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Abstract
Generative flow networks (GFlowNets) are a fam-
ily of algorithms for training a sequential sampler
of discrete objects under an unnormalized target
density and have been successfully used for vari-
ous probabilistic modeling tasks. Existing train-
ing objectives for GFlowNets are either local to
states or transitions, or propagate a reward signal
over an entire sampling trajectory. We argue that
these alternatives represent opposite ends of a gra-
dient bias-variance tradeoff and propose a way to
exploit this tradeoff to mitigate its harmful effects.
Inspired by the TD(_) algorithm in reinforcement
learning, we introduce subtrajectory balance or
SubTB(_), a GFlowNet training objective that can
learn from partial action subsequences of varying
lengths. We show that SubTB(_) accelerates sam-
pler convergence in previously studied and new
environments and enables training GFlowNets in
environments with longer action sequences and
sparser reward landscapes than what was possible
before. We also perform a comparative analysis
of stochastic gradient dynamics, shedding light on
the bias-variance tradeoff in GFlowNet training
and the advantages of subtrajectory balance.

1. Introduction
Generative flow networks (GFlowNets; Bengio et al., 2021a)
are generative models that construct objects lying in a target
space X by taking sequences of actions sampled from a
learned policy. GFlowNets are trained so as to make the
probability of sampling an object 𝑥 ∈ X proportional to a
given nonnegative reward 𝑅(𝑥). GFlowNets’ use of a para-
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metric policy that can generalize to states not seen during
training makes them a competitive alternative to methods
based on local exploration in various probabilistic modeling
tasks (Bengio et al., 2021a; Malkin et al., 2022; Zhang et al.,
2022; Jain et al., 2022; Deleu et al., 2022).

GFlowNets solve the variational inference problem of ap-
proximating a target distribution overX with the distribution
induced by the sampling policy, and they are trained by al-
gorithms reminiscent of reinforcement learning (although
GFlowNets model the diversity present in the reward distri-
bution, rather than maximizing reward by seeking its mode).
In most past works (Bengio et al., 2021a; Malkin et al.,
2022; Zhang et al., 2022; Jain et al., 2022), GFlowNets are
trained by exploratory sampling from the policy and receive
their training signal from the reward of the sampled object.
The flow matching (FM) and detailed balance (DB) learning
objectives for GFlowNets (Bengio et al., 2021a;b) resemble
temporal difference learning (Sutton & Barto, 2018).

A third objective, trajectory balance (TB), was proposed in
Malkin et al. (2022) to address the problem of slow temporal
credit assignment with the FM and DB objectives. The TB
objective propagates learning signals over entire episodes,
while the temporal difference-like objectives make updates
local to states or actions. It has been hypothesized by Malkin
et al. (2022) that the improved credit assignment with TB
comes at the cost of higher gradient variance, analogous
to the bias-variance tradeoff seen in temporal difference
learning (TD(𝑛) or TD(_)) with different eligibility trace
schemes (Sutton & Barto, 2018; Kearns & Singh, 2000; van
Hasselt et al., 2018; Bengio et al., 2020). This hypothesis
is one of the starting points for the present paper.

We propose a new learning objective for GFlowNets, called
subtrajectory balance (SubTB, or SubTB(_) when its hyper-
parameter _ is specified). Building upon results of Bengio
et al. (2021b); Malkin et al. (2022), we show how SubTB(_)
allows the flexibility of learning from partial experiences
of any length. Experiments on two synthetic and four real-
world domains support three empirical claims:

(1) SubTB(_) improves convergence of GFlowNets in pre-
viously studied environments: models trained with
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SubTB approach the target distribution in fewer training
steps and are less sensitive to hyperparameter choices.

(2) SubTB enables training of GFlowNets in environments
where past approaches perform poorly due to sparsity
of the reward function or length of action sequences.

(3) The benefits of SubTB(_) are explained by lower vari-
ance of the stochastic gradient, with the parameter _
interpolating between the high-bias, low-variance DB
objective and the low-bias, high-variance TB objective.

2. Method
2.1. Preliminaries

In this section, we summarize the necessary preliminaries on
GFlowNets. We follow the notation of Malkin et al. (2022),
to which the reader is directed for a more thorough exposi-
tion written with a view towards motivating the trajectory
and subtrajectory balance objectives. A deeper introduction
is given in Bengio et al. (2021b).

Let 𝐺 = (S,A) be a directed acyclic graph. The vertices
𝑠 ∈ S are called states and the directed edges (𝑢→𝑣) ∈ A
are actions. If (𝑢→𝑣) is an edge, we say 𝑣 is a child of 𝑢
and 𝑢 is a parent of 𝑣. There is a unique initial state 𝑠0 ∈ S
with no parents. States with no children are called terminal,
and the set of terminal states is denoted by X.

A trajectory or an action sequence is a sequence of states
𝜏 = (𝑠𝑚→𝑠𝑚+1→ . . .→𝑠𝑛), where each (𝑠𝑖→𝑠𝑖+1) is an
action. The trajectory is complete if 𝑠𝑚 = 𝑠0 and 𝑠𝑛 is
terminal. The set of complete trajectories is denoted by T .

A (forward) policy is a collection of distributions 𝑃𝐹 (−|𝑠)
over the children of every nonterminal state 𝑠 ∈ S. A
forward policy determines a distribution over T by

𝑃𝐹 (𝜏 = (𝑠0→ . . .→𝑠𝑛)) =
𝑛−1∏
𝑖=0

𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖). (1)

Any distribution over complete trajectories that arises from
a forward policy satisfies a Markov property: the marginal
choice of action out of a state 𝑠 is independent of how 𝑠 was
reached. Conversely, any Markovian distribution over T
arises from a forward policy (Bengio et al., 2021b).

A forward policy can thus be used to sample terminal states
𝑥 ∈ X by starting at 𝑠0 and iteratively sampling actions
from 𝑃𝐹 , or, equivalently, taking the terminating state of a
complete trajectory 𝜏 ∼ 𝑃𝐹 (𝜏). The marginal likelihood of
sampling 𝑥 ∈ X is the sum of likelihoods of all complete
trajectories that terminate at 𝑥.

Suppose that a nontrivial (not identically 0) nonnegative
reward function 𝑅 : X → R≥0 is given. The learning
problem solved by GFlowNets is to estimate a policy 𝑃𝐹

such that the likelihood of sampling 𝑥 ∈ X is proportional

to 𝑅(𝑥). That is, there should exist a constant 𝑍 such that

𝑅(𝑥) = 𝑍
∑︁

𝜏=(𝑠0→...→𝑠𝑛=𝑥 )
𝑃𝐹 (𝜏) ∀𝑥 ∈ X. (2)

If (2) is satisfied, then 𝑍 =
∑

𝑥∈X 𝑅(𝑥).

2.2. GFlowNet training objectives

Because the sum in (2) may be intractable to compute, it is in
general not possible to directly convert this constraint into a
training objective. To solve this problem, GFlowNet training
objectives introduce auxiliary variables in the parametriza-
tion in various ways, but all have the property that (2) is
satisfied at the global optimum. The key properties of these
objectives are summarized in Table 1.

Flow matching (FM; Bengio et al., 2021a). Motivating the
‘flow network’ terminology, Bengio et al. (2021a) proved
that (2) is satisfied if 𝑃𝐹 arises from an edge flow function
satisfying certain constraints. Namely, an assignment 𝐹 :
A → R≥0 of a nonnegative number (flow) to each action
defines a policy via

𝑃𝐹 (𝑡 |𝑠) =
𝐹 (𝑠→𝑡)∑

𝑡 ′:(𝑠→𝑡 ′ ) ∈A 𝐹 (𝑠→𝑡′) . (3)

A sufficient condition for the terminating distribution of 𝑃𝐹

to be proportional to the reward 𝑅(𝑥) is that a family of flow-
matching (flow in = flow out) conditions is satisfied at all
interior states and a family of reward-matching conditions
is satisfied at terminal states; ∀𝑡 ∈ S \ (X ∪ {𝑠0}) :∑︁

𝑠:(𝑠→𝑡 ) ∈A
𝐹 (𝑠→𝑡) =

∑︁
𝑢:(𝑡→𝑢) ∈A

𝐹 (𝑡→𝑢)∑︁
𝑠:(𝑠→𝑥 ) ∈A

𝐹 (𝑠→𝑥) = 𝑅(𝑥) ∀𝑥 ∈ X. (4)

The flow 𝐹 (𝑠→𝑡) is then proportional to the marginal likeli-
hood that a complete trajectory sampled from 𝑃𝐹 includes
the action 𝑠→𝑡.

In Bengio et al. (2021a), a GFlowNet is described by a
parametric estimate of the edge flow function, 𝐹 (𝑢→𝑣; \)
(a neural net with parameters \). These conditions can be
converted into objectives that are minimized when (4) is
satisfied. For example, the flow-matching objective at a
nonterminal state 𝑠 is defined by

LFM (𝑠) =
(
log

∑
𝑠:(𝑠→𝑡 ) ∈A 𝐹 (𝑠→𝑡; \) + 𝜖∑
𝑢:(𝑡→𝑢) ∈A 𝐹 (𝑡→𝑢; \) + 𝜖

)2

, (5)

where 𝜖 is a smoothing constant that can safely be set to 0 if
the flows are constrained to be strictly positive, and a similar
objective (or a constraint by construction) is defined to force
the flow 𝐹 (𝑠→𝑥) into terminal states 𝑥 to match 𝑅(𝑥). If
these objectives are globally minimized for all states 𝑠, then
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Table 1. Summary of GFlowNet training objectives.

Objective Parametrization Locality

Flow matching edge flow 𝐹 (𝑠→𝑡; \) state 𝑠

Detailed balance state flow 𝐹 (𝑠; \), policies 𝑃𝐹 (−|−; \), 𝑃𝐵 (−|−; \) action 𝑠→𝑡

Trajectory balance initial state flow 𝑍\ , policies 𝑃𝐹 (−|−; \), 𝑃𝐵 (−|−; \) complete trajectory 𝜏

Subtrajectory balance state flow 𝐹 (𝑠; \), policies 𝑃𝐹 (−|−; \), 𝑃𝐵 (−|−; \) (partial) trajectory 𝜏

the policy 𝑃𝐹 (−|−; \) defined by 𝐹 (−; \) via (3) satisfies
(2), with 𝑍 =

∑
𝑡:(𝑠0→𝑡 ) ∈A 𝐹 (𝑠→𝑡; \) = ∑

𝑥∈X 𝑅(𝑥). The
question of how to sample states 𝑠 for training is discussed
below.

Detailed balance (DB; Bengio et al., 2021b; Malkin et al.,
2022). In the DB parametrization, a forward policy model
𝑃𝐹 (−|−; \) is learned directly, jointly with two additional
objects: a backward policy model 𝑃𝐵 (−|−; \), which can
predict a distribution over the parents of any noninitial state,
and a state flow function 𝐹 (𝑠; \) (typically parametrized in
the log domain). The detailed balance conditions state that

𝐹 (𝑠; \)𝑃𝐹 (𝑡 |𝑠; \) = 𝐹 (𝑡; \)𝑃𝐵 (𝑠 |𝑡; \) (6)

for all actions (𝑠→𝑡) and 𝐹 (𝑥; \) = 𝑅(𝑥) for 𝑥 terminal. Sat-
isfaction of these conditions for all actions (𝑠→𝑡) and 𝑥 ∈ X
implies that 𝑃𝐹 samples proportionally to the reward (i.e.,
satisfies (2), with 𝑍 = 𝐹 (𝑠0)). The DB condition (6) can
be converted into a squared log-ratio objective LDB (𝑠→𝑡)
in the same way that (4) yields (5), and LDB (𝑠→𝑡) can be
optimized over sampled actions (𝑠→𝑡).

Trajectory balance (TB; Malkin et al., 2022). The
parametrization required for the TB objective includes
forward and backward policy models 𝑃𝐹 (−|−; \) and
𝑃𝐵 (−|−; \), as well as an estimate 𝑍\ of the constant of
proportionality in (2). Satisfaction of the following condi-
tion for all complete trajectories 𝜏 = (𝑠0→ . . .→𝑠𝑛) implies
that (2) is satisfied:

𝑍\𝑃𝐹 (𝜏; \) = 𝑅(𝑠𝑛)𝑃𝐵 (𝜏 |𝑠𝑛; \), (7)

where we have used the conventions

𝑃𝐹 (𝜏; \) =
𝑛−1∏
𝑖=0

𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖; \), 𝑃𝐵 (𝜏 |𝑠𝑛; \) =
𝑛−1∏
𝑖=0

𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1; \).

The condition (7) can again be made into a squared log-ratio
objective LTB (𝜏) and optimized for complete trajectories 𝜏
taken from some training policy. In Malkin et al. (2022), the
TB objective was empirically demonstrated to have better
convergence properties than FM and DB on various problem
domains.

Training policy and exploration. Global minimization of
the FM, DB, and TB objectives for all values of their re-
spective arguments (states, actions, or complete trajectories)

implies satisfaction of (2). Therefore, given a sufficiently
expressive model and convergence of the optimization pro-
cedure, a GFlowNet policy that samples 𝑥 with likelihood
proportional to 𝑅(𝑥) can be trained by minimizing any of
these losses over a distribution with full support, enabling
offline training of GFlowNets. As in other RL algorithms,
the distribution over sampled states, actions, or episodes
can be fixed and off-policy, or can vary over the course of
training and use available information about terminal states
in interesting ways (Zhang et al., 2022; Deleu et al., 2022).
The simplest approach, which is also taken in this paper,
is on-policy learning or a very similar off-policy variant
that flattens the current policy to ensure exploration. Com-
plete trajectories 𝜏 = (𝑠0→ . . .→𝑠𝑛) are sampled from the
forward policy 𝑃𝐹 (−|−; \) (tempered or mixed with a uni-
form policy with a small weight so as to ensure full support
and exploration). One then takes gradient descent steps
on LTB (𝜏), on LDB (𝑠𝑖→𝑠𝑖+1) over all actions in 𝜏, or on
LFM (𝑠𝑖) for all intermediate states in 𝜏.

The GFlowNets in this paper are trained on-policy, or off-
policy with a training policy that is a mixture of 𝑃𝐹 with
a uniform policy: 𝜏 = (𝑠0→𝑠1→ . . .→𝑠𝑛) is sampled with
𝑠𝑖+1 ∼ (1 − 𝜖)𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖; \) + 𝜖 1

#{𝑡:(𝑠→𝑡 ) ∈A} . Here 𝜖 is the
random exploration weight.

2.3. Subtrajectory balance: Learning from partial
episodes

Recall the GFlowNet parametrization used in the DB objec-
tive above, with a state flow estimator 𝐹 (−|−; \) and a pair
of policies 𝑃𝐹 (−|−; \), 𝑃𝐵 (−|−; \). It is shown in §A.2 of
Malkin et al. (2022) that the detailed balance conditions (6)
are satisfied for all actions if and only if the following sub-
trajectory balance constraint holds for all (not necessarily
complete) trajectories 𝜏 = (𝑠𝑚→ . . .→𝑠𝑛):

𝐹 (𝑠𝑚; \)
𝑛−1∏
𝑖=𝑚

𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖; \) = 𝐹 (𝑠𝑛; \)
𝑛−1∏
𝑖=𝑚

𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1; \),

(8)
where we again enforce that 𝐹 (𝑥; \) = 𝑅(𝑥) if 𝑥 is terminal.
Observe that the DB condition (6) is a special case of (8)
when the trajectory consists of one action, and the TB con-
dition (7) is precisely the case when 𝜏 is complete, with the
identification 𝑍\ = 𝐹 (𝑠0; \).
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The above constraint yields the subtrajectory balance objec-
tive

LSubTB (𝜏) =
(
log

𝐹 (𝑠𝑚; \)∏𝑛−1
𝑖=𝑚 𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖; \)

𝐹 (𝑠𝑛; \)∏𝑛−1
𝑖=𝑚 𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1; \)

)2

. (9)

If this objective is made equal to 0 for all partial trajectories
𝜏, where 𝑅(𝑠𝑛) is substituted for 𝐹 (𝑠𝑛; \) if 𝑠𝑛 is terminal,
then the policy 𝑃𝐹 satisfies the desired condition (2). (Proof:
When LSubTB (𝜏) = 0, (8) is satisfied, implying satisfaction
of both (7) and (6). Either of these conditions is a sufficient
condition for (2), as shown by Bengio et al. (2021b); Malkin
et al. (2022).)

Extracting subtrajectories for training. Suppose that an
episode (complete trajectory) 𝜏 = (𝑠0→𝑠1→ . . .→𝑠𝑛) is
sampled for training. There are

(𝑛+1
2

)
= 𝑂 (𝑛2) nontrivial

subtrajectories:

𝜏𝑖: 𝑗 := (𝑠𝑖→𝑠𝑖+1→ . . .→𝑠 𝑗 ), 0 ≤ 𝑖 < 𝑗 ≤ 𝑛. (10)

Having sampled a complete trajectory 𝜏 for training, we
make gradient steps on a convex combination of the subtra-
jectory balance losses LSubTB (𝜏𝑖: 𝑗 ): \ ← \ − ∇\L, where

L =

∑
0≤𝑖< 𝑗≤𝑛 _

𝑗−𝑖LSubTB (𝜏𝑖: 𝑗 )∑
0≤𝑖< 𝑗≤𝑛 _ 𝑗−𝑖 . (11)

Here _ > 0 is a hyperparameter controlling the weights
assigned to subtrajectories of different lengths, and when _

is set to 1, it leads to a uniform weighting scheme. Notice
that the _→ 0+ limit leads precisely to the average detailed
balance loss LDB (𝑠𝑖→𝑠𝑖+1) over all transitions in 𝜏, while
the _ → +∞ limit gives the trajectory balance objective
LTB (𝜏).1

Other schemes for weighting subtrajectories are possible
and should be explored in future work.

Computational considerations. It may appear that the
optimization of (11) induces a computation cost that is
quadratic in the trajectory length. However, a closer inspec-
tion of the gradient of (11) with respect to the state flows
log 𝐹 (𝑠𝑖; \) and the forward and backward policy logits
shows that gradient computation requires only one forward
and one backward pass through the neural networks giv-
ing log 𝐹 (𝑠; \), log 𝑃𝐹 (−|𝑠𝑖; \), and log 𝑃𝐵 (−|𝑠𝑖; \). The
quadratic computation cost is incurred only in performing
linear operations on these log-flows and policy logits, not in
the evaluation of the deep networks. Thus the SubTB loss
has little computation overhead over DB or TB.

1When a batch of trajectories is used for training, the convex
combination weights may either be normalized over all subtrajec-
tories of all trajectories in the batch, or normalized independently
over the subtrajectories of each trajectory. For consistency, we
choose the first option for the experiments in this paper.

Hypothesized benefits. We hypothesize that SubTB(_)
brings two benefits to GFlowNet training:

Variance reduction. The TB loss terms LTB (𝜏) for tra-
jectories 𝜏 that take a given sequence of actions until a state
𝑠, then diverge, share the terms log 𝑍 and the policy logits
for all transitions preceding 𝑠 inside the square. However,
the ‘tail’ of the TB loss, involving the forward and backward
policy logits for transitions that appear after 𝑠 in 𝜏, can be
seen as a stochastic least-squares regression target. That is,
if 𝑠 = 𝑠𝑚 in a trajectory 𝜏 = (𝑠0→𝑠1→ . . .→𝑠𝑛), then

log

(
𝑍 ·

𝑚−1∏
𝑖=0

𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖)
𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1)

)
(12)

is regressed to

log

(
𝑅(𝑠𝑛) ·

𝑛−1∏
𝑖=𝑚

𝑃𝐵 (𝑠𝑖 |𝑠𝑖+1)
𝑃𝐹 (𝑠𝑖+1 |𝑠𝑖)

)
. (13)

Similarly, for trajectories that share the transitions following
𝑠 but may differ in their initial actions, (12) is a stochastic
regression target for (13).

The subtrajectory balance loss terms LSubTB (𝜏𝑚: 𝑗 ) for par-
tial trajectories beginning at 𝑠 regress the log-state flow
log 𝐹 (𝑠) to (parts of) expressions like (13), while loss terms
LSubTB (𝜏𝑖:𝑚) regress (parts of) expressions like (12) to the
log-state flow log 𝐹 (𝑠). The learned log 𝐹 (𝑠) is thus a
learned estimate of a stochastic piece of the TB loss for
trajectories that contain 𝑠. Replacing a stochastic term in the
TB loss by a learned estimate of its expectation is guaran-
teed to introduce bias into the gradient (with respect to the
gradient of the TB loss), but is expected to reduce variance.
This is akin to the variance-reducing effect of actor-critic
methods in RL.

This hypothesis is studied empirically in our experiments
and in particular §4.1.1, where we provide evidence that
SubTB(_) is a practically useful interpolation between TB
(high variance) and DB (low variance, high bias relative to
the true TB gradient) losses.

Faster learning due to generalization of state flows. An-
other benefit of subtrajectory balance for convergence speed
may come from the ability of estimated state flow functions
log 𝐹 (𝑠; \) to be modeled with high precision and general-
ize between states 𝑠 faster than the often high-dimensional
policy logits log 𝑃𝐹 (−|𝑠; \), log 𝑃𝐵 (−|𝑠; \). Such gener-
alization is important in problems where the state graph
becomes ‘wide’ far from the initial state, making the learn-
ing signal sparse at states that are near termination. Indeed,
in all of our experiment domains except the hypergrids in
§4.1 – and for the largest hypergrids – the number of termi-
nal states is many orders of magnitude larger than the total
number of states seen in training.
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3. Related work
Eligibility traces. SubTB(_) draws inspiration from the
TD(_) algorithm in RL (Sutton, 1988; Sutton & Barto,
2018), which forms an estimate of the expected return via
a convex combination of 𝑛-step returns, each weighed by
(1 − _)_𝑛−1. The parameter _ ∈ [0, 1] enables a bias-
variance tradeoff (Kearns & Singh, 2000). Larger _ leads
to lower bias and higher variance, since the estimate of the
expected return approaches the single-point Monte Carlo
estimate as _ → 1. We take inspiration from this idea to
mix different (possibly all) subtrajectories, akin to how 𝑛-
step returns are mixed together. We hypothesize that the
right mixing may reduce variance, compared to TB, with
the additional benefits of inducing consistency between the
flows at intermediate states, and thus of helping propagate
credit faster and enable faster convergence. In addition,
GFlowNet training objectives are reminiscent of residual
gradient RL methods (Baird, 1995; Zhang et al., 2020),
since the ‘endpoint’ (e.g., 𝐹 (𝑠𝑛) in (9)) is also considered
in the gradient.

MaxEnt RL. RL has a rich literature on energy-based, or
maximum entropy, methods (Ziebart, 2010; Mnih et al.,
2016; Haarnoja et al., 2017; Nachum et al., 2017; Schulman
et al., 2017; Haarnoja et al., 2018), which are close or equiv-
alent to the GFlowNet framework in certain settings (in
particular when the MDP has a tree structure (Bengio et al.,
2021a)). Also related are methods that maximize entropy
not on the policy, but rather on the state visitation distribu-
tion or some proxy of it (Hazan et al., 2019; Islam et al.,
2019; Zhang et al., 2021; Eysenbach et al., 2018), which
achieve a similar objective to GFlowNet models by flatten-
ing the state visitation distribution. If the state graph of the
environment is a directed tree, the loss LSubTB on individ-
ual subtrajectories is equivalent to that of path consistency
learning (PCL; Nachum et al., 2017). However, attempts to
use PCL in settings without intermediate rewards have only
computed the loss on subtrajectories that have length 1 or
include a terminal state (Guo et al., 2021).

4. Experiments
4.1. Hypergrid: Robustness to sparse rewards

We study the synthetic hypergrid environment introduced
in Bengio et al. (2021a). The set of interior states is a
𝑑-dimensional hypergrid of size 𝐻×𝐻× · · ·×𝐻 with a mul-
timodal reward function concentrated near each of the 2𝑑
corners of the hypergrid (see Bengio et al. (2021a); Malkin
et al. (2022) and Fig. 1). The initial state is (0, 0, . . . , 0),
and each action is a step that increments one of the 𝑑 coor-
dinates by 1 without leaving the grid. A special termination
action is also allowed from each state. This environment is
designed to challenge a learning agent to infer and discover
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Figure 1. Left: 16 × 16 hypergrid reward function. Right: Distri-
bution of 2 × 105 samples from GFlowNets trained on the harder
variant of the 32 × 32 grid with TB and SubTB(_) objectives.

new modes from those that have been already been visited.

We study various sizes of 2-dimensional and 4-dimensional
hypergrids, using the hardest variant of the reward function
from past work (the minimal reward, away from the corners
of the grid, is set to 10−3). We train GFlowNets to sample
from the target reward functions and plot the evolution of the
𝐿1 distance between the target distribution and the empirical
distribution of the last 2 · 105 states seen in training.2 In all
cases, we tune the learning rates for the TB and SubTB(_ =

0.9) objectives. (See §A for details.)

The results (mean and standard deviation over three random
runs) are shown in the first two rows of Fig. 2. Models
trained with SubTB(_) converge faster, and with less vari-
ance between random seeds, to the true distribution than
with TB for all hypergrid sizes.

We also study an even sparser variant of the environment,
in which the background reward is set to 10−4. In this
case, SubTB(_) continues to perform strongly (last row of
Fig. 2), while models trained with TB do not even discover
all modes of the target distribution for grids larger than 8×8
(Fig. 1).

Additional results are given in §A.1. In particular, SubTB(_)
continues to perform strongly when only subtrajectories of
less than a certain length are used for training, which can be
beneficial in realistic settings where only partial episodes
are given. We also show the effect of _ on the convergence
rate (Fig. A.2) and of more exploratory training policies
(Fig. A.3).

4.1.1. A CLOSER LOOK AT GRADIENT VARIANCE

We take a closer look at gradient bias and variance to un-
derstand the benefits of training GFlowNets with SubTB(_).
The methodology of these experiments is inspired by Ilyas

2Such an evaluation is possible in this synthetic environment
because the exact target distribution function can be tractably
computed. Note that the metric shown in Fig. 2 differs from what
is called ‘𝐿1 distance’ in past work, as we do not divide by the
total number of states.
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Figure 2. 𝐿1 distance between empirical and target distributions over the course of training on the hypergrid environment. SubTB(_ = 0.9)
consistently gives faster convergence than TB, the strongest objective from past work, on all grid sizes. The difference is especially visible
for the harder variant of the reward function (last row). The 𝑥-axis is the cumulative number of training trajectories (episodes).
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Figure 3. Mean cosine similarity between small-batch (2𝑘) and
large-batch (1024) gradients at selected training iterations. Above:
Small-batch vs. large-batch gradients of DB, SubTB(_), and TB
objectives. Below: Small-batch DB, SubTB(_), and TB gradients
vs. large-batch TB gradient.

et al. (2020).

We train GFlowNets on the 8 × 8 grid environment using
SubTB(_ = 0.8) and monitor various gradient metrics dur-
ing training. To remove the effect of parameter sharing
between policies at different states and to isolate the ef-
fect of the objective, we use a tabular representation of the
GFlowNet, i.e., all flows and policy logits are optimized as
independent parameters.

Gradient variance. To measure gradient variance, we use
the following procedure for each training objective (DB, TB,
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Figure 4. Mean cosine similarity between small-batch (64) and
large-batch (1024) gradients on the 8 × 8 grid environment. Left:
Self-similarity of the DB, SubTB(_), and TB gradients, showing
DB < SubTB(_) < TB in gradient variance. Right: Similarity of
small-batch DB, SubTB(_), and TB gradients to the large-batch
TB gradient, showing that the small-batch SubTB(_) gradient is a
good estimator of large-batch TB.

or SubTB(_)). A large batch of 210 = 1024 trajectories is
sampled, and the gradient 𝑔 (0)

𝑗
of the objective with respect

to the policy logits at all states is computed for each trajec-
tory 𝜏𝑗 in the batch. Then, for each 𝑘 ∈ {0, 1, . . . , 9}, the
gradients 𝑔 (0)

𝑖
are combined into 210−𝑘 sub-batches, each of

size 2𝑘 . The sub-batch gradient 𝑔 (𝑘 )
𝑖

for the 𝑖-th sub-batch
is set to the average of trajectory gradients 𝑔 (0)

𝑗
contained

within the sub-batch and computed for 𝑖 ∈ {1, 2, . . . , 210−𝑘}.
We then report the average cosine similarity between the
sub-batch and full-batch gradients:

1
210−𝑘

210−𝑘∑︁
𝑖=1

𝑔
(𝑘 )
𝑖
· 𝑔 (10)

1𝑔 (𝑘 )𝑖

 𝑔 (10)
1

 .
6



Learning GFlowNets from partial episodes for improved convergence and stability

If this quantity is positive, then gradient steps of infinites-
imally small norm along the stochastic sub-batch gradient
decrease the full-batch objective in expectation. Fig. 3 (left)
shows the dependence of this metric on 𝑘 at various itera-
tions. A steeper curve, such as those of DB and SubTB(_),
indicates lower gradient variance.

Fig. 4 (left) shows the metric at 𝑘 = 6 (corresponding to
the batch size of 64 used for training) over the course of
training. The DB gradient has the highest self-consistency,
TB has the lowest, and SubTB(_ = 0.8) is in between.

Gradient bias. We next compare the small-batch stochastic
gradients with large-batch stochastic gradients, using differ-
ent objectives for the small and full batches. Specifically, we
compare the small-batch DB, SubTB(_), and TB gradients
with the full-batch TB gradient. (The full-batch TB gradient
can be seen as a ‘canonical’ gradient against which bias
can be measured, as its expectation equals the gradient of
the KL divergence between the distribution over trajectories
defined by 𝑃𝐹 and that defined by the reward 𝑅 and 𝑃𝐵; see
§A.3 of Malkin et al. (2022).)

Fig. 4 (bottom) shows the cosine similarity at the batch size
used for training. Notably, at intermediate iterations, the
similarity of SubTB(_) with TB is higher than that of TB
with TB: despite its bias, the small-batch SubTB(_) gra-
dient estimates the full-batch TB gradient better than
the small-batch TB gradient does. Fig. 3 (right) shows the
dependence of the similarity on 𝑘 at selected iterations and
suggests that this effect may be even larger for smaller batch
sizes. Moreover, at 𝑘 = 10, the similarity of SubTB(_) vs.
TB always lies between DB vs. TB and TB vs. TB, indicat-
ing that SubTB(_) interpolates between TB’s unbiased and
DB’s biased estimates of the TB gradient.

The effect of learned state flows. See §A.2.

4.2. Small molecule synthesis

We use SubTB(_) to train models on the molecule genera-
tion task of Bengio et al. (2021a). The task is to generate
binders of the sEH (soluble epoxide hydrolase) protein,
based on a docking prediction (Trott & Olson, 2010). To
be precise, molecules are generated by sequentially joining
‘blocks’ from a fixed library to the partial molecular graph
(Jin et al., 2020; Kumar et al., 2012), resulting in a state
space of estimated size 1012. The reward function 𝑅 is given
by a pretrained proxy model made available by Bengio et al.
(2021a). To adjust the greediness of the agent, an inverse
temperature hyperparameter 𝛽 is used, i.e., the reward used
for training is 𝑅(𝑥) = 𝑅(𝑥)𝛽 , where 𝑅(𝑥) is the proxy’s
prediction.

We train models with the DB, TB, and SubTB(_) objectives,
with four values each of _, 𝛽, and learning rate, averag-

ing the results over 3 random runs for each setting. We
measure how well the trained models match the target dis-
tribution by the correlation of log 𝑅(𝑥) and log 𝑝\ (𝑥), the
log-probability assigned to 𝑥 by the GFlowNet, computed
on a held-out set of terminal states 𝑥.3

The results are shown in Fig. 5. SubTB(_), in particular
with _ = 1, performs better than both DB and TB when the
optimal hyperparameters 𝛼, 𝛽 are used (solid lines) and is
far more robust to the choice of hyperparameters (dashed
lines). Additional details can be found in §B.

4.3. Sequence generation

We consider three sequence generation tasks in which se-
quences are generated left to right, with each action append-
ing one symbol from a vocabulary to a partial sequence: a
synthetic task with varying sequence lengths and vocabu-
lary sizes (§4.3.1), a practical biological sequence design
task (§4.3.2), and a new protein design task with longer
sequences (4.3.3). For all three tasks, we consider the base-
lines Soft Actor-Critic (Haarnoja et al., 2018; Christodoulou,
2019), A2C with Entropy regularization (Williams & Peng,
1991; Mnih et al., 2016) and MARS-like MCMC (Xie et al.,
2021) and compare them with three GFlowNet training ob-
jectives: TB, FM, and SubTB(_).

In §F, we also study a non-autoregressive sequence genera-
tion problem (inverse protein folding).

4.3.1. BIT SEQUENCES

We consider the synthetic sequence generation setting from
Malkin et al. (2022), where the goal is to generate sequences
of bits of fixed length 𝑛 = 120. The reward is specified by
a set of modes 𝑀 ⊂ X = {0, 1}𝑛 that is unknown to the
learning agent. The reward of a generated sequence 𝑥 is
defined in terms of Hamming distance 𝑑 from the modes:
𝑅(𝑥) = exp(−min𝑦∈𝑀 𝑑 (𝑥, 𝑦)).

The vocabulary size can be varied: for any integer 𝑘 dividing
120, we take a vocabulary consisting of words of length 𝑘

(so that the vocabulary size is 2𝑘 and the full sequence
is generated in 𝑛

𝑘
actions). By varying the value of 𝑘 and

keeping 𝑛 and 𝑀 constant, we study the behavior of learning
agents with varying action space sizes and trajectory lengths
without changing the underlying modeling problem. Most
experiment settings are taken from Malkin et al. (2022); see
§C.

3Comparing the exact sampling and target distributions, like
in §4.1, is not possible here, since we cannot enumerate all ter-
minal states. However, the marginal likelihood that a trained
GFlowNet generates a given 𝑥 is tractable to compute by dynamic
programming. For a model that samples perfectly from the target
distribution, log(𝑅(𝑥)) and log 𝑝\ (𝑥) would differ by a constant
log 𝑍 independent of 𝑥 and thus be perfectly correlated.
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Figure 6. Above: For the number of bits 𝑘 ∈ {1, 2, 4, 6, 8, 10} in
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Training with SubTB(_) leads to policies that have the highest
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Below: For 𝑘 = 1, the number of modes discovered by each
method over the course of training is plotted. SubTB(_) discovers
more modes faster.

Models are evaluated by computing the Spearman correla-
tion, on a test set of sequences 𝑥, between the probability
of generating 𝑥 and the reward 𝑅(𝑥). We also track the
number of modes discovered during the training process for
all the methods, see Fig. 6. We find that models trained with

the SubTB(_) objective have a higher Spearman correlation
at the end of training and discover modes faster compared
to the other GFlowNet objectives and non-GFlowNet base-
lines.

4.3.2. ANTIMICROBIAL PEPTIDE GENERATION

Next, we consider the task of generating peptides with an-
timicrobial properties (AMPs). These sequences have max-
imum length 60 and use a vocabulary of 20 amino acids
(and an end-of-sequence token), resulting in a state space of
size 2160. The reward function is a pretrained proxy neural
network that estimates the antimicrobial activity. (See Jain
et al. (2022) for details on this task.)

We train GFlowNets with the SubTB(_), TB, and FM losses
and compare them with baselines. To evaluate the trained
models, we sample 2048 sequences from the policy, then
compute the mean reward and mean pairwise edit distance
of the top-100 reward sequences. The metrics and model
architecture are taken from Malkin et al. (2022); see §D.
The results are presented in Table 2. SubTB(_) provides
significant improvements over all the baselines (including
TB, FM, and DB GFlowNets) in both reward and diversity.

4.3.3. FLUORESCENT PROTEIN GENERATION

We consider the task of generating protein sequences with
fluorescence properties (Trabucco et al., 2022) to evaluate
SubTB(_) in settings with longer trajectories. In this task,
sequences have a fixed length of 237, and the size of the
state space is 20237. The proxy reward function 𝑅(𝑥) is
trained on a dataset of proteins with their fluorescence scores
from Sarkisyan et al. (2016). The metrics and models are
the same as in §4.3.2; see §E for details.

The GFlowNet objectives outperform all other methods
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Table 2. Results on the AMP generation task (above) and the GFP
generation task (below). Mean and standard error over 3 runs.

Algorithm Top-100 Reward Top-100 Diversity

GFN-LSubTB(_) 0.96 ± 0.02 42.23 ± 3.4
GFN-LTB 0.90 ± 0.03 31.42 ± 2.9
GFN-LFM/LDB 0.78 ± 0.05 12.61 ± 1.32
SAC 0.80 ± 0.01 8.36 ± 1.44
AAC-ER 0.79 ± 0.02 7.32 ± 0.76
MCMC 0.75 ± 0.02 12.56 ± 1.45

GFN-LSubTB(_) 1.18 ± 0.10 204.44 ± 0.45
GFN-LTB 0.76 ± 0.19 204.31 ± 0.44
GFN-LFM/LDB 0.30 ± 0.08 190.21 ± 6.78
SAC 0.23 ± 0.03 120.32 ± 15.57
AAC-ER 0.22 ± 0.02 113.65 ± 21.31
MCMC 0.28 ± 0.01 169.17 ± 12.44

in both metrics, finding more diverse and higher-reward
sequences (Table 2). SubTB(_) significantly outperforms
TB, while achieving a similar diversity. We note that the
advantage of SubTB(_) is greater than that in the AMP
task (Table 2) and speculate that the benefits of SubTB(_)
become more prominent for longer action sequences.

5. Discussion and conclusion
We have given evidence of a bias-variance tradeoff in
GFlowNet training algorithms. The high-variance stochas-
tic regression objective of TB and the low-variance local
consistency objective of DB lie at opposite ends of this
range. We showed that SubTB(_) can harness the variance-
reducing effects of local objectives while retaining the fast
credit assignment properties of trajectory-level objectives.
We see learnable strategies for selecting and weighting
(sub)trajectories for training – e.g., a dynamic choice of
_ and an active-learning approach to sampling trajectories
– as the most interesting questions for future work. The
ability of subtrajectory objectives to learn from incomplete
episodes also makes their application in RL environments
and settings where reward signals for incomplete states are
available an appealing research direction.4 Finally, future
work should empirically evaluate the connections between
SubTB and variational methods developed in Malkin et al.
(2023).
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Figure A.1. Additional results for hypergrid experiments. Above: The evolution of the 𝐿1 between empirical sampling and target
distributions on the harder variants of 4-dimensional grids, in the same format as Fig. 2. Below: The number of cumulative distinct
terminal states visited as a function of training time on the standard 2-dimensional grid. Models trained with SubTB(_) discover more
states faster.

A. Experiment details: Hypergrid
The environment is identical to that in Malkin et al. (2022), with reward function parameters (𝑅0, 𝑅1, 𝑅2) = (10−3, 0.5, 2) for
the standard variant of the grid and (10−4, 1.0, 3.0) for the harder variant. The models giving logits of 𝑃𝐹 (−|𝑠) and 𝑃𝐵 (−|𝑠),
as well as log 𝐹 (𝑠), are MLPs of the same architecture as in Bengio et al. (2021a), taking a one-hot representation of the
coordinates of 𝑠 as input and sharing all layers except the last. The initial state flow log 𝑍 = log 𝐹 (𝑠0) is an independent
parameter whose learning rate is set to 10× the learning rate of other parameters.

All models are trained with the Adam optimizer and a batch size of 16 for a total of 106 trajectories (62500 batches). The
optimal learning rate for each experiment is chosen from {0.0005, 0.00075, 0.001, 0.003, 0.005, 0.0075, 0.01}, and _ = 0.9
is chosen as the optimal value from the set {0.8, 0.9, 0.99}.

Gradient bias and variance experiments are conducted in the harder variant of the 8 × 8 grid. The tabular GFlowNet is
trained using Adam with a learning rate 0.007 and the SubTB(_ = 0.8) objective.

A.1. Additional experiments

Fig. A.1 shows additional results on more difficult grid environments.

We perform another experiment in which only short (up to length 4) subtrajectories are used for training with the SubTB(_)

12



Learning GFlowNets from partial episodes for improved convergence and stability

objective (i.e., the sum in (11) is truncated to exclude pairs (𝑖, 𝑗) with 𝑗 − 𝑖 > 4). The results, shown in Fig. A.4, show that
SubTB(_) continues to perform strongly in this restricted setting.

Fig. A.2 shows the effect of the SubTB parameter _ on the training curves, showing a gradual interpolation between DB and
TB and fastest convergence at values slightly less than 1.

Fig. A.3 contains visualizations of the exploration behavior of different training algorithms. It shows that TB can perform
better with off-policy training and can benefit from a higher temperature of the policy logits, but still does not learn as fast as
SubTB(_), nor does it find all the modes in the maximum number of training iterations.

A.2. More on bias and variance: The effect of learned state flows

To better understand the variance-reducing properties of SubTB(_), we perform the gradient bias experiments with a
modified computation of gradients that removes the factor of learning the state flows.

Recall from §2.1 that a forward policy 𝑃𝐹 uniquely determines a distribution over trajectories. If the initial state flow 𝑍

and forward policy 𝑃𝐹 are fixed, there is a unique state flow function 𝐹𝐹 and backward policy 𝑃𝐵 that satisfy the detailed
balance conditions (6). This ‘true forward’ flow function, written 𝐹𝐹 (𝑠) = 𝑍

∑
𝜏:𝑠∈𝜏 𝑃𝐹 (𝜏), is determined by an initial state

flow fixed to the true partition function 𝑍 =
∑

𝑥∈X 𝑅(𝑥) and the learned forward policy 𝑃𝐹 . Similarly, the ‘true backward’
flow function, written 𝐹𝐵 (𝑠) = ∑

𝜏:𝑠∈𝜏 𝑃𝐵 (𝜏)𝑅(𝑥𝜏) where 𝑥𝜏 is the terminal state of 𝜏, is uniquely determined by the
reward function 𝑅 and the learned backward policy 𝑃𝐵. In particular, 𝐹𝐵 (𝑠0) =

∑
𝑥∈X 𝑅(𝑥).

We repeat the experiments on gradient bias, but by replacing the learned state flows 𝐹 in the losses by either the true forward
or the true backward state flows (𝐹𝐹 or 𝐹𝐵 respectively) computed exactly using the current values of the learned 𝑃𝐹 and
𝑃𝐵. (These modifications are not applied in training, but are used only to compute the gradient similarities. The small size
of the environment makes computation of the true state flows tractable; this is not possible in general.)

The gradient similarity over the course of training is shown in Fig. A.5 (cf. Fig. 4 in the main text). The similar behavior
of SubTB(_) with learned and true forward state flows suggests that the learned state flows remain close enough to their
optimal values and that the variance-reducing benefits of SubTB(_) with true state flows are retained.

B. Experiment details: Molecules
All experiments with SubTB(_) are based upon the published code of Malkin et al. (2022), which extends that of Bengio
et al. (2021a). The proxy model giving the reward, the held-out set of molecules used to compute the correlation metric,
and the GFlowNet model architecture – a graph neural network – are identical to those in Bengio et al. (2021a), and the
off-policy exploration rate and early stopping likelihood are the same as those tuned for the training with the TB objective in
Malkin et al. (2022). All models are trained for a maximum of 50000 batches of 4 trajectories each. (Some training runs
terminated early because of numerical overflows in the gradients, in which case we report the metric of the last stable model
whose cumulative number of batches is a multiple of 5000.)

C. Experiment details: Bit sequences
The modes 𝑀 as well as the test sequences are selected as described in Malkin et al. (2022). The policy for all methods is
parameterized by a Transformer (Vaswani et al., 2017) with 3 layers, dimension 64, and 8 attention heads. All methods
are trained for 50,000 iterations with minibatch size of 16 using Adam optimizer. For GFlowNets with FM objective as
well as the baselines, we use the exact same implementation and hyperparameters reported in Malkin et al. (2022). For TB
and SubTB(_), we pick the best learning rate from {0.0075, 0.001, 0.001, 0.003, 0.005} for forward logits, and for Z, use a
learning rate of 10× the learning rate for forward logits. For SubTB(_), we found the best _ value of 1.9 from the values
{0.8, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.0}.

D. Experiment details: Antimicrobial peptide generation
Following Malkin et al. (2022) we use the following amino acids: [‘A’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’,
‘I’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’, ‘R’, ‘S’, ‘T’, ‘V’, ‘W’, ‘Y’]. We take 6438 known
AMP sequences and 9522 non-AMP sequences from the DBAASP database Pirtskhalava et al. (2021). The classifier
that serves as the proxy reward function is trained on this dataset, using 20𝑃𝐸𝑅𝐶𝐸𝑁𝑇 of the data as the validation set.
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The reward model is a Transformer, with 4 hidden layers, hidden dimension 64, and 8 attention heads. We train it with a
minibatch of size 256, with learning rate 10−4, and with early stopping on the validation set. We use a Transformer with 3
hidden layers with hidden dimension 64 with 8 attention heads as the architecture of the policy for all methods. All methods
are trained for 20, 000 iterations, with a minibatch size of 16, using the reported hyperparameters for all the baselines
from (Malkin et al., 2022). For TB and SubTB(_), we pick the best learning rates from {0.005, 0.007, 0.01, 0.03, 0.05, 0.07}
for forward logits and from {0.007, 0.01, 0.03, 0.05} for log 𝑍 . For SubTB(_), the best performing _ value of 1.9 chosen
from {0.9, 0.99, 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 1.8, 1.9, 2.0} is used.

E. Experiment details: Fluorescent protein generation
We consider a variant of the GFP task from Trabucco et al. (2022). The vocabulary of amino acids is
the same as §D: [‘A’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘K’, ‘L’, ‘M’, ‘N’, ‘P’, ‘Q’,
‘R’, ‘S’, ‘T’, ‘V’, ‘W’, ‘Y’]. Following Trabucco et al. (2022), we consider the dataset of 56,086 proteins
from Sarkisyan et al. (2016) processed based on Brookes et al. (2019). Each protein is accompanied by a score quantifying
its fluorescence. As with the AMP data, we keep 20𝑃𝐸𝑅𝐶𝐸𝑁𝑇 of the data as a validation set used for early-stopping. The
regressor trained with the dataset is a Transformer, with 4 hidden layers, hidden dimension 64, and 8 attention heads. We
train it with a minibatch of size 256, with learning rate 10−4, with early stopping on the validation set. The architecture
of the policy for all methods is a Transformer with 3 hidden layers with hidden dimension 64 with 8 attention heads. All
methods are trained for 20, 000 iterations, with a minibatch size of 16. We use the same implementation for all methods as
the ones used in §D.

To define an exploratory training policy, we set the the random action probability to 0.01 selected from
{0.0001, 0.0005, 0.001, 0.01} and the reward exponent 𝛽 (having the same meaning as in §4.2) to 3 selected from {2, 3, 4}.
For trajectory balance we use a learning rate of 5 × 10−3 selected from {10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3} for the flow
parameters and 1 × 10−2 for log 𝑍 . For SubTB(_), we choose the best _ from {0.7, 0.8, 0.9, 0.99}, and found _ = 0.99 to
perform the best. For TB and SubTB(_), we tune for the best learning rates from {0.0001, 0.0003, 0.0005, 0.00075, 0.001}
for the forward logits. For log 𝑍 , we use a learning rate of 10× the learning rate for the forward logits.

For FM we use a learning rate of 10−3 selected from {10−5, 10−4, 5×10−4, 10−3, 5×10−3} with leaf loss coefficient _𝑇 = 30.
For A2C with entropy regularization we share parameters between the actor and critic networks, and use learning rate of
5× 10−3 selected from {10−5, 10−4, 5× 10−4, 10−3, 5× 10−3} with entropy regularization coefficient 5× 10−2 selected from
{10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2}. For SAC we use the formulation in Christodoulou (2019) with a learning rate of
10−3 selected from {10−5, 10−4, 5×10−4, 10−3, 5×10−3}, a target network update frequency of 400 and initial random steps
of 200. For the MARS baseline, we set the learning rate to 5 × 10−4 selected from {10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3}.
We run the experiments on 3 seeds and report the mean and standard error over the three runs in Table 2.

F. Inverse protein folding: Non-autoregressive sequence generation
We consider the inverse protein folding problem suggested in Sinai et al. (2020). A target protein 3D backbone conformation
is given, and the task is to sample amino acid sequences of a fixed length 𝐿 = 40 from the Boltzmann distribution
corresponding to their energy in the target conformation. The energy is provided by a physics model (Rohl et al., 2004;
Chaudhury et al., 2010). The policy model is a 3-layer convolutional architecture that closely follows previous work (Sinai
et al., 2020). Specifically, for the policy function, the convolution size was set to 7 with 32 hidden features and ReLU
activation in each layer. The policy network has one additional convolutional layer of size 20 (number of amino acids), and
without the activation function. The flow network has an additional two linear layers of sizes [1280,64], and [64, 1] with
ReLU activation in between. We report mean result over three runs.

For this task, rather than generating sequences from left to right, we consider an action space in which actions modify
one letter at a time at arbitrary positions. The first action uniformly randomly samples an amino acid sequence. On each
subsequent action, the agent selects a position in the sequence and replaces the letter in this position with another letter in
the vocabulary. Generation terminates after exactly 𝑁 = 40 replacement steps. The forward policy is conditioned on the
number of steps taken so far in the trajectory; the backward policy is fixed to be uniform over the 𝑁 · 𝐿 actions.

As a metric of how well the learned model matches the target distribution, we measure the correlation between log 𝑅(𝑥) and
the marginal sampling likelihood log 𝑝\ (𝑥) on a held-out set of terminal states. The results are presented in Fig. F.1. We
observe that intermediate values of lambda lead to the best fit to the target distribution.
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Figure A.2. Empirical 𝐿1 curves on the 8 × 8 grid for varying values of _.
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Figure A.3. Training GFlowNets on the harder variants of 2-dimensional grids using a tempered training policy (left), and a training
policy that takes a uniformly random action with probability 𝜖 at each sampling step (right).
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Figure A.5. Gradient similarity with state flows analytically computed in two ways (see §A.2). (Compare with Fig. 4.)
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Figure F.1. The Spearman correlation between the sampling probability and reward on a test set is plotted over the course of training for
each value of _.
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