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Abstract
An unaddressed challenge in multi-agent coordi-
nation is to enable AI agents to exploit the seman-
tic relationships between the features of actions
and the features of observations. Humans take ad-
vantage of these relationships in highly intuitive
ways. For instance, in the absence of a shared
language, we might point to the object we de-
sire or hold up our fingers to indicate how many
objects we want. To address this challenge, we
investigate the effect of network architecture on
the propensity of learning algorithms to exploit
these semantic relationships. Across a procedu-
rally generated coordination task, we find that
attention-based architectures that jointly process
a featurized representation of observations and
actions have a better inductive bias for learning in-
tuitive policies. Through fine-grained evaluation
and scenario analysis, we show that the resulting
policies are human-interpretable. Moreover, such
agents coordinate with people without training on
any human data.

1. Introduction
Successful collaboration between agents requires coordina-
tion (Tomasello et al., 2005; Misyak et al., 2014; Kleiman-
Weiner et al., 2016), which is challenging because coordi-
nated strategies can be arbitrary (Lewis, 1969; Young, 1993;
Lerer & Peysakhovich, 2018). A priori, one can neither
deduce which side of the road to drive, nor what utterance
to use to refer to ♡ (Pal et al., 2020). In these cases co-
ordination can arise from actors best responding to what
others are already doing—i.e., following a convention. For
example, Americans drive on the right side of the road and
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Figure 1. The “Bouba” (right) and “Kiki” (left) effect.

say “heart” to refer to ♡ while Japanese drive on the left
and say “shinzo”. Yet in many situations prior conventions
may not be available and agents may be faced with entirely
novel situations or partners. In this work, we study ways
that agents may learn to leverage semantic relations between
observations and actions to coordinate with agents they have
had no experience interacting with before.

Consider the shapes in Fig. 1. When asked to assign the
names “Bouba” and “Kiki” to the two shapes, people name
the jagged object “Kiki” and the curvy object “Bouba”
(Köhler, 1929). This finding is robust across different lin-
guistic communities and cultures and is even found in young
children (Maurer et al., 2006). The causal explanation is that
people match a “jaggedness”-feature and “curvey”-feature
in both the visual and auditory data. Across the above cases,
there seems to be a generalized mechanism for mapping
the features of the person’s action with the features of the
action that the person desires the other agent to take. In
the absence of norms or conventions, people may minimize
the distance between these features when making a choice.
This basic form of feature utilization in humans predates
verbal behavior (Tomasello et al., 2007), and this capability
has been hypothesized as a key predecessor to more sophis-
ticated language development and acquisition (Tomasello
et al., 2005). Modeling these capacities is key for building
machines that can robustly coordinate with other agents
and with people (Kleiman-Weiner et al., 2016; Dafoe et al.,
2020).

Might this general mechanism emerge through multi-agent
reinforcement learning across a range of tasks? As we will
show, reinforcement learning agents naively trained with
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self-play fail to learn to coordinate even in these obvious
ways. Instead, they develop arbitrary private languages that
are uninterpretable to both the same models trained with
a different random seed and to human partners (Hu et al.,
2020). For instance, in the examples above, they would be
equally likely to wave a red-hat to hint they want strawber-
ries as they would to indicate that they want blueberries.

Unfortunately, developing an inductive bias that might take
into account these correspondences is not straightforward
because describing the kind of abstract knowledge that these
agents lack in closed form is challenging. Rather than at-
tempting to do so, we take a learning-based approach. Our
aim is to build an agent with the capacity to develop these
kinds of abstract correspondences during self-play, such that
it can robustly succeed during cross play, a setting in which
a model is paired with a partner (human or AI) that it did
not train with.

Toward this end, we extend the Dec-POMDP formalism
to allow actions and observations to be represented using
shared features and design a human-interpretable environ-
ment for studying coordination with these enrichments. Us-
ing this formalism, we examine the inductive bias of a collec-
tion of five network architectures—two feedforward based
and three attention based—in procedurally generated co-
ordination tasks. Our main contribution is finding that a
self-attention architecture that takes both the action and
observations as input has a strong inductive bias toward
using the relationship between actions and observations in
intuitive ways. This inductive bias manifests in: 1) High
intra-algorithm cross-play scores compared to both other
architectures and to algorithms specifically designed to max-
imize intra-algorithm cross play; 2) Sophisticated human-
like coordination patterns that exploit mutual exclusivity
and implicature—two well-known phenomena studied in
cognitive science (Markman & Wachtel, 1988; Grice, 1975);
3) Human-level performance at ad-hoc coordinating with
humans. We hypothesize that the success of this architecture
can be attributed to the fact that it processes observation
features and action features using the same weights. Our
finding suggests that this kind of attention architecture is
a sensible starting point for learning intuitive policies in
settings in which action features play an important role.

2. Background and Related Work
Dec-POMDPs. We start with decentralized partially ob-
servable Markov decision processes (Dec-POMDPs) to for-
malize our setting (Nair et al., 2003). In a Dec-POMDP,
each player i receives an observation 
i(s) ∈ Oi gener-
ated by the underlying state s, and takes action ai ∈ Ai.
Players receive a common reward R(s; a) and the state
transitions according to the function T (s; a). The his-
torical trajectory is � = (s1; a1; : : : ; at�1; st). Player

i’s action-observation history (AOH) is denoted as � it =
(
i(s1); ai1; : : : ; a

i
t�1;


i(st)). The policy for player i takes
as input an AOH and outputs a distribution over actions, de-
noted by �i(ai | � it ). The joint policy is denoted by �.

MARL and Coordination. The standard paradigm for
training multi-agent reinforcement learning (MARL) agents
in Dec-POMDPs is self play (SP). However, the failure of
such policies to achieve high reward when evaluated in cross
play (XP) is well documented. Carroll et al. (2019) used
grid-world MDPs to show that both SP and population-based
training fail when paired with human collaborators. Bard
et al. (2019); Hu et al. (2020) showed that agents perform
significantly worse when paired with independently trained
agents than they do at training time in Hanabi, even though
the agents are trained under identical circumstances. This
drop in XP performance directly results in poor human-AI
coordination, as shown in (Hu et al., 2020). Lanctot et al.
(2017) found similar qualitative XP results in a partially-
cooperative laser tag game.

To address this issue, Hu et al. (2020) introduced a setting
in which the goal is to maximize the XP returns of inde-
pendently trained agents using the same algorithm. We call
this setting intra-algorithm cross play (intra-AXP). Hu et al.
(2020) argue that high intra-AXP is necessary for successful
coordination with humans: If agents trained from indepen-
dent runs or random seeds using the same algorithm cannot
coordinate well with each other, it is unlikely they will be
able to coordinate with agents with different model archi-
tectures, not to mention humans. However, while there has
been recent progress in developing algorithms that achieve
high intra-AXP scores in some settings (Hu et al., 2020;
2021), this success does not carry over to settings in which
the correspondence between actions and observations is
important for coordination, as we will show.

Beyond performing well in intra-AXP, a more ambitious
goal is to perform well with agents that are externally deter-
mined, such as humans, and not observed during training
time. This setting has been referred to both as ad-hoc coordi-
nation (Stone et al., 2010; Barrett et al., 2011) and zero-shot
coordination (Hu et al., 2020; Strouse et al., 2021). However,
both terms carry some ambiguity, as ad-hoc coordination
is sometimes evaluated in a setting in which the externally
determined partners are known at training time (Stone et al.,
2010) and zero-shot coordination is sometimes used to refer
to the setting in which the goal is to maximize intra-AXP
(Hu et al., 2020). We use ad-hoc coordination to refer to
this setting.

Dot-Product Attention. As we will see in our experiments,
one way to leverage the correspondences between action
features and observation features is by using attention mech-
anisms (Vaswani et al., 2017; Bahdanau et al., 2015; Xu
et al., 2016). Given a set of input vectors (x1; :::; xm),
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self-attention uses three weight matrices(Q; K; V ) to ob-
tain triples (Qx i ; Kx i ; V xi ) for each i 2 f 1; : : : ; mg,
called query vectors, key vectors, and value vectors. We
abbreviate these as(qi ; ki ; vi ). Next, for eachi; j , dot-
product attention computes logits using dot productsqi � kj .
These logits are in turn used to compute an output matrix
[softmax(qi � k1=

p
m; : : : ; qi � km =

p
m) � vj ]i;j . We de-

note this output matrix asSA(x1; : : : ; xm ). Cross-attention
is similar, it accepts inputs that are partitioned into dis-
joint blocks(y1; : : : ; yn ) and(x1; : : : ; xm ), and only ap-
pliesQ to y and only appliedK; V to x. We refer to this as
CA( y1; : : : ; yn ; x1; : : : ; xm ).

Attention for Input-Output Relationships. Exploiting
semantic relationships between inputs and outputs via an
attention-based model has been studied in the deep learning
literature. In natural language processing, such an idea
is commonly used in question answering models (dos
Santos et al., 2016; Tan et al., 2016; Yang et al., 2016). For
instance, Yang et al. (2016) form a matrix that represents
the semantic matching information of term pairs from a
question and answer pair, and then use dot-product attention
to model question term importance. For regression tasks,
Kim et al. (2019) proposed attentive neural processes (ANP)
that use dot-product attention to allow each input location
to attend to the relevant context points for the prediction,
and applied ANP to vision problems.

Human Coordination. Our work is also inspired by how
humans coordinate in cooperative settings. Theory-of-mind,
the mechanism people use to infer intentions from the ac-
tions of others, plays a key role in structuring coordination
(Wu et al., 2021; Shum et al., 2019). In particular, rational
speech acts (RSA) is an in�uential model of pragmatic impli-
cature (Frank & Goodman, 2012; Goodman & Stuhlmüller,
2013). At the heart of these approaches are probabilistic rep-
resentations of beliefs that allow for modeling uncertainty
and recursive reasoning about the beliefs of others, enabling
higher-order mental state inferences. This recursive reason-
ing step also underlies the cognitive hierarchy and level-K
reasoning models, and is useful for explaining certain fo-
cal points (Camerer, 2011; Stahl & Wilson, 1995; Camerer
et al., 2004). However, constructing recursive models of
players' beliefs and behaviors is computationally expensive
as each agent must construct an exponentially growing num-
ber of models of each agent modeling each other agent. As
a result, recursive models are often limited to one or two
levels of recursion. Furthermore, none of these approaches
can by itself take advantage of the shared features across
actions and observations.

3. Dec-POMDPs with Shared Action and
Observation Features

It is common to describe the states and observations in Dec-
POMDPs using features, e.g. in card games each card has
a rank and a suit. These featurized observations can be
exploited by function approximators. In contrast, in typical
MARL implementations the actions are merely outputs of
the neural network and the models do not take advantage of
features of the actions. In the standard representation of Dec-
POMDPs, actions are de�ned solely through their effect on
the environment through the reward and the state transition
functions. In contrast, in real world environments actions are
often grounded and can be described with semantic features
that refer to the object they act on, e.g. “I pull thered lever”.

To allow action features to be used by MARL agents, we
formalize the concept of observation and action features
in Dec-POMDPs. We say a Dec-POMDP hasobservation
featuresif, for at least one playeri , we can represent the ob-
servation
 i (s) as a set of̀ objects
 i (s) = f O1; : : : ; O` g,
where each objectOj = ( f 1; : : : ; f n j ) is described by a
vector ofnj features. Each of these featuresf k exists in
a feature spaceFk . Similarly, a Dec-POMDP hasaction
featuresif one can factor the representation of the actions
into featuresai = ( f̂ 1; : : : ; f̂ m ), where each action feature
f̂ r 2 F̂r , r = 1 ; :::; m, andF̂r is the action feature space.

In some Dec-POMDPs, actions can be described using some
of thesamefeatures that describe the observations. For ex-
ample, an agent might observe the “red” light and take the
action of pulling the “red” lever where “red” is a shared fea-
ture between observations and actions. In such cases there
is a non-empty intersectionbetweenFk andF̂r (“shared
action-observation features”) which may be exploited for
coordination. Even in the absence of an exact match, the dis-
tance between similar features (e.g., “pink” and “red” and
vs. “green” and “red”) might also be useful for coordination.

4. The Hint-Guess Game

To study Dec-POMDPs with shared action-observation fea-
tures, we introduce a novel setting that we callhint-guess.
Hint-guess is a two-player game where players must coordi-
nate to successfully guess a target card. The game consists
of a hinter and aguesser. Both players are given a hand
of N cards,H1 = f C1

1 ; :::C1
N g for the hinter andH2 =

f C2
1 ; :::C2

N g for the guesser. Each card has two features
(f 1; f 2) wheref 1 2 F1 andf 2 2 F2. Cards in each hand are
drawn independently and randomly with replacement, with
equal probability for each combination of features. Both
hands,H1 andH2, are public information exposed to both
players. Before each game, one of theguesser'scards,C2

i ,
is randomly chosen to be the target card and its features are
revealed to thehinter, but not theguesser.
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Figure 2.Example scenarios inhint-guess. Shown above are four
hand-crafted scenarios that test distinct dimensions important for
ZSC. The card in the red dotted lines is a target card and the
highlighted yellow card corresponds to a human-compatible choice.
The two right scenarios require agents to reason about implicatures,
i.e., the intuitive choice has zero feature overlap with the target
card. Model performance in these scenario types is shown in
Table 2.

In the �rst round, thehinter (who observesH1; H2; C2
i )

chooses a card in its own hand, which we refer to asC1
j ,

to show to theguesser. In the second round, theguesser
(who observesH1; H2, C1

j ) guesses which of its cards is
the target. Both players receive a common rewardr = 1
if the features of the card played match those of the target,
otherwiser = 0 for both players.

Fig. 2 shows some simple scenarios that probe key dimen-
sions of coordination withN = 2 , F1 = f 1; 2; 3g and
F2 = f A; B; C g. Each of these scenarios has a human-
compatible and intuitive solution. The �rst scenario (exact
match) is the most simple—thehinter has a copy of the
target card (2B) so it can simply hint 2B. The next scenario
(feature similarity) requires reasoning about the features
under some ambiguity since neither of the cards in the two
hands are a direct match. In this case, both cards in the
hinter's hand share one feature with theguesser. Thus, the
human-compatible strategy would be to match the cards that
share features to each other. The third and fourth examples
(labeled implicatures in Fig. 2) require understanding the ac-
tion embedded within its context, e.g. what thehinterwould
have done had the goal been different. The third scenario
invokes a simple kind of implicature: mutual exclusivity. In
this scenario, human-compatible intuitive reasoning follows
the logic of: “if the target cardwas1B, thehinter would
choose 1B. So that means 1B is taken and 3C should cor-
respond to 2A even though they share no common feature
overlap”. The �nal scenario combines feature similarity and
mutual exclusivity. These scenarios are particularly inter-
esting as deep learning models often struggle to effectively
grapple with mutual exclusivity (Gandhi & Lake, 2020).

5. Architectures Examined

We consider the following architectures to investigate the
effect of policy parameterization on the agents' ability to
learn intuitive relationships between actions and observation.

Figure 3.Model architecture for the attention-based models. Top:
Attention (Attn ). Middle: Cross Attention with Action as Input
(CA2I ). Bottom: Self Attention with Action as Input (SA2I). The
red blocks denote featurized objects in the observation, e.g. cards
in the deck. The cyan blocks denote featurized actions, e.g. cards
in the hand that can be hinted/guessed.Cross-Attn, Self-Attnand
MLP denote the cross attention, self attention, and fully-connected
layers, respectively.

For details about the model architectures, see Appendix A.1.

Feedforward Networks (MLPs). The most basic archi-
tecture we test is a standard fully connected feedforward
network with ReLU activations. All featurized representa-
tion of objects in the observation are concatenated and fed
into the network, which outputs the estimated Q-value for
each action. There is no explicit representation of action-
observation relationships in this model, since observations
are inputs and actions are outputs.

Feedforward Networks with Action as Input (MLP Ac-
tion In) We also examined variant of the MLP architectures
in which featurized representation of objects in the obser-
vationand one particular actionare concatenated and fed
into the network, which outputs the estimated Q-value for
the action that was fed in. Note that this requires a separate
forward pass to compute the Q-value for each action.

Attention (Attn). We also investigate three attention-based
models as shown in Fig. 3. The �rst model processes the
observations using attention, takes the object-wise mean,
and feeds the output into a feedforward network, which
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produces a vector with a Q-value for each action

Q = MLP(Mean(SA(O1; : : : ; On )) :

There is no explicit representation of action-observation
relationships in this model, since observations are inputs
and actions are outputs.

Cross Attention with Action as Input (CA2I). In the sec-
ond attention model, the featurized actions are fed into a
cross-attention block as queries and the featurized observa-
tions are fed in as keys and values, which produces a vector
with a Q-value for each action

Q = MLP(Mean(CA(A1; : : : ; Am ; O1; : : : ; On ))) :

Self Attention with Action as Input (SA2I). Lastly, we
look at an attention-based architecture similar toAttn ,
where a featurized action is passed as input to the atten-
tion module(s) along with the observations. This outputs a
single scalar value at a time, the estimated Q-value for the
speci�c action being fed into the network

Qk = MLP(Mean(SA(O1; : : : ; On ; Ak ))) :

for k = 1 ; : : : ; m. Indeed,SA2I requires a forward pass
for each action to calculate the Q-value vector.

Note that, of all the architectures examined here, onlySA2I
processes the featurized actions and observations using the
same weights. Indeed, MLP andAttn do not consider
action features at all; MLP Action In uses a different vector
of weights for each input dimension; andCA2I uses a
different set of weights for the queries (i.e., the actions)
than it uses for the keys and values (i.e., the observations).
We hypothesize that this contrast may explain the strong
performance ofSA2I that we will describe in the following
sections.

6. Experiments

6.1. Experiment Setup

We experimentally evaluate the architectures in the hint-
guess game introduced in Section 4. In Sections 6.2-6.4,
we �x the hand size to beN = 5 and the features to be
F1 = f 1; 2; 3g andF2 = f A; B; C g. 1 We use a one-hot en-
coding for features; more speci�cally, we use a two-hot vec-
tor to represent the two features of each card. In Sec. 6.5, we
examine a qualitatively different version of the game where
N = 3 and there is only one feature,F1 = f 0; 1; :::; 19g. In
this version, we investigate whether it is possible to capture
ordinal relationships between actions using sinusoidal po-
sitional encodings. For these experiments, we encode each

1There is nothing particular about the hand size, and as shown
in Appendix A.5, similar results can be obtained with either a
larger or smaller hand size.

number as a200-dimensional vector consisting of sine and
cosine functions of different frequencies, as in Vaswani et al.
(2017).

For both variants of the game, the observation input is a
sequence of card representations for both handsH1 andH2,
as well as the representation of the target card,C2

i (for the
hinter) or the hinted cardC1

j (for the guesser); a binary
feature is added to each card's featurization specifying to
which player it belongs. We train agents in the standard
self-play setting using independent Q-learning (Tan, 1993,
IQL), where thehinter andguesserare jointly trained to
maximize their score in randomly initialized games; the hin-
ter and guesser do not share any weights. To avoid giving
the set-based attention architectures an unfair advantage, we
also permute the cards in the hands observed by all agents
so that agents are not able to coordinate using the position of
the cards. The action space of the architectures that output
multiple Q-values is of the form “hint(f 1; f 2)” for each
(f 1; f 2); we mask the Q-values so that only features corre-
sponding to cards in the player's hand can be chosen. To
evaluate success, we consider the agents' performance and
behavior in both SP and the intra-AXP setting. We also
provide �ne-grained examination of their policies and inves-
tigate their ability to match the human-compatible response
in different scenarios. See Appendix A.1 for training details.

6.2. Cross-play Performance.

First, we evaluate model cross-play (XP) performance
for each architecture in the intra-AXP setting. In this
setting, agents from independent training runs with different
random seeds are paired together. Fig. 4 records the scores
obtained by each pair of agents, where the diagonal entries
are the within-pair SP scores and the off-diagonal entries
are XP scores. Table 1 summarizes average SP and XP
scores across agents.

Comparison Across Architectures.Fig. 4 shows that the
XP matrix of all architectures exceptSA2I (Self Attention
with Action as Input) lack an interpretable pattern. The
XP score is near chance for these architectures as shown
in Table 1. In contrast, the XP matrix for theSA2I model
shows two clear clusters. Within the clusters, agents
show XP performance nearly identical to that of their SP,
implying that they coordinate nearly perfectly with other
agents trained with a different seed, whereas outside the
clusters they achieve a return close to zero. As we will show
in the next section, the upper cluster, which has a higher
average XP score, corresponds to a highly interpretable and
human-like strategy where agentsmaximizethe “similarity”
between the target and the hint card (as well as between the
hint card and the guess card). In the lower, second cluster,
agents do the opposite. They try to hint/guess cards that
share no common feature with the target/hint cards. In the
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Model Architectures
Model Cross-Play Self-Play
MLP 0:27� 0:04 0:85� 0:02
MLP Action In 0 :28� 0:05 0:87� 0:02
Attn 0 :27� 0:04 0:87� 0:01
CA2I 0:29� 0:03 0:85� 0:02
SA2I 0:37� 0:12 0:76� 0:02
SA2I Sim 0:77� 0:01 0:82� 0:01
SA2I Dissim 0:71� 0:01 0:72� 0:01

Baseline Training Algorithms
Algothrim Cross-Play Self-Play
OP 0:35� 0:02 0:35� 0:02
OBL (level 1) 0:27� 0:05 0:29� 0:06
OBL (level 2) 0:28� 0:04 0:28� 0:05

Table 1.Cross-play performance in the intra-AXP setting. Each
entry is the average performance of 20 pairs of agents that are
trained with different random seeds. The XP score is the off-
diagonal mean of each grid. The SP score is the diagonal mean,
i.e. the score attained when agents play with the peer they are
trained with. Note that a “chance agent” that acts randomly is
expected to obtain a score of 0.28 in this setting. All models in the
“Model Architecture” part are trained with IQL (Tan, 1993), and
all algorithms in the “Baseline Training Algorithm” section use an
MLP architecture.

rest of the paper, we will refer to the cluster where agents
maximize the similarity between cards asSA2I Sim, and
the cluster where agents maximize the dissimilarity asSA2I
Dissim. However, as we will see in section 6.3, theSA2I
agents do not just maximize/minimize feature similarity;
they also demonstrate more sophisticated coordination
patterns that exploit implicature.

Comparison with intra-AXP Baselines.The bottom part
of Table 1 contains the SP and XP results for two recent
intra-AXP algorithms, other-play (Hu et al., 2020, OP) and
off-belief learning (Hu et al., 2021, OBL). For details and im-
plementation of the baseline algorthims, see Appendix A.3.

As shown, the XP scores for OP agents only show marginal
improvement overMLP agents. By preventing arbitrary
symmetry breaking, OP improves XP performance, but only
to a limited extent. In contrast, the OBL agents fail to obtain
scores beyond chance both in XP and SP. This is expected,
as OBL is designed to explicitly prevent the interpretation
of cheapcheap talk, i.e., costless messages between players,
which is important for coordination in hint-guess.

6.3. Policy Examination

Conditional Probability Analysis. In Fig. 5, we provide
the conditional probability for theguesserto guess a card
given the hinted card (bottom row). One crucial thing to
analyze is whether agents assign different probabilities to

actions based on the features they share with the observa-
tion. One can see that forMLP , MLP Action In , Attn ,
andCA2I the probability matrices for both target-hint and
hint-guess are nearly uniform. This implies that the SP poli-
cies across seeds each form their own private language for
arbitrary and undecipherable coordination.

In contrast, for the two clusters ofSA2I agents, the corre-
lation (or anti-correlation) between the action features and
target/hint card features is much stronger. ForSA2I Sim,
both thehinter and theguesserprioritize exact matches
when they are present. If the exact match is not present,
they turn to cards that share one feature in common. The
SA2I Dissim agents do the exact opposite—matching cards
together that share as few features as possible.

Human Compatibility Analysis. However, we �nd that
the nuance with which these clusters play goes beyond
simply maximizing or minimizing feature similarity. To
demonstrate this, we run simulations on the four scenarios
(exact match, feature similarity, mutual exclusivity, exclu-
sivity+similarity) shown in Fig. 2 and described in Section 4.
In Table 2, we record the percentage of times whereSA2I
agents in each cluster chose the human-compatible actions
in Fig. 2. We �nd that SA2I Sim agents demonstrate
coordination patterns that are nearly identical to a human-
compatible policy. These results are surprising given that
our models have never been trained with any human data.
Furthermore, mutual exclusivity was thought to be hard
for deep learning models to learn (Gandhi & Lake, 2020).
In contrast, while theSA2I Dissim agents always perform
actions that are theoppositeto the human-compatible policy,
these conventions are still interpretable and non-arbitrary.

6.4. Human-AI Experiments

We recruited 10 university students to play hint-guess. Each
subject played ashinter for 15 randomly generated games,
totaling 150 different games. These subjects are then cross-
matched to play asguesserswith the hints their peers gener-
ated. The human hints are also fed into randomly sampled
MLP andSA2I Sim guesser-agents to test AI performance
against human partners. The experiment was carefully de-
signed so that the hinter is never informed of the guesser's
guess and the guesser is never informed of the true target
card. This experimental design ensures that the human
participants generate zero-shot data, and do not optimize
their play using previous experience. Further details of the
experiment are in Appendix A.2.

Ad-Hoc Performance. In the right table of Fig. 6 we re-
port average ad-hoc coordination scores obtained byhinter-
guesserpairs for human-human, human-MLP , and human-
SA2I Sim. Humans obtained an average ad-hoc coordina-
tion score of0:75with their peers. As a baseline, theMLP
guessersshow poor performance in understanding human-
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