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Abstract

The training process of generative adversarial net-

works (GANs) is unstable and does not converge

globally. In this paper, we examine the stabil-

ity of GANs from the perspective of control the-

ory and propose a universal higher-order noise-

based controller called Brownian Motion Con-

troller (BMC). Starting with the prototypical case

of Dirac-GANs, we design a BMC to retrieve

precisely the same but reachable optimal equi-

librium. We theoretically prove that the training

process of DiracGANs-BMC is globally exponen-

tial stable and derive bounds on the rate of con-

vergence. Then we extend our BMC to normal

GANs and provide implementation instructions

on GANs-BMC. Our experiments show that our

GANs-BMC effectively stabilizes GANs’ training

under StyleGANv2-ada frameworks with a faster

rate of convergence, a smaller range of oscillation,

and better performance in terms of FID score.

1. Introduction

Generative Adversarial Networks (GANs) (Goodfellow

et al., 2014) are popular deep generative models. Given

a multi-dimensional input dataset with an unknown distribu-

tion p(x), GANs can obtain an estimated pG(x) and produce

new samples that are almost indistinguishable from the train-

ing samples. GANs have many application on image gener-

ation (Brock et al., 2018), representation learning (Radford

et al., 2015b; Salimans et al., 2016; Mathieu et al., 2016),

and image to image translation (Zhu et al., 2017).

GANs consist of two neural networks: a generator and a

discriminator. The generator creates new samples that re-

semble those from the input dataset as closely as possible.

The discriminator, on the other hand, aims to distinguish
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Table 1: Summarization of the converging behaviors under

Dirac-GANs’ setting on various GANs from existing theo-

retical stability analysis (Mescheder et al., 2018; Fedus et al.,

2018; Farnia & Ozdaglar, 2020). Notice that ✓∗ indicates

observations from our experiments.

Unstable
Local

Stability

Global

Stability

Original

(Goodfellow et al., 2014)
✓

WGAN

(Arjovsky & Bottou, 2017)
✓

WGAN-GP

(Gulrajani et al., 2017)
✓

DRAGAN

(Kodali et al., 2017)
✓

Instance Noise

(Sønderby et al., 2016)
✓

CLC

(Xu et al., 2020)
✓

TTUR

(Heusel et al., 2017a)
✓

StyleGAN

(Karras et al., 2019; 2020a; 2021)
✓

∗

Our Method ✓ ✓

the (counterfeit) samples produced by the generator from

the members of the input dataset. The two networks can be

modeled as a minimax problem; they compete against one

another while striving to reach a Nash-equilibrium, an opti-

mal solution where the generator can produce fake samples

that are, from the point of view of the discriminator, in all

respects indistinguishable from real ones.

Unfortunately, the process of training GANs often suf-

fers from instabilities, preventing them from reaching the

Nash equilibrium. There are many attempts for stabilizing

GANs, including alternative architectures (Miyato et al.,

2018; Brock et al., 2018; Karras et al., 2019), regulariza-

tions (Kodali et al., 2017; Karras et al., 2020b), alterna-

tive training algorithms (Heusel et al., 2017a; Karras et al.,

2020b), and alternative objective functions (Gulrajani et al.,

2017; Nowozin et al., 2016; Li et al., 2017). However,

as shown by Mescheder et al. (2018); Farnia & Ozdaglar

(2020), though being empirically effective, many of these

methods still suffer from instability even for very simple

GANs’ architectures.
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One promising approach for analyzing and stabilizing

GANs’ training is through the perspective of dynamical

systems (Arjovsky & Bottou, 2017; Kodali et al., 2017; Xu

et al., 2020). Rather than the original minimax problem,

they directly analyze the continuous-time training dynamics,

which is a system of ordinary differential equations (ODEs)

known as gradient flows. In this formulation, the behavior

of GAN training closely relates to the concept of asymptotic

stability, which depicts whether the training trajectory can

eventually converge in the vicinity of an equilibrium of the

gradient flow. Moreover, the stability of GANs’ dynamical

system can be improved by designing custom controllers

from the control theory. With some modifications to the dy-

namics, several works (Kodali et al., 2017; Xu et al., 2020)

can achieve asymptotic stability. However, these works have

limitations. The stability they achieve is local, which as-

sumes that the network is initialized sufficiently close to an

equilibrium. Such an assumption cannot be guaranteed in

practice. Furthermore, they only obtain asymptotic stability,

without a guarantee to the convergence rate.

In this work, we leverage potent tools of noise-based con-

trollers from control theory to propose a Brownian motion

controller (BMC) to stabilize GANs’ training. BMC stabi-

lizes the training dynamics by adding noise, and the new

noise-induced dynamics can be formulated as a system of

stochastic differential equations (SDEs).

We extensively analyze BMC for Dirac-GANs (Mescheder

et al., 2018), a popular class of GANs for analysis, to de-

rive bounds on the rate of convergence. For Dirac-GANs,

BMC are able to converge globally with exponential stabil-

ity. Such theoretical result is much stronger than previous

local, asymptotic ones (Heusel et al., 2017a; Kodali et al.,

2017; Xu et al., 2020). Our global converge result implies

that the trajectory can converge with any initialization rather

than those near equilibria. Our globally exponential stability

result further guarantees a fast convergence rate.

Empirically, BMC improves the stability of the training of

several popular GAN architectures, including classical DC-

GAN (Radford et al., 2015a) and the advanced StyleGANv2-

ada (Karras et al., 2020a), which already has a carefully

designed architecture and path-length regularization for sta-

bilization. We evaluate BMC on a wide variety of datasets

including CIFAR-10, LSUN-Bedroom 256x256, and FFHQ

1024x1024. Experiment results indicate that BMC can ac-

celerate the training with a smaller range of oscillation,

significantly reduced the training time, and achieved better

image quality in terms of FID score.

2. Related Work

In this section, we discuss previous attempts for stabiliz-

ing GANs and present some background of noise-based

Figure 1: The gradient map (left) and convergence behav-

ior of generator parameter θ (right) of Dirac-WGAN (first

row) and DiracWGAN-BMC (second row), where the Nash

equilibria of both models are at (0, 0)⊤.

controllers in control theory. We compare the theoretical

guarantee of stability of some representative works in Tab. 6.

Alternative Training Methods or Model Architecture

To stabilize GANs’ training process, a lot of work has been

done on modifying its architecture. Wang et al. (2021) ob-

serve that during training, the discriminator converges faster

and dominates the dynamics. They produce an attention

map from the discriminator and use it to improve the spa-

tial awareness of the generator. In this way, they claim to

push GANs’ solution closer to equilibrium. Heusel et al.

(2017a) use a two-time scale update rule (TTUR) to push

GANs’ training process converging to a local Nash equi-

librium. Karras et al. (2018) train the generator and the

discriminator progressively to stabilize the training process.

Later on, StyleGANs models (Karras et al., 2019; 2020a;b;

2021) use style transfer to alternate the architecture for the

generator and accomplish the state-of-the-art performance

on high-resolution image synthesis. However, their methods

do not have guarantees of global stability.

Regularization on Objective Functions Many works sta-

bilizes GANs’ training process with modified objective

functions. Kodali et al. (2017) add gradient penalty to

their objective function to avoid local equilibrium with their

model called DRAGAN. This method has fewer mode col-

lapses and can be applied to a lot of GANs frameworks.

Other work, such as Generative Multi-Adversarial Network

(GMAN) (Durugkar et al., 2017), packing GANs (PacGAN)

(Lin et al., 2017), GANs with spectrum control (Jiang et al.,

2019), and energy-based GANs (Zhao et al., 2016), modifies

the discriminator to achieve better stability. However, in

their works, neither local nor global stability is promised

and thus is orthogonal to our approach.
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Other Methods with Control Theory Xu et al. (2020)

formulate GANs as a system of differential equations and

add closed-loop control (CLC) on a few variations of the

GANs to enforce stability. However, the design of their

controller depends on the objective function of the GANs

models and does not work for all variations of the GANs

models. Additionally, their method is neither globally nor

exponentially stable, which we find unable to stabilize later

proposed StyleGANv2-ada (Karras et al., 2020a).

Dynamic Systems with Noise-based Controller In con-

trol theory, theoretical works have proved that white noise

is able to stabilize linear (Arnold et al., 1983; Scheutzow,

1993) and non-linear (Mao, 1994) dynamic systems. Later

on, numerical experiments by Toral et al. (2001); He et al.

(2003); Lin & Chen (2006); Sun & Yang (2011) observe a

phenomenon called Noise-induced synchronization, which

indicates adding designed independent Gaussian white noise

successfully stabilizes dynamic systems. Our BMC incor-

porates the idea of noise-induced synchronization, in which

we analyze GANs’ training process from control theory’s

perspective and design an invariant Brownian Motion Con-

troller (BMC) to stabilize GANs’ training process.

3. Formulating GANs’ Training as a

Dynamical System

In this section, we briefly review the formulation of GAN

training as a stability problem of dynamical systems. Gen-

erative adversarial networks (GANs) fit a data distribution

p(x) with a generator G and a discriminator D. The ob-

jective functions of GANs can be written as the following

optimization problem:

{

max
D

LD(D;G) = Ep(x)[h1(D(x))] + EpG(x)[h2(D(x))]

max
G

LG(G;D) = Epz(z)[h3(D(G(z)))],

(1)

where h1(·), h3(·) are increasing functions and h2(·) is a

decreasing function around zero. pG(x) is the distribution

of the generator and pz is a Gaussian distribution.

GANs seek for a Nash equilibrium (D∗, G∗), where

∀D,LD(D;G∗) ≤ LD(D∗;G∗),

∀G,LG(G;D∗) ≤ LG(G∗;D∗).

However, finding the global Nash equilibrium is challenging.

Gradient-based methods are usually adopted for Eq. (1). A

convenient way to analyze GANs is thus to directly consider

the dynamics defined by the optimization algorithm.

Following Xu et al. (2020)’s notation, the training dynamic

(under continuous time limit) for the generator and discrim-

inator over the time domain t can be written as:















dD(x, t)

dt
= p(x)

dh1(D(x, t))

dD(x, t)
+ pG(x)

dh2(D(x, t))

dD(x, t)
, ∀x

dG(z, t)

dt
= pz(z)

dh3(D(G(z, t)), t)

dD(G(z, t), t)

dD(G(z, t), t)

dG(z, t)
, ∀z

(2)

where D(x, t) and G(z, t) are respectively the generator

and the discriminator over a time domain t. Define the state

X(t) = (D(x, t), G(z, t))⊤ and the transition function

f(X(t)) =

(

p(x) dh1(D(x,t))
dD(x,t) + pG(x)

dh2(D(x,t))
dD(x,t)

pz(z)
dh3(D(G(z,t),t))

dD(G(z,t),t)
dD(G(z,t),t)

dG(z,t)

)

,

we can rewrite Eq. (2) as

dX(t) = f(X(t))dt. (3)

Rather than Nash equilibria, we analyze whether the algo-

rithm can reach an equilibrium of the dynamics Eq. (3), i.e.,

a point Xe where f(Xe) = 0, which we refer by “equilib-

rium” in the rest of the paper. Such an equilibrium cannot be

improved by local gradient updates, and is closely related to

the concept of local Nash equilibrium (Heusel et al., 2017a).

If there exists an equilibrium, the question of interest is

Can the training algorithm find such an equilibrium?

This closely relates to the concept of stability in dynamical

system theory, defined as follows:

Definition 3.1. (asymptotic stability) Given a dynamic sys-

tem of with equilibirum Xe, this system is said to be asymp-

totically stable, if there exists a δ > 0, such that whenever

∥X(0)−Xe∥ ≤ δ, we have limt→∞ ∥X(t)−Xe∥ = 0.

Intuitively, an equilibrium Xe of a system is stable if the

system can converge to Xe given any initial point close

enough to it. Here, the convergence radius δ is of practical

interest. While several works (Heusel et al., 2017a; Xu et al.,

2020; Sønderby et al., 2016) show that (possibly modified)

GAN training dynamics are stable, the concept of stability

only guarantees convergence in a small neighborhood. How-

ever, the practical implication of such theoretical results

is questionable since we cannot guarantee to initialize the

network in the vicinity of an equilibrium. Additionally, in

practice, we are concerned about the training time required

for GANs to converge. However, current theoretical results

only guarantee convergence as time goes to infinity.

4. Brownian Motion Controller for GANs

Viewing GANs’ training as a dynamic system, we can lever-

age advances in control theory to design novel controllers to
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stabilize the dynamics. The controllers define a new dynam-

ical system with identical equilibria to the original system

Eq. (3), but with better stabilization properties.

Before presenting formal theoretical results, we notice that

while existing work (Mescheder et al., 2018; Xu et al., 2020)

extracts GANs’ training dynamic as a system of ordinary

differential equations (ODEs), our new dynamics Eq. (8) is a

system of stochastic differential equations (SDEs) due to the

noise terms. Here, we present some preliminary concepts

on SDEs and generalize the concept of stability to SDEs.

4.1. Preliminary

4.1.1. A SYSTEM OF SDES

In statistical physics and engineering, the motion of many

systems can be expressed as a SDE called Langevin Equa-

tion (Kloeden & Platen, 1992) such that

dX(t)
dt

= f(X(t)) + g(X(t))B(t), (4)

where X(t) is a m-dimensional vector representing the state

of the system and B(t) = (B1(t), . . . , Bm(t))T is a m-

dimensional Brownian motion, where each one-dimensional

Brownian motion {Bi(t)}t≥0 is a real-valued process with

the following properties (Mao, 2007):

1. Bi(0) = 0 a.s.;

2. for 0 ≤ s < t < ∞, the increment Bi(t) − Bi(s) is

normally distributed with mean 0 and variance t− s;

3. The increments of the above property are independent

to each other.

Given an initial state X0, the training trajectory of GAN can

be viewed as a solution of an initial value problem.

Definition 4.1. (Itô, 1951) Given a system described with

the SDEs Eq. (4) with the initial value X(0) = X0, a solu-

tion {X(t)}t≥0 to this system is a stochastic process such

that for 0 ≤ t ≤ ∞, we have

X(t) = X0 +

∫ t

0

f(X(s))ds+

∫ t

0

g(X(s))dB(s). (5)

For any given system, we are concerned about whether this

system exists a solution for a given initial point, and if so,

whether the solution is unique (Mao, 1991). While for ODE,

the existence and uniqueness of an initial value problem

is guaranteed by the Picard–Lindelöf theorem, extra care

needs to be taken for SDEs. We give the definitions below:

Definition 4.2. (Veretennikov, 1981) A system of SDEs

exists a global solution if for any initial value X0, its so-

lution {X(t)}t≥0 does not diverge and approach vertical

asymptotic (line x = a for some a) on t ∈ [0,∞).

Definition 4.3. (Mao & Yuan, 2006) A system of SDEs

has a unique solution if given any initial value X(0) =
X0, there almost surly exists one and only one solution

{X(t)}t≥0 starting with this initial value.

4.1.2. STABILITY ANALYSIS

Modern stability theory of dynamical systems is developed

under Lyapunov’s second method (Goldhirsch et al., 1987;

Shevitz & Paden, 1994; Sastry, 1999). Throughout our

work, we evaluate the stability of GANs’ training process

under the framework of Lyapunov stability analysis. First,

we generalize the definition of equilibria to SDEs:

Definition 4.4. Xe is said to be an equilibrium of a system

of SDE, if there exists a t0 such that X(t0) = Xe and for

all t ≥ t0 satisfies P
(

f(X(t)) + g(X(t))B(t) = 0
)

= 1.

As that for ODEs, equilibrium implies for a state which

cannot be improved with the stochastic updates Eq. (4) and

relates to a local Nash equilibrium. Then, whether the solu-

tion can converge to an equilibrium relates to the following

definitions of stability:

Definition 4.5. Given a system of SDEs with an initial

condition X(0) = X0 and equilibrium Xe, if we assume

{Xt}t≥0 is its unique solution. This system is said to be

1. Lyapunov stable, if given ϵ > 0, there exists a δ >
0 such that whenever ∥X(0)−Xe∥ ≤ δ, we have

P
(

∥X(t)−Xe)∥ < ϵ
)

= 1 for 0 ≤ t ≤ ∞.

2. asymptotically stable, if this system is Lya-

punov stable and there exists a δ > 0, such

that whenever ∥X(0)−Xe)∥ ≤ δ, we have

P
(

limt→∞ ∥X(t)−Xe∥ = 0
)

= 1.

3. exponentially stable, if it is asymptotically stable and

there exists α > 0, β > 0, δ > 0 such that when-

ever ∥X(0)−Xe∥ ≤ δ, for 0 ≤ t ≤ ∞, we have

P
(

∥X(t)−Xe∥ ≤ α ∥X(0)−Xe∥ e
−βt
)

= 1.

4. unstable, if neither of the three conditions above is

satisfied.

In what we follow, we say a dynamic system is globally

Lyaponouv/ asymptotically/ exponentially stable, if for any

initial value, this system has a unique solution converging to

equilibrium and exhibits Lyaponouv/ asymptotically/ expo-

nential stability. Under this circumstance, the δ in definition

4.5 can be arbitrary, leading to stronger stability than what

we defined in definition 4.5.

4.1.3. NOISE-BASED CONTROL ON ODES

Given a system of ODEs
dX(t)

dt
= f(X(t)) with an equili-

bruim Xe which exihibts unstable nature, we say the con-

troller g(X(t))B(t) globally Lyapunov / asymptotically /

exponentially stabilizes the system
dX(t)

dt
= f(x(t)) if and

only if Xe is still an equilibruim and the system of SDEs
dX(t)

dt
= f(X(t)) + g(X(t))B(t) is globally Lyapunov /

asymptotically / exponentially stable.

Theorem 4.6. (Mao, 1994) A system of ODEs
dX(t)

dt
= f(X(t)) with X(0) = X0 can be almost

surely exponentially stabilized by some noise term
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g(X(t))B(t) if their exists K > 0, such that f(X(t))
satisfies

|f(X(t))| ≤ K ∥X∥ , ∀X ∈ R
m, t ≥ 0 (6)

4.2. Brownian Motion Controller

In control theory, noise-based controllers are useful tools

for stabilizing dynamical systems and pushing the solution

towards optimal value over time domain t (Mao et al., 2002).

In our work, we propose Brownian motion controller

(BMC), a higher order noise-based controller as a universal

control function invariant to objective functions of GANs.

Eq. (3) is a second-order dynamical system. We follow the

framework of controllers for high order system proposed by

(Wu & Hu, 2009) to propose our BMC as below:

u(t) = ϱ1X(t)Ḃ1(t) + ϱ2|X(t)|βX(t)Ḃ2(t), (7)

where B1(t) and B2(t) are independent one-dimensional

Brownian motions, ϱ1 and ϱ2 are non-negative constants.

Incorporating BMC Eq. (7), the controlled system becomes

dX(t) = f(X(t))dt+ u(t). (8)

Intuitively, BMC adds multiplicative noise, i.e., where the

strength of stochasticity depends on the current state of the

system, to the original system. We will show in Sec. 5-6 (the-

oretically) and Sec. 7 (empirically) that training GANs with

BMC can have better stabilization properties than previous

GAN training dynamics and controllers (Kodali et al., 2017;

Xu et al., 2020). Importantly, on Dirac-GAN, a popular class

of GANs for analysis, BMC is globally exponentially stable.

This means the training process can converge exponentially

fast to the equilibrium starting from any initialization point.

This theoretical result is much stronger than previous ones,

which are only locally asymptotically stable.

5. Stability Analysis for Dirac-GANs

In this section, we focus on Dirac-GANs, a simplified

GANs’ setting with linear generator and discriminator net-

works proposed by Mescheder et al. (2018) to illustrate the

unstable nature of GANs. We prove that Dirac-GAN with

BMC is globally exponentially stable, and we derive bounds

on its converge rate.

5.1. Dynamic System of Dirac-GANs

In Dirac-GANs’ settings, the generator is a point mass fol-

lowing pG(x) = δ(x − θ) and the discriminator is a lin-

ear Dϕ(x) = ϕx. The true data distribution is given by

pD(x) = δ(x − c) with a constant c. Here, δ(·) is a Dirac

distribution with δ(x) = 0 for x ̸= 0 and
∫∞

−∞
δ(x) = 1.

The objective functions of Dirac-GANs can be written as:

{

max
ϕ

LDφ
(ϕ; θ) = h1(Dϕ(c)) + h2(Dϕ(θ))

max
θ

LGθ
(θ;ϕ) = h3(Dϕ(θ)),

(9)

where h1(·) and h3(·) are increasing functions and h2(·) is

a decreasing function around zero (Xu et al., 2020).

Taking the reparameterization θ̃(t) = θ(t) − c, we have

the following dynamic system with a unique equilibrium

(0, 0)T :

{

dϕ(t)
dt

= h′
1(ϕ(t)c)c+ h′

2(ϕ(t)(θ̃(t) + c))(θ̃(t) + c)
dθ̃(t)

dt
= h′

3(ϕ(t)(θ̃(t) + c))ϕ(t).
(10)

Depending on the specific choice of h1, h2, and h3, the

training dynamics of many GANs can be represented by

Eq. (10) with the minimalistic generator and discriminator

architecture. These GANs are referred as Dirac-GAN, Dirac-

WGAN, and so on. Unfortunately, Mescheder et al. (2018)

find that many Dirac-GANs are unstable. Our experiments

also confirm the unstable nature of Eq. (10). As in Fig. 1,

Dirac-WGAN is unstable and circles around the origin.

To stabilize Eq. (10), we apply our designed BMC and

transform Dirac-GANs’ training dynamics to Eq. (8),

where X(t) = (ϕ(t), θ(t))⊤, f(X(t)) = (h′
1(ϕ(t)c)c +

h′
2(ϕ(t)(θ̃(t)+c))(θ̃(t)+c), h′

3(ϕ(t)(θ̃(t)+c))ϕ(t))⊤, and

u(t) is defined as in Eq. (7).

5.2. Dirac-GANs are Exponentially Stable with BMC

In this section, we derive the existence of unique global

solution and stability of system (8). For the stability analysis,

we impose the following assumption on the smoothness of

functions h1, h2, h3 in system (8).

Assumption 5.1. There exist positive constants α1, α2, α3

such that for any x, y ∈ R
n,

|h′
1(x)− h′

1(y)| ≤ α1||x− y||, |h′
2(x)− h′

2(y)| ≤ α2||x− y||,

|h′
3(x)− h′

3(y)| ≤ α3||x− y||.

In what follows, we first prove that the BMC from equation

(7) yields a unique global solution in Theorem 5.2. Then,

in Theorem 5.3, we show that this unique global solution

exponentially converges to the equilibrium point a.s. with

bounds on the hyper-parameters ϱ1, ϱ2 and β which in turn

affect the rate of convergence. Combining Theorem 5.2 and

Theorem 5.3, we claim that with our BMC, Dirac-GANs

representing by system (8) is globally exponentially stable.

Theorem 5.2. (Proof in Appendix A) Under Assumption

5.1, for any initial value X(0) = ξ ∈ R
2, if ϱ2 ̸= 0 and

β > 1, then there a.s. exists a unique global solution X(t)
to system (8) on t ∈ [0,∞).

5



Stabilizing GANs’ Training with Brownian Motion Controller

Theorem 5.3. (Proof in Appendix B) Let Assumption 5.1

hold. Assume that ϱ2 ̸= 0 and β > 1. If
ϱ2

1

2 − φ > 0, where

φ takes the value of

max
x≥0

{

−
ϱ22
2
x2β+(α2

2+
1

2
α2
3)x

2+[(1+
1

2
α2
1)c

2+2c+
1

2
]

}

,

(11)

then for any X(0) = ξ with sufficiently small constant

ϵ ∈ (0, ϱ21/2 − φ), the global solution X(t) of system (8)

has the property that

lim sup
t→∞

log |X(t)|

t
≤ −

(

ϱ21
2

− φ

)

+ ϵ, a.s.

that is, the solution of system (8) is a.s. exponentially stable.

Here since
ϱ2

1

2 − φ > 0 and ϵ is a sufficiently small

constant, then when Eq. (11) is satisfied, we have

lim supt→∞
log |X(t)|

t
≤ −λ, a.s. for some positive con-

stant λ. Rearranging we get lim supt→∞ |X(t)| ≤ e−λt,
which implies lim supt→∞ X(t) = (0, 0)⊤ as required. No-

tice that the rate of convergence depends only on constant λ,

which in turn depends on ϱ1 and φ. Thus the convergence

rate is decided by the choice of hyper-parameters ϱ1, ϱ2, and

β. In practice, we can tune these three variables as desired,

as long as they satisfy the constraint from Eq. (11).

Notice that our BMC work for any h1, h2 and h3 as long

as they satisfy the smoothness condition under assumption

5.1. In other words, we have proven that with BMC, Dirac-

GANs are globally exponentially stable regardless of h1,

h2 and h3, and we have given theoretical bounds on the

rate of convergence. In Fig. 1, we present visual proof that

the Dirac-GAN with BMC is stable and converges to the

optimal equilibrium as required.

6. Stabilize General GANs with BMC

In this section, we present BMC for general GANs beyond

Dirac-GAN. Under GANs’ setting, the generator and dis-

criminator learn to compete with each other, and ideally,

they would converge to their global optimal solution simul-

taneously. However, in reality, the generator and discrimina-

tor typically learn at different paces (Wang et al., 2021). For

example, in DCGAN (Radford et al., 2015a) the discrimina-

tor learns faster, while in StyleGANv2 (Karras et al., 2020a)

the generator learns faster. This inconsistency would result

in the faster network being stuck in its local equilibrium

while the slower one stops learning useful information and

lead to mode-collapses or unstable behaviors.

BMC considers both the generator and discriminator as

a coupled dynamic system (a system of two differential

equations with two dependent variables D and G, and one

independent variable t) (Peng & Wu, 1999) and the goal of

our BMC is to make sure the generator and discriminator

learn at the same pace so that they are able to converge to

optimal equilibrium at the same time.

For simplicity, we take β = 2 (the order of noise often

take an even number) for general GANs, then BMC in this

setting becomes

u(t) = ϱ1X(t)Ḃ1(t) + ϱ2|X(t)|2X(t)Ḃ2(t) (12)

Our BMC can be reflected on objective functions as a regu-

larization term on both generator and discriminators, with

the derivative being Eq. (12). We thus take integration of

Eq. (12) and modify the objective functions in (1) to:















maxD LD
′(D;G) = LD(D;G) + 1

2ϱ1D
2(x)Ḃ1(t)

+[ 14ϱ2D
4(x) + 1

2ϱ2D
2(G(z))D2(x)]Ḃ2(t).

maxG LGG(G;D) = LG(G;D) + 1
2ϱ1D

2(G(z))Ḃ1(t)

+[ 14ϱ2D
4(G(z)) + 1

2ϱ2D
2(G(z))D2(x)]Ḃ2(t).

(13)

Although in general GANs’ setting, we are not aware of

the equilibrium point of the generator, according to Theo-

rem 5.3, this equilibrium would affect the constraints be-

tween ϱ1 and ϱ2. As a result, the stability is only guaranteed

for certain pairs of ϱ1 and ϱ2. We implement our designed

objective functions in Sec. 7 and analyze results for various

pairs of ϱ1 and ϱ2. Our numerical experiments show that

BMC successfully stabilizes GANs models and are able to

generate images with promising quality.

7. Evaluation

In this section, we show the effectiveness of BMC by pro-

viding both quantitative and qualitative results. We first

evaluate the performance of BMC for Dirac-GANs (“Dirac-

GAN-BMC”) in Sec. 7.1 and present Fig. 1 to illustrate that

our BMC successfully stabilizes Dirac-GANs. Addition-

ally, we compare the number of iterations needed for Dirac-

GAN-BMC to converge under various parameters of BMC.

Then in Sec. 7.2, we compare our GAN-BMC with the

StyleGANv2-ada baseline (Karras et al., 2020a) on multiple

datasets with various parameter settings of BMC. Experi-

ments show that our BMC effectively stabilizes the training

dynamics by reducing the range of oscillation, speeding up

the convergence rate, and improving the FID score.

7.1. Convergence of Dirac-GANs with BMC

In Dirac-GAN’s setting, we know the optimal equilibrium

is (0, 0)⊤, so we can measure the convergence speed and

draw the gradient map for comparison, which are presented

in Fig. 1. These results show that our Dirac-GAN-BMC

has better convergence patterns and speed than Dirac-GANs.

Without adding BMC to the training objective, Dirac-GANs

6



Stabilizing GANs’ Training with Brownian Motion Controller

1 2 3 4 5 6 7
Time/Days

3

4

5

6

7
FI

D 
Sc

or
e

CIFAR-10
StyleGANv2-ada
BMC( 1 = 1, 2 = 0.001)
BMC( 1 = 0.1, 2 = 0.001)
BMC( 1 = 0.1, 2 = 0.01)

2 4 6
Time/Days

10

20

30

40

50

FI
D 

Sc
or

e

LSUN-Cat
StyleGANv2-ada
BMC( 1 = 1, 2 = 0.001)
BMC( 1 = 0.1, 2 = 0.001)
BMC( 1 = 0.1, 2 = 0.01)

2 4 6
Time/Days

20

40

60

80

FI
D 

Sc
or

e

LSUN-Bedroom
StyleGANv2-ada
BMC( 1 = 1, 2 = 0.001)
BMC( 1 = 0.1, 2 = 0.001)
BMC( 1 = 0.1, 2 = 0.01)

2 4 6
Time/Days

5

10

15

20

25

FI
D 

Sc
or

e

FFHQ
StyleGANv2-ada
BMC( 1 = 1, 2 = 0.001)
BMC( 1 = 0.1, 2 = 0.001)
BMC( 1 = 0.1, 2 = 0.01)

Figure 2: The FID score curves with respect to time. The blue curve represents StyleGANv2-ada baseline using the same

parameter settings as their original paper (Karras et al., 2020a) , while the green, orange and red curves add BMC and are

evaluated under the same setting.

cannot reach equilibrium. The parameters of the generator

and the discriminator oscillate in a circle, as shown in Fig. 1.

In comparison, these parameters of the Dirac-GAN-BMC

only oscillate in the first 500 iterations and soon converge

in 800 iterations.

We also study different combinations of the hyperparameters

ϱ1 and ϱ2 under β = 1 and β = 2. As shown in Tab. 2,

Dirac-GANs-BMC converge better when we set ϱ1 = 0.1
and ϱ2 = 0.01. Generally, a larger ϱ will lead to a faster

convergence rate, but when ϱ is large enough, the effect

of increasing ϱ will become saturated. On the other hand,

when ϱ is too small, Dirac-GAN-BMC will take more than

100000 iterations to converge.

Table 2: Converge iterations required for β = 1 and β = 2
on DiracGANs-BMC. Symbol N below indicates not con-

verging after 100k iterations.

β = 1/2 ϱ2 = 0.0001 ϱ2 = 0.001 ϱ2 = 0.01

ϱ1 = 0.1 0.6k / 1.5k 0.4k / 0.75k 0.4k / 0.7k

ϱ1 = 0.01 25k / N 15k / 9k 10k / 8.5k

ϱ1 = 0.001 N / N N / N 40k / N

7.2. GANs-BMC: Converge better and lower FID

Dataset: We evaluate our proposed GANs-BMC on well-

established CIFAR10 (Krizhevsky et al., 2009), LSUN-

Bedroom with resolution 256x256 (Yu et al., 2015), LSUN-

Cat with resolution 256x256 (Yu et al., 2015), and FFHQ

with resolution 1024x1024 (Karras et al., 2019).

Implementation details: We compare the FID score

(Heusel et al., 2017b) of StyleGANv2-ada (Karras

et al., 2020a) and its stabilized version with our BMC

(“StyleGANv2-ada-BMC”). We reproduce the identical con-

figuration settings as reported in the StyleGANv2-ada paper

within the period of 7 days on 4 cards of NVIDIA GeForce

GTX TITAN X. The detailed experimental setups can be

found in Appendix C. We find that adding BMC results in

better performance without changing any hyperparameters

of the network, as shown in Fig. 2 . We conduct multiple

trials under different coefficients of BMC and report the FID

score with its range of oscillation in Tab. 3. Additionally, we

calculate the shifting difference of the generator throughout

the training process, shown in Fig. 3.

7.3. Quantitative Results

As in Fig. 2 and Tab. 3, StyleGAN2-ada has a large range of

oscillation on FID scores. Especially on the low-resolution

dataset CIFAR-10, we observe that the FID curve oscil-

lates even after training for a long time. On the other hand,

StyleGANv2-ada-BMC is able to reduce this range of os-

cillation by a multiple of 10 in CIFAR-10 32*32, LSUN-

Bedrrom 256*256, LSUN-Cat 256*256 and a multiple of 4

on FFHQ 1024*1024. As a result, BMC largely reduces the

range of oscillation, providing better convergence behavior.

Table 3: FID scores for each dataset after training for 7 days.

(a ± b in this table should be interpreted as a is the FID

score after 7 days, b is the range of oscillation on the 24

hours span of the seventh day).

ϱ1 = 1 ϱ1 = 0.1 ϱ1 = 0.01

Cifar10

(32x32)

ϱ2 = 0.01 3.12± 0.03 2.94± 0.01 3.56± 0.06
ϱ2 = 0.001 3.05± 0.02 2.95± 0.02 3.31± 0.04
ϱ2 = 0.0001 2.98± 0.02 2.96± 0.02 3.15± 0.05

Baseline 3.32± 0.16

LSUN

Bedroom

(256x256)

ϱ2 = 0.01 5.34± 0.09 5.40± 0.08 7.06± 0.09
ϱ2 = 0.001 7.52± 0.07 8.62± 0.12 8.82± 0.15
ϱ2 = 0.0001 7.48± 0.06 9.01± 0.14 9.25± 0.17

Baseline 18.16± 1.00

LSUN

Cat

(256x256)

ϱ2 = 0.01 8.42± 0.06 8.07± 0.04 9.09± 0.16
ϱ2 = 0.001 8.03± 0.04 8.01± 0.03 9.23± 0.18
ϱ2 = 0.0001 9.56± 0.23 9.30± 0.21 9.48± 0.19

Baseline 10.57± 0.31

FFHQ

(1024x1024)

ϱ2 = 0.01 5.74± 0.29 5.17± 0.10 7.96± 0.14
ϱ2 = 0.001 6.16± 0.14 6.24± 0.17 7.32± 0.18
ϱ2 = 0.0001 6.02± 0.09 6.03± 0.11 8.01± 0.23

Baseline 7.75± 0.42

While StyleGANv2-ada’s takes a long training time, espe-

cially on the dataset with high resolution, our BMC speeds

up the training time for producing images with the identical

FID scores by more than 2 days as observed in Fig. 2.

Additionally, we measure the training stability by defining

7
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Figure 3: The shifting difference against time on CIFAR-10

baseline and its BMC trails. Clearly the shifting difference

with BMC approaches 0.

the shifting difference of the generator as

D(G1, G2) = Epz(z) ∥G1(z)−G2(z)∥ .

We calculate the shifting difference of the generator in be-

tween iterations and, as in Fig. 3, while StyleGANv2-ada

has a non-vanishing shifting difference at around 0.02, the

shifting difference of our BMC approaches 0, indicating our

BMC successfully stabilizes the generator.

7.4. Qualitative results

We provide qualitative results on FFHQ 1024x1024 in Fig. 4.

Noticing that our GANs-BMC is able to produce images

with higher quality at a faster speed.

8. Conclusion and Discussion

In this paper, we revisit GANs’ instability problem from

the perspective of control theory. Our work novelly incor-

porates noise-based controller of on the training dynamics

of GANs and modifies its objective function accordingly to

stabilize GANs. We innovatively design a Brownian Motion

Control (BMC) to achieve globally exponential stability.

Notably, our BMC is compatible with all GANs variations.

In our paper, theoretical analysis has been done under the

Dirac-GANs setting, and we are able to stabilize both the

generator and discriminator simultaneously. Experimental

results demonstrate that our BMC accelerates the conver-

gence of GANs and performs better in terms of FID than

StyleGANv2-ada on CIFAR-10, LSUN-Bedroom, LSUN-

Cat, and FFHQ.

Possible Future Directions While in practice, the training

process of GANs is discrete, we model it as a continuous dy-

namic system in our work. As a result, our method performs

better on training with smaller time intervals per iteration.

Figure 4: Each row represents images generated from the

FFHQ 1024*1024 dataset within the first 20 hours (5, 10,

15, and 20 hours). The first column of images is generated

by StyleGANv2-ada, and the second column of images is

generated after adding BMC.

Additionally, although many advanced control methods, in-

cluding our BMC, are available to stabilize the dynamic

system, few of them have been applied in deep generative

models. As a result, future work can be done on modeling

training as a discrete process and exploring more control

methods to improve its stability.

Social Impacts and Potential Harmful Consequences

Like other generative models, our GAN-BMC has ethical

8
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problems related to deep fake. The generated photos and

videos are indistinguishable from the real ones and may be

used illegally to spread misleading information for harmful

uses. Secondly, our GAN-BMC may be biased toward con-

cern identity categories, such as race and gender. Product

farming is another ethical concern GAN-BMC has, as gen-

erated images join art contests and bring fairness issues for

artists.
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Appendix A: Proof of Theorem 5.2

Under Assumption 5.1, for any initial value X(0) = ξ ∈ R
2, if ϱ2 ̸= 0 and β > 1, then there a.s. exists a unique global

solution X(t) to system (8) on t ∈ [0,∞).

Proof. Under Assumption 5.1, then, we can calculate that

XT(t)f(X(t))

=ϕ(t)h
′

1(ϕ(t)c)c+ ϕ(t)h
′

2(ϕ(t)(θ̃(t) + c))θ̃(t)+

ϕ(t)h
′

2(ϕ(t)(θ̃(t) + c))c+

θ̃(t)h
′

3(ϕ(t)(θ̃(t) + c))ϕ(t)

≤[(1 +
1

2
α2
1)c

2 + 2c+
1

2
]|X|2 + (α2

2 +
1

2
α2
3)|X|4.

For any bounded initial value X(0) ∈ R
n, there exists a unique maximal local strong solution X(t) of system (8) on

t ∈ [0, τe), where τe is the explosion time. To show that the solution is actually global, we only need to prove that τe = ∞
a.s. Let k0 be a sufficiently large positive number such that |X(0)| < k0. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : |X(t)| ≥ k}

with the traditional setting inf ∅ = ∞, where ∅ denotes the empty set. Clearly, τk is increasing as k → ∞ and τk → τ∞ ≤ τe
a.s. If we can show that τ∞ = ∞, then τe = ∞ a.s., which implies the desired result. This is also equivalent to prove that,

for any t > 0, P(τk ≤ t) → 0 as k → ∞. To prove this statement, for any p ∈ (0, 1), define a C2-function

V (x) = |X(t)|p.

One can obtain that X(t) ̸= 0 for all 0 ≤ t ≤ τe a.s. Thus, one can apply the Itô formula to show that for any t ∈ [0, τe),

dV (X(t)) =LV (X(t))dt+ pϱ1|X(t)|pdB1(t)

+ pϱ2|X(t)|β+pdB2(t),

where LV is defined as

LV (X) =p|X|p−2XTf(X(t)) +
p(p− 1)ϱ21

2
|X|p

+
p(p− 1)ϱ22

2
|X|2β+p

By Assumption 5.1, we therefore have

LV (X) ≤
p(p− 1)ϱ22

2
|X|2β+p + ((1 +

1

2
α2
1)c

2 + 2c+
1

2
)

p|X|α+p + p

(

(p− 1)ϱ21
2

+ (α2
2 +

1

2
α2
3)

)

|X|p.

Noting that p ∈ (0, 1) and β > 1 and ϱ2 ̸= 0, by the boundedness of polynomial functions, there exists a positive constant

H̄ such that LV (x) ≤ H̄ . We therefore have

EV (X(t ∧ τk)) ≤ E|ξ|p + E

∫ t∧τk

0

LV (X(s))ds

≤ E|ξ|p + H̄t

=: H̄t,
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where H̄t is independent of k. By the definition of τk, |X(τk)| = k, so

P(τk ≤ t)kp ≤ P(τk ≤ t)V (X(τk))]

≤ E[l{τk≤t}V (X(t ∧ τk))]

≤ EV (X(t ∧ τk))

≤ H̄t,

which implies that

lim sup
k→∞

P(τk ≤ t) ≤ lim
k→∞

H̄t

kp
= 0,

as required.
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Appendix B: Proof of Theorem 5.3

Let Assumption 5.1 hold. Assume that ϱ2 ̸= 0 and β > 1. If

ϱ21
2

− φ > 0,

where

φ = max
x≥0

{

−
ϱ22
2
x2β + (α2

2 +
1

2
α2
3)x

2 + [(1 +
1

2
α2
1)c

2 + 2c+
1

2
]

}

, (14)

then for any X(0) = ξ with sufficiently small constant ϵ ∈ (0, ϱ21/2− φ), the global solution X(t) of system (8) has the

property that

lim sup
t→∞

log |X(t)|

t
≤ −

(

ϱ21
2

− φ

)

+ ϵ, a.s.

that is, the solution of system (8) is a.s. exponentially stable.

Proof. Applying Itô formula to log |X(t)| yields

log |X(t)| = log |X(0)|+

∫ t

0

[

|X(t)|−2XT(s)f(X(s))

−
ϱ22
2
|X(s)|2β −

ϱ21
2

]

ds+

∫ t

0

ϱ1dB1(t)

+ ϱ2

∫ t

0

|X(s)|βdB2(s).

Letting M(t) = ϱ2
∫ t

0
|X(s)|βdB2(s), clearly M(t) is a continuous local martingale with the quadratic variation

< M(t),M(t) >= ϱ22

∫ t

0

|X(s)|2βds.

For any ε ∈ (0, 1), choose θ > 0 such that θε > 1. Then for each integer m > 0, the exponential martingale inequality gives

P

{

sup
1≤t≤m

[

M(t)−
εϱ22
2

∫ t

0

|X(s)|2βds

]

≥ θε logm

}

≤
1

mθε
.

Since
∑∞

m=1 m
−θε < ∞, by the well-known Borel-Cantelli lemma, there exists an Ω̄0 ⊆ Ω with P(Ω̄0) = 1 such that for

any ω ∈ Ω̄0, there exists an integer m̄(ω), when m > m̄(ω), and m− 1 ≤ t ≤ m,

M(t) ≤
εϱ22
2

∫ t

0

|X(s)|2βds+ θε log(t+ 1).

This, together with Assumption 5.1, yields

log |X(t)| ≤ log |ξ|+

∫ t

0

[

−
ϱ22(1− ε)

2
|X(s)|2β

+ (1 + (
1

2
α2
1)c

2 + 2c+
1

2
)|X(s)|α

+ (α2
2 +

1

2
α2
3)−

ϱ21
2

]

ds

+

∫ t

0

ϱ1dB1(t) + θε log(t+ 1).
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Letting ϵ be sufficiently small, by the definition of φ in (11), for sufficiently small ϵ ∈ (0, ϱ21/2− φ), we have

log |X(t)| ≤ log |ξ| −

[

(
ϱ21
2

− φ)− ϵ

]

t+

∫ t

0

ϱ1dB1(t)

+ θε log(t+ 1).

Applying the strong law of large number, we therefore have

lim sup
t→∞

log |X(t)|

t
≤ −(

ϱ21
2

− φ) + ϵ a.s.
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Appendix C: Experimental Setups

Table 4: Detailed Experiment Setups of StyleGANv2-ada and its BMC trails

Dataset Batch Size Learning Rate Optimizer GPUs

CIFAR-10 64 0.0025 Adam 2

LSUN-Cat (256x256) 64 0.0025 Adam 4

LSUN-Bedroom (256x256) 64 0.0025 Adam 4

FFHQ (1024x1024) 32 0.0002 Adam 4

Table 5: Detailed Experiment Setups of ProjectedGAN and its BMC trails

Dataset CIFAR-10

Batch Size 64

Learning Rate 0.002

Optimizer Adam

Projected EfficientNet
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Appendix D: Results on ProjectedGAN and ImageNet

Table 6: FID scores on CIFAR-10 for ProjectedGAN with respect to the number of real images seen

200k 400k 600k 800k 1M

Projected-GAN 12.77 9.40 8.17 7.34 7.01

Projected-GAN-BMC (ϱ1 = 1, ϱ2 = 0.1) 11.20 9.11 7.28 6.67 6.28

Projected-GAN-BMC (ϱ1 = 0.1, ϱ2 = 0.01) 12.57 9.31 8.17 7.31 6.74

Projected-GAN-BMC (ϱ1 = 0.01, ϱ = 0.001) 12.17 8.92 7.93 6.42 6.39

Table 7: FID scores on ImageNet 32 × 32 with respect to the number of real images seen

1M 2M 3M 4M 5M 6M

StyleGANv2-ada 28.67 18.93 15.94 14.17 13.46 12.45

StyleGANv2-ada-BMC (ϱ1 = 1, ϱ2 = 0.1) 21.41 16.10 13.76 12.25 11.48 10.93

StyleGANv2-ada-BMC (ϱ1 = 0.1, ϱ2 = 0.01) 25.34 17.31 14.84 12.89 12.10 11.79

StyleGANv2-ada-BMC (ϱ1 = 0.01, ϱ2 = 0.001) 26.85 17.89 15.46 13.50 12.88 12.31
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