Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

Xuejie Liu *1 2 Anji Liu *3 Guy Van den Broeck 3 Yitao Liang 1 4

Abstract
Probabilistic Circuits (PCs) are a general and unified computational framework for tractable probabilistic models that support efficient computation of various inference tasks (e.g., computing marginal probabilities). Towards enabling such reasoning capabilities in complex real-world tasks, Liu et al. (2022) propose to distill knowledge (through latent variable assignments) from less tractable but more expressive deep generative models. However, it is still unclear what factors make this distillation work well. In this paper, we theoretically and empirically discover that the performance of a PC can exceed that of its teacher model. Therefore, instead of performing distillation from the most expressive deep generative model, we study what properties the teacher model and the PC should have in order to achieve good distillation performance. This leads to a generic algorithmic improvement as well as other data-type-specific ones over the existing latent variable distillation pipeline. Empirically, we outperform SoTA TPMs by a large margin on challenging image modeling benchmarks. In particular, on ImageNet32, PCs achieve 4.06 bits-per-dimension, which is only 0.34 behind variational diffusion models (Kingma et al., 2021).

1. Introduction
Developing Tractable Probabilistic Models (TPMs) that are capable of performing various inference tasks (e.g., computing marginals) is of great importance as they enable a wide range of downstream applications such as constrained
design choices in the LVD pipeline lead to drastically different performance (lower is better) on ImageNet32. All LVD-learned PCs have \(\sim 200M \) parameters.

generation (Peharz et al., 2020a; Correia et al., 2020), causal inference (Wang & Kwiatkowska, 2022), and data compression (Liu et al., 2021). Probabilistic Circuits (PCs) (Choi et al., 2020) refer to a class of TPMs with similar representations, including Sum-Product Networks (Poon & Domingos, 2011), and-or search spaces (Marinescu & Dechter, 2005), and arithmetic circuits (Darwiche, 2002). To take full advantage of the attractive inference properties of PCs, a key challenge is to improve their modeling performance on complex real-world datasets.

There have been significant recent efforts to scale up and improve PCs from both algorithmic (Correia et al., 2022; Shih et al., 2021; Oord et al., 2020) and architectural perspectives. In particular, Liu et al. (2022) propose the Latent Variable Distillation (LVD) pipeline that uses less-tractable yet more expressive Deep Generative Models (DGMs) to provide extra supervision to overcome the suboptimality of Expectation-Maximization (EM) based PC parameter learners. With LVD, PCs are able to achieve competitive performance against some widely used DGMs on challenging datasets such as ImageNet32 (Deng et al., 2009).

However, despite its great potential, we have a limited understanding of when and how LVD leads to better modeling performance. As a result, the success of existing instantiations of the LVD pipeline relies heavily on trial and error. For example, as shown in Figure 1, modeling performance varies significantly as we change the DGM or the strategy to obtain supervision from them, even when the size of the PCs are similar.

This work aims to demystify the LVD pipeline and provide

Figure 1. Different design choices in the LVD pipeline lead to drastically different performance (lower is better) on ImageNet32. All LVD-learned PCs have \(\sim 200M \) parameters.

Different design choices in the LVD pipeline lead to drastically different performance (lower is better) on ImageNet32. All LVD-learned PCs have \(\sim 200M \) parameters.
practical design guidelines for image data. By interpreting LVD from a variational inference perspective, we show that the performance of LVD-learned PCs is not necessarily upper bounded by their teacher DGMs. This is in sharp contrast with distilling knowledge from a large neural network to a smaller one, where the training performance typically degrades (Gou et al., 2021). Therefore, instead of trying to use the SoTA DGM to perform LVD, we should focus on a more fundamental question: what properties of the teacher DGM would lead to better performance of LVD-learned PCs? Although there is still no definite answer, we identify practical design guidelines that lead to expressive yet compact PCs.

Following the guidelines, we observe a general deficit in the existing LVD pipeline. Specifically, due to the mismatch between the discrete latent variable assignments requested by PCs and the continuous neural representations, a one-shot discretization method is often used. However, this causes significant information loss and leads to degraded modeling performance. To overcome this problem, we propose a progressive growing algorithm to leverage feedback from the PC to perform dynamic clustering, thus minimizing the performance loss caused by discretization. Progressive growing is also able to exploit reusable substructures, which leads to compact yet expressive PCs. Together with several image-specific design choices derived from the guidelines, we are able to out-perform SoTA TPMs by a large margin on three challenging image-modeling datasets: CIFAR (Krizhevsky et al., 2009) and two downsampled ImageNet datasets (Deng et al., 2009). In particular, we achieve 4.06 bits-per-dimension on ImageNet32, which is better than some intractable Flow models and VAEs.

The ability to answer numerous probabilistic queries (e.g., marginals, entropies) (Vergari et al., 2021) exactly and efficiently distinguishes PCs from various deep generative models. Such ability is typically interpreted as tractability. To guarantee PCs’ tractability, certain structural constraints have to be imposed on their DAG structure. For instance, smoothness together with decomposability ensure that a PC can compute arbitrary marginal probabilities in linear time w.r.t. its size, which is the number of edges in its DAG. These are properties of the variable scope \(\phi(n) \) of PC unit \(n \), that is, the variable set comprising all its descendents nodes.

Definition 2 (Decomposability). A PC is decomposable if for every product unit \(n \), its children have disjoint scopes:

\[
\forall c_1, c_2 \in {\text{in}}(n) \land (c_1 \neq c_2), \quad \phi(c_1) \cap \phi(c_2) = \emptyset.
\]

Definition 3 (Smoothness). A PC is smooth if for every sum unit \(n \), its children have the same scope:

\[
\forall c_1, c_2 \in {\text{in}}(n), \quad \phi(c_1) = \phi(c_2).
\]

2. Background

This section introduces PCs (Sec. 2.1) and the Latent Variable Distillation (LVD) pipeline (Sec. 2.2).

2.1. Probabilistic Circuits

Probabilistic circuits (PCs) are a broad class of TPMs that characterize probability distributions as deep computation graphs. The syntax and semantics of PCs are as follows.

Definition 1 (Probabilistic Circuits). Represented as a parameterized directed acyclic computation graph (DAG), a PC \(p(X) \) defines a joint distribution over a set of random variables \(X \) by a single root node \(n_r \). The nodes in the DAG are divided into three types of computational units: input, sum, and product. Notably, each leaf node in the DAG serves as an input unit, while an inner node can be subdivided into a sum unit or a product unit according to its mechanism for combining child distributions. In the forward path, every inner node receives inputs from its children (denoted \(\text{in}(n) \)) and computes outputs, thus encoding a probability distribution \(p_n \) in a recursive fashion:

\[
p_n(x) := \begin{cases} f_n(x) & \text{if } n \text{ is an input unit,} \\ \sum_{c \in \text{in}(n)} \theta_{n,c} \cdot p_c(x) & \text{if } n \text{ is a sum unit,} \\ \prod_{c \in \text{in}(n)} p_c(x) & \text{if } n \text{ is a product unit,} \end{cases}
\]

where \(f_n(x) \) is a univariate probability distribution (e.g., Gaussian, Categorical), and \(\theta_{n,c} \) represents the parameter corresponding to edge \((n,c)\) in the DAG. Intuitively, a sum unit models a weighted mixture of its children’s distributions, which requires all its edge parameters to be non-negative and sum up to one, i.e., \(\sum_{c \in \text{in}(n)} \theta_{n,c} = 1, \theta_{n,c} \geq 0 \). And a product unit encodes a factorized distribution over its children. Finally, a PC represents the distribution encoded by its root node \(n_r \). Additionally, we assume w.l.o.g. that a PC alternates between the sum and product layers before reaching its inputs.

The ability to answer numerous probabilistic queries (e.g., marginals, entropies) (Vergari et al., 2021) exactly and efficiently distinguishes PCs from various deep generative models. Such ability is typically interpreted as tractability. To guarantee PCs’ tractability, certain structural constraints have to be imposed on their DAG structure. For instance, smoothness together with decomposability ensure that a PC can compute arbitrary marginal probabilities in linear time w.r.t. its size, which is the number of edges in its DAG. These are properties of the variable scope \(\phi(n) \) of PC unit \(n \), that is, the variable set comprising all its descendents nodes.

Definition 2 (Decomposability). A PC is decomposable if for every product unit \(n \), its children have disjoint scopes:

\[
\forall c_1, c_2 \in \text{in}(n) \land (c_1 \neq c_2), \quad \phi(c_1) \cap \phi(c_2) = \emptyset.
\]

Definition 3 (Smoothness). A PC is smooth if for every sum unit \(n \), its children have the same scope:

\[
\forall c_1, c_2 \in \text{in}(n), \quad \phi(c_1) = \phi(c_2).
\]

2.2. Latent Variable Distillation

Despite the recent breakthroughs in developing efficient computational frameworks for PCs (Dang et al., 2021; Molina et al., 2019), exploiting the additional expressive power of large-scale PCs remains extremely challenging. Abundant empirical evidence has attributed this phenomenon to the failure of existing EM-based optimizers to find good local optima in the large and hierarchically nested latent space of PCs (Peharz et al., 2016), which is defined by the hierarchically distributed sum units in their DAGs.

Latent Variable Distillation (LVD) overcomes the aforementioned bottleneck by providing extra supervision to
PC optimizers through semantic-aware latent variable (LV) assignments, which are acquired from less tractable yet more expressive deep generative models (Liu et al., 2022). Specifically, LVD operates by first materializing some/all LVs in the PC. That is, transforming the original PC \(p(X) \) into \(p(X, Z) \) whose marginal distribution over \(X \) stays unchanged, i.e., \(p(X) = \sum_z p(X, Z = z) \).

Next, deep generative models (DGMs) are used to induce semantic-aware assignments of LVs \(Z \) for every training sample \(x \in D_{train} \), leading to an augmented dataset \(D_{aug} := \{(x, z) : x \in D_{train}\} \). This LV induction step can be done in various ways and with different DGMs. For example, in Liu et al. (2022), \(Z \) is obtained by clustering the latent features produced by a Masked Autoencoder (He et al., 2022).

Finally, the augmented dataset \(D_{aug} \) is used to maximize a lower bound of the log-likelihood, as shown on the rightmost term:

\[
\sum_{i=1}^{N} \log p\left(x^{(i)}\right) := \sum_{i=1}^{N} \log \sum_z p\left(x^{(i)}, z\right),
\]

\[
\geq \sum_{i=1}^{N} \log p\left(x^{(i)}, z^{(i)}\right). \tag{1}
\]

After training with the augmented dataset, we can obtain the target distribution \(p(X) \) by marginalizing out \(Z \), which can be done in linear (w.r.t. size of the PC) time (Choi et al., 2020). The PC can then be finetuned with the original dataset to improve further.

The success of LVD is primarily attributed to its ability to simplify the size and depth of PCs’ deeply nested latent variable spaces (Peharz et al., 2016). Specifically, after LV materialization, supervision of the LVs can be provided by DGMs, and EM-based PC parameter learners are only responsible for inferring the values of the remaining implicitly defined LVs. Since the DGMs guide PC learning through their provided LV assignments, we refer to them as teacher models and the PCs as student models.

3. Characterizing Performance Gaps in LVD

Although LVD has demonstrated its potential to boost the performance of large PCs, its effectiveness depends strongly on the design choice of materialized LVs and how they are induced from external sources. Specifically, as shown in Figure 1, a bad design choice will lead to significantly worse performance, while a good one can further close the performance gap with SoTA intractable DGMs. Therefore, a crucial yet unanswered question concerning LVD is: what are the design principles for the LV induction process to achieve good modeling performance?

We provide a preliminary answer to this question by characterizing the performance differences between the teacher DGM and the student PC via variational inference (VI), which is the mathematical foundation of various DGMs such as VAEs (Kingma & Welling, 2013) and Diffusion models (Ho et al., 2020). Consider a latent variable model \(p_{\theta}(x) := \sum_z p_{\theta}(x|z)p_{\theta}(z) \). Instead of directly maximizing the log-likelihood \(\log p_{\theta}(x) \), which could be infeasible, VI proposes to also learn a variational posterior \(q_{\phi}(z|x) \) and maximize the following evidence lower bound (ELBO) of the log-likelihood:

\[
\mathbb{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{KL}(q_{\phi}(z|x) || p_{\theta}(z)). \tag{2}
\]

Consider a PC \(p_{pc}(x) := \sum_z p_{pc}(x|z)p_{pc}(z) \) defined on the same \(X \) and \(Z \) as above. The ultimate goal of LVD is to distill knowledge from \(p_{\theta}(x) \) to \(p_{pc}(x) \) to maximize the PC’s log-likelihood.

A natural way to achieve this is to use \(q_{\phi}(z|x) \) as the variational posterior for the PC. This leads to the following ELBO objective:

\[
\mathbb{E}_{z \sim q_{\phi}(z|x)} \left[\log p_{pc}(x|z) \right] - D_{KL}(q_{\phi}(z|x) || p_{pc}(z)). \tag{3}
\]

Although written in different forms, this ELBO objective is equivalent to Equation (1) up to a constant factor independent of the PC, (see Appx. A for a rigorous elaboration). Intuitively, \(q_{\phi}(z|x) \) is treated as the external model to induce LV assignments \(z \) for every training sample \(x \). Therefore, we call Equation (3) the LVD objective.

The LVD objective provides a bridge to characterize the difference between the performance of the teacher DGM (Eq. (2)) and the log-likelihood of the student PC. Specifically, as shown in Figure 2, the performance gap between the teacher DGM and the LVD objective, termed the LVD gap, characterizes the performance loss of LVD. However, the final performance difference between the teacher DGM and the student PC can be much less than the LVD gap. Specifically, thanks to the tractability of PC, \(p_{pc}(z|x) \) can be obtained in closed form. Therefore, the variational gap between the LVD objective and the PC’s log-likelihood can be closed “for free” right after \(p_{pc}(x|z) \) and \(p_{pc}(z) \) are trained by the LVD objective. That is, as demonstrated in Figure 2, after LVD training, which gives the ELBO shown at the bottom, we can directly obtain a PC with log-likelihood shown at the top-left side.
Perhaps surprisingly, the above analysis suggests that the log-likelihood of the student PC is not necessarily upper bounded by the ELBO of the teacher DGM. Specifically, as illustrated in Figure 2, this happens whenever the variational gap is larger than the LVD gap. In the extreme case where the student perfectly simulates the teacher (i.e., \(p_\theta(x) = p_{\text{pc}}(x|z) \) and \(p_\theta(z) = p_{\text{pc}}(z) \)), the PC becomes a tractable instantiation of \(p_\theta(x) = \sum_z p_\theta(x|z)p_\theta(z) \) that can compute various probabilistic queries. Towards achieving this ideal case, we need to minimize the LVD gap.

A key insight towards closing the LVD gap is to ensure \(p_\theta(x|z) \) (resp. \(p_\theta(z) \)) has similar modeling assumptions to \(p_{\text{pc}}(x|z) \) (resp. \(p_{\text{pc}}(z) \)). This works well in both directions: on the one hand, by mimicking the inductive biases of the DGM (i.e., \(p_\theta(x|z) \) and \(p_\theta(z) \)), we can learn PCs that have better performance as well as fewer parameters; on the other hand, it is often beneficial to remove modeling assumptions in the DGM that cannot be fully adopted by PCs due to their structural constraints, though it might lead to worse performance of the DGM. In the following, we first identify a general source of modeling assumption mismatch, and propose an algorithm to mitigate this problem (Sec. 4). We then demonstrate how these design principles specialize to image data and improve modeling performance (Sec. 5).

4. Latent Variable Distillation from Continuous Neural Representations

A major challenge in minimizing the LVD gap is the mismatch between expressive continuous neural embeddings and the discrete nature of LVs materialized from PCs (since sum units represent discrete mixtures). Therefore, to obtain discrete LV assignments, either a post hoc discretization step (e.g., K-means) is used, or the DGM needs to learn discrete representations, which often leads to worse performance compared to learning continuous features. Such one-shot discretization strategies result in a relatively large LVD gap, which degrades PC modeling performance significantly.

Formally, the variational posterior of the DGM can be decomposed as

\[
q_\phi(z|x) := q(z|h), \quad \text{where } h = g_\phi(x).
\]

Here \(g_\phi \) is a neural network, and \(h \) is a continuous neural representation. Although we still have to discretize \(h \) to obtain LV assignments for the PC, this discretization procedure need not be one-shot: we can leverage feedback from the PC to adjust and re-assign cluster indices to narrow the LVD gap. Specifically, we want the cluster indices (i.e., \(z \)) to be assigned in a way that both respect the neural representation \(h \) (i.e., samples with similar \(h \) are assigned to the same cluster) and are easily learned by the cluster-conditioned PCs \(p_{\text{pc}}(x|z) \). Intuitively, while the latter condition ensures \(p_{\text{pc}}(x|z) \) is properly learned, the former guarantees that \(z \) preserves information from \(h \), which empirically leads to a better \(p_{\text{pc}}(z) \).

Before delving into the details of our solution, we briefly review the LV materialization process and illustrate the structure of cluster-conditioned PCs \(p(x|z) \). Instead of assigning every sum unit an LV (as they represent mixture distributions), we group them according to their variable scopes (cf. Sec. 2.1), and assign every LV to a particular scope. Specifically, since the children of the sum units with every scope \(\phi \) are all product units with the same scope, we can assign each child product unit a unique discrete value. Take...
We proceed to describe the proposed algorithm that overcomes the suboptimality of the aforementioned one-shot discretization method. The algorithm takes as input a dataset \(D_{\text{train}} \) accompanied with continuous neural embeddings, defined as \(D := \{(x, h) : x \in D_{\text{train}}, h = g_\theta(x)\} \). Having materialized a LV \(Z \) that corresponds to scope \(X \), the algorithm also takes an initial cluster-conditioned PC \(p(x|z) \) as input. We assume \(Z \) initially takes a single value (i.e., all samples in \(D_{\text{train}} \) belong to the same cluster), and thus \(p(x|z) \) is represented by a single-headed PC.

Given a predefined number of clusters, denoted \(K \), progressive growing aims to learn both a discretization function that maps every \(h \) into a cluster index \(i \in [K] \), and a \(K \)-headed PC representing \(p(x|z = i) \) (\(\forall i \in [K] \)). Intuitively, a \(K \)-headed PC encodes \(K \) distributions defined on the same set of variables, and each distribution is represented as a sub-PC following Definition 1. However, different from directly encoding the distributions with \(K \) independent PCs, the sub-PCs in a \(K \)-headed PC share certain structures and parameters. This is done by iteratively dividing \(D \) into more clusters and correspondingly learning the structure and parameters of the cluster-conditioned PCs. Specifically, as illustrated in Figure 5, progressive growing operates by repeating four main steps, which are detailed in the following.

Step 1: Training PC with Labeled Dataset. In this stage, we have access to a clustering function \(\lambda_k \) that maps every \(h \) to an index in \([k]\), where \(1 \leq k \leq K \) is the current number of clusters, and a \(k \)-headed PC with the \(i \)th head encoding \(p(x|Z = i) \). We train the PC by maximizing the conditional log-likelihood specified by \(D \) and \(\lambda_m \):

\[
\max_{\phi} \sum_{(x, h) \in D} \log p_\phi(x|Z = \lambda_k(h)), \tag{4}
\]

where \(\phi \) are the parameters of the PC. We optimize Equation (4) with the standard mini-batch EM algorithm (Peharz et al., 2020a; Choi et al., 2021). Hyperparameters are detailed in Appx. B. To learn a compact yet expressive PC, we apply the pruning algorithm proposed by Dang et al. (2022) after the parameter learning phase. This results in significantly smaller PCs with negligible performance loss.

Step 2: Re-assigning Cluster Indices. As hinted by the suboptimality of the one-step discretization method, cluster indices assigned by \(\lambda_k \) may not fully respect the PC \(p(x|z) \). That is, since \(\lambda_k \) is obtained by clustering neural representation \(h \), some samples \(x \) assigned to cluster \(i \) could be better modeled by \(p_\phi(x|Z = j) (j \neq i) \) trained in the previous step. To mitigate this problem, we leverage feedback from the PC to re-assign cluster indices. Specifically, as demonstrated in Figure 5, the cluster index of sample \(x \) is re-labeled as \(z := \text{argmax}_{i \in [K]} p(x|Z = i) \). Function \(\lambda_k \) is modified correspondingly to reflect this change.

As we will elaborate more in the following steps, this relabeling process allows us to escape from poorly assigned clusters in past iterations, and is crucial to the effectiveness of progressive growing.

Step 3: Selecting Clusters to Grow. As suggested by its name, progressive growing operates by iteratively expanding the number of clusters in \(Z \). To improve the overall performance of the cluster-conditioned PC (i.e., Eq. 4), we select clusters with low average log-likelihood to be further divided. Specifically, as illustrated in Figure 5, we first compute the average log-likelihood for each cluster \(i \in [k] \):

\[
\text{LL}_i := \frac{1}{|D_i|} \sum_{x \in D_i} \log p(x|Z = i),
\]

where \(D_i := \{x : (x, h) \in D, \lambda_k(h) = i\} \). We then select a subset of clusters based on \(\{\text{LL}_i\}_{i=1}^k \) and the number of samples belonging to every cluster. See Appx. B for detailed design choices.

Step 4: Growing PC and Re-clustering Data. Suppose the previous step selects a set of cluster indices \(I \) for growing. The goal of this step is to expand these \(|I|\) clusters into \(M \) new clusters (\(M > |I| \)). Under the hood, we need to re-cluster the corresponding subset of samples as well as apply structure modifications to the PC to fit the new clusters. Both procedures are described in the following.

To ensure that the structure and parameters of the multi-headed PC are still relevant to the cluster assignments \(\lambda_k \) after the re-clustering step, a natural approach is to perform iterative growing and clustering to the PC and the dataset, respectively. Specifically, for each selected cluster \(i \in I \), we use K-means to cluster the samples belonging to the \(i \)th cluster into \(n \) clusters, and create \(n-1 \) new PC root units for the added clusters based on \(p_\phi(x|Z = i) \). We use a slightly modified approach to re-cluster training samples for all \(|I|\) clusters simultaneously. Specifically, we first select the subset of samples \((x, h) \) belonging to clusters in \(I \). We then run K-means to cluster the neural representations \(h \) into \(M \) clusters, with the first \(|I|\) cluster centers initialized to be the centers of the clusters in \(I \). \(\lambda_k \) is then updated to reflect the new cluster assignments. In this way, the first \(|I|\) new clusters are still relevant to the corresponding PC \(p_\phi(x|Z = i) (i \in I) \).
Algorithm 1 Grow Multi-Headed PCs

1: Input: A dataset \(D = \{(x^{(i)}_t z^{(i)})\}_{i=1}^N \), where \(z^{(i)} \in [k] \) is the cluster index of \(x^{(i)} \); a \(k \)-headed PC \(p \)
2: Output: A new multi-headed PC \(p' \)
3: Compute \(F_n(D) \) for every PC unit \(n \)
4: \(G \leftarrow \{ n : F_n(D) \geq \epsilon \} \), where \(\epsilon \) is a predefined threshold
5: old2new \(\leftarrow \) dict() \(\triangleright \) Maps \(n \) to a pair of (new) nodes
6: foreach \(n \) traversed in postorder \(\triangleright \) Child before parent
7: \(\text{ch}_1, \text{ch}_2 \leftarrow \text{old2new}[c[0]] \) \(\in \text{in}(m) \), \(\text{old2new}[c[1]] \) \(\in \text{out}(m) \)
8: if \(n \) isa input unit then
9: \(\text{old2new}[n] \leftarrow (n, \text{copy}(n)) \) if \(n \in G \) else \((n, n) \)
10: else if \(n \) isa product unit then
11: \(\text{old2new}[n] \leftarrow (\cdot (\text{ch}_1), (\cdot (\text{ch}_2)) \)
12: else if \(n \in G \) isa sum unit then
13: \(\text{old2new}[n] \leftarrow (+ (\text{ch}_1, \cdot (\text{ch}_2)), + (\text{ch}_1, \cdot (\text{ch}_2)) \)
14: else if \(n \notin G \) isa sum unit then
15: \(\text{old2new}[n] \leftarrow (+ (\text{ch}_1, \cdot (\text{ch}_2)), \text{None}) \)
16: return A multi-head PC with root nodes \(\{ \text{old2new}[n] : n \) is a root node in \(p \} \)

In order to represent the newly-added clusters, the structure of the PC needs to be modified to contain \(M - |I| \) additional root/head units to represent \(p(x | Z = i) \) (\(i \in \{ k+1, \ldots, k+M - |I| \} \)). A simple strategy would be to directly copy all descendent units of \(M - |I| \) existing root units for the new clusters. However, this will significantly increase the size of the cluster-conditioned PC, rendering the progressive growing algorithm highly inefficient. Moreover, it rules out the possibility to reuse sub-circuits that are useful for modeling \(x \) conditioned on different \(z \), seriously limiting the PC’s expressive power at any particular size.

To mitigate this problem, we propose a structure growing operator that only copies the most important substructure for describing a distribution. By introducing additional edges between the original and copied sub-circuit, the PC can learn to share structures that can be used to describe \(p(x | z) \) for various \(z \). At the heart of the growing algorithm is a statistic termed flow that measures the generative significance of a node/edge w.r.t. a sample \(x \) (Dang et al., 2022; Liu & Van den Broeck, 2021), as defined below.

Definition 4 (Circuit flow). For a PC \(p(X) \) and a sample \(x \), the circuit flow for every PC unit \(n \), denoted \(F_n(x) \), is defined recursively as follows (out \((n) \) denotes the set of parent units of \(n \)): first, \(F_n(x) = 1 \) if \(n \) is the root unit; next, if \(n \) is a product unit, we have

\[
F_n(x) := \sum_{m \in \text{out}(n)} \theta_{m,n} \cdot p_m(x) \cdot F_m(x);
\]

otherwise (\(n \) is a sum or input unit), the flow is defined by

\[
F_n(x) := \sum_{m \in \text{out}(n)} F_m(x).
\]

Intuitively, \(\text{Flow}_n(x) \) quantifies the “contribution” of unit \(n \) to the log-likelihood of \(x \). Figure 4 demonstrates an example PC-sample pair with likelihoods labeled on top of each node. Nodes and edges with relatively high flows are labeled red. Note that high node likelihood does not guarantee high flow, which is illustrated by \(n_1 \) and \(n_2 \); they both have high likelihoods, but only \(n_1 \) has high flow. For a dataset \(D \), \(F_n(D) := \sum_{x \in D} F_n(x) \) measures the total contribution of \(n \) to the samples in \(D \).

Recall that our goal is to expand the current \(k \)-headed PC to have \(M - |I| \) additional root units to encode \(p(x | Z = i) \) (\(i \in \{ k+1, \ldots, k+M - |I| \} \)), respectively. To achieve this, we first extend Definition 4 for multi-headed PC. Specifically, while the recurrent definition of the inner nodes remain unchanged, for the \(i \)th root node, we set the flow to 1 if \(x \) is assigned to cluster \(i \) by \(\lambda_n \) and 0 otherwise.

The proposed growing operator is shown in Algorithm 1. It consists of two main parts: in lines 3-4, circuit flow is used to choose a subset of “important” (i.e., nodes with flow higher than a predefined threshold) nodes to be grown; in lines 5-15, the PC is modified in a way that only the selected nodes are duplicated, while other parts are kept unchanged. In our use case, since we want to modify the sub-circuit corresponds to the \(|I| \) chosen clusters, we invoke Algorithm 1 with the subset of samples whose cluster indices are in \(I \). According to the definition of flows, the returned PC will have \(k + |I| \) heads since the \(|I| \) chosen root nodes will be duplicated by the algorithm, while all other nodes will not.

Progressive growing alternates between the four steps described above until we have expanded the number of clusters to a predefined value \(K \). Therefore, the parameters of the multi-headed PC grown by step \#4 will be updated in step \#1 of the algorithm’s next iteration.

In summary, the data re-clustering process in step 4 ensures that the cluster assignments respect the neural representation, and the cluster assigning process in step 2 leads to well-fitted cluster-conditioned PCs.

5. Closing the LVD Gap for Image Data

Using image data as an example, this section demonstrates how the general guidelines for narrowing the LVD gap introduced in Section 3 can be specialized to practical design choices. Throughout this paper, we adopt Vector Quantized Variational Autoencoders (VQ-VAEs) (Van den Oord et al., 2017; Razavi et al., 2019) as the teacher model. In the following, we first briefly introduce VQ-VAE. We then proceed to describe the design choices we make to better align the modeling assumptions of \(p_0(x | z) \) (resp. \(p_0(z) \)) and \(p_{pc}(x | z) \) (resp. \(p_{pc}(z) \)).

As shown in Figure 6, VQ-VAE consists of an encoder that produces a feature map, and a decoder that reconstructs the input image using the feature map. Different from many
other DGMs, the latent feature map of VQ-VAEs is constructed by a codebook with \(M \) vectors representing \(M \) codes. Specifically, the latent embedding at each position must be a vector from the codebook. Since every latent code in the feature map corresponds to a patch of the input image, we materialize an LV \(Z_i \) for each position in the latent feature map, and define the corresponding image patch as \(X_i \). Denote \(Z := \{ Z_i \} \), likelihood given an image \(x \) can be computed as \(p(x) = \sum_z p(z) \prod_i p(x_i | z_i) \). For every \(Z_i \), we can learn \(p(x_i | z_i) \) from the patches \(x_i \) and the corresponding continuous feature vectors \(h_i \) produced by VQ-VAE using the progressive growing algorithm detailed in the previous section. The generated discretization function can then be used to generate \(z = \{ z_i \} \) for every training sample, and is used to train \(p(z) \).

However, in the above treatment, there are mismatches between the modeling assumptions made by VQ-VAE and the PC. First, since the latent feature map produced by VQ-VAE uses the same codebook at all locations, the cluster-conditioned distributions for different patches should be homogeneous. That is, for every discretization function \(\lambda \) and sample pair \((x, h) \), we have \(\forall i, j \in [||Z||] \),

\[
p(X_i = x | Z_i = \lambda (h)) \approx p(X_j = x | Z_j = \lambda (h)).
\]

To reflect this inductive bias, instead of learning \(p(x_i | z_i) \) for every \(i \in [||Z||] \) independently, we aggregate their respective training samples and learn a single cluster-conditioned distribution, which is then applied to every image patch. That is, we do parameter tying between different cluster-conditioned distributions. This not only decreases the number of parameters of the PC, but also allows us to use much more data to train better cluster-conditioned distributions.

Another modeling assumption mismatch comes from the conditional independence between \(X_i \) and \(X \setminus X_i \) given \(Z_i \) assumed by the PC. The convolutional decoder of a VQ-VAE breaks this assumption as \(x_i \) can correlate to other patches given \(z_i \). To mitigate this mismatch, we use an independent decoder where \(z_i \) is the only source of information used to generate \(x_i \). Although this will degrade the performance of VQ-VAE, as demonstrated in Section 3, the performance of LVD-learned PCs can surpass the teacher model. And the primary goal of LVD is to find an initial set of parameters that can be optimized by the EM algorithm to good local optima. We will proceed to show this phenomenon in Section 6.1.

6. Experiments

This section first empirically verify the theoretical findings in Section 3 (Sec. 6.1). We then move on to evaluate our method on image modeling benchmarks (Sec. 6.2).

6.1. Analyzing Performance Gaps in LVD

We empirically investigate the finding in Section 3 that the log-likelihood of the student PC can surpass the ELBO of the teacher DGM. Specifically, we consider an instantiation of the LVD pipeline and empirically compute the three ELBOs shown in Figure 2. For ease of computation, we use VQ-VAE as the teacher model and one-shot K-means discretization strategy to train a PC on Imagenet32. The resulting ELBO of the teacher DGM is \(-2493\) (Fig. 2 top-right), while the LVD objective is \(-2499\) (Fig. 2 bottom). Therefore, the LVD gap is 5, which matches the extreme case mentioned in Section 4 (i.e., the student almost perfectly simulates the teacher). Hence the PC becomes a tractable instantiation of the teacher DGM. Thanks to PCs’ tractability, we are able to close the variational gap for free and obtain a PC with log-likelihood \(-2317\), leading to a student PC better than the teacher DGM.

6.2. Image Modeling Benchmarks

We evaluate the proposed algorithmic improvements to the LVD pipeline on three natural image benchmarks: CIFAR (Krizhevsky et al., 2009) and two down-sampled ImageNet (ImageNet32 and ImageNet64) (Deng et al., 2009).
Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

Baselines. We compare the proposed method, termed LVD with Progressive Growing (LVD-PG) against four TPM baselines: LVD (Liu et al., 2022), Hidden Chow-Liu Tree (HCLT) (Liu & Van den Broeck, 2021), Random Sum-Product Network (RAT-SPN) (Peharz et al., 2020b), and Einsum Network (EiNet). These baselines cover most of the recent endeavors on scaling up and improving the expressiveness of TPMs. Moreover, to evaluate the performance gap with less tractable DGMs, we further compare LVD-PG with the following flow-based models and variational autoencoders: Glow (Kingma & Dhariwal, 2018), RealNVP (Dinh et al., 2016), BIVA (Maaløe et al., 2019) and Variational Diffusion Models (VDM) (Kingma et al., 2021). Details can be found in Appx. C.

Empirical insights. We start by comparing our performance with other TPM models. As shown in Figure 7, LVD-PG consistently outperforms the baselines by a large margin. In particular, on CIFAR, a ~12M LVD-PG model is much better than a ~800M PC trained by LVD; on ImageNet32, a ~20M PC trained by LVD-PG also obtains significant performance gain compared to a ~800M PC trained by original LVD. This indicates that proper design choices can further exploit LVD’s potential to train expressive yet compact PCs, thus significantly boosting the performances of large PCs.

Next, we compare the performance achieved by LVD-PG with the three adopted DGM baselines. Notably, as demonstrated in Table 1, our approach enables PCs to outperform all DGMs except the SoTA VDM on ImageNet64, and on ImageNet32, LVD-PG is only inferior to BIVA with a 0.1 bpd gap and VDM with a 0.34 bpd gap.

Ablation studies. To evaluate the effect of the progressive growing algorithm proposed in Section 4 and the image-data-specific modifications (such as using an “independent decoder” in VQ-VAE) elaborated in Section 5, we do an ablation analysis by training two other PCs without either component, respectively. Both PCs have similar model sizes as the SoTA PC trained with LVD-PG on ImageNet32 (~260M parameters). Specifically, compared to the SoTA LVD-learned PC with 4.06 bpd, the LVD-learned PC without progressive growing only achieves 4.12 bpd, while the performance of the LVD-learned PC with convolutional decoder degrades to 4.18 bpd.

7. Related work

There have been significant recent efforts to scale up and improve the expressiveness of PCs. Many works focus on constructing expressive yet compact initial PC structures (Rahman et al., 2014; Adel et al., 2015; Rooshenas & Lowd, 2014), while others aim for an iterative structure learning process that gradually increases model capacity (Di Mauro et al., 2021; Dang et al., 2020; Liang et al., 2017). These methods have led to significant performance gains on various density estimation datasets.

However, improving the PC structure alone does not seem to offer too much performance gain on real-world high-dimensional datasets such as natural images and text. Towards solving this problem, there have been many recent endeavors to explore different ways of combining PCs with neural networks (NNs) to obtain tractable while expressive hybrid models. For example, Conditional SPNs (Shao et al., 2022) harness the expressive power of NNs to learn conditional density estimators; HyperSPNs (Shih et al., 2021) use NNs to regularize the parameters of PCs; Correia et al. (2022) learn continuous mixtures of PCs with the help of continuous latent-space models represented by NNs.

A key to the above successes in scaling up PCs is the development of computation frameworks and easy-to-use libraries that make training large-scale PCs highly efficient. Specifically, EiNet (Peharz et al., 2020a) and SPFlow (Molina et al., 2019) leverage well-developed deep learning packages such as PyTorch (Paszke et al., 2019) to implement various inference and parameter learning procedures, and Juice.jl (Dang et al., 2021) implement custom kernels to better handle sparse PCs.

8. Conclusion

This paper aims to demystify the latent variable distillation process from intractable Deep Generative Models (DGMs) to tractable Probabilistic Circuits (PCs). We discover both theoretical and empirical evidence that the performance of the student PC can exceed that of the teacher DGM, where the performance gain originates from the tractability of PCs that closes a variational gap “for free”. Following this variational interpretation of the distillation technique, we further propose algorithmic improvements that lead to significant performance gain over SoTA TPMs. It also outperforms several intractable DGM baselines.
Acknowledgements

This work was funded in part by the National Key R&D Program of China (2022ZD0114900), DARPA Perceptually-enabled Task Guidance (PTG) Program under contract number HR00112220005, NSF grants #IIS-1943641, #IIS-1956441, #CCF-1837129, an SRA from Meta and a research gift from Amazon Alexa AI, and a gift from RelationalAI. GVdB discloses a financial interest in RelationalAI.

References

Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

A. Equivalence Between the Two LVD Formulations

Consider a sample \(x \). Suppose its LV assignment \(z \) is generated by \(q_\phi(z|x) \). Then Equation (1) can be written as:

\[
E_{z \sim q_\phi(z|x)} [\log p_{pc}(x, z)] = E_{z \sim q_\phi(z|x)} [\log (p_{pc}(x|z)p_{pc}(z))] ,
\]

\[
= E_{z \sim q_\phi(z|x)} [\log p_{pc}(x|z)] + E_{z \sim q_\phi(z|x)} \left[\log \left(\frac{p_{pc}(z)}{q_\phi(z|x)} \right) q_\phi(z|x) \right] ,
\]

\[
= E_{z \sim q_\phi(z|x)} [\log p_{pc}(x|z)] - D_{KL}(q_\phi(z|x)||p_{pc}(z)) + E_{z \sim q_\phi(z|x)} [\log q_\phi(z|x)].
\]

The first two terms of the last equation are the LVD objective shown in Equation (3). Since the last term is independent with the PC, we conclude that Equations (1) and (3) are equivalent up to a constant factor independent with the PC.

B. Details of the Progressive Growing Algorithm

Training PC with Labeled Dataset. For the cluster-conditioned distribution, we adopt multi-head HCLTs with hidden size 16 and run mini-batch EM optimization with batch size 256. The learning rate anneals linearly from 0.1 to 0.01 for 50 epochs.

Selecting Clusters to Grow. The cluster set \(I \) selected to grow initiates with an empty set, then we choose the cluster with the smallest LL and push all samples belonging to this cluster into \(I \) successively until its capacity reaches a certain threshold. In our experiments, the threshold is fixed to be 40\% of the total number of samples.

Additional Details. Given \(D := \{(x, h) : x \in D_{\text{train}}, h = g_\phi(x)\} \), we first use K-means to pre-cluster the training samples into \(N_1 \) outer clusters based on their continuous neural embeddings. Then we apply the progressive growing algorithm to grow each outer cluster up to \(N_2 \) inner clusters, which initiates with a single-head HCLT. Specifically, when \(N_1 \) equals one, the pipeline is equivalent to growing clusters from scratch, and the smaller total cluster number \(N_1 \times N_2 \) typically corresponds to smaller PCs. Empirically we vary \(N_1 \) from 50 to 400 and adjust \(N_2 \) from 20 to 3 accordingly. On the three image benchmarks: Imagenet32, Imagenet64 and CIFAR10, the \((N_1, N_2)\) adopted by our SoTA LVD-learned PC are (400,4), (320,4), and (100,4), respectively.

C. Implementation Details of the Baselines

To ensure a fair comparison, we implement HCLT and RAT-SPN with the Julia package Juice.jl (Dang et al., 2021) and adopt the original PyTorch implementation of EiNet. For all TPMs, we train a series of models with their number of parameters ranging from ~1M to ~100M and tune hyperparameters accordingly. Finally, we choose the best model among these TPM baselines as the Best TPM w/o LVD. We also report the best performance of each TPM in the following table.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>HCLT</th>
<th>EiNet</th>
<th>RAT-SPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ImageNet32</td>
<td>4.82</td>
<td>5.63</td>
<td>6.90</td>
</tr>
<tr>
<td>ImageNet64</td>
<td>4.67</td>
<td>5.69</td>
<td>6.82</td>
</tr>
<tr>
<td>CIFAR</td>
<td>4.61</td>
<td>5.81</td>
<td>6.95</td>
</tr>
</tbody>
</table>

D. Image samples from the PCs

As will be further elaborated in the following, the quality of samples drawn directly from the LVD-PG PCs is not good. Notably, “directly” means that our samples are pure unbiased samples, in contrast to biased ones towards the distribution mode. For instance, during the sampling process of PC, approximate MAP inference can be adopted for close-to-leaf nodes to get better but biased samples. Although we mainly focus on improving the density modeling performance of PCs, their poor sample quality is a weakness of the current method. To help future research to improve the (image) sample quality of PCs, we conducted a detailed analysis of the potential reasons, and provide a few directions that we believe could lead to PCs with both better likelihoods and better sample quality.

We test the sample quality of the learned cluster-conditioned PCs \(p(x|z) \). Specifically, we first sample 5 images (Figure 8) from the validation dataset of Imagenet32 and extract their discrete cluster indices \(j_s \) from the teacher VQ-VAE model. Then we draw patch samples from corresponding \(P(X_i|Z_i = j) \). The corresponding sampled images are shown in Figure 9.
As shown in the samples, although the overall color of most patches matches that of the original image, the sampled patches contain noise and lack fine details.

![Figure 8. Raw images from Imagenet32.](image1)

![Figure 9. Samples from LVD-leaned PC.](image2)

We observe several sources of poor sample quality:

1. The sample quality of the teacher VQ-VAE model is not good as well. Figure 10 demonstrates the samples from the modified VQ-VAE with an independent decoder, and Figure 11 illustrates the samples from the original VQ-VAE. First, both sets of images are noisy, and of low quality. This can be further attributed to two main reasons: (i) using an independent decoder lowers the sample quality, as the samples in Figure 10 look worse than those in Figure 11; (ii) the sample quality of VQ-VAE itself is not very good, as we used a different training objective in order to compute the ELBO of VQ-VAE. Specifically, in the original VQ-VAE, the decoder directly outputs the $C \times H \times W$ image and uses the MSE reconstruction loss. To improve its ELBO, we used a mixture of discrete logistic distributions to parameterize $p(x|z)$. Specifically, the decoder outputs a $K \times H \times W$ tensor, where for every pixel, there is a size-K vector that parameterizes a mixture of discrete logistic distributions for the pixel (including the RGB channels). Although it provides better log-likelihoods, this leads to more noisy samples.

![Figure 10. Samples from the teacher VQVAE (with independent decoder).](image3)

2. The use of categorical leaf nodes also leads to noisy samples. As we will demonstrate in the following, although it improves density estimation performance, using categorical leaf nodes lead to worse image samples.

To understand how much we are behind PCs with the best sample quality. We run EiNet (with the PD structure) (Peharz et al., 2020a) on SVHN (a dataset they reported samples) and ImageNet32 and visualize their samples. First, as a sanity check, the SVHN samples drawn from EiNet are shown in Figure 12. We observe that two modeling choices are crucial to this sample quality. First, for SVHN, they first clustered the training samples into 100 subsets and learned an EiNet for each cluster respectively. The cluster center mean is also subtracted from training samples before they are fed to the EiNets.

![Figure 12. Samples from EiNet with PD structure.](image4)
Other design choices include using Gaussian leaf nodes and approximate MAP sampling for close-to-leaf nodes. If we replace Gaussian leaves with categorical leaves, the samples are shown in Figure 13, with significantly worse quality.

Next, using all the above techniques, we trained EiNet on ImageNet32. The drawn samples are shown in Figure 14. Though less noisy, it seems that EiNet also fails to generate realistic images. Additionally, as shown in Figure 15, if we do not perform dataset clustering and use categorical leaves, the sample quality degrades significantly.
In summary, there exist important techniques to improve the sample quality of PCs. Therefore, one direction would be to incorporate these techniques into the LVD learning process. Additionally, in many cases, we do not need “full tractability” over all pixels. For example, if we only need tractability on the patch level (e.g., we want to controllably generate an apple in the top-left corner), we can train a PC instead on the latent space Z, and train a neural network decoder that is optimized for fine-grained image generation. That is, we can use PCs to control the “semantic” of an image and use the strength of neural networks to obtain high perceptual quality.

Figure 15. Samples from EiNet (with Categorical leaves) on ImageNet32.