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Abstract

Bayesian inference offers principled tools to
tackle many critical problems with modern neural
networks such as poor calibration and general-
ization, and data inefficiency. However, scaling
Bayesian inference to large architectures is chal-
lenging and requires restrictive approximations.
Monte Carlo Dropout has been widely used as a
relatively cheap way to approximate inference and
estimate uncertainty with deep neural networks.
Traditionally, the dropout mask is sampled inde-
pendently from a fixed distribution. Recent re-
search shows that the dropout mask can be seen
as a latent variable, which can be inferred with
variational inference. These methods face two im-
portant challenges: (a) the posterior distribution
over masks can be highly multi-modal which can
be difficult to approximate with standard varia-
tional inference and (b) it is not trivial to fully
utilize sample-dependent information and correla-
tion among dropout masks to improve posterior
estimation. In this work, we propose GFlowOut
to address these issues. GFlowOut leverages the
recently proposed probabilistic framework of Gen-
erative Flow Networks (GFlowNets) to learn the
posterior distribution over dropout masks. We
empirically demonstrate that GFlowOut results in
predictive distributions that generalize better to
out-of-distribution data and provide uncertainty
estimates which lead to better performance in
downstream tasks.
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1. Introduction
A key shortcoming of modern deep neural networks is that
they are often overconfident about their predictions, espe-
cially when there is a distributional shift between train and
test dataset (Daxberger et al., 2021; Nguyen et al., 2015;
Guo et al., 2017). In risk-sensitive scenarios such as clin-
ical practice and drug discovery, where mistakes can be
extremely costly, it is important that models provide predic-
tions with reliable uncertainty estimates (Bhatt et al., 2021).
Bayesian inference offers principled tools to model the pa-
rameters of neural networks as random variables, placing
a prior on them and inferring their posterior given some
observed data (MacKay, 1992; Neal, 2012). The posterior
captures the uncertainty in the predictions of the model and
also serves as an effective regularization strategy resulting
in improved generalization (Wilson & Izmailov, 2020; Lotfi
et al., 2022). In practice, exact Bayesian inference is often
intractable and existing Bayesian deep learning methods
rely on assumptions that result in posteriors that are less
expressive and can provide poorly calibrated uncertainty
estimates (Ovadia et al., 2019; Fort et al., 2019; Foong et al.,
2020; Daxberger et al., 2021). In addition, even with several
approximations, Bayesian deep learning methods are often
significantly more computationally expensive and slower to
train compared to non-Bayesian methods (Kuleshov et al.,
2018; Boluki et al., 2020).

Gal and Ghahramani (2016) show that deep neural networks
with dropout perform approximate Bayesian inference and
approximate the posterior of a deep Gaussian process (Dami-
anou & Lawrence, 2013). One can obtain samples from this
predictive distribution by taking multiple forward passes
through the neural network with independently sampled
dropout masks. Due to its simplicity and minimal computa-
tional overhead, dropout has since been used as a method to
estimate uncertainty and improve robustness in neural net-
works. Different variants of dropout have been proposed and
can be interpreted as different variational approximations to
model the posterior over the neural network parameters (Ba
& Frey, 2013; Kingma et al., 2015; Gal et al., 2017; Ghiasi
et al., 2018; Fan et al., 2021; Pham & Le, 2021).

There are a few major challenges in approximating the
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Figure 1. In this work, we propose a Generative Flow Net-
work (GFlowNet) based binary dropout mask generator which
we refer to as GFlowOut. Purple squares are GFlowNet-
based dropout mask generators parameterized as multi-layer
perceptrons. zi,l refers to dropout masks for data point in-
dexed by i at layer l of the model. hi,l refers to activations of
the model at layer l given input xi. q(·) are auxiliary varia-
tional functions used and adapted only during model training,
in which the posterior distribution over dropout masks is
conditioned implicitly on input covariates (xi) and directly
on the label (yi) of the data point to make the estimation
easier. p(·) are mask generation functions used at test time,
which are only conditioned on xi and trained by minimizing
the Kullback–Leibler(KL) divergence with q(·). In addition,
both q(·) and p(·) conditions explicitly on dropout masks of
all previous layers.

Bayesian posterior over model parameters using dropout:
(1) the multimodal nature of the posterior distribution makes
it difficult to approximate with standard variational infer-
ence (Gal & Ghahramani, 2016; Le Folgoc et al., 2021),
which assumes factorized priors; (2) dropout masks are
discrete objects making gradient-based optimization diffi-
cult (Boluki et al., 2020); (3) variational inference methods
can suffer from high gradient variance resulting in opti-
mization instability (Kingma et al., 2015); (4) modeling
dependence between dropout masks from different layers is
non-trivial.

The recently proposed Generative Flow Networks
(GFlowNets) (Bengio et al., 2021a;b) frame the problem of
generating discrete objects as a control problem based on the
sequential construction of discrete components. GFlowNets
learn probabilistic policies that sample objects propor-
tional to a reward function (or exp(-energy)). They have
demonstrated better generalization to multimodal distribu-
tions (Nica et al., 2022) and have lower gradient variance
compared with policy gradient-based variational methods
(Malkin et al., 2023), making it an interesting choice for
posterior inference for dropout.

Contributions. In this work, to address the limitations
of standard variational inference, we develop a GFlowNet-
based binary dropout mask generator which we refer to as
GFlowOut, to estimate the posterior distribution of binary
dropout masks. GFlowOut generates dropout masks for a
layer, conditioned on masks generated for the previous layer,
therefore accounting for inter-layer dropout dependence.
Furthermore, the GFlowOut estimator can be conditioned
on the data point: GFlowOut improves posterior estima-
tion here by utilizing both input covariates and labels in
the training set of supervised learning tasks via an auxiliary

variational function. To investigate the quality of the poste-
rior distribution learned by GFlowOut, we design empirical
experiments, including evaluating robustness to distribution
shift during inference, detecting out-of-distribution exam-
ples with uncertainty estimates, and transfer learning, using
both benchmark datasets and a real-world clinical dataset.

2. Related work
2.1. Dropout as a Bayesian approximation

Deep learning tools have shown tremendous power in differ-
ent applications. However, traditional deep learning tools
lack mechanisms to capture the uncertainty, which is of cru-
cial importance in many fields. Uncertainty quantification
(UQ) is studied extensively as a fundamental problem of
deep learning and a large number of Bayesian deep learning
tools have emerged in recent years. For example, Gal &
Ghahramani (2016) showed that casting dropout in deep
learning model training is an approximation of Bayesian
inference in deep Gaussian processes and allows uncertainty
estimation without extra computational cost. Kingma et al.
(2015) proposed variational dropout, where a dropout pos-
terior over parameters is learned by treating dropout reg-
ularization as approximate inference in deep models. Gal
et al. (2017) developed a continuous relaxation of discrete
dropout masks to improve uncertainty estimation, especially
in reinforcement learning settings. Lee et al. (2020) intro-
duced “meta-dropout”, which involves an additional global
term shared across all data points during inference to im-
prove generalization. Xie et al. (2019) replaced the hard
dropout mask following a Bernoulli distribution with the
soft mask following a beta distribution and conducted the op-
timization using a stochastic gradient variational Bayesian
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algorithm to control the dropout rate. Boluki et al. (2020)
combined a model-agnostic dropout scheme with variational
auto-encoders (VAEs), resulting in semi-implicit VAE mod-
els. Instead of using mean-field family for variational in-
ference, Nguyen et al. (2021) utilized a structured represen-
tation of multiplicative Gaussian noise for better posterior
estimation. More recently, Fan et al. (2021) developed “con-
textual dropout”, which optimizes variational objectives in
a sample-dependent manner and, to the best of our knowl-
edge, is the closest approach to GFlowOut in the litera-
ture. GFlowOut differs from contextual dropout in several
aspects. First, both methods take trainable priors into ac-
count, but GFlowNet also takes into account priors that
depend on the input covariate of each data point. Second,
the variational posterior of contextual dropout only depends
on the input covariate (x), while in GFlowOut, the varia-
tional posterior is also conditioned on the label y, which
provides more information for training. Third, within each
neural network layer, the mask of contextual dropout is con-
ditioned on previous masks implicitly, while the mask of
GFlowOut is conditioned on previous masks explicitly by
directly feeding previous masks as inputs into the generator,
which improves the training process. Finally, instead of a
REINFORCE-based gradient estimator used for contextual
dropout training, GFlowOut employs powerful GFlowNets
for the variational posterior.

2.2. Generative flow networks
Generative flow networks (GFlowNets) (Bengio et al.,
2021a;b) are a family of probabilistic models that amor-
tizes sampling discrete compositional objects proportionally
to a given unnormalized density function. GFlowNets learn
a stochastic policy to construct objects through a sequence
of actions akin to deep reinforcement learning (Sutton &
Barto, 2018). GFlowNets are trained so as to make the
likelihood of reaching a terminating state proportional to
the reward. Recent works have shown close connections
of GFlowNets to other generative models (Zhang et al.,
2022a) and to hierarchical variational inference (Malkin
et al., 2023). GFlowNets achieved great empirical success in
learning energy-based models (Zhang et al., 2022b), small-
molecule generation (Bengio et al., 2021a; Nica et al., 2022;
Malkin et al., 2022; Madan et al., 2023; Pan et al., 2023), bi-
ological sequence generation (Malkin et al., 2022; Jain et al.,
2022; Madan et al., 2023), and structure learning (Deleu
et al., 2022). Several training objectives have been pro-
posed for GFlowNets, including Flow Matching (FM) (Ben-
gio et al., 2021a), Detailed Balance (DB) (Bengio et al.,
2021b), Trajectory Balance (TB) (Malkin et al., 2022), and
the more recent Sub-Trajectory Balance (SubTB) (Madan
et al., 2023). In this work, we use the Trajectory Balance
(TB) objective.

3. Method
In this section, we define the problem setting and mathe-
matical notations used in this study, as well as describe the
proposed method, GFlowOut, for dropout mask generation
in detail.

3.1. Background and notation

Dropout. In a vanilla feed-forward neural network (MLP)
with L layers, each layer of the model has weight matrix
wl and bias vector bl. It takes as input activations hl−1

from previous layer with layer index l − 1, and computes
as output hl = σ(wlhl−1 + bl) where σ is a non-linear ac-
tivation function. Dropout consists of dropping out units
from the output of a layer. Formally this can be described
as applying a sampled binary mask zl ∼ p(zl) on the output
of the layer hl = zl ◦ σ(wlhl−1 + bl), at each layer in the
model. In regular random dropout, zl is a collection of i.i.d.
Bernoulli(r) variables, where r is a fixed parameter for all
the layers. Recently, several approaches have been proposed
to learn p(zl) along with the model parameters. In these
approaches, z is viewed either as latent variables or part
of the model parameters. We consider two variants for our
proposed method: GFlowOut where the dropout masks z
are viewed as sample dependent latent variables, and ID-
GFlowOut, which generates masks in a sample independent
manner where z is viewed as a part of the model parame-
ters shared across all samples. Next, we briefly introduce
GFlowNets and describe how they model the dropout masks
z given the data.

GFlowNets. Let G = (S,A) be a directed acyclic graph
(DAG) where the vertices s ∈ S are states, including a
special initial state s0 with no incoming edges, and directed
edges (s → s′) ∈ A are actions. X ⊆ S denotes the termi-
nal states, with no outgoing edges. A complete trajectory
τ = (s0 → . . . si−1 → si · · · → z) ∈ T in G is a sequence
of states starting at s0 and terminating at z ∈ X where each
(si−1 → si) ∈ A. The forward policy PF (−|s) is a collec-
tion of distributions over the children of each non-terminal
node s ∈ S and defines a distribution over complete trajecto-
ries, PF (τ) =

∏
(si−1→si)∈τ PF (si|si−1). We can sample

terminal states z ∈ X by sampling trajectories following
PF . Let π(x) be the marginal likelihood of sampling ter-
minal state x, π(z) =

∑
τ=(s0→···→z)∈T PF (τ). Given a

non-negative reward function R : X → R+, the learning
problem tackled in GFlowNets is to estimate PF such that
π(z) ∝ R(z), ∀z ∈ X . We refer the reader to Bengio
et al. (2021b); Malkin et al. (2022) for a more thorough
introduction to GFlowNets.

We adopt the Trajectory Balance (TB) (Malkin
et al., 2022) parameterization, which includes
PF (−|−;ϕ), PB(−|−;ϕ), and Zγ , where ϕ and γ
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are the learnable parameters. The backward policy PB is a
distribution over parents of every noninitial state, and Z is
an estimate of the partition function.

Within the context of generating dropout masks, a complete
dropout mask x ∈ X is a binary vector of dimension M ,
where M is the number of units in the neural network, i.e.
X is equal to {0, 1}M . A partially constructed mask s ∈ S
is a binary vector of dimension m < M representing the
mask for a set of initial layers in the model, and an action
consists of appending the mask for the subsequent layer to
this vector. That is, each action in the sequence samples
the mask for an entire layer (in parallel), conditioned on the
masks for the previous layers.

In the next section, we formally describe how GFlowNets
can be used for generating dropout masks, as well as practi-
cal implementation details.

3.2. GFlowOut

We consider a generative model of the form p(x, y, z) =
p(x)p(z|x)p(y|x, z), where x is the input data with corre-
sponding label y and z is a local discrete latent variable rep-
resenting the sample-dependent dropout mask, along with
a dataset of observations D = {(xi, yi)}Ni=1. GFlowOut
learns to approximate the posterior p(z|x, y) using the given
dataset D. In a supervised learning task where the goal is
to learn the predictive distribution p(y|x), with the assumed
generative model above, the following variational bound
can be derived:

log

N∏
i=1

p(yi|xi) (1)

= log

N∏
i=1

∑
zi∈X

p(zi|xi)p(yi|xi, zi)

= log

N∏
i=1

∑
zi∈X

p(zi|xi)
q(zi|xi, yi)

q(zi|xi, yi)
p(yi|xi, zi)

=

N∑
i=1

log E
q(zi|xi,yi)

[
p(zi|xi)

q(zi|xi, yi)
p(yi|xi, zi)

]
(2)

≥
N∑
i=1

Eq(zi|xi,yi)

[
log

p(zi|xi)

q(zi|xi, yi)
p(yi|xi, zi)

]

=

N∑
i=1

[
Eq(zi|xi,yi)[log p(yi|xi, zi)]

−KL(q(zi|xi, yi)∥p(zi|xi))

]
(3)

where p(zi|xi) is part of the generative process and
q(zi|xi, yi) is the variational distribution used to approx-
imate the posterior of zi. To improve the efficiency of
training and fully utilize the information available in each

Algorithm 1 GFlowOut

The whole system has the following 3 components:
• Backbone Model (eg, classifier) neural network
p(yi|xi, zi; θ).This algorithm section is written as-
suming p(yi|xi, zi; θ) is an MLP with L hidden lay-
ers, but it can be easily extended to other architec-
tures

• GFlowNet q(zi|xi, yi;ϕ) which approximates the
posterior distribution over dropout masks zi condi-
tioned on both xi and yi from the data point. Its tem-
pered version q∼(zi|xi, yi;ϕ) is used for dropout
mask sampling during training.

• p(zi|xi; ξ), which generates dropout mask distribu-
tion only conditioned on xi, is optimized by min-
imizing KL divergence with q(zi|xi, yi;ϕ) and is
used for dropout mask sampling during test time.

q(zi|xi, yi;ϕ) and p(zi|xi; ξ) are all implemented as
groups of MLPs, one MLP for each layer l and they
do not share parameters with each other nor between
different layers.
Next, we explain how dropout masks are generated
and how p(yi|xi, zi; θ), q(zi|xi, yi;ϕ) and p(zi|xi; ξ) are
computed.

for epoch do
for Iterate data point xi, yi do ▷ (batches used in

actual training)
h0 = xi

var1 = 0 ▷ Variables to store probabilities from
each layer

var2 = 0
for layer l in 1 : L− 1 do

Use current layer’s activation and dropout
masks of all previous layers for mask generation

h′
l,i = ReLU(bl + wlhl−1,i)

zi,l ∼ q∼l (zi,l|h′
l,i, yi, (zi,j)

l−1
j=1;ϕ) ▷ dropout

masks generated
hl,i = zi,lh

′
l,i ▷ apply dropout

var1+ = log ql(zi,l|xi, yi, (zi,j)
l−1
j=1;ϕ) ▷

calculate log probabilities
var2+ = log pl(zi,l|xi(zi,j)

l−1
j=1; ξ)

end for
log q(zi|xi, yi;ϕ) = var1
log p(zi|xi; ξ) = var2

In the output layer, ŷi = fout(bL + wLhL−1,i)
where fout is the output non-linearity of the out-

put layer
Update θ, ϕ, ξ, ω, γ using equations 4-12

end for
end for
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data point, we design q(zi|xi, yi) so that the distribution
of zi is conditioned on both xi and yi. As a consequence,
q(zi|xi, yi) is not accessible during inference where yi is not
available. Instead, p(zi|xi), which is trained by minimizing
KL divergence with q(zi|xi, yi), is used for inference.

Parametrizing each of the terms as p(yi|xi, zi; θ),
q(zi|xi, yi;ϕ) and p(zi|xi; ξ), the goal is to maximize the
lower bound derived above, which we denote as:

B(D; θ, ϕ, ξ) =

N∑
i=1

[
E

q(zi|xi,yi;ϕ)
[log p(yi|xi, zi; θ)]

−KL(q(zi|xi, yi;ϕ)∥p(zi|xi; ξ))

]
(4)

The gradients of B with respect to its parameters are:

∇θB(D; θ, ϕ, ξ) =

N∑
i=1

∇θEq(zi|xi,yi)[log p(yi|xi, zi; θ)]

∇ξB(D; θ, ϕ, ξ) =

N∑
i=1

∇ξEq(zi|xi,yi)[log p(zi | xi; ξ)]

The gradient of the variational objective B with respect to ϕ
requires a score function estimator, which is known to suffer
from high gradient variance (Malkin et al., 2023). Instead
of directly optimizing B with respect to ϕ, we first observe
that B can be written as:

B(D) =

N∑
i=1

(log p(yi|xi)−KL(q(zi|xi, yi)∥p(zi|xi, yi))) ,

making p(zi|xi, yi), the true posterior, a target for the
variational distribution q(zi|xi, yi). We thus propose to
use a GFlowNet with the Trajectory Balance loss to train
q(zi|xi, yi;ϕ) to match its target, given by its unnormalized
density R = p(yi|xi, zi)p(zi|xi). As binary dropout masks
z are high-dimensional discrete objects that can be con-
structed sequentially, we consider them as the terminating
states of a GFlowNet, and instead of learning a distribution
over these terminating states directly, we exploit the DAG
structure to learn a forward policy PF (−|−;ϕ), for which
the terminating state distribution is q(zi|xi, yi;ϕ). The Tra-
jectory Balance loss requires an additional parameter Zγ ,
to train q(zi|xi, yi;ϕ) ((Bengio et al., 2021b; Malkin et al.,
2022)).

Corresponding trajectory balance loss for a trajectory τ =
(s0, ...sL) w.r.t. (Zγ , PF (−|−;ϕ)) will be

LTB(τ,D;ϕ, γ) =

(
log

Zγ

∏L
t=1 PF (st|st−1;ϕ)

R

)2

(5)

where a state sl in the GFlowNet graph refers to the set of
dropout masks sampled by the GFlowNet from layer 1 to
l of the model ((zj)lj=1). L is the number of layers involv-
ing dropout. sL indicates the termination of the trajectory
sampling process. PF (st|st−1;ϕ) refers to the forward pol-
icy in GFlowNets 1. logZγ = f(xi, yi; γ) is the partition
function estimator with parameters γ conditioned on both
xi and yi from the data point indexed by i. Its parameter γ
is trained together with ϕ. R is the reward calculated from
the likelihood of the data and the prior distribution of the
states which are sets of dropout masks (see equation 12).

The parameters ϕ and γ are updated by taking gradient steps
on LTB(τ,D;ϕ, γ) for τ sampled from some training policy.
We choose to make the training policy a tempered version
of q(zi|xi, yi;ϕ), denoted q∼(zi|xi, yi;ϕ). The expected
gradient update is thus equal to

N∑
i=1

E
zi∼q∼(·|xi,yi;ϕ)

∇ϕ,γ( logZγ + log q(zi|xi, yi;ϕ)

− logR)2 (6)

where

logR = log p(yi|xi, zi; θ) + log p(zi|xi, ξ).

During inference one estimates the posterior predictive as
ppred(yi|xi) =

1
M

∑M
j=1 p(yi|xi, zj ; θ) where M different

zj are sampled from the p(zi|xi; ξ) distribution.

Implementation details. Algorithm 1 presents a high-level
overview of the GFlowOut implementation. q(zi|xi, yi;ϕ)
is implemented as a set of multiple MLPs, one for each
layer in the model that requires dropout mask genera-
tion (see Figure 1). At layer l of the model, the dropout
probabilities of all units in layer l are estimated in paral-
lel conditioned on previous layer’s activation hl−1,i, the
label yi, and all dropout mask in layers before l using
ql(zi,l|hl−1,i, yi, (zi,j)

l−1
j=1;ϕ) which is parameterized as an

MLP. The same process is repeated for each layer in the
model. In this way, dropout mask probability at layer l takes
into consideration input xi through hl−1,i, label yi and joint
probability with all dropout mask in previous layers, but are
independent of masks in the same layer. p(zi|xi; ξ) follows
the same implementation except that it is not conditioned
on yi and hence it can be used at test time for prediction. In
convolutional neural networks, GFlowOut is implemented
in a similar manner except that the units are dropped out
channel-wise (Yang et al., 2020; Park & Kwak, 2016). Early
stopping based on performance on the validation set is used
to prevent overfitting. Details of the computational effi-
ciency of GFlowOut are discussed in the Appendix.

1As the graph G used in this study has a tree structure, the
backward policy PB(st−1|st) is a constant so we leave it out of
the equations.
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3.3. ID-GFlowOut: GFlowOut without
sample-dependent information

To understand if the sample-dependent information is
needed, we introduce a variant of GFlowOut that only uses
sample-independent information and keeps the rest of the
algorithm as close to GFlowOut as possible for comparison.

Consider a generative model of the form p(x, y, z) =
p(x)p(z)p(y|x, z). Given a supervised learning task p(y|x),
we generate a dropout mask z that is not conditioned on the
data point. We use q(z) to approximate the posterior of z
which can be seen as part of the model parameters shared
by all data points. The following equations can be derived:

log

N∏
i=1

p(yi|xi) = log
∑
z

p(z)

N∏
i=1

p(yi|xi, z)

= log
∑
z

p(z)
q(z)

q(z)

N∏
i=1

p(yi|xi, z)

= log E
z∼q(z)

[
p(z)

q(z)

N∏
i=1

p(yi|xi, z)]

≥ E
z∼q(z)

log

[
p(z)

q(z)

N∏
i=1

p(yi|xi, z)

]

= E
z∼q(z)

[
N∑
i=1

log p(yi|xi, z)

]
−KL(q(z)∥p(z)) (7)

where the same distribution p(z) is shared across the whole
dataset and q is conditional on the whole data set implicitly.

B(D; θ′, ϕ′) = E
q(z;ϕ′)

N∑
i=1

log p(yi|xi, z; θ
′)

−KL(q(z;ϕ′)||p(z)) (8)

Where B is a lower bound. We parameterized each of the
terms as p(y|x, z; θ′) and q(z;ϕ′). p(z) is set as fixed prior
to each unit of the dropout rate of 0.5. The gradients for
stochastic optimization of θ can be obtained as

∇θB(D; θ′, ϕ′, ξ′) =

N∑
i=1

E
z∼q(z;ϕ′)

∇θ′ log p(yi|xi, z; θ
′)

(9)

The distribution q(z;ϕ′) can be trained as a the policy of a
GFlowNet, using a tempered version q∼(z;ϕ′) to sample
trajectories for training. The expected update direction for
ϕ′ and γ′ can be shown to equal

N∑
i=1

E
zi∼q∼(zi;ϕ′)

∇ϕ,γ′(logZγ′ + log q(zi;ϕ
′)− logR)2,

(10)

where the log-reward for is

logR = N log p(yi|xi, zi; θ
′) + log p(zi). (11)

In ID-GFlowOut, logZγ′ = γ′ and does not condition on
any inputs.

During inference, the posterior predictive estimate is
ppred(yi|xi) = 1

M

∑M
j=1 p(yi|xi, zj ; θ

′) where M differ-
ent zj are sampled from the q(z;ϕ′) distribution.

4. Experiments
In this section, we empirically evaluate GFlowOut2 on a
variety of tasks to understand its ability to generalize across
different distributions and estimate uncertainties in predic-
tion. We first evaluate the generalization performance of
the posterior predictive approximated by GFlowOut on an
image classification task. We also evaluate the efficacy of
GFlowOut in the context of transfer learning. To under-
stand the performance of GFlowOut when used in larger
models and datasets, we conduct Visual Question Answer-
ing (VQA) experiments using Transformer architectures.
Next, we evaluate the uncertainty captured by the posterior
to detect out-of-distribution examples. Finally, we study a
potential application of GFlowOut in a real-world clinical
use case for the cross-hospital prediction of mortality in
intensive care units (ICUs). We supplement these results
with further analysis and additional experimental details in
the Appendix.

Robustness to data distribution shift. To evaluate the ro-
bustness of GFlowOut to distribution shifts between the train
and test data, we study its predictive performance on OOD
examples. We conduct experiments on MNIST, CIFAR-
10, and CIFAR-100 datasets with different types and levels
of deformations. For MNIST, we train a two-layer MLP
with 300 and 100 units respectively and evaluate predictions
on MNIST images rotated by a uniformly sampled angle
(0−360◦). Similarly, we use the ResNet-18 (He et al., 2016)
models for the CIFAR-10/CIFAR-100 datasets and evaluate
their robustness to distribution shifts induced by random
rotations. Additionally, we consider “Snow”, “Frost” and
Gaussian noises image corruptions (Hendrycks & Dietterich,
2019), and analyze the robustness of models to each type of
deformation applied with varying intensities. We consider
both GFlowOut and ID-GFlowOut variants and as baselines
use Random Dropout (Standard Bernoulli Dropout) (Hinton
et al., 2012), Contextual Dropout (Fan et al., 2021) and Con-
crete Dropout (Gal et al., 2017). The results, as summarized
in Table 1, show that models trained using GFlowOut are in
general more robust to random rotations, and GFlowOut out-
performs (or at least matches the performance of) baselines

2Code is available at https://github.com/
kaiyuanmifen/GFNDropout
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Table 1. Performance on clean and corrupted data to evaluate the
robustness of models trained with different dropout methods to
random image rotations at test time.

Data Method Acc. Acc.(rotated)

CIFAR-10

Concrete 90.13 30.68
Contextual 90.12 29.11
Random 91.47 27.04
ID-GFlowOut 91.85 30.57
GFlowOut 91.52 31.00

CIFAR-100

Concrete 62.49 16.43
Contextual 62.30 15.93
Random 67.19 15.70
ID-GFlowOut 69.99 16.29
GFlowOut 69.80 17.01

MNIST

Concrete 97.36 66.10
Contextual 98.15 66.20
Random 87.38 43.96
ID-GFlowOut 97.05 70.19
GFlowOut 96.75 66.41

in five out of six experiments with different levels of cor-
ruption (Figure 2, Appendix Figure 3 and Figure 4). These
observations suggest that models trained with GFlowOut
are more robust to distribution shifts as compared to the
baselines. Better generalization performance to distribution
shifts indicates that GFlowOut potentially learns a better
approximation of the Bayesian posterior over the model
parameters.

Visual Question Answering task using transformer ar-
chitecture To evaluate GFlowOut on large-scale tasks with
larger models, we consider a transformer-based multi-modal
architecture MCAN (Yu et al., 2019) for the Visual Question
Answering (VQA) task, following Fan et al. (2021). The
task involves answering a textual question related to the
content of a given image. There are three types of ques-
tions in the task, namely binary yes/no questions, numerical
questions, and other questions. Dropout is applied on cross-
modal attention between images and texts, within data type
self-attention, and the feed-forward layers after attention.
Our experimental results in Table 2 suggest that GFlowOut
either outperforms or matches the performance of contex-
tual and concrete dropout when tested on generalization to
noisy dataset where a Gaussian noise is added to the visual
inputs (Fan et al., 2021).

Uncertainty estimation for out-of-distribution detection.
Another way to evaluate the quality of the learned posterior
is to analyze the uncertainty estimates on a downstream task.
We consider the standard task of using uncertainty estimates
for detecting out-of-distribution (OOD) examples (Nado
et al., 2021). The intuition is that a well-calibrated model

Table 2. Performance on different question types in Visual Ques-
tion Answering task with a Transformer-based model trained with
different methods.

Method Test Set Acc.(All) Acc.(Yes/No) Acc.(Number) Acc.(Other)

Ide-GFlowOut 66.66 84.21 48.99 58.42
GFlowOut

Original
66.12 83.91 49.01 58.33

Contextual 66.89 84.48 49.04 58.24
Concrete 66.92 84.51 48.66 58.38

Ide-GFlowOut 50.27 74.01 32.16 36.12
GFlowOut

Noisy
50.33 73.31 32.64 40.17

Contextual 49.72 73.81 32.4 35.97
Concrete 50.2 73.5 31.45 37.39

should produce uncertainty in predictions on OOD examples.
This can be useful in cases where difficult OOD examples
can be delegated to humans for more careful consideration.
As in the previous experiments, we consider ResNet-18
models for CIFAR-10/CIFAR-100 classification and com-
pute uncertainty estimates on the CIFAR-10/CIFAR-100
and SVHN (OOD) test sets. Uncertainty for prediction
on each example is calculated using the Dempster-Shafer
metric (Sensoy et al., 2018). For baselines, we consider
Contextual Dropout and Concrete Dropout, along with stan-
dard MC Dropout and Deep Ensembles which are strong
baselines for this task. We run the experiment with 5
seeds and report the mean and standard error. We study
both GFlowOut with sample-dependent information and ID-
GFlowOut with only sample-independent information. In
Table 3, we present AUPR and AUROC for in-distribution
classification (CIFAR-10 and CIFAR-100) and OOD classi-
fication (SVHN) using the uncertainty estimates from each
method. We observe that GFlowOut outperforms the other
dropout baselines with both CIFAR-10 and CIFAR-100 as
the training dataset, indicating that sample-dependent infor-
mation used in GFlowOut results in more calibrated uncer-
tainty estimates. ID-GFlowOut performs well on CIFAR-
100 but performs poorly on CIFAR-10. Results of deep
ensembles, which is a widely used state-of-the-art uncer-
tainty estimation method, is also reported in Table 3 for
comparison.

Adaptation after training on noisy data. Next, we eval-
uate the ability of models trained with GFlowOut to adapt
quickly after being trained on noisy data. Concretely, dur-
ing training we add label noise i.e., we randomly assign the
labels for a fraction (30%) of points in the training set and
then re-train the classifier on a small fraction of the dataset
with clean labels. We adopt the same experimental setup as
the previous experiments. We consider ResNet-18 models
trained on CIFAR-10/CIFAR-100 datasets. As baselines, we
again use Contextual Dropout and Concrete Dropout. Fig-
ure 2 shows that the models trained with GFlowOut perform
adapt faster than the dropout methods we use as a base-
line. We also observe that both the sample-dependent and
sample-independent variants of GFlowOut achieve similar
performance.

Application on real-world clinical data. We explore the
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Figure 2. Top: Evaluating the robustness of ResNet-18 models, trained with different dropout methods, to different amounts of deformation
including SNOW deformation, FROST deformation or Gaussian noise on CIFAR-10/CIFAR-100 at test time. See Figure 3 and 4 in
Appendix for detailed results. Bottom: Evaluating the transfer learning performance of ResNet-18 models trained on CIFAR-10/CIFAR-
100 with label noise and fine-tuned on varying amounts of clean data (i.e., without any label noise).

Table 3. Performance on the out-of-distribution (OOD) detection
task indicates the posterior approximated by GFlowOut provides
better uncertainty estimates.

Data Method AUROC AUPR

CIFAR-10

Concrete 0.909± 0.021 0.872± 0.017
Contextual 0.915± 0.011 0.874± 0.014
MC Dropout 0.882± 0.009 0.869± 0.010
Deep Ensembles 0.935± 0.007 0.912± 0.006
ID-GFlowOut 0.781± 0.021 0.843± 0.018
GFlowOut 0.955± 0.013 0.924± 0.019

CIFAR-100

Concrete 0.795± 0.017 0.691± 0.021
Contextual 0.812± 0.013 0.728± 0.014
MC Dropout 0.783± 0.011 0.715± 0.021
Deep Ensembles 0.842± 0.008 0.731± 0.017
ID-GFlowOut 0.819± 0.008 0.707± 0.012
GFlowOut 0.839± 0.010 0.741± 0.012

competence of GFlowOut as a probabilistic tool for solving
real-world problems. In intensive care units (ICUs), the
ability to forecast the mortality of patients can help clini-
cians to allocate limited resources to help the individuals at
the highest risk. However, to respect patient privacy, most
hospitals have access only to data for a limited number of
patients that is anonymized and available for training pre-
dictive models. Moreover, there are stringent regulations on
the exchange of medical records among hospitals. To enable
data-driven decision-making in these critical scenarios, we
consider learning probabilistic classifiers for the problem of
mortality predictions. We use patients’ medication usage
in the first 48 hrs of ICU stay to make a binary prediction
of mortality during the stay. We emphasize that the predic-

Table 4. Performance of methods on cross-hospital mortality pre-
diction on real-world clinical data from ICUs demonstrates supe-
rior performance of GFlowOut.

Method F1 (Macro) Precision Recall

Concrete 0.528 0.524 0.641
Contextual 0.521 0.518 0.659
Random 0.49 0.5 0.499
ID-GFlowOut 0.499 0.506 0.534
GFlowOut 0.536 0.528 0.681

tions are meant to help decision-makers (doctors) in making
clinical decisions rather than being used directly. We use
a 3-layer MLP trained with 4500 patients’ ICU records, in-
cluding 158 deaths, from one hospital, and tested with data
from another hospital (4018 patients, 147 deaths). Records
of both hospitals are obtained from the eICU database (Pol-
lard et al., 2018). This task encompasses several important
challenges in applying machine learning tools to real-world
tasks: (1) the underlying prediction task is extremely diffi-
cult due to limited information and complex case-specific
clinical details, (2) the data distribution is severely imbal-
anced as deaths are rare events, (3) limited training data
resulting in a complex posterior, and (4) large distribution
shifts between hospitals. Overall, this cross-hospital task
setup is quite challenging. Our results in Table 4, show that
GFlowOut significantly outperforms the baselines, in all
the metrics. While the margins may appear to be small, in
the context of real-world decision-making, they can have a
significant impact. The findings demonstrate GFlowOut’s
effectiveness in addressing risk-averse real-world problems.
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5. Conclusion
In this work, we propose GFlowOut, to learn the poste-
rior distribution over dropout masks in a neural network.
We evaluate GFlowOut on various downstream tasks such
as uncertainty estimation, robustness to distribution shift,
and transfer learning, using both benchmark datasets and
real-world clinical datasets. Our empirical results show the
favorable performance of GFlowOut over related methods
like Concrete and Contextual Dropout. Future work should
involve combining top-down and bottom-up dropout strate-
gies, applying GFlowOut on larger models with complex
architectures, and using it to promote exploration in RL
problems where accurate estimation of posterior has shown
to enhance sample efficiency (Osband et al., 2013).
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A. Appendix
A.0.1. HYPERPARAMETERS

Hyperparameters of the “backbone” ResNet and Transformer models were obtained from published baselines or architec-
tures (He et al., 2016; Yu et al., 2019; Fan et al., 2021; Gal & Ghahramani, 2016; Gal et al., 2017). Several GFlowNet-specific
hyperparameters are taken into consideration in this study, including the architecture of the variational function q(·) and its
associated hyperparameters and the temperature of q∼(·). For ID-GFlowOut, there is an additional hyperparameter, which is
the prior p(z). The parameters are picked via grid search using the validation set. The temperature of q∼(·) is set as 2. In
addition, with a 0.1 probability, the forward policy will choose a random mask set in each layer.

A.0.2. COMPUTATIONAL EFFICIENCY

On a single RTX8000 GPU, training models with GFlowOut takes around the same time as Contextual dropout and Concrete
Dropout, and around twice the time (ResNet 7 hrs and MCAN Transformer 16 hrs) as a model with the same architecture
and random dropout. The three learned dropout methods have similar efficiency during inference.

A.1. Experimental details

A.1.1. SAMPLING DROPOUT MASKS

In the forward pass during inference, 20 samples are used for each data point. In ResNet experiments, dropout masks
are generated for each ResNet block. In the transformer VQA experiment, in each layer, dropout is applied to both the
self-attention and the feed-forward layer.

A.1.2. ROBUSTNESS TO DISTRIBUTION SHIFT

The performance of each method was obtained with 9 repeats of different random seeds for training. Early stop using
validation set was used to prevent overfitting. VQA Transformer experiments are designed according to Yu et al. (2019).

A.1.3. OOD DETECTION

For each data point, we take 20 forward passes and calculate the Uncertainty for prediction on each example using the
Dempster-Shafer metric (Sensoy et al., 2018) and algorithm from Jain et al. (2023). The uncertainty score is used for
classification of in-distribution vs. out-of-distribution data points assuming the later should have higher uncertainty.

A.1.4. ADAPTATION AFTER TRAINING ON NOISY DATA

When training the model with noisy CIFAR-10/100 data, randomly picked 30% data points are assigned a random label in
the whole training set. The model obtained is then fine-tuned using a small number of clean data points all with correct
labels. We conducted experiments with 1000,2000,4000 and 8000 data points used for fine-tuning.

A.1.5. REAL-WORLD CLINICAL DATA

The ICU dataset is a real-world dataset, containing information about the deaths or survival of 126489 patients, across 58
different hospitals, given a set of administrated drugs. The goal of this experiment is to evaluate how well our approach
generalizes, in real-world settings. To imitate this, we built two sets:

• a training set that contains data points about patients from all hospitals, except the hospital with the highest number of
patients (hospital ID 167). This results in a dataset with 120945 entries, which is equally partitioned (70:30 ratio) into
the real training and validation sets.

• a test set that contains information about 5544 patients. As each hospital follows a specific distribution, the test set was
designed to measure the OOD efficiency of GFlowOut, on the widest possible set of patients, which is a real-world
scenario.

We used a 3-layer MLP with multiple Dropout options as presented in Table 4. For the evaluation, we perform 20 forward
passes and take the mean of the prediction.
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Figure 3. Robustness of ResNet-18 models trained with different dropout methods to different amounts of SNOW deformation, FROST
deformation or Gaussian noise in CIFAR-10 during test time

A.2. Analysing dropout masks

Here, we analyze the behavior and dynamics of the binary masks generated by GFlowOut for data points corresponding
to different labels and different augmentations. First, we want to verify that GFlowOut generates masks with probability
proportional to the reward R as defined in equation (7). Our analysis shows a statistically significant correlation between the
probabilities of a set of masks being generated by GFlowNet and the corresponding rewards, with correlation ≥ 0.4 and p
values ≤ 0.05. Next, we want to explore whether GFlowOut generates diverse dropout masks. We take the mean dropout
masks generated during inference for each data point and calculate Manhattan distances among different samples in the data
set. The results are shown in Figure 6.
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Figure 4. Robustness of ResNet-18 models trained with different dropout methods to different amounts of SNOW deformation, FROST
deformation or Gaussian noise in CIFAR-100 during test time

Figure 5. Robustness of ResNet-18 models trained with different dropout methods to different amounts of deformation using Resnet
blocks with components in a slightly different order: BatchNorm -Conv-BatchNorm-Conv
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GFlowOut: Dropout with Generative Flow Networks
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Figure 6. Diversity of binary dropout masks among different data points measured by Manhattan distance
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