Flipping Coins to Estimate Pseudocounts
for Exploration in Reinforcement Learning

Sam Lobel "' Akhil Bagaria“' George Konidaris '

Abstract

We propose a new method for count-based explo-
ration in high-dimensional state spaces. Unlike
previous work which relies on density models,
we show that counts can be derived by averag-
ing samples from the Rademacher distribution (or
coin flips). This insight is used to set up a simple
supervised learning objective which, when opti-
mized, yields a state’s visitation count. We show
that our method is significantly more effective at
deducing ground-truth visitation counts than pre-
vious work; when used as an exploration bonus
for a model-free reinforcement learning algorithm,
it outperforms existing approaches on most of 9
challenging exploration tasks, including the Atari
game MONTEZUMA’S REVENGE.

1. Introduction

Deep exploration is crucial to solving long-horizon prob-
lems using reinforcement learning (RL) (Osband et al.,
2016). When the number of states is small, an agent can
simply keep track of how many times it has visited each
state. This count can then be used as an exploration bonus
to train a near-optimal policy (Strehl & Littman, 2008).
When the world is much bigger than the agent, it may never
revisit the same state (Sutton et al., 2022). To facilitate
count-based exploration in such domains, the notion of visi-
tation counts has been generalized to that of “pseudocounts”
(Bellemare et al., 2016) which behave similarly to counts but
can be meaningfully applied in large or infinite state-spaces.
Previous methods have equated the problem of estimating
pseudocounts to the canonical machine learning problem of
density estimation: the more informative a given state is to
the model while learning, the higher the reward for reaching

“Equal contribution 'Department of Computer Science,
Brown University, Providence, RI, USA. Correspondence
to: Sam Lobel <samuel lobel@brown.edu>, Akhil Bagaria
<akhil_bagaria@brown.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

it (Bellemare et al., 2016; Ostrovski et al., 2017).

While providing the first way to estimate pseudocounts,
Bellemare et al. (2016)’s relationship between counts and
probability densities exists only when the density model
meets the following restrictions (Ostrovski et al., 2017):

* It must output normalized probability densities, which
precludes many powerful density models.

e It must be learning-positive, which means that the
probability density of a state must increase when it is
encountered by the density model again.

» It must be updated exactly once per state visitation,
precluding common techniques such as batching.

These requirements make density-based pseudocounts chal-
lenging to implement and sensitive to network architec-
ture and hyperparameters such as learning rate. In light
of these restrictions, it is tempting to forego count-based
exploration in favor of other novelty estimates based on
dynamics (Pathak et al., 2017) or observation (Burda et al.,
2019) prediction errors. But prediction-error based methods
do not tell us how an exploration bonus should decay with
repeated visits. Furthermore, they do not enjoy the same
theoretical foundations afforded by count-based methods
(Strehl & Littman, 2008; Azar et al., 2017; Jin et al., 2018).
For instance, count-based bonuses lead to near-optimal poli-
cies even when environments are highly stochastic; no such
guarantees exist for prediction-error based methods.

We hypothesize that count-based exploration can be more
effective than prediction-error based methods if we can com-
pute pseudocounts under a less restrictive setting. Our core
insight is that a state’s visitation count can be derived from
the sampling distribution of Rademacher trials made every
time a state is encountered. We train a neural network, the
Coin Flip Network (CFN), to predict the average of this
sampling distribution; by solving this supervised learning
problem, we output the inverse of the state’s visitation count.
Unlike other pseudocount methods (Ostrovski et al., 2017),
we do not place any restrictions on the type of function
approximator or the procedure used to train it, thereby al-
lowing a practitioner to select the model architecture best
suited to their input modality.

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

We show that in visual versions of Gridworld (Allen et al.,
2021) and TAXI (Dietterich, 1998), our method can recover
the ground-truth counts while other pseudocount methods
cannot. We then evaluate our algorithm on a variety of chal-
lenging sparse-reward continuous control problems; in these
environments, we outperform baseline actor-critic (Haarnoja
et al., 2018) and random network distillation (Burda et al.,
2019), with the largest gains on the most challenging ex-
ploration domains. On the image-based exploration bench-
mark problem MONTEZUMA’S REVENGE (Bellemare et al.,
2013), we outperform baseline Rainbow (Hessel et al., 2018)
and are competitive with state-of-the-art exploration algo-
rithms (Ostrovski et al., 2017; Burda et al., 2019), which
arguably have been overfit to this domain (Taiga et al., 2020).
Finally, we show that increasing transition noise in Grid-
world and MONTEZUMA’S REVENGE causes RND’s perfor-
mance to degrade more rapidly than CFN’s, as predicted by
the theoretical properties of count-based exploration.

2. Background and Related Work

We consider problems modeled as Markov Decision Pro-
cesses (MDPs) M = (S, A, R, T,~) where S is the state-
space, A is the action-space, R is a reward function, 7 is a
transition function and -y is the discount factor. The aim of
the agent is to learn a policy that maximizes the expected
discounted sum of rewards (Sutton & Barto, 2018).

2.1. Deep reinforcement learning

Model-free RL algorithms often use variants of Q-learning
(Watkins & Dayan, 1992) to learn an action-value func-
tion Qg (s, a) and then act greedily with respect to it. This
Q-function can be learned in high-dimensional spaces us-
ing non-linear function approximators (parameterized by)
by minimizing the loss L(6) = E[(Qa(s,a) — y:)?], where
the Q-learning target y, is given by the following equation
(Mnih et al., 2015):

yi = R +ymax Qp (si41, art1),
t4+1

and 0’ are the parameters of a slowly changing target net-
work (Mnih et al., 2015). This principle has since been
extended with various algorithmic improvements; for exam-
ple, Rainbow (Hessel et al., 2018) for discrete action-spaces
and Soft Actor Critic (SAC) (Haarnoja et al., 2018) for con-
tinuous action-spaces. The majority RL systems use myopic
strategies for exploration (e.g, e-greedy, action noise), which
do not scale to long-horizon problems.

2.2. Bonus-based exploration

A promising strategy for exploration is to incorporate an
intrinsic reward that encourages the agent to gather infor-
mative data. This intrinsic reward B(s;, a;) is added to the

extrinsic reward to create an augmented Q-learning target:

Y =R+ MB(s1, ar) + ymax Qo (si41,0), (1)

where A € R* modulates the scale of the exploration bonus.
Acting greedily with respect to this Q-function balances
exploration and exploitation, and is the basis for many prov-
ably efficient (Strehl & Littman, 2008; Jin et al., 2018) and
practically successful (Taiga et al., 2020) algorithms. As is
typical in the literature, we consider bonuses B(s) that are
only dependent on state (Burda et al., 2018).

Count-based exploration. In tabular domains, a count-
based exploration bonus of 1/4/N(s) (near) optimally
trades-off exploration and exploitation, even in highly
stochastic MDPs (Auer, 2002; Strehl & Littman, 2008).
This approach was extended to function approximation by
using density models to calculate pseudocounts: first with
the CTS model (Bellemare et al., 2016) and then with Pix-
elCNN (Ostrovski et al., 2017). However, it is challenging
to learn density models in high-dimensional observation
spaces—especially given the restrictions discussed in the
Introduction. Successor Counts (Machado et al., 2020) also
bypasses density modeling (by relating pseudocounts to the
norm of successor representations (Dayan, 1993)). But in
problems that require deep exploration (Taiga et al., 2020),
they are outperformed by PixelCNN (Machado et al., 2020),
which we compare our method to in Section 4.

Many methods bypass learning and resort to workarounds
that heavily incorporate domain knowledge—for example,
#-Counts (Tang et al., 2017) and OPIQ (Rashid et al., 2020)
use locality sensitive hashing, Go-explore (Ecoffet et al.,
2021) severely downsamples input images before binning
them, and MEGA assumes knowledge of which dimensions
of state are useful for the task (Pitis et al., 2020). By contrast,
CFN takes raw observations as input and flexibly learns rep-
resentations optimized for predicting exploration bonuses.

Model-prediction error. Many methods learn a transition
model and use the error in the predicted next state as an
exploration bonus (Stadie et al., 2015; Houthooft et al.,
2016; Pathak et al., 2017; Ermolov & Sebe, 2020; Guo
et al., 2022). This causes the agent to collect more data
where the transition model is least accurate (Kearns & Singh,
2002; Brafman & Tennenholtz, 2002; Kakade et al., 2003).
However, most methods learn deterministic models (Pathak
etal., 2017; Guo et al., 2022), making them difficult to scale
to stochastic environments.

Random Network Distillation (RND). Due to its sim-
plicity and empirical strength, RND (Burda et al., 2019)
has emerged as the most popular exploration algorithm.
RND assigns an exploration bonus to a state using a simple,

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

elegant heuristic: the novelty of a state is directly propor-
tional to how the accurately a trainable network can mimic
a randomly-initialized network’s projection of it. Compared
to count-based methods, RND’s exploration bonus is diffi-
cult to interpret—it is an unnormalized distance in a neural
network latent space. Furthermore, it is unclear at what rate
the RND bonus falls with visitation count: this depends on
the learning dynamics of neural networks and stochastic
gradient descent. In Section 4 we investigate the shape of
RND’s bonus and compare it to CFN.

2.3. Uncertainty Estimation

Some methods explicitly estimate epistemic uncertainty in
the value function and use that to drive exploration (Osband
et al., 2016; 2018; O’Donoghue et al., 2018). These are
promising realizations of Thompson sampling (Thompson,
1933) in high-dimensional domains, but empirically under-
perform optimism driven approaches.

2.4. Integrated exploratory RL agents

Novelty estimates are often integrated into larger RL agents
that use more sophisticated techniques such as episodic
memory (Badia et al., 2020b), adaptive horizons (Ba-
dia et al., 2020a; Kapturowski et al., 2022), transferable
representation learning (Zhang et al., 2021; Raileanu &
Rocktischel, 2020), goal-conditioned policies (Pong et al.,
2019) or planning (Bagaria et al., 2021). Our method im-
proves how the novelty bonus itself is computed and can be
included in any of these agents without much modification.

3. Coin Flip Network (CFN)

A pseudocount A/ : S — R™ generalizes the notion of
counts to large state-spaces and can be used to quantify
the novelty of a state (Bellemare et al., 2016). Specifi-
cally, visiting a state s affords the agent a novelty bonus

of B(s) = —L__ . we will use a neural network, the Coin

VN (s)
Flip Network (CFN) f4, to directly predict this count-based
exploration bonus.

To learn fy4, we set up a simple regression problem:
fo= arg;rlin E(s; yi)~D [ﬁ(sm yi)} , 2

where L is the mean-square error loss function and D is a
dataset of state-label pairs. Our main insights relate to the
design of the labels y; in such a way that the resulting func-
tion fy will map each state to its count-based exploration
bonus

1
N(s)'

Figure 1. Illustration of our counting method for a state s with
true count 3. Each occurrence of s creates new coin-flip vectors
c1, c2, c3. We average these vectors into z and compute the squared
magnitude. Dividing this by the number of coin flips d = 4 yields
the inverse count 1/A/(s).

3.1. Counts from the Rademacher distribution

The first step in designing the labels y; in Eq 2 is to no-
tice that moments of the Rademacher/coin-flip distribution
directly encode counts.

Consider the fair coin-flip distribution C over outcomes
{—1, 1}. Imagine flipping this coin n times, and averaging
the results into z,,. In expectation, the average is 0, but
any given trial likely results in a non-zero value for z,.
Generally, for all n, the second moment of z, is related to
the inverse-count:

Msy(z,) = E[22] = ZPr(zn =i)xi=1/n. (3)

This property is a simple restatement of the fact that E[22]
is the variance of the sample mean of the coin-flip distribu-
tion, which is well-known to scale inversely with sample
size. In fact, this scaling is shared between all zero-mean
unit-variance distributions, not just the coin-flip distribution.
However, using this distribution leads to the lowest variance
estimates of inverse-counts out of the entire class of match-
ing distributions. We prove these two facts in Appendix A.1
and A.2 respectively.

3.2. Estimating counts for a state via multiple coin flips

An additional way to lower the variance of this estimator is
to average together multiple estimates of z2: by flipping d
coins each time, we get d independent estimates of %, which
reduces variance by a factor of é (see Appendix A.4).

Consider the contrived case of an MDP with a single state
and imagine that we draw a random sample from C?% each
time that state is visited. Equation 3 implies that the squared
magnitude of the averaged vectors is an unbiased estimator
of d/n; this is also illustrated in Figure 1. Of course, we do

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

not need a novel method to count the number of elements in
a list; but this informs our eventual method for producing
bonuses in general MDPs.

3.3. Predicting counts for multiple states

Having solved the uninteresting problem of extracting
counts for a single state MDP, we will now generalize to
datasets with multiple occurrences of multiple states. As
label y; for state s; in Eq 2, we generate a d-dimensional
random vector ¢; ~ {—1, 1}¢; this leads to the following
simplification of Equation 2:

|D|
f3(s) = arggﬁnZHCi — fo(s)l”
i=1
D] d
= arg;ninZ Z(cij — f¢(si)j)2.)
i=1 j=1

When there are multiple instances of the same state s in
D, each occurrence will be paired with a different random
vector. In that case, f cannot learn a perfect mapping from
states to labels, and instead minimizes £ by outputting the
mean random vector for all instances of a given state:

f;(s) = % Zci-
i=1

Combining Equation 3 and 4 relates the solution f7 to the
inverse count:

) ==
=1

j=1 i=1
1 d
= 2 B[]
j=1
d
1 1 1
“ilaTw

Thus, by training f, on the objective described in Equation 4
we can map states to approximate count-based bonuses:

B6) = [GIGl s sl ©)

3.4. Generalizing outside the training data

The optimization procedure described so far will eventually
derive the correct visitation counts for states in the training

data (given a powerful function approximator and sufficient
training iterations). But as the agent interacts with the envi-
ronment, how will the CFN bonus generalize to states absent
from the training data? Although in practice we represent
fe as a neural network, to gain intuition on generalization,
we mathematically examine the case when f is linear. In
this case, the bonus for a state s is a linear combination
of the bonuses assigned to the right singular vectors of the
training data; more discussion and proof is in Appendix B.
Intuitively, the singular vectors of the training data take on
the role of unique states: instead of tracking how many of
each state visitation there are, a linear f, records how much
of each singular vector is present in total in the dataset. Inter-
estingly, when states are represented using one-hot vectors,
the resulting solution to Equation 4 recovers tabular counts.

3.5. Improving predictions for novel states

As stated above, a learning architecture with infinite capacity
would learn the exact inverse count for each unique state in
the training data. But finite capacity and training time imply
that the network will not learn this mapping exactly. Next,
we will propose two ways to guide our network to favorably
trade-off prediction errors among states in the dataset: first,
we will use prioritized sampling to preferentially learn the
novelty of rare states; second, we will use optimistic initial-
ization to assign a pseudocount of 1 to novel states newly
added to the replay buffer.

3.5.1. PRIORITIZING NOVEL STATES

Since training to convergence at every time step is not feasi-
ble, we update f, once every time step on a mini-batch of
states drawn from a replay buffer. Revisiting the optimiza-
tion problem from Equation 4, we note that a state s with
count n will appear in uniform sampling n times more often
than a state visited only once. This would make f4 focus
too much on learning the bonus of high count states, which
are uninteresting from an exploration perspective. To rem-
edy this problem, we would like to assign more weight to
low count states by sampling them with greater probability
(Schaul et al., 2015).

Of course, we do not have access to the true count during
training; so, we approximate this procedure by prioritizing
by our current estimate of inverse-count:

prority(s) = 2169 ~ 5705

Though this prioritization changes the importance of differ-
ent states relative to each other, all instances of the same
state will be sampled in equal proportion. Therefore, solv-
ing the prioritized version of Equation 4 still outputs the
unbiased average of a state’s coin-flip vectors (and therefore

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

the correct pseudocounts).

Prioritizing in this way introduces another difficulty: if a
state has been recently added to the replay buffer, it has not
appeared in many gradient updates and thus we cannot trust
our estimate of its count. To combat this, we also priori-
tize sampling by the number of times, nypdates ($), We have
sampled s in the past. We combine both these prioritization
schemes using an a-weighted sum (we use o = 0.5):

1

nupdates (S)

prioity(5) =)+ - aglh Gl ©

The nypgaes term weighs different instances of the same
state differently, but its effect on prioritization disappears
quickly during training, so it does not influence the fixed
point either.

3.5.2. OPTIMISTIC INITIALIZATION OF BONUS

Consider a state s that CFN has not been trained on yet.
The exploration bonus B(s) will be determined by CFN’s
generalization properties. If s is very different than the other
states that CFN has already been trained on, then B3(s) tends
to be close to 0, when in fact we would like the pseudocount
of novel states to be initialized to 1.

We achieve this optimistic initialization using a random
prior (Osband et al., 2018):

f¢<s) = f¢(8) + fprior(5)>

where fprior is the output of a frozen and randomly initialized
neural network, and f is the trainable component of CFN.
We use a running mean and variance to normalize the prior

so that E;p| férli)or(s)Q] = 1 over all output dimensions
i € {1,..,d}. This ensures that if f4(s) = 0 on a novel
state s, then || f4(s)||? = 1, i.e., states are added to the buffer
with an approximate initial pseudocount of 1. As training
progresses, the effect of the initialization will wash out and
B(s) will eventually settle to its correct value. An analysis
of the optimistic prior’s contribution is in Appendix E.2.

3.6. Integrated CFN agent

Algorithm 1 outlines how CFN is combined with Rainbow
(Hessel et al., 2018) to form a complete bonus-based explo-
ration agent. Naturally, we can combine CFN with most
off-the-shelf RL algorithms with minor changes (Haarnoja
et al., 2018; Mnih et al., 2015; Lillicrap et al., 2015).

4. Experiments

Our empirical results establish CFN as a competitive count-
based exploration algorithm. First, we show that CFN can

Algorithm 1 Rainbow-CFN Agent
Hyperparameters: Reward scale A\, Number of coin flips d

Initialize Q-network (Qy and target Q-network Q..
Initialize CEN prior fpror and trainable network f¢.
Initialize replay buffer for Rainbow B, and CEN B..
Initialize optimizer for Rainbow and for CFN.
Initialize the running mean y; and variance o2 for the
optimistic prior fprior-

6: while training do

7: sgp =env.reset ()

8

9

AR

while not done do

: a; = argmax, ¢ 4 Qo(s¢, a)
10: Ry, s¢41, done = env.step(sy, ar)

11: Compute intrinsic reward B(s;) using Equation 5.

12: Update /1; and o7 using fprior(t)-

13: Add transition (s, at, Rt, B(st), St4+1) to By.

14: Sample a random coin-flip vector ¢ ~ {—1,1}4.

15: Add state coin-flip tuple (s, ¢) to Be.

16: Sample minibatch (s, a,r, Bs,s') ~ B, and up-
date Q¢ using Rainbow’s optimizer and Eq 1.

17: Update priority for minibatch using Rainbow.

18: Sample minibatch (s,c) ~ B, and use CFN’s

optimizer to update f via one gradient step on the
loss function corresponding to Equation 4.
19: Update priority for minibatch using Equation 6.
20: end while
21: end while

extract accurate counts in domains with visual observations,
in contrast to other bonus methods. We then solve 8 sparse-
reward continuous control problems using CFN and show
that we significantly outperform RND and baseline SAC.
Finally, we show that our method scales gracefully to the
challenging Atari game MONTEZUMA’S REVENGE.

Implementation details. All exploration methods are
built on top of Rainbow (Hessel et al., 2018) (when
the action-space is discrete) or Soft Actor Critic (SAC)
(Haarnoja et al., 2018) (when the action-space is continu-
ous) using the Dopamine library (Castro et al., 2018). CFN
has the same neural network architecture as RND’s predic-
tion network. We follow the experimental design of Taiga
et al. (2020). We use a different set of hyperparameters for
each suite of tasks, i.e, one for Visual Gridworld, one for
Fetch, one for Ant, one for Adroit and one for Montezuma’s
Revenge. Details about CFN, including hyperparameters
can be found in the Appendix D; details about environments
can be found in Appendix C. All code for reproducing re-
sults can be found at the linked repository. '

"https://github.com/samlobel/CEN

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

CFN PixelCNN RND
1.0 A
// 0.012 ”!!'! | | l 600
’ * ‘o’ § °
0.8 0.010 't'-::‘.nzl - :
g IRXIE U 400
£0.6 0.008 .
@ Wgpte o 0 o °
3 0.006 i.‘..
804 ' :T 6. o $ 200
o [
< 0.004 ,:
0.2 A 0
0.002 ¢
0.0 - 0.000 @=e
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
True Bonus True Bonus True Bonus

Figure 2. Predicted count-based bonuses for all three methods in Visual Gridworld after 100, 000 interactions. The horizontal axis is the
ground truth 1/4/N (s) bonus, the vertical axis is the exploration bonus predicted by the different methods.

Gridworld (42x42)

=== Random Prior and Prioritization

=== Random Prior and No Prioritization
No Random Prior and Prioritization

=== No Random Prior and No Prioritization

°
»

=
W

©

Bonus Prediction Error
N

=4
a

0.0

50 100

150
Frames (1e3)

200

Figure 3. Ablating prioritized sampling and optimistic bonus ini-
tialization: vertical axis is the mean-squared error between the
predicted and ground-truth count-based bonus (averaged over all
visited states). Solid lines represent mean and bands represent
standard error over 10 random seeds; lower is better.

4.1. Bonus prediction accuracy

We compare the exploration bonus from CFN to that of
PixelCNN (Ostrovski et al., 2017) and RND (Burda et al.,
2019) in Visual Gridworld (Allen et al., 2021). Observations
are 84x84 images of a 42x42 grid; these images serve as
inputs during training. The agent is initialized in the bottom-
left, and achieves a sparse terminal reward of 1 for reaching
the top-right within 150 timesteps. For evaluation, we keep
track of the tabular state and the ground-truth visitation
counts.

Figure 2 shows that while CFN is able to predict the count-
based exploration bonus with high accuracy, PixelCNN
and RND are not. PixelCNN and CFN, being pseudo-
count methods, should ideally both output bonuses on the
dashed line. Not only does Pixel CNN mispredict the scale
of the exploration bonus, it also assigns the same bonus
to states visited once (z = 1) versus those visited 25 times

(x = 0.2). RND’s trendline is better than PixelCNN, al-
though it has much higher variance than CFN. It is notable
that for states with high count, its bonus falls off more
sharply than 1/1/N(s). A similar experiment is repeated
for the more challenging TAXI domain (Dietterich, 1998)
(with image observations); results are in Appendix E.1.

4.2. Ablation: prioritization and random prior

We now ablate the contribution of prioritized sampling (Sec-
tion 3.5.1) and random prior (Section 3.5.2). In Figure 3 we
show how mean bonus prediction error evolves over time;
the plot indicates that both additions lead to more accurate
predictions. The prediction error is the mean-squared dif-
ference between the predicted and ground-truth exploration
bonuses, averaged over unique states the agent has observed.

In Appendix E.3 we provide more insight into each of these
curves, and show how both these additions to CFN improve
its bonus accuracy on states in the low-count regime.

4.3. RL performance on Visual Gridworld

Figure 4 shows that CFN outperforms baseline Rainbow and
PixelCNN, and performs similarly to RND on this task. An
important feature to note about this environment is that it
is deterministic. As such, the 1/1/N (s) bonus may not be
appropriate because it is explicitly constructed to deal with
stochastic environments (Auer, 2002; Jin et al., 2018). So,
we compare CFN to RND on a series of increasingly stochas-
tic versions of Visual Gridworld.? Our results show CFN’s
count-based bonus yields a more significant performance
boost over RND in more stochastic versions of the problem.
The slight performance bump at noise 0.1 can be attributed
to the exploration benefit of random action-selection.

2Stochasticity is introduced by replacing the chosen action with
a randomly selected action with some predefined probability.

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

Gridworld (42x42)

1.0
= CFN
== RND
0.8 PixelCNN
c === Rainbow
>
2 0.6
4
(]
(o)}
©0.4
g
<
0.2
0.0

100 150
Frames (1e3)

200

250

Gridworld (42x42)

mmm CFN
0.8 = RND
S
2
Zose
=)
o
o
(2]
'20.4
w
C
©
[0}
Z0.2 i
0.0 -ﬁ
0.0 0.1 3 0.4 0.5

0.2 0.
Noise Probability

Figure 4. Left: Learning curves in deterministic Visual Gridworld comparing our method (CFN) with RND, PixelCNN and baseline
Rainbow (with noisy networks). Solid lines denote mean episodic return, bands represent standard error.. Right: Comparison between
CFN and RND on increasingly stochastic versions of Visual Gridworld. Bars represent mean episodic return averaged over training run,
error bars denote standard error. All results are averaged over 10 random seeds.

4.4. Continuous Control Experiments

We now consider a series of challenging continuous control
tasks. These are taken from two different suites: FETCH
(Plappert et al., 2018) and D4RL (Fu et al., 2020). For all
tasks, we sparsify the reward function to make exploration
challenging. We compare CFN to RND and baseline SAC;
we do not compare against PixeICNN because the inputs
are not images.

Fetch manipulation tasks. These tasks involve control-
ling a simulated Fetch robot to perform a series of manipu-
lation tasks: pushing, sliding, or lifting an object to a goal
location (Plappert et al., 2018). We consider 3 modes for
each task: default, medium and hard; these modes differ in
start-goal configurations. The default task randomizes the
start-goal states (which occasionally exposes the agent to
very simple episodes), medium and hard versions fix them
to different levels of difficulty. Figure 6 shows that both
exploration methods outperform baseline SAC in all tasks;
CEN outperforms RND on 6 out of 9 tasks and ties in 1.

Ant-navigation and Adriot manipulation tasks. Next,
we consider tasks from D4RL.(Fu et al., 2020) The first in-
volves controlling a quadrupedal “ant” robot in a U-shaped
maze. The remaining 4 tasks involve controlling a high-
dimensional “Adriot” hand to perform various tasks: pick-
and-place, reorienting a pen, opening a door and learning
how to use a hammer (Rajeswaran et al., 2018). Similar to
the Fetch tasks, we remove random restarts because they ob-
viate the need for exploration (Lobel et al., 2022). Figure 5
shows that CFN outperforms SAC on all tasks and RND on
4 out of 5 tasks. More interestingly, the performance gains

3We use the domains from this suite, not their offline datasets.

over RND are largest on the hardest exploration tasks (ANT
U-MAZE and RELOCATE; as evidenced by SAC’s inabil-
ity to experience any positive rewards). This supports the
hypothesis that CFN provides a more thorough exploration
bonus than RND.

4.5. Performance in MONTEZUMA’S REVENGE

Finally, we test our method on the challenging exploration
benchmark: MONTEZUMA’S REVENGE. We follow the
experimental design suggested by Machado et al. (2015) and
compare CFEN to baseline Rainbow, PixelCNN and RND.
Figure 7 shows that we comfortably outperform Rainbow
in this task. All exploration algorithms perform similarly, a
result also corroborated by Taiga et al. (2020).

Since all exploration methods perform similarly on the de-
fault task, we created a more challenging versions of MON-
TEZUMA’S REVENGE by varying the amount of transition
noise (via the “sticky action” probability (Machado et al.,
2018)). Figure 7 (right) shows that CFN outperforms RND
at higher levels of stochasticity; this supports our hypothe-
sis that count-based bonuses are better suited for stochastic
environments than prediction-error based methods.

Notably, we find that having a large replay buffer for CFN
slightly improves performance, which increases memory
requirements for this experiment. More discussion about
the impact of buffer size can be found in Appendix D.3;
details about hyperparameters can be found in Appendix D.

5. Conclusion and Future Work

Though count-based exploration is a principled way to do
exploration, it is not the dominant approach used in prac-
tice; we aim to remedy that. As a step in that direction,

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

Hammer Pen Door

1.0 1.0 1.0
£0.8 - 0.8 0.8
>
2
2o.6 0.6 0.6
(]
204 0.4 0.4
—
(0]
Z02 0.2 0.2

0.0 0.0 0.0

0 200 400 0 50 100 0 50 100
Relocate Ant U-Maze
1.0

c 0.8
2504
2 0.6
&
© 0.2 . 0.4
(0]
: AN\ -

0.0 0.0

0 100 200 300 400 0 100 200 300 400
Env Steps (1e4) Env Steps (1e4)
— CFN — RND — SAC

Figure 5. Learning curves in the D4RL tasks. Bottom row shows the 2 most challenging tasks in this task suite. All curves are averaged

over 9 independent runs.

Push (Default)

1.0 1.0
c
§ 0.8 0.8
g 0.6 0.6
&
©0.4 0.4
g 0.2
<o0.2)

0.0
0 200 400 600 800 1000
Slide (Default)
1.0

0.8
£ 0.8
2 0.6
& 0.6
[

0.4
g 0.4
(9]
<>(0.2 0.2

0.0 0.0

0 200 400 600 800 1000
Pick and Place (Default)

1.0 1.0
o8 0.8
>
@
< 0.6 0.6
&
© 0.4 0.4
°
g
< 0.2 0.2

0.0 0.0

0 200 400 600 800 1000

Env Steps (1e3)

Push (Medium)

0 200 400 600 800 1000
Slide (Medium)
0 200 400 600 800 1000
Pick and Place (Medium)
0 200 400 600 800 1000
Env Steps (1e3)
—— CFN —— RND —— SAC

Push (Hard)

1.0

0.8

0.6

0.4

0.2

0.0

0 200 400 600

Slide (Hard)

800 1000

0.8

0.6

0.4

0.2

0.0

0 200
Pick and Place (Hard)

400 600 800 1000

0.5

0.4

0.3

0.2

0.1

_F

0 200

0.0

400 600
Env Steps (1e3)

800 1000

Figure 6. Results on the simulated FETCH manipulation tasks with 3 levels of difficulty (default/easy, medium and hard). All curves are

averaged over 9 independent runs.

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

Montezuma's Revenge

= CFN
5000 RND
= PixelCNN
54000 = Rainbow
2
e 3000
(]
(o))
o
0>JZOOO
3
1000
0

0 25 50 75
Frames (1e6)

100 125 150 175 200

Montezuma's Revenge

mmm CFN
2000 s RND
1S
2
9]
@ 1500
2
<]
<]
v
&1000
c
©
9]
= 500
0
0.0 0.2 0.4 0.6 0.8

Sticky Action .Probability

Figure 7. Left: Learning curve in Montezuma’s Revenge comparing our method (CFN) with RND, PixelCNN and baseline Rainbow
(with noisy networks). Solid lines denote mean episodic return, bands represent standard error averaged over 12 random seeds. Right:
Comparison between CFN and RND in terms of mean cumulative reward over 100 million frames on versions of Montezuma’s Revenge
with varying “sticky action” probabilities (stochastic transitions; 0.25 is the default sticky action probability (Machado et al., 2018)).

Error bars represent standard error over 5 seeds.

we presented a new method for count-based exploration
which extracts pseudocounts by learning to average sam-
ples from the Rademacher distribution. In contrast to prior
pseudocount methods, ours produces accurate counts in sim-
ple problems and can be flexibly applied to a variety of
observation spaces. We demonstrate strong results on MON-
TEZUMA’S REVENGE and 8 challenging continuous control
problems. Directions for future work include the use of rep-
resentation learning techniques that capture MDP-specific
structure (Allen et al., 2021), incorporating actions into the
exploration bonus, as well as a mechanism for “forgetting’
high-count states from the replay buffer.

i

Acknowledgements

We would like to thank Georg Ostrovski for his guidance,
Adrien Ali Taiga for pointing us to the bonus-based explo-
ration code, and Cameron Allen for help with the Visual
Gridworld and Taxi domain implementations. Part of this
research was conducted using computational resources and
services at the Center for Computation and Visualization,
Brown University. This research was supported in part by
NSF grant #1955361, NSF CAREER award #1844960, NSF
GRFP award #2040433, and an Amazon Research Award.

References

Allen, C., Parikh, N., Gottesman, O., and Konidaris, G.
Learning markov state abstractions for deep reinforce-
ment learning. Advances in Neural Information Process-
ing Systems, 34, 2021.

Auer, P. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397-422, 2002.

Azar, M. G., Osband, 1., and Munos, R. Minimax re-
gret bounds for reinforcement learning. In Proceed-
ings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learn-
ing Research, pp. 263-272. PMLR, 06-11 Aug 2017.
URL https://proceedings.mlr.press/v70/
azarl7a.html.

Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P.,
Vitvitskyi, A., Guo, Z. D., and Blundell, C. Agent57:
Outperforming the atari human benchmark. In Interna-
tional Conference on Machine Learning, pp. 507-517.
PMLR, 2020a.

Badia, A. P, Sprechmann, P., Vitvitskyi, A., Guo, D., Piot,
B., Kapturowski, S., Tieleman, O., Arjovsky, M., Pritzel,
A., Bolt, A., et al. Never give up: Learning directed
exploration strategies. arXiv preprint arXiv:2002.06038,
2020b.

Bagaria, A., Senthil, J. K., and Konidaris, G. Skill discovery
for exploration and planning using deep skill graphs. In
International Conference on Machine Learning, pp. 521-
531. PMLR, 2021.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Advances in Neural
Information Processing Systems, pp. 1471-1479, 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

Brafman, R. I. and Tennenholtz, M. R-max-a general poly-
nomial time algorithm for near-optimal reinforcement

https://proceedings.mlr.press/v70/azar17a.html
https://proceedings.mlr.press/v70/azar17a.html

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

learning. Journal of Machine Learning Research, 3(Oct):
213-231, 2002.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T.,
and Efros, A. A. Large-scale study of curiosity-driven
learning. In International Conference on Learning Rep-
resentations, 2018.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O.
Exploration by random network distillation. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
1id=H11JJInR5Ym.

Castro, P. S., Moitra, S., Gelada, C., Kumar, S., and Belle-
mare, M. G. Dopamine: A Research Framework for
Deep Reinforcement Learning. 2018. URL http:
//arxiv.org/abs/1812.06110.

Dayan, P. Improving generalization for temporal difference
learning: The successor representation. Neural computa-
tion, 5(4):613-624, 1993.

Dietterich, T. The MAXQ method for hierarchical rein-
forcement learning. In ICML, volume 98, pp. 118-126,
1998.

Diuk, C., Cohen, A., and Littman, M. L. An object-oriented
representation for efficient reinforcement learning. In Pro-
ceedings of the 25th international conference on Machine
learning, pp. 240-247, 2008.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and
Clune, J. First return, then explore. Nature, 590(7847):
580-586, 2021.

Ermolov, A. and Sebe, N. Latent world models for in-
trinsically motivated exploration. Advances in Neural
Information Processing Systems, 33:5565-5575, 2020.

Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine,
S. Ddrl: Datasets for deep data-driven reinforcement
learning. arXiv preprint arXiv:2004.07219, 2020.

Golub, G. H. and Reinsch, C. Singular value decomposition
and least squares solutions. Linear algebra, 2:134—151,
1971.

Guo, Z. D., Thakoor, S., Pislar, M., Pires, B. A., Altché, F.,
Tallec, C., Saade, A., Calandriello, D., Grill, J.-B., Tang,
Y., et al. Byol-explore: Exploration by bootstrapped
prediction. arXiv preprint arXiv:2206.08332, 2022.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861-1870. PMLR,
2018.

10

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and
Silver, D. Rainbow: Combining improvements in deep re-
inforcement learning. In Thirty-second AAAI conference
on artificial intelligence, 2018.

Houthooft, R., Chen, X., Duan, Y., Schulman, J., De Turck,
F., and Abbeel, P. Vime: Variational information max-
imizing exploration. Advances in neural information
processing systems, 29, 2016.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. 1. Is
g-learning provably efficient? Advances in neural infor-
mation processing systems, 31, 2018.

Kakade, S., Kearns, M. J., and Langford, J. Exploration in
metric state spaces. In Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML-03), pp.
306-312, 2003.

Kapturowski, S., Campos, V., Jiang, R., Rakicevi¢, N., van
Hasselt, H., Blundell, C., and Badia, A. P. Human-level
atari 200x faster. arXiv preprint arXiv:2209.07550, 2022.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine learning, 49(2):209—
232, 2002.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous

control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Lobel, S., Gottesman, O., Allen, C., Bagaria, A., and
Konidaris, G. Optimistic initialization for exploration in
continuous control. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 36, pp. 7612-7619,
2022.

Machado, M. C., Srinivasan, S., and Bowling, M. Domain-
independent optimistic initialization for reinforcement
learning. In Workshops at the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, 2015.

Machado, M. C., Bellemare, M. G., Talvitie, E., Veness,
J., Hausknecht, M., and Bowling, M. Revisiting the
arcade learning environment: Evaluation protocols and
open problems for general agents. Journal of Artificial
Intelligence Research, 61:523-562, 2018.

Machado, M. C., Bellemare, M. G., and Bowling, M. Count-
based exploration with the successor representation. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 5125-5133, 2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

through deep reinforcement learning. Nature, 518(7540):
529-533, 2015.

Osband, 1., Blundell, C., Pritzel, A., and Van Roy,
B. Deep exploration via bootstrapped dqn. In Lee,
D., Sugiyama, M., Luxburg, U., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates,
Inc., 2016. URL https://proceedings.
neurips.cc/paper/2016/file/

8d8818c8el140c64c743113£f563cf750f-Paper.

pdf.

Osband, 1., Aslanides, J., and Cassirer, A. Randomized prior
functions for deep reinforcement learning. Advances in
Neural Information Processing Systems, 31, 2018.

Ostrovski, G., Bellemare, M. G., Oord, A., and Munos, R.
Count-based exploration with neural density models. In
International conference on machine learning, pp. 2721-
2730. PMLR, 2017.

O’Donoghue, B., Osband, 1., Munos, R., and Mnih, V. The
uncertainty bellman equation and exploration. In Interna-
tional Conference on Machine Learning, pp. 38363845,
2018.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In International Conference on Machine Learning,
pp- 2778-2787. PMLR, 2017.

Pitis, S., Chan, H., Zhao, S., Stadie, B., and Ba, J. Maximum
entropy gain exploration for long horizon multi-goal re-
inforcement learning. arXiv preprint arXiv:2007.02832,
2020.

Plappert, M., Andrychowicz, M., Ray, A., McGrew,
B., Baker, B., Powell, G., Schneider, J., Tobin, J.,
Chociej, M., Welinder, P., Kumar, V., and Zaremba,
W. Multi-goal reinforcement learning: Challenging
robotics environments and request for research. CoRR,
abs/1802.09464, 2018. URL http://arxiv.org/
abs/1802.09464.

Pong, V. H., Dalal, M., Lin, S., Nair, A., Bahl, S., and
Levine, S. Skew-fit: State-covering self-supervised rein-
forcement learning. Proceedings of the 37th International
Conference on Machine Learning, ICML, 2019.

Raileanu, R. and Rocktéschel, T. Ride: Rewarding impact-
driven exploration for procedurally-generated environ-
ments. arXiv preprint arXiv:2002.12292, 2020.

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schul-
man, J., Todorov, E., and Levine, S. Learning Complex
Dexterous Manipulation with Deep Reinforcement Learn-
ing and Demonstrations. In Proceedings of Robotics:
Science and Systems (RSS), 2018.

11

Rashid, T., Peng, B., Boehmer, W., and Whiteson, S. Opti-
mistic exploration even with a pessimistic initialisation.
In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
1d=r1xGP6VYwH.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Priori-
tized experience replay. arXiv preprint arXiv:1511.05952,
2015.

Stadie, B. C., Levine, S., and Abbeel, P. Incentivizing ex-
ploration in reinforcement learning with deep predictive
models. arXiv preprint arXiv:1507.00814, 2015.

Strehl, A. L. and Littman, M. L. An analysis of model-
based interval estimation for markov decision processes.
Journal of Computer and System Sciences, 74(8):1309—
1331, 2008.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Sutton, R. S., Bowling, M. H., and Pilarski, P. M.
The Alberta plan for Al research. arXiv preprint
arXiv:2208.11173,2022.

Taiga, A. A., Fedus, W., Machado, M. C., Courville, A., and
Bellemare, M. G. On bonus based exploration methods in
the arcade learning environment. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=BJewlyStDr.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Xi Chen, O.,
Duan, Y., Schulman, J., DeTurck, F., and Abbeel, P. #
exploration: A study of count-based exploration for deep
reinforcement learning. Advances in neural information
processing systems, 30, 2017.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3-4):285-294, 1933.

Watkins, C. J. and Dayan, P. Q-learning. Machine learning,
8(3-4):279-292, 1992.

Zhang, S. and Sutton, R. S. A deeper look at experience
replay. arXiv preprint arXiv:1712.01275, 2017.

Zhang, T., Xu, H., Wang, X., Wu, Y., Keutzer, K., Gonza-
lez, J. E., and Tian, Y. Noveld: A simple yet effective
exploration criterion. Advances in Neural Information
Processing Systems, 34:25217-25230, 2021.

https://proceedings.neurips.cc/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8d8818c8e140c64c743113f563cf750f-Paper.pdf
http://arxiv.org/abs/1802.09464
http://arxiv.org/abs/1802.09464
https://openreview.net/forum?id=r1xGP6VYwH
https://openreview.net/forum?id=r1xGP6VYwH
https://openreview.net/forum?id=BJewlyStDr
https://openreview.net/forum?id=BJewlyStDr

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

A. Proofs

A.1. Any zero-mean unit-variance distribution can be used for counting

Let z, = = > | @; where z; ~ X. Assume that the distribution X’ is such that E[X] = 0 and Var[X] = 1. In many cases
we make use of the fact that E[x;z;] = d;; (Kronecker delta function), because if i # j, then E[z;z;] = E[z;|E[z;] =0

i=1 j=1

i=1 i=1 jAi

n 1 n n
(S Rl e

i=1 =1 j#i

This proves the well-known fact that the variance of the sample mean scales inversely with the number of samples.

A.2. Functional form of the variance of 22

We now know that 22 is an unbiased estimator of %, the inverse count. What is the variance of this estimate?

Var[z?l] = E[z4] — E[22]2

n

E {(ZZ:; xi)4] E [zl: zj: zk: ZI: xia:jxkxl]

Bl 3 att X ahis Y akte X albi+ 3 cwmal

i=j=k=l i=7,k=l#1i i=k,l=j#1 i=l,j=k#i remaining

where here we have broken the summation across all indices ¢, j, k, [apart into four sets of terms with even exponents, and
one set which all have at least one odd exponent (and thus has expectation 0). There are n elements in the first sum, and
n(n — 1) elements of the second, third, and fourth sum. Thus:

B[Y o] =nE[XY]

i=j=k=l
JE[Z m?wﬂ =n(n— 1)E[X2]2
i=j3,k=1#i
E[Z a:ixjxka:l} =0
remaining

12

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

and therefore,
E[(Zx] = nE[2*] + 3n(n - DE[x?)*
=nE[X*] 4+ 3n® = 3n

Plugging into the original equation we arrive at a functional form of Var[z2]:

1 3 3 1
Var[zi] = EE[XLL] + ﬁ - ? - ﬁ
1 2 3
= ﬁE[X“] t—s - (7

A.3. Proof that using the coin-flip distribution yields the lowest-variance estimator of %

Above, we show that to reduce Var [zﬂ the only knob we can turn is reducing the 4" moment, because E [X] = (0 and
E [X 2] = 1 by construction. The 4" moment of the coin-flip distribution = ~ C € {—1,1} is simply

1 1
ECY = -1*+ = (-1)* = 1.
€4 = 51%+ 5(-1)
Plugging this into Equation 7 yields, for z ~ C:
2 2
2] _
Var[zn] = A

This holds for all n > 1. Therefore, Var [zﬂ = 0, which is easy to confirm. Since variance must always be positive, this
means that E[z*] > 1 for all X satisfying our assumptions, and hence using the coin-flip distribution achieves minimum
possible variance in its estimation of %

A.4. Proof that variance scales inversely with vector-length

We have another, simpler method for reducing variance: we can increase the number of trials (equivalently, the number of
coin flips), and average the results together.

Let {zy;|i € 1, ..., d} be a set of d independent draws of z,,. Then

B 3e] = g Bl =Rl =

d
Var[éz,zzi} = 2E:Var 1Var[]

This is a well-known fact of how variance scales with samples. Therefore, we can decrease the variance of our estimator in
two ways: picking a good distribution (coin-flip is best) and also increasing the number of trials.

13

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

B. Analysis of Linear Coin Flip Network

We now analyze the solution to Equation 4 when our function approximator f is a linear mapping between states and coin
flips. Our goal is to recover an intuitive understanding of how bonuses are estimated when the model has to generalize
across inputs. For simplicity, we consider the case of a single coin flip per encountered state. We represent each state s as a
p-dimensional vector, with S being the n x p matrix of all encountered states , and ¢ ~ {-1, 1}" being the n-dimensional
vector of sampled coin flips.

Thus, fs(s) = s - ¢, where ¢ is the weight vector that parameterizes f. Under this formulation, Equation 4 reduces to
solving the following linear least-squares regression problem:

¢ = argmin||S¢’ — c|?.
¢/

For the following derivation, we assume that S has rank p (and n > p) in order to recover a unique solution, however this
result can be generalized by replacing the inverse with the pseudo-inverse. The solution to this linear regression (Golub &
Reinsch, 1971) is

¢ = (8Ts)"1s%e.

We now rewrite S using its singular value decomposition (Golub & Reinsch, 1971): S = UAV?, where U is the n x n
orthonormal “left singular vector” basis, V is the p x p orthonormal “right singular vector” basis, and A is a n X p rectangular
diagonal “singular value” matrix. Thus, STS = VATUTUAVT = VATAVT, Therefore:
¢ = (8TS)"'sTc

= (VATAVT)"I'VATU ¢

= V(ATA) " 'VIVATUTc

=V(ATA)'ATU

=VA'UTc

where A~! is the pseudo-inverse of A, which in the case of a rectangular diagonal matrix is simply the element-wise
reciprocal of the diagonal entries, transposed.

Recall that f,(s) = s - ¢. We can gain more intuition about f, by representing s using the orthonormal basis V:
s = Zi(sT -VI)VT = pVT where p says how much of each basis vector there is in s. Now we can derive a simple
formula for the expected inverse-count of s:

El] = Ell2/(8)]?

(s)
= E[spg’s”]
=EpVIVA TUTccTUA T VTVDT]
=pVIVATUT E[ccT] UAVTVPT

Since each element of c is independent of all others,]E[ccT] = I. Furthermore, U and V are orthonormal bases and so
UTU =T and VTV = L. Thus, we get the following simplification:

1
E[——]=p(ATA)"'pT.
[N(s)] P(ATA)"'p
In other words, when using a linear model, CFN stores in its weights how much of each singular vector is present in the
dataset S. When presented with a new state s, it computes an inverse count for each singular vector, and returns a linear
combination of those, weighted by how much of that singular vector is present in s.

This matches intuition in the tabular case. If each s € S is represented by a one-hot vector, then STS is a diagonal matrix
that counts how many times each unique state has been seen, and p(ATA)~!'pT returns the the inverse count of a given
state. In the more general linear case, counting simply happens over a different basis than the identity matrix.

14

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

C. Environment details

Visual Gridworld. We used a 42x42 gridworld, observations were 84x84 images (each grid-cell was visualized using
2x2 pixels). The player always started the episode at the bottom-left and the goal was at the top-right. Episodes lasted
a maximum of 150 steps, unless the agent reached the goal, in which case the episode terminates with a sparse reward
of 1. For the stochasticity experiments in Figure 4(right), the maximum number of steps per episode was determined by
11%?7 where 7 is the action-noise probability. We did this to make sure that more stochastic versions of the task still had
long-enough episodes to be solvable by a reasonably good agent: with this scaling the agent has the same number of actions

under its own control in a given episode, independent of 7.

Visual Taxi. We used two variants of the TAXI—one with a 5x5 grid (as in the default version) and another with a 10x10
grid (Diuk et al., 2008); episodes lasted a maximum of 50 steps in the former and 100 in the latter case. Similar to visual
gridworld, the agent observed images of the game state; to show that the passenger was inside the taxi, we shaded the taxi
differently and included a black border around the image.

Fetch and Adroit Manipulation. As mentioned in the main paper, we first sparsified the reward function—this means
that there are no shaping rewards for reaching the object or for moving it to non-goal locations. To set the goal locations for
the non-default versions of the tasks, we first visualized the environment and rendered the effect of random actions. The
exact goal locations that we settled on can be found in our linked code (file wrappers.py). In the RELOCATE task, we
truncate the episode when the ball leaves the table.

Ant U-Maze. DA4RL randomly sets the goal location to a small distribution around (z = 0,y = 8) and the ant’s location
to a small distribution around (x = 0,y = 0). Predictably, we used the sparse-reward version of the task. Episodes last a
maximum of 1000 steps.

MONTEZUMA’S REVENGE We followed the experimental protocol of Machado et al. (2015) which means that we used

sticky actions, a frame stack of 4, action repeat of 4, grayscale images of shape 84x84 and a training budget of 200 million
frames (50 million agent-environment interactions).

15

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

D. Hyperparameters, Architecture and Training Details

The final values of hyperparameters for all experiments have been set as the default values in our
configuration files, which can be found in the configs/+.gin files in our codebase. The file
intrinsicmotivation/intrinsic_rewards.py contains architectural details such as number of layers and
layer sizes, and unless otherwise noted are the same as presented in (Taiga et al., 2020). The neural network architecture of
CFN is chosen to match that of RND’s prediction network.

All hyperparameters not listed are chosen to match the default Rainbow (Hessel et al., 2018) and SAC (Haarnoja et al., 2018)
implementations. For each task group, the tested hyperparameters are listed; multiple value indicate a grid search, with the
chosen value listed in bold. On Montezuma’s Revenge we use the best reported RND and PixelCNN hyperparameters from
(Taiga et al., 2020).

D.1. Shared Hyperparameters

We used Rainbow for Visual Gridworld (Section 4.3) and Montezuma’s Revenge (Section 4.5) and SAC for all the continuous
control experiments (Section 4.4). The hyperparameters for these base agents are reported below:

Rainbow Hyperparameter Gridworld Atari
Discount Factor ~ 0.99 0.99
Adam LR 1.25e-4, le-5 | 1.25e-4, 6.25¢e-5
Adam € 1.5e-4 1.5e-4
Multi-step return n 3 3
Min history to start learning 1,000 20,000
Distributional Atoms 51 51
Distributional Min/Max values +10 +10
Batch Size 32 32
SAC Hyperparameter Fetch Adroit Ant
Discount Factor ~y 0.99 0.99 0.99
Adam LR 3e-4 le-4 3e-4 3e-4
Adam € le-8 le-8 le-8
Multi-step return n 3 3 3
Min history to start learning | 10,000 10,000 10,000
SAC Reward Scale Factor 1.0 1.0, 3.0, 10.0, 30.0 0.1
Batch Size 256 256 256
D.2. CFN Hyperparameters
Hyperparameter Gridworld Fetch Adroitkc Ant Atari
0.001, 0.003 | 0.001, 0.003 | 0.001, 0.003 | 0.00T, 0.003 | 0.001, 0.003
Intrinsic Reward Scale 0.01, 0.03 0.01, 0.03 0.01, 0.03 0.01, 0.03 0.01, 0.03
Reward Normalization™ Yes, No No No No No
CFN learning rate le-4 le-4 le-4 le-3 le-4 1e-5
CFN replay buffer size le6 le6 le6 le6 2e7
CFN batch size 1024 1024 1024 1024 512
CFN update period 1 1 1 1 4
Number of coin flips d 20 20 20 20 20

* Reward normalization. In Visual Gridworld, we found it helpful to use reward normalization (Burda et al., 2019),
which normalizes the exploration bonus by subtracting its running mean and dividing by its running variance.

D.3. CFN replay buffer size

Note that we used a much larger CFN replay buffer for Montezuma’s Revenge. Usually, a small FIFO queue is used to
implement the replay buffer. As shown by Zhang & Sutton (2017), larger replay buffers hurt RL performance because it

16

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

Montezuma's Revenge

5000

4000

w
o
o
o

Average Return
N
o
o
o

1000
= CFN (Buffer Size = 2e7)

CFN (Buffer Size = 5e6)

0 25 50 75 100 125

Frames (1e6)

150 175 200

Figure 8. Analyzing the impact of large replay buffer for CFN: while a very large buffer size of 2e7 leads to better performance, a smaller
buffer size of 5e6 still performs well. Results are averaged over 6 random seeds.

makes the Q-learning updates more off-policy. Since the CFN objective is a standard regression problem (and does not
use bootstrap targets), larger buffers almost always improve performance. Furthermore, shorter CFN buffers often cause
high-count states to be removed from the replay buffer and eventually re-appear as novel to the agent; a problem that is
mitigated with larger buffer sizes. In future work, we would like to revert to smaller replay buffers by implementing a
“forgetting” strategy in which low novelty states are discarded from replay with higher probability.

Figure 8 shows that while a very large replay buffer does indeed yield better performance in Montezuma’s Revenge, a
moderately sized replay buffer also performs respectably.

D.4. Pixel CNN Hyperparameters

Hyperparameter Gridworld Atari
Intrinsic Reward Scale 0.1,0.5,1.0 0.1
Prediction Gain Scale | 0.1, 0.5, 1.0, 5.0 1.0
PixelCNN learning rate le-4 le-4
D.5. RND Hyperparameters
Hyperparameter Gridworld Fetch Adroid Ant Atari
5e-5,1e-4, | 5e-5,1e-4, | Se-5,1e-4, | 5e-5,1e-4,
Intrinsic Reward Scale | 5e-4,1e-3 Se-4,1e-3 | Se-4,1e-3 | S5e-4,1e-3 | S5e-5
RND learning rate le-4 le-4 le-4 le-4 le-4

D.6. Compute Resources

The wallclock time of all intrinsic reward methods is roughly similar, however on Atari domains CFN requires significantly
more memory—see Section D.2 for discussion. All experiments are performed on a SLURM cluster using nodes equipped
with 4 CPUs and 1 3090-Ti NVIDIA GPU. We reserve 16GB of memory for all experiments except for CFN’s Montezuma’s
Revenge, where we reserve 160GB.

17

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

E. Additional Experiments
E.1. Counts on Visual Taxi

We report count reconstruction-accuracy on visual versions of both the 5x5 and the 10x10 TAXI environments in Figure 9.
See Appendix C for environment details. These tasks are visually more complex and have many more possible states than
Visual Gridworld. Since the policy used to collect data is a confounding variable when comparing counting accuracy, in
these experiments all interaction is performed with a random policy, and only the bonus modules are trained. For both
domains, we present bonuses computed after 200, 000 interactions, with each method taking one training step per interaction.
In this time, the random policy visits approximately 900 unique states in the 5x5 domain, and approximately 6, 500 unique
states in the 10x10 domain. We note a similar trend as in Gridworld, where CFN procudes more accurate bonuses than
PixelCNN and RND.

CFN (5x5) PixelCNN (5x5) RND (5x5)
1.0 LI | A . A R 70 .
N /% 0030 . . .
| ° o ° ° 60 0 ® ° 4
0.8 ° // 0.025 ° . ° o o’ °
" 3 . ' ¢ 50 -l
2 1 I r T IR
50.6 it} 0.020 <t 40 R (o } |
'::; sfl] I H e, 8.8 ; t
3 U114 § 0015 A ¢ 30 o8 T ., | .
%0.4 o . [] " -.':.k. :-..!8 ° ; s s
< 4 . 0.010 — i 20 AR I
J . 5 s ') s ° 0| '
0.2 0.005 o= o : 0 % ill I
‘ o % °
L]
0.0 - 0.000 0
0.0 0.2 0.4 0.6 0.8 1.0 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
True Bonus True Bonus True Bonus
CFN (10x10) PixelCNN (10x10) RND (10x10)
’ L3
1.0 0.10 L . °
! H 6 ‘T, {
° % H ‘. L
e °
o8 S 0.08 i
2 $° 4 i
§0.6 1P 0.06 i
§ o i 2 o Y
20.4 0.04 28
<
0
0.2 . '3 0.02
/ ¢ _ e
00 0.00 . 2 g :
0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
True Bonus True Bonus True Bonus

Figure 9. Bonuses for CFN, PixelCNN, and RND on both Taxi domains.

18

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

E.2. Effect of Random Prior without Coin Flips

Can the accuracy of the predicted exploration bonuses in Figure 2 (main paper) solely be attributed to the use of the random
prior (discussed in Section 3.5.2)? To answer this question, we devised an experiment in which we removed the randomness
introduced by the coin-flip vectors by setting them to {0} instead of sampling them from {—1, 1}<.

Figure 10 shows the result of this experiment: states seen for the first time get a high exploration bonus, implying that the
random prior initializes their pseudocount near 1 (as intended). On the other hand, states visited more than once get almost
no exploration bonus; this highlights the importance of the full CFN objective to get an exploration bonus that falls off

smoothly as 1/1/N(s).

Furthermore, notice that states with true bonus of 1 form two distinct clusters—with high and low predicted bonus
respectively. We posit that states in the lower bonus cluster were encountered less recently and thus have been sampled by
CFN, which has wiped out the effect of their optimistic initialization.

CFN ZeroFlips

1.0
/// *
0.8 °
,/, .
0 /’
2
O 0-6 '/,
CD ,/,
X s
o .
0.4 7
Q_ /’
<
0.2
0.0 emmmmmsssmaeeto o § § 0§ '
0.0 0.2 0.4 0.6 0.8 1.0
True Bonus

Figure 10. CEN bonus prediction versus ground-truth bonus on the 42x42 Visual Gridworld domain using ¢ ~ {0}

19

Flipping Coins to Estimate Pseudocounts for Exploration in Reinforcement Learning

E.3. Prioritization and Random Prior ablation count plots

Figure 11 shows the importance of prioritized sampling and optimistic bonus initialization. Using both methods results in
the most accurate bonus predictions across the entire range of novelty. When only random prior is used, CFN does not train
as frequently on novel states, and thus underestimates their count. When only prioritization is used, a novel state may be
first inserted into the dataset with low novelty (and thus low priority); so, the state may not be sampled for training, which
retains its underestimate of novelty. When neither prioritization nor random prior are used, bonuses are still accurate for
states observed more than 5 times, but are inaccurate for very novel states.

Random Prior, Prioritization Random Prior, No Prioritization
1.0 1.0 A
0.8 0.8 "
g :
0.6 0.6 o
oM []
X
o
50.4 0.4
o
<
0.2 0.2
0.0 - 0.0 -
00 02 04 06 08 1.0 00 02 04 06 08 1.0
No Random Prior, Prioritization No Random Prior, No Prioritization
1.0) A 1.0 v
,/, .
0.8 R 0.8
m k4
2
8 0.6 0.6
3 s
50.4 . 0.4
o []
A |
0.2 ' 0.2
0.0 0.0
00 02 04 06 08 1.0 00 02 04 06 08 1.0
True Bonus True Bonus

Figure 11. True versus approximate bonus of including/excluding random prior and prioritization.

20

