
reward but unsafe policies. In contrast,� -reducibility eval-
uates the dataset in the trajectory space, labeling a dataset
as small� -reducible if it includes high-reward, high-cost
trajectories. Hence, they offer complementary perspectives
to understand the challenges of safe RL.

The proposed� -reducible can serve as a measure of the
of�ine safe RL problem dif�culties: larger� means the
problem is more likely to bereduced to standard of�ine
RL, though more rigorous analysis remains to be explored
in future work. In this work, we are more interested in
small � -reducible problems, because these problems can
hardly be solved by standard of�ine RL methods. The cost-
reward return plots and their RF curves of the datasets in
our experiments are also presented in Appendix B.2.3.

4.2. Of�ine Safe RL Beyond a Single Threshold

Most existing of�ine safe RL approaches train policies by
solving a constrained optimization problem, where learn-
able dual variables are updated based on the estimation of
constraint violation cost and a target threshold (Xu et al.,
2022a; Lee et al., 2022; Polosky et al., 2022). The cost
return estimation is of the formC� = E� � � [C(� )] and the

Figure 1.Cost-reward return plot for two collected datasetsT1 ; T2 .
Each point represents trajectories with corresponding episodic cost
and reward values in the dataset.

reward return isR� = E� � � [R(� )]. The learning algorithm
aims to train a policy� to maximize the reward returnR�

while satisfying the constraintC� � � . The constrained
optimization training scheme works well in online safe RL
settings (Stooke et al., 2020), however, two main challenges
arise for the of�ine setting. We detail them as follows.

First, the trained policy tends to be either unsafe or
overly conservativedue to biased and inaccurate estimation
in the of�ine setting. This is because the trajectories� from
the datasetT are sampled from various unknown behavior
policies rather than the optimized policy. In RL, biased es-
timation of the reward returnR� may not affect the results
because the maximization operation overR� is invariant to
the bias and scale, However, in safe RL, a biased estimation
of costC� could cause signi�cantly wrong dual variables,
because its absolute value is compared against a �xed thresh-
old � . A small negative bias can lead to unsafe behaviors,
and a positive bias can induce a conservative policy. This
problem is challenging for off-policy safe RL (Liu et al.,
2022a) and is more dif�cult to address in the of�ine setting,
as we will show empirically in the experiment section 5.1.

Second,the trained policy cannot be easily adapted to dif-
ferent constraint thresholds without re-training. The cost
threshold needs to be pre-selected and kept �xed throughout
training because otherwise, the dual variables for penalizing
constraint violations could be unstable when solving the
constrained optimization and thus diverge the learning pro-
cess. Therefore, adapting the policy to different constraint
conditions requires re-training with new thresholds.

The second challenge corresponds to the problem of learn-
ing a safe policy from the of�ine dataset beyond a single
constraint threshold. Formally speaking, given a dataset
T , the trained agent� (ajs; � ) is expected to be general-
ized to arbitrary cost thresholds8� 2 [Cmin; Cmax], where
Cmin; Cmax are the minimum and maximum of the cost re-
turn of the trajectories in the dataset. The best reward return
of � (ajs; � ) is lower-bounded by the Pareto frontier value
of the dataset with threshold� : PF(�; T ).

The limitations of the constrained optimization-based train-
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ing paradigm motivate us to think about other learning
schemes. We �nd that sequential modeling techniques, such
as Decision Transformer (DT) (Chen et al., 2021b), have
great potential to achieve zero-shot adaptation to differ-
ent constraint thresholds while maintaining safety and near
Pareto optimal task performance, As introduced in Sec. 3.2,
the DT policy predicts target-return-conditioned actions,
which provides the �exibility to adjust the agent behaviors
after training. However, we observe that simply adding a
target cost return token to the input sequence of DT can
hardly ensure safety in practice. Therefore, we propose two
simple yet effective improvements over DT to train a safe
and adaptive policy, which yields the Constrained Decision
Transformer (CDT) algorithm.

4.3. Constrained Decision Transformer

Figure 2.Constrained decision transformer architecture.

CDT is built upon the DT architecture with two main differ-
ent components: 1) stochastic policy with entropy regular-
ization, and 2) Pareto frontier-oriented data augmentation by
target return relabeling. We found that the two techniques
play crucial roles in improving safety and robustness against
con�icting target returns. We detail them as follows.

Stochastic CDT policy with entropy regularization. The
model architecture of CDT is shown in Fig. 2, where the
differences between CDT and DT are highlighted in or-
ange. Recall that the input tokens for DT areR � K :t =
f RK ; :::; Rt g, s� K :t anda� K :t � 1, whereK 2 f 1; :::; t �
1g is the context length andRt =

P T
t 0= t r t 0 is the re-

ward return of stept. CDT augments the input sequences
with an additional element that represents the target cost
thresholdC � K :t = f CK ; :::; Ct g, whereCt =

P T
t 0= t ct 0

is the cost return starting from timestept. The intuition
is to generate actions conditioned on both the reward re-
turn and the cost return. For example, at timestept, set-
ting Ct = 10 andRt = 80 means that we expected the
agent to obtain80 rewards with a maximum allowed10
costs. Different from DT, which predicts deterministic ac-
tion sequences, CDT adopts the stochastic Gaussian policy
representation, drawing inspiration from the Online Deci-
sion Transformer architecture (Zheng et al., 2022). Denote
ot := f R � K :t ; C � K :t ; s� K :t ; a� K :t � 1g as the input to-
kens and� as the CDT policy parameters, we have:

� � (�jot ) = N (� � (ot ); � � (ot )) :

The use of a stochastic representation confers multiple ben-
e�ts. Firstly, a deterministic policy may be more prone to
producing out-of-distribution actions due to systematic bias,
which can lead to large compounding errors in an of�ine en-
vironment and potentially result in constraint violations (Xu
et al., 2022a). Further details on this property can be found
in Appendix D.1. Secondly, the stochastic policy represen-
tation allows the policy to explore a more diverse range of
actions and enhance performance through interaction with
the environment. This aligns with the pretraining and �ne-
tuning learning paradigm in the literature and shows great
promise for real-world applications (Zheng et al., 2022). Fi-
nally, we can easily apply a regularizer to prevent the policy
from over�tting and improve the robustness against approx-
imation errors (Ziebart, 2010; Eysenbach & Levine, 2021).
We adopt the Shannon entropy regularizerH [� � (�jo)] for
CDT, which is widely used in RL (Haarnoja et al., 2018).
The optimization objective is to minimize the negative log-
likelihood loss while maximizing the entropy with weight
� 2 [0; 1 ):

min
�

Eo�T [� log � � (ajo) � �H [� � (�jo)]] (2)

Since CDT adopts the target returns-conditioned policy
structure, the agent behavior is sensitive to the choices of
target reward and cost. In of�ine RL, one can set a large
enough target reward for the agent to maximize the reward.
However, as shown in Fig. 1, the feasible choices of valid
target cost and reward return pairs are restricted under the
RF points, which brings a major challenge for CDT: how
can we resolve the potential con�ict between desired returns
and ensure the target cost is of higher priority than the target
reward? For instance, if the initial reward return is set to be
slightly higher than the RF value of the initial target cost
threshold, then it is hard to determine whether the policy
will achieve the desired reward but violate the constraint or
satisfy the cost threshold but with a lower reward.

Figure 3.Data augmentation.

Data augmentation by return relabeling. We propose an
effective augmentation technique to address the above issue
by utilizing the Pareto frontier and reward frontier properties
of the trajectory-level datasetT . Suppose(�; � ) is an infea-
sible target return pair, i.e.,� > RF(�; T ). We associate the
con�ict target with the safe trajectory that of the maximum
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Algorithm 1 Data Augmentation via Relabeling
Input: datasetT , samplesN , reward sample maxr max

Output: augmented trajectory datasetT
1: cmin  min � �T C(� ), cmax  max� �T C(� )
2: for i = 1 ; :::; N do
3: . sample a cost return
4: � i � Uniform(cmin ; cmax )
5: . sample a reward return above the RF value
6: � i � Uniform(RF(� i ; T ); rmax )
7: . �nd the closest and safe Pareto trajectory
8: � �

i  arg max� �T R(� ); s:t: C(� ) � � i

9: . relabel the reward and cost return
10: �̂ i  f R �

i + � i � R(� �
i ); C �

i + � i � C(� �
i ); s�

i ; a�
i g

11: . append the trajectory to the dataset
12: T  T [ f �̂ i g
13: end for

reward return: � � = arg max � �T R(� ); s:t: C(� ) �
� . We can observe that� � = f R � ; C � ; s� ; a� g is the
maximum-reward Pareto optimal trajectory with cost less
than � . Then we append the new trajectory data�̂ =
f R � + � � R(� � ); C � + � � C(� � ); s� ; a� g to the dataset:
T  T [ f �̂ g. Note that the operators overR � andC �

are element-wise. The intuition is to relabel the associated
Pareto trajectory's reward and cost returns, such that the
agent can learn to imitate the behavior of the most reward-
ing and safe trajectory� � when the desired return(�; � )
is infeasible. Fig. 3 shows an example of the procedure,
where the arrows associate Pareto-optimal trajectories with
corresponding augmented return pairs. The detailed aug-
mentation procedures are presented in Algorithm 1.

It is worth noting that real-world datasets can be noisy, oc-
casionally including anomalous ”lucky” trajectories that
record high reward and low-cost returns despite originat-
ing from subpar behavioral policies. These outliers, while
rare, can disrupt the data augmentation procedure, thereby
negatively affecting CDT's performance. To address this
issue, our implementation utilizes two speci�c techniques.
The �rst involves associating each augmented return pair
(r; c) with a trajectory sampled in proximity to the nearest
and safe Pareto frontier data point, based on a speci�ed
distance metric. The second technique employs a density
�lter to remove such outliers exhibiting abnormal reward
and cost returns during the creation of the training dataset,
thus mitigating the outlier concern. More details regarding
these two techniques and empirical validations are available
in Appendix D.2.

Training and evaluation. CDT generally follows the train-
ing and evaluation schemes of return-conditioned sequential
modeling methods (Chen et al., 2021b; Zheng et al., 2022).
The training procedure is similar to training a Transformer
in supervised learning: sample a batch of sequenceso; a

from the augmented datasetT , compute the loss in Eq.
(2) to optimize the Transformer policy model� � via gradi-
ent descent. The evaluation procedure for a trained CDT
model is presented in Algorithm 2. Note that it differs from
standard RL, where the policy directly predicts the action
based on the state. As shown in Fig. 2, the input for the
return-conditioned policy is a tuple of four sequences: target
reward and cost returns for each step, past states, and actions.
Therefore, the output is also a sequence of actions, but we
only execute the last one in the environment. The target
returns will be updated correspondingly upon receiving new
reward and cost signals from the environment.

Algorithm 2 Returns Conditioned Evaluation for CDT
Input: trained Transformer policy� � , episode lengthT,
context lengthK , target reward and costR1; C1, env
1: Get the initial state:s1  env.reset()
2: Initialize input sequenceo = [ f R1; C1; s1g]
3: for t = 1 ; :::; T do
4: Get predicted actionat � � (�jo[� K :])[� 1]
5: Execute the action:st +1 ; r t ; ct  env.step(at )
6: . compute target returns for the next step
7: Rt +1 = Rt � r t ; Ct +1 = Ct � ct ;
8: Append the new tokenot = f Rt +1 ; Ct +1 ; st +1 ; at g

to the sequenceo
9: end for

5. Experiment
In this section, we aim to evaluate the proposed approach
and empirically answer the following questions: 1) can CDT
learn a safe policy from a small� reducible of�ine dataset?
2) what is the importance of each component in CDT? 3)
can CDT achieve zero-shot adaption to different constraint
thresholds? 4) is CDT robust to con�ict reward returns?
To address these questions, we adopt the following tasks to
evaluate CDT and baseline approaches.

Tasks.We use several robot locomotion continuous control
tasks that are commonly used in previous works (Achiam
et al., 2017; Chow et al., 2019; Zhang et al., 2020b). The
simulation environments are from a public benchmark
(Gronauer, 2022). We consider two environments (Run
and Circle ) and train multiple different robots (Car,
Drone , andAnt ). In the Run environment, the agents
are rewarded for running fast between two boundaries and
are given constraint violation cost if they run across the
boundaries or exceed an agent-speci�c velocity threshold.
In the Circle environment, the agents are rewarded for run-
ning in a circle but are constrained within a safe region that
is smaller than the radius of the target circle. We name the
task asrobot-environment such asAnt-Run .

Of�ine datasets. The dataset format follows the D4RL
benchmark (Fu et al., 2020), where we add another cost
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Ant-Run Car-Circle Car-Run Drone-Circle Drone-Run Average
Methods

reward" cost# reward" cost# reward" cost# reward" cost# reward" cost# reward" cost#
CDT(ours) 89.76 0.83 89.53 0.85 99.0 0.45 73.01 0.88 63.64 0.58 82.99 0.72
BC-Safe 80.56 0.64 78.21 0.74 97.21 0.01 66.49 0.56 32.73 0.0 71.04 0.39
DT-Cost 91.69 1.32 89.08 2.14 100.67 11.83 78.09 2.38 72.3 4.43 86.37 4.42
BCQ-Lag 92.7 1.04 89.76 3.91 96.14 3.21 71.14 3.37 47.61 1.81 79.47 2.67

BEAR-Lag 91.19 1.66 15.48 2.24 99.09 0.09 72.36 1.99 19.07 0.0 59.44 1.2
CPQ 78.52 0.14 75.99 0.0 97.72 0.11 55.14 9.67 72.24 4.28 75.92 2.84

COptiDICE 45.55 0.6 52.17 6.38 92.86 0.89 36.44 5.54 26.56 1.38 50.72 2.96
CDT(w/o augment) 93.62 1.53 89.8 1.38 99.58 1.89 74.9 1.35 66.93 1.53 84.97 1.54
CDT(w/o entropy) 87.47 0.64 89.94 1.07 98.92 0.44 73.76 0.97 62.29 0.6 82.48 0.74
CDT(deterministic) 94.21 1.42 89.53 1.43 101.52 17.53 76.4 1.0 68.44 1.36 86.02 4.55

Table 1.Evaluation results of the normalized reward and cost. The cost threshold is 1." : the higher reward, the better.#: the lower cost
(up to the threshold 1), the better. Each value is averaged over 20 episodes and 3 seeds.Bold: Safe agents whose normalized cost is
smaller than 1. Gray: Unsafe agents.Blue: Safe agent with the highest reward.

entry to record binary constraint violation signals. We col-
lect of�ine datasets using the CPPO safe RL approach with
well-tuned hyperparameters (Stooke et al., 2020). We grad-
ually increase its cost threshold such that the trajectories
can cover a diverse range of cost returns and reward returns.
All the training data for CPPO is stored as the raw dataset,
which may contain many repeated trajectories. We further
down-sample the data by applying a grid �lter over the cost-
reward return space (Fig. 1) and trim redundant trajectories
to avoid the impact of unevenly distributed data (Gulcehre
et al., 2020; Gong et al., 2022; Singh et al.). Namely, we di-
vide the cost-reward space into multiple 2D grids, randomly
select a �xed number of trajectories within each grid and dis-
card the remaining ones. The cost-return plots of different
datasets used in this work are presented in Appendix A.

Metrics. We adopt the normalized reward return and the
normalized cost return as the comparison metrics, which
are consistent with the of�ine RL literature (Fu et al., 2020).
Denoter max(T ) andr min(T ) as the maximum reward re-
turn and the minimum reward return in datasetT . The
normalized reward is computed by:

Rnormalized=
R� � r min(T )

rmax(T ) � r min(T )
� 100;

whereR� denotes the evaluated reward return of policy
� . The normalized cost is de�ned a bit differently from
the reward, which is computed by the ratio between the
evaluated cost returnC� and the target threshold� :

Cnormalized=
C�

� + �
;

where� is a small positive number to ensure numerical
stability if the threshold� = 0 . Note that the cost return is
always non-negative in our setting, and we use� = 10 by
default. Without otherwise statements, we will abbreviate
“normalized cost return” as “cost” and “normalized reward
return” as “reward” for simplicity.

We can observe that a policy is unsafe if the cost is greater
than1. We deliberately scale the reward around the range
[0; 100] and the cost around1 to distinguish them in the
result table better. The comparison criteria follow the safe
RL setting (Ray et al., 2019): a safe policy is better than an
unsafe one. For two unsafe policies, the one with a lower
cost is better. For two safe policies, the one with a higher
reward is better.

Baselines with a �xed cost threshold.We use two recent
of�ine safe RL approaches:CPQ (Xu et al., 2022a) and
COptiDICE (Lee et al., 2022) as two strong baselines. We
adopt two Lagrangian-based baselines: BCQ-Lagrangian
(BCQ-Lag) and BEAR-Lagrangian (BEAR-Lag), which is
built upon BCQ (Fujimoto et al., 2019) and BEAR (Kumar
et al., 2019), respectively. The Lagrangian approach follows
the expert policy CPPO implementation, which uses adap-
tive PID-based Lagrangian multipliers to penalize constraint
violations (Stooke et al., 2020). We use the vanilla Decision
Transformer (Chen et al., 2021b) with an additional cost re-
turn token as another baselineDT-Cost, aiming to compare
the effectiveness of the proposed CDT training techniques.
We also include a Behavior Cloning baseline (BC-Safe) that
only uses safe trajectories to train the policy. This serves to
measure whether each method actually performs effective
RL, or simply copies the data.

We also conducted comprehensive studies on the Behavior
Cloning method with different datasets, includingBC-all,
BC-risky, BC-frontier, andBC-boundary. Due to space
constraints, we defer the visualization of datasets and exper-
iment results on these BC-variants to Appendix D.3.

Hyperparameters. We use a �xed set of hyperparameters
for CDT across all tasks. Most common parameters, such as
the gradient steps, are also the same for CDT and baselines.
The detailed hyperparameters are in Appendix C.2.
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