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Abstract
Unsupervised denoising is a crucial challenge in
real-world imaging applications. Unsupervised
deep-learning methods have demonstrated impres-
sive performance on benchmarks based on syn-
thetic noise. However, no metrics exist to eval-
uate these methods in an unsupervised fashion.
This is highly problematic for the many practi-
cal applications where ground-truth clean images
are not available. In this work, we propose two
novel metrics: the unsupervised mean squared
error (MSE) and the unsupervised peak signal-
to-noise ratio (PSNR), which are computed us-
ing only noisy data. We provide a theoretical
analysis of these metrics, showing that they are
asymptotically consistent estimators of the super-
vised MSE and PSNR. Controlled numerical ex-
periments with synthetic noise confirm that they
provide accurate approximations in practice. We
validate our approach on real-world data from
two imaging modalities: videos in raw format and
transmission electron microscopy. Our results
demonstrate that the proposed metrics enable un-
supervised evaluation of denoising methods based
exclusively on noisy data.

1. Introduction
Image denoising is a fundamental challenge in image and
signal processing, as well as a key preprocessing step for
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computer vision tasks. Convolutional neural networks
achieve state-of-the-art performance for this problem, when
trained using databases of clean images corrupted with sim-
ulated noise (Zhang et al., 2017a). However, in real-world
imaging applications such as microscopy, noiseless ground
truth videos are often not available. This has motivated the
development of unsupervised denoising approaches that can
be trained using only noisy measurements (Lehtinen et al.,
2018; Xie et al., 2020; Laine et al., 2019; Sheth et al., 2021;
Huang et al., 2021). These methods have demonstrated
impressive performance on natural-image benchmarks, es-
sentially on par with the supervised state of the art. However,
to the best of our knowledge, no unsupervised metrics are
currently available to evaluate them using only noisy data.

Reliance on supervised metrics makes it very challenging to
create benchmark datasets using real-world measurements,
because obtaining the ground-truth clean images required by
these metrics is often either impossible or very constraining.
In practice, clean images are typically estimated through
temporal averaging, which suppresses dynamic information
that is often crucial in scientific applications. Consequently,
quantitative evaluation of unsupervised denoising methods
is currently almost completely dominated by natural image
benchmark datasets with simulated noise (Lehtinen et al.,
2018; Xie et al., 2020; Laine et al., 2019; Sheth et al., 2021;
Huang et al., 2021), which are not always representative of
the signal and noise characteristics that arise in real-world
imaging applications.

The lack of unsupervised metrics also limits the applica-
tion of unsupervised denoising techniques in practice. In
the absence of quantitative metrics, domain scientists must
often rely on visual inspection to evaluate performance on
real measurements. This is particularly restrictive for deep-
learning approaches, because it makes it impossible to per-
form systematic hyperparameter optimization and model
selection on the data of interest.

In this work, we propose two novel unsupervised metrics
to address these issues: the unsupervised mean-squared er-
ror (uMSE) and the unsupervised peak signal-to-noise ratio
(uPSNR), which are computed exclusively from noisy data.
These metrics build upon existing unsupervised denoising
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methods, which minimize an unsupervised cost function
equal to the difference between the denoised estimate and
additional noisy copies of the signal of interest (Lehtinen
et al., 2018). The uMSE is equal to this cost function mod-
ified with a correction term, which renders it an unbiased
estimator of the supervised MSE.

We provide a theoretical analysis of the uMSE and uPSNR,
proving that they are asymptotically consistent estimators of
the supervised MSE and PSNR respectively. Controlled ex-
periments on supervised benchmarks, where the true MSE
and PSNR can be computed exactly, confirm that the uMSE
and uPSNR provide accurate approximations. In addition,
we validate the metrics on video data in RAW format, con-
taminated with real noise that does not follow a known
predefined model.

In order to illustrate the potential impact of the pro-
posed metrics on imaging applications where no ground-
truth is available, we apply them to transmission-electron-
microscopy (TEM) data. Recent advances in direct electron
detection systems make it possible for experimentalists to
acquire highly time-resolved movies of dynamic events at
frame rates in the kilohertz range (Faruqi & McMullan,
2018; Ercius et al., 2020), which is critical to advance our
understanding of functional materials. Acquisition at such
high temporal resolution results in severe degradation by
shot noise. We show that unsupervised methods based on
deep learning can be effective in removing this noise, and
that our proposed metrics can be used to evaluate their per-
formance quantitatively using only noisy data.

To summarize, our contributions are (1) two novel unsu-
pervised metrics presented in Section 3, (2) a theoretical
analysis providing an asymptotic characterization of their
statistical properties (Section 4), (3) experiments showing
the accuracy of the metrics in a controlled situation where
ground-truth clean images are available (Section 5), (4) val-
idation on real-world videos in RAW format (Section 6),
and (5) an application to a real-world electron-microscopy
dataset, which illustrates the challenges of unsupervised
denoising in scientific imaging (Section 7).

Code to reproduce all computational experiments is avail-
able at https://github.com/adriamm98/umse

2. Background and Related work
Unsupervised denoising The past few years have seen
ground-breaking progress in unsupervised denoising, pio-
neered by Noise2Noise, a technique where a neural network
is trained on pairs of noisy images (Lehtinen et al., 2018).
Our unsupervised metrics are inspired by Noise2Noise,
which optimizes a cost function equal to our proposed
unsupervised MSE, but without a correction term (which
is not needed for training models). Subsequent work fo-

cused on performing unsupervised denoising from single
images using variations of the blind-spot method, where
a model is trained to estimate each noisy pixel value us-
ing its neighborhood but not the noisy pixel itself (to avoid
the trivial identity solution) (Krull et al., 2019; Laine et al.,
2019; Batson & Royer, 2019a; Sheth et al., 2021; Xie et al.,
2020). More recently, Neighbor2Neighbor revisited the
Noise2Noise method, generating noisy image pairs from a
single noisy image via spatial subsampling (Huang et al.,
2021), an insight that can also be leveraged in combination
with our proposed metrics, as explained in Section B. Our
contribution with respect to these methods is a novel un-
supervised metric that can be used for evaluation, as it is
designed to be an unbiased and consistent estimator of the
MSE.

Stein’s unbiased risk estimator (SURE) provides an
asymptotically unbiased estimator of the MSE for i.i.d.
Gaussian noise (Donoho & Johnstone, 1995). This cost
function has been used for training unsupervised denois-
ers (Metzler et al., 2018; Soltanayev & Chun, 2018; Zhussip
et al., 2019; Mohan et al., 2021). In principle, SURE could
be used to compute the MSE for evaluation, but it has certain
limitations: (1) a closed form expression of the noise likeli-
hood is required, including the value of the noise parameters
(for example, this is not known for the real-world datasets in
Sections 6 and 7), (2) computing SURE requires approximat-
ing the divergence of a denoiser (usually via Monte Carlo
methods (Ramani et al., 2008)), which is computationally
very expensive. Developing practical unsupervised metrics
based on SURE and studying their theoretical properties is
an interesting direction for future research.

Existing evaluation approaches In the literature, quanti-
tative evaluation of unsupervised denoising techniques has
mostly relied on images and videos corrupted with synthetic
noise (Lehtinen et al., 2018; Krull et al., 2019; Laine et al.,
2019; Batson & Royer, 2019a; Sheth et al., 2021; Xie et al.,
2020). Recently, a few datasets containing real noisy data
have been created (Abdelhamed et al., 2018; Plotz & Roth,
2017; Xu et al., 2018; Zhang et al., 2019). Evaluation on
these datasets is based on supervised MSE and PSNR com-
puted from estimated clean images obtained by averaging
multiple noisy frames. Unfortunately, as a result, the metrics
cannot capture dynamically-changing features, which are
of interest in many applied domains. In addition, unless the
signal-to-noise ratio is quite high, it is necessary to average
over a large number of frames to approximate the MSE. For
example, as explained in Section D, for an image corrupted
by additive Gaussian noise with standard deviation σ = 15
we need to average > 1500 noisy images to achieve the
same approximation accuracy as our proposed approach
(see Figure 10), which only requires 3 noisy images, and
can also be computed from a single noisy image.
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Figure 1. MSE vs uMSE. The traditional supervised mean squared error (MSE) is computed by comparing the denoised estimate to the
clean ground truth (left). The proposed unsupervised MSE is computed only from noisy data, via comparison with a noisy reference
corresponding to the same ground-truth but corrupted with independent noise (right). A correction term based on two additional noisy
references debiases the estimator.

Noise-Level Estimation. The correction term in uMSE can
be interpreted as an estimate of the noise level, obtained by
cancelling out the clean signal. In this sense, it is related
to noise-level estimation methods (Liu et al., 2013; Lebrun
et al., 2015; Arias & Morel, 2018). However, unlike uMSE,
these methods typically assume a parametric model for the
noise, and are not used for evaluation.

No-reference image quality assessment methods evaluate
the perceptual quality of an image (Li, 2002; Mittal et al.,
2012), but not whether it is consistent with an underlying
ground-truth corresponding to the observed noisy measure-
ments, which is the goal of our proposed metrics.

3. Unsupervised Metrics For Unsupervised
Denoising

3.1. The Unsupervised Mean Squared Error

The goal of denoising is to estimate a clean signal from noisy
measurements. Let x ∈ Rn be a signal or a set of signals
with n total entries. We denote the corresponding noisy data
by y ∈ Rn. A denoiser f : Rn → Rn is a function that
maps the input y to an estimate of x. A common metric to
evaluate the quality of a denoiser is the mean squared error
between the clean signal and the estimate,

MSE :=
1

n

n∑
i=1

(xi − f(y)i)
2
. (1)

Unfortunately, in most real-world scenarios clean ground-
truth signals are not available and evaluation can only be
carried out in an unsupervised fashion, i.e. exclusively from
the noisy measurements. In this section we propose an
unsupervised estimator of MSE inspired by recent advances
in unsupervised denoising (Lehtinen et al., 2018). The key
idea is to compare the denoised signal to a noisy reference,
which corresponds to the same clean signal corrupted by
independent noise.

In order to motivate our approach, let us assume that the
noise is additive, so that y := x+ z for a zero-mean noise
vector z ∈ Rn. Imagine that we have access to a noisy

reference a := x+w corresponding to the same underlying
signal x, but corrupted with a different noise realization
w ∈ Rn independent from z (Section 3.3 explains how to
obtain such references in practice). The mean squared dif-
ference between the denoised estimate and the reference is
approximately equal to the sum of the MSE and the variance
σ2 of the noise,

1

n

n∑
i=1

(ai − f(y)i)
2
=

1

n

n∑
i=1

(xi + wi − f(y)i)
2

≈ 1

n

n∑
i=1

(xi − f(y)i)
2
+

1

n

n∑
i=1

w2
i ≈ MSE+ σ2, (2)

because the cross-term 1
n

∑n
i=1 wi (xi − f(y)i)

2 cancels
out if wi and yi (and hence f(yi)) are independent (and the
mean of the noise is zero).

Approximations to equation 2 are used by different unsuper-
vised methods to train neural networks for denoising (Lehti-
nen et al., 2018; Xie et al., 2020; Laine et al., 2019; Huang
et al., 2021). The noise term 1

n

∑n
i=1 w

2
i in equation 2

is not problematic for training denoisers as long as it is
independent from the input y. However, it is definitely
problematic for evaluating denoisers, as the additional term
would change for different images and datasets, making it
impossible to perform quantitative comparisons. In order to
address this limitation we propose to modify the cost func-
tion to neutralize the noise term. This can be achieved by
using two other noisy references b := x+ v and c := x+u,
which are noisy measurements corresponding to the clean
signal x, but corrupted with different, independent noise re-
alizations v and u (just like a). Subtracting these references
and dividing by two yields an estimate of the noise variance,

1

n

n∑
i=1

(bi − ci)
2

2
=

1

n

n∑
i=1

(vi − ui)
2

2

≈ 1

2n

n∑
i=1

v2i +
1

2n

n∑
i=1

u2
i ≈ σ2, (3)

which can then be subtracted from equation 2 to estimate the
MSE. This yields our proposed unsupervised metric, which
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Figure 2. Noisy references. The proposed metrics require noisy references corresponding to the same clean image corrupted by
independent noise. These references can be obtained from a single image via spatial subsampling (above) or from consecutive frames
(below). In both cases, there may be small differences in the signal content of the references, shown by the corresponding heatmaps.

we call unsupervised mean squared error (uMSE), depicted
in Figure 1.

Definition 3.1 (Unsupervised mean squared error). Given a
noisy input signal y ∈ Rn and three noisy references a, b,
c ∈ Rn the unsupervised mean squared error of a denoiser
f : Rn → Rn is

uMSE :=
1

n

n∑
i=1

(ai − f(y)i)
2 − (bi − ci)

2

2
. (4)

Theorem 4.2 in Section 4 establishes that the uMSE is a con-
sistent estimator of the MSE as long as (1) the noisy input
and the noisy references are independent, (2) their means
equal the corresponding entries of the ground-truth clean
signal, and (3) their higher-order moments are bounded.
These conditions are satisfied by most noise models of in-
terest in signal and image processing, such as Poisson shot
noise or additive Gaussian noise. In Section 3.3 we address
the question of how to obtain the noisy references required
to estimate the uMSE. Section A explains how to compute
confidence intervals for the uMSE via bootstrapping.

3.2. The Unsupervised Peak Signal-To-Noise Ratio

Peak signal-to-noise ratio (PSNR) is currently the most pop-
ular metric to evaluate denoising quality. It is a logarithmic
function of MSE defined on a decibel scale,

PSNR := 10 log

(
M2

MSE

)
, (5)

where M is a fixed constant representing the maximum
possible value of the signal of interest, which is usually set
equal to 255 for images. Our definition of uMSE can be
naturally extended to yield an unsupervised PSNR (uPSNR).
Definition 3.2 (Unsupervised peak signal-to-noise ratio).
Given a noisy input signal y ∈ Rn and three noisy ref-
erences a, b, c ∈ Rn the peak signal-to-noise ratio of a
denoiser f : Rn → Rn is

uPSNR := 10 log

(
M2

uMSE

)
, (6)

where M is the maximum possible value of the signal of
interest.

Corollary 4.3 establishes that the uPSNR is a consistent
estimator of the PSNR, under the same conditions that guar-
antee consistency of the uMSE. Section A explains how to
compute confidence intervals for the uPSNR via bootstrap-
ping.

3.3. Computing Noisy References In Practice

Our proposed metrics rely on the availability of three noisy
references, which ideally should correspond to the same
clean image contaminated with independent noise. Devi-
ations between the clean signal in each reference violate
Condition 2 in Section 4, and introduce a bias in the metrics.
We propose two approaches to compute the references in
practice, illustrated in Figure 2.

Multiple images: The references can be computed from
consecutive frames acquired within a short time interval.
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20 pixels 100 pixels 1,000 pixels

Figure 3. The uMSE is a consistent estimator of the MSE. The histograms at the top show the distribution of the uMSE computed from
n pixels (n ∈ {20, 100, 1000}) of a natural image corrupted with additive Gaussian noise (σ = 55) and denoised via a deep-learning
denoiser (DnCNN). Each point in the histogram corresponds to a different sample of the three noisy references used to compute the uMSE
(ãi, b̃i and c̃i in Eq. 8 for 1 ≤ i ≤ n), with the same underlying clean pixels. The distributions are centered at the MSE, showing that the
estimator is unbiased (Theorem 4.1), and are well approximated by a Gaussian fit (Theorem 4.4). As the number of pixels n grows, the
standard deviation of the uMSE decreases proportionally to n−1/2, and the uMSE converges asymptotically to the MSE (Theorem 4.2), as
depicted in the scatterplot below (α is a constant).

This approach is preferable for datasets where the image
content does not experience rapid dynamic changes from
frame to frame. We apply this approach to the RAW videos
in Section 6, where the content is static.

Single image: The references can be computed from a sin-
gle image via spatial subsampling, as described in Section B.
Section B shows that this approach is effective as long as
the image content is sufficiently smooth with respect to the
pixel resolution. We apply this approach to the electron-
microscopy data in Section 7, where preserving dynamic
content is important.

4. Statistical Properties of the Proposed
Metrics

In this section, we establish that the proposed unsupervised
metrics provide a consistent estimate of the MSE and PSNR.
In our analysis, the ground truth signal or set of signals is
represented as a deterministic vector x ∈ Rn. The corre-
sponding noisy data are also modeled as a deterministic
vector y ∈ Rn that is fed into a denoiser f : Rn → Rn

to produce the denoised estimate f(y). The MSE of the

estimate is a deterministic quantity equal to

MSE :=
1

n

n∑
i=1

SEi, SEi := (xi − f(y)i)
2
. (7)

Noise Model. The uMSE estimator in Definition 3.1 de-
pends on three noisy references ã, b̃, c̃, which we model as
random variables.1 Our analysis assumes that these random
variables satisfy two conditions:

Condition 1 (independence): The entries of ã, b̃, c̃ are all
mutually independent.

Condition 2 (centered noise): The mean of the ith entry
of ã, b̃, c̃ equals the corresponding entry of the clean signal,
E [ãi] = E[b̃i] = E [c̃i] = xi, 1 ≤ i ≤ n.

Two popular noise models that satisfy these conditions are:

• Additive Gaussian, where ãi := xi + w̃i, b̃i := xi + ṽi,
c̃i := xi + ũi, for i.i.d. Gaussian w̃i, ṽi, ũi.

• Poisson, where ãi, b̃i, c̃i are i.i.d. Poisson random vari-
ables with parameter xi.

1In our analysis, all random quantities are marked with a tilde
for clarity.
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Natural images (Gaussian noise) Electron microscopy (Poisson noise)
Spatial subsampling Spatial subsampling

Figure 4. Bias introduced by spatial subsampling. The histograms show the distribution of the uMSE (computed as in Figure 3)
corresponding to a natural image and a simulated electron-microscopy image corrupted by Gaussian (σ = 55) and Poisson noise
respectively, and denoised with a standard deep-learning denoiser (DnCNN). For each image, the uMSE is computed using noisy
references with the same underlying clean image (left), and from noisy references obtained via spatial subsampling (right). For the natural
image, spatial subsampling introduces a substantial bias (compare the 1st and 2nd histogram), whereas for the electron-microscopy image
the bias is much smaller (compare the 3rd and 4th histogram).

Theoretical Guarantees. Our goal is to study the statistical
properties of the uMSE

ũMSE :=
1

n

n∑
i=1

ũSEi,

ũSEi := (ãi − f(y)i)
2 − (b̃i − c̃i)

2

2
. (8)

As indicated by the tilde, under our modeling assumptions,
the uMSE is a random variable. We first show that the
correction factor in the definition of uMSE succeeds in
debiasing the estimator, so that its mean is equal to the
MSE.

Theorem 4.1 (The uMSE is unbiased, proof in Section E.1).
If Conditions 1 and 2 hold, the uMSE is an unbiased estima-
tor of the MSE, i.e. E[ũMSE] = MSE.

Theorem 4.1 establishes that the distribution of the uMSE
is centered at the MSE. We now show that its variance
shrinks at a rate inversely proportional to the number of
signal entries n, and therefore converges to the MSE in
mean square and probability as n → ∞ (see Figure 3 for a
numerical demonstration). This occurs as long as the higher
central moments of noise and the entrywise denoising error
are bounded by a constant, which is to be expected in most
realistic scenarios.

Theorem 4.2 (The uMSE is consistent, proof in Section E.2).
Let µ[k]

i denote the kth central moment of ãi, b̃i, c̃i, and γ :=
max1≤i≤n |xi − f(y)i| the maximum entrywise denoising
error. If Conditions 1 and 2 hold, and there exists a constant
α such that max1≤i≤n max

{
µ
[4]
i , µ

[3]
i γ, γ4

}
≤ α, then

the mean squared error between the MSE and the uMSE

satisfies the bound

E
[(

ũMSE−MSE
)2

]
= Var

[
ũMSE

]
≤ α

n
. (9)

Consequently, limn→∞ E[(ũMSE − MSE)2] = 0, so the
uMSE converges to the MSE in mean square and therefore
also in probability.

Consistency of the uMSE implies consistency of the uPSNR.

Corollary 4.3 (The uPSNR is consistent, proof in Sec-
tion E.3). Under the assumptions of Theorem 4.2, the uP-
SNR defined as

˜uPSNR := 10 log

(
M2

ũMSE

)
, (10)

where M is a fixed constant, converges in probability to the
PSNR, as n → ∞.

The uMSE converges to a Gaussian random variable asymp-
totically as n → ∞.

Theorem 4.4 (The uMSE is asymptotically normally dis-
tributed, proof in Section E.4). If the first six central mo-
ments of ãi, b̃i, c̃i and the maximum entrywise denoising er-
ror max1≤i≤n |xi − f(y)i| are bounded, and Conditions 1
and 2 hold, the uMSE is asymptotically normally distributed
as n → ∞.

Our numerical experiments show that the distribution of the
uMSE is well approximated as Gaussian even for relatively
small values of n (see Figure 3). This can be exploited to
build confidence intervals for the uMSE and uPSNR, as
explained in Section A.
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Table 1. Controlled comparison of PSNR and uPSNR. The table shows the PSNR computed from clean ground-truth images, compared
to two versions of the proposed estimator: one using noisy references corresponding to the same clean image (uPSNR), and another using
a single noisy image combined with spatial subsampling (uPSNRs). The metrics are compared on the datasets and denoising methods
described in Section G.

Natural images (Gaussian noise)
σ = 25 σ = 50 σ = 75 σ = 100

Method PSNR uPSNR uPSNRS PSNR uPSNR uPSNRS PSNR uPSNR uPSNRS PSNR uPSNR uPSNRS

Bilateral 24.20 24.18 26.20 21.84 21.86 22.90 19.14 19.17 19.58 16.30 16.37 16.47
DenseNet 26.54 26.51 27.61 23.98 24.06 26.28 22.75 23.00 24.69 21.92 21.97 23.78
DnCNN 26.19 26.21 28.14 23.95 24.02 26.08 22.72 22.75 24.59 21.84 21.84 23.71
UNet 27.22 27.26 25.40 24.95 24.96 23.52 23.33 23.40 22.33 22.21 22.28 21.11
BlindSpot 25.55 25.53 24.10 24.08 24.07 22.77 22.79 22.69 21.82 21.75 21.82 21.24
Neighbor2N. 25.91 25.89 24.91 24.49 24.58 23.37 22.77 22.80 21.67 21.52 21.44 20.23
Noise2Noise 27.18 27.22 25.32 24.94 24.88 23.31 23.26 23.19 21.50 22.10 22.13 20.11
Noise2Self 24.57 24.56 22.88 23.38 23.40 21.94 22.24 22.33 20.94 21.34 21.18 20.15

Electron microscopy (Poisson noise)
Bilateral BlindSpot DnCNN UNet

PSNR uPSNR uPSNRS PSNR uPSNR uPSNRS PSNR uPSNR uPSNRS PSNR uPSNR uPSNRS

20.18 20.20 20.21 24.86 24.87 24.74 25.74 25.68 25.86 24.65 24.69 24.79

Table 2. Comparison of averaging-based PSNR and uPSNR on RAW videos with real noise. The proposed uPSNR metric, computed
using three noisy references, is very similar to an averaging-based PSNR estimate computed from 10 noisy references. The metrics are
compared on the datasets and denoising methods described in Section H.

Image (Wavelet) Image (CNN) Video (Temp. Avg) Video (CNN)

ISO PSNRavg uPSNR PSNRavg uPSNR PSNRavg uPSNR PSNRavg uPSNR

1600 37.56 37.76 46.88 48.05 34.32 34.36 48.06 49.51
3200 35.52 35.55 44.91 45.51 32.48 32.47 46.45 47.33
6400 32.60 32.68 42.74 43.05 30.77 30.75 44.75 45.16
12800 28.43 28.46 40.22 39.75 27.71 27.76 42.22 41.69
25600 26.79 26.9 40.19 38.78 27.08 27.12 42.13 40.32

Mean 32.18 32.27 42.99 43.03 30.47 30.49 44.72 44.80

5. Controlled Evaluation of the Proposed
Metrics

In this section, we study the properties of the uMSE and
uPSNR through numerical experiments in a controlled sce-
nario where the ground-truth clean images are known. We
use a dataset of natural images (Martin et al., 2001; Zhang
et al., 2017b; Franzen, 1993) corrupted with additive Gaus-
sian noise with σ ∈ [25, 50, 75, 100], and a dataset of sim-
ulated electron-microscopy images (Vincent et al., 2021)
corrupted with Poisson noise. For the two datasets, we com-
pute the supervised MSE and PSNR using the ground-truth
clean image. To compute the uMSE and uPSNR we use
noisy references corresponding to the same clean image
corrupted with independent noise. We also compute the
uMSE and uPSNR using noisy references obtained from
a single noisy image via spatial subsampling, as described
in Section B, which we denote by uMSES and uPSNRS

respectively.2 All metrics are applied to multiple denoising
approches, as described in more detail in Section G.

The results are reported in Tables 1 and 3. When the noisy
references correspond exactly to the same clean image (and
therefore satisfy the conditions in Section 4), the unsuper-
vised metrics are extremely accurate across different noise
levels for all denoising methods.

Single-image results: When the noisy references are com-
puted via spatial subsampling, the metrics are still very
accurate for the electron-microscopy dataset, but less so for
the natural-image dataset if the PSNR is high (above 20
dB). The culprit is the difference between the clean images
underlying each noisy reference (see Figure 2), which intro-
duces a bias in the unsupervised metric, depicted in Figure 4.

2The other metrics are applied to subsampled images in order
to make them directly comparable to the uMSES and uPSNRS.
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Figure 8 shows that the difference is more pronounced in
natural images than in electron-microscopy images, which
are smoother with respect to the pixel resolution. We further
analyze the influence of the image smoothness on the effect
of spatial subsampling in the proposed metrics in Section B.

6. Application to Videos in RAW Format
We evaluate our proposed metrics on a dataset of videos
in raw format, consisting of direct readings from the sen-
sor of a surveillance camera contaminated with real noise
at five different ISO levels (Yue et al., 2020). The dataset
contains 11 unique videos divided into 7 segments, each
consisting of 10 noisy frames that capture the same static ob-
ject. We consider four different denoisers: a wavelet-based
method, temporal averaging and two versions of a state-of-
the-art unsupervised deep-learning method using images
and videos respectively (Sheth et al., 2021). A detailed
description of the experiments is provided in Section H.
Tables 4 and 2 compare our proposed unsupervised met-
rics (computed using three noisy frames in each segment)
with MSE and PSNR estimates obtained via averaging from
ten noisy frames. The two types of metric yield similar
results: the deep-learning methods clearly outperform the
other baselines, and the video-based methods outperform
the image-based methods. As explained in Section D, the
averaging-based MSE and PSNR are not consistent estima-
tors of the true MSE and PSNR, and can be substantially
less accurate than the uMSE and uPSNR (see Figure 10), so
they should not be considered ground-truth metrics.

7. Application To Electron Microscopy
Our proposed metrics enable quantitative evaluation of de-
noisers in the absence of ground-truth clean images. We
showcase this for transmission electron microscopy (TEM),
a key imaging modality in material sciences. Recent devel-
opments enable the acquisition of high frame-rate images,
capturing high temporal resolution dynamics, thought to
be crucial in catalytic processes (Crozier et al., 2019). Im-
ages acquired under these conditions are severely limited by
noise. Recent work suggest that deep learning methods pro-
vide an effective solution (Sheth et al., 2021; Mohan et al.,
2022; 2021), but, instead of quantitative metrics, evaluation
on real data has been limited to visual inspection.

The TEM dataset consists of 18,597 noisy frames depicting
platinum nanoparticles on a cerium oxide support. A major
challenge for the application of unsupervised metrics is the
presence of local correlations in the noise (see Figure 13).
We address this by performing spatial subsampling to reduce
the correlation and selecting two contiguous test sets with
low correlation: 155 images with moderate signal-to-noise
ratio (SNR), and 383 images with low SNR, which are more

Moderate SNR test set Low SNR test set

Data

Gaussian smoothing

20.4 dB 16.0 dB
Noise2Self

25.8 dB 17.2 dB
BlindSpot

25.3 dB 18.1 dB
Neighbor2Neighbor

26.9 dB 18.6 dB

Figure 5. Denoising real-world electron-microscopy data. Ex-
ample noisy images (top) from the moderate-SNR (left 2 columns)
and low-SNR (right 2 columns) test sets described in Section 7.
The data are denoised using a Gaussian-smoothing baseline and
several unsupervised CNNs: Noise2Self, BlindSpot, and Neigh-
bor2Neighbor. The uPSNR of each method on each test set is
shown below the images. The uPSNR values and visual inspection
indicate that the CNNs clearly outperform the baseline method,
that the best unsupervised approach is Neighbor2Neighbor, and
that all methods achieve worse results on the low-SNR test set.

8
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challenging. We train a UNet architecture following the
Neighbor2Neighbor and Noise2Self methods (Huang et al.,
2021; Batson & Royer, 2019b) and a BlindSpot UNet (Sheth
et al., 2021)) on a training set containing 70% of the data,
and compare their performance to a Gaussian-smoothing
baseline on the two test sets. Section I provides a more
detailed description of the dataset and the models.

Figure 5 shows examples from the data and the correspond-
ing denoised images, as well as the uPSNR of each method
for the two test sets. Figure 11 shows a histogram compar-
ing the uMSE values of Gaussian smoothing and Neigh-
bor2Neighbor for each individual test image. The unsu-
pervised metrics indicate that the deep-learning methods
achieve effective denoising on the moderate SNR set (clearly
outperforming the Gaussian-smoothing baseline) and all of
them produce significantly worse results on the low-SNR
test set, being Neighbor2Neighbor the one that yields the
best results. Figure 12 shows that uMSE produces consis-
tent image-level evaluations between Neighbor2Neighbor
and Gaussian smoothing. These conclusions are supported
by the visual appearance of the images.

8. Conclusion And Open Questions
In this work we introduce two novel unsupervised metrics
computed exclusively from noisy data, which are asymp-
totically consistent estimators of the corresponding super-
vised metrics, and yield accurate approximations in practice.
These results show that unsupervised evaluation is feasible
and can be very effective, but several important challenges
remain. Key open questions for future research include:

• How to address the bias introduced by spatial subsam-
pling in the case of single images that are not suffi-
ciently smooth (see Section B), ideally achieving an
unbiased approximation to the MSE from a single noisy
image.

• How to design unsupervised metrics for noise distribu-
tions and artifacts which are not pixel-wise indepen-
dent (see for example (Prakash et al., 2021)).

• How to obtain unsupervised approximations of percep-
tual metrics such as SSIM (Wang et al., 2004).

• How to perform unsupervised evaluation for inverse
problems beyond denoising, and related applications
such as realistic image synthesis (Zwicker et al., 2015).
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Figure 6. Unsupervised confidence intervals for the MSE. 0.95-
Confidence intervals computed following Algorithm 1 of natural
images from the dataset in Section 5 corrupted with additive Gaus-
sian noise (σ = 55) and denoised via a standard deep-learning
denoiser (DnCNN). The horizontal coordinate of each interval cor-
responds to the true MSE, so ideally 95% of the intervals should
overlap with the diagonal dashed identity line. The left plot shows
that this is the case when the noisy references with the same under-
lying clean image, demonstrating that Algorithm 1 produces valid
confidence intervals. The right plot shows confidence intervals
based on noisy references obtained via spatial subsampling (right).
Spatial subsampling produces a systematic bias in the uMSE, ana-
lyzed in Section B which shifts the intervals away from the identity
line when the underlying image content is not sufficiently smooth
with respect to the pixel resolution.

A. Confidence Intervals for Uncertainty
Quantification

The uMSE and uPSNR are estimates of the MSE and PSNR
computed from noisy data, so they are inherently uncertain.
We propose to quantify this uncertainty using confidence
intervals obtained via bootstrapping.

Theorem 4.4 establishes that the uMSE is asymptotically
normal. In addition, our numerical experiments show that
the distribution of the uMSE is well approximated as Gaus-
sian even for relatively small values of n (see Figure 3). As
a result, the bootstrap confidence intervals for the uMSE
produced by Algorithm 1 contain the MSE with probability
approximately 1 − α (see Section 13.3 in (Efron & Tib-
shirani, 1994)). This also implies that the PSNR belongs
to the bootstrap confidence intervals for the uPSNR with
probability approximately 1− α because the function that
maps the uMSE to the uPSNR and the MSE to the PSNR is
monotone (see Section 13.6 in (Efron & Tibshirani, 1994)).

Figure 6 shows a numerical verification that the proposed
approach yields valid confidence intervals for MSE in the
controlled experiments of Section 5, where the ground-truth
clean images are known. It also shows that the bias in-
troduced by spatial subsampling for natural images (see
Section B), shifts the confidence intervals away from the
true MSE.

11

https://proceedings.neurips.cc/paper/2018/file/c0560792e4a3c79e62f76cbf9fb277dd-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c0560792e4a3c79e62f76cbf9fb277dd-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c0560792e4a3c79e62f76cbf9fb277dd-Paper.pdf


Evaluating Unsupervised Denoising Requires Unsupervised Metrics

Algorithm 1 Bootstrap confidence intervals
We assume access to a noisy input signal y ∈ Rn and three noisy references a, b, c ∈ Rn. For 1 ≤ k ≤ K, build an index
set Bk by sampling n entries from {1, 2, . . . , n} uniformly and independently at random with replacement. Then set

uMSEk :=
1

n

∑
i∈Bk

(ai − f(y)i)
2 − (bi − ci)

2

2
,

uPSNRk := 10 log

(
M2

uMSEk

)
. (11)

To build 1− α confidence intervals, 0 < α < 1 for the uMSE and uPSNR set

IuMSE :=
[
quMSE
α/2 , quMSE

1−α/2

]
, IuPSNR :=

[
quPSNR
α/2 , quPSNR

1−α/2

]
, (12)

where quMSE
α/2 and quMSE

1−α/2 are the α/2 and 1− α/2 quantiles of the set {uMSE1, . . . ,uMSEK}, and quPSNR
α/2 and quPSNR

1−α/2

are the α/2 and 1− α/2 quantiles of the set {uPSNR1, . . . ,uPSNRK}.

B. Spatial Subsampling
In this section, we propose a method to obtain the noisy
references required to estimate uMSE and uPSNR. We focus
our discussion on images, but similar ideas can be applied to
videos and time-series data. In order to simplify the notation,
we consider N ×N images. The n-dimensional signals in
other sections can be interpreted as vectorized versions of
these images with n = N2.

We assume that we have available a noisy image I of di-
mensions 2N × 2N . We extract four noisy references from
I by spatial subsampling. The method is inspired by the
Neighbor2Neighbor unsupervised denoising method, which
uses random subsampling to generate noisy image pairs
during training (Huang et al., 2021). Figure 7 illustrates the
approach.

C. Effect Of Spatial Subsampling on the
Proposed Metrics

Spatial subsampling generates four noisy sub-images that
correspond to the noisy input y and the three noisy refer-
ences a, b and c in Definition 3.1. In our derivation of the
uMSE, we assume that these four noisy signals are gener-
ated by corrupting the same ground-truth clean signal with
independent noise. This holds for the sub-images in Defini-
tion 2 if (1) the underlying clean image is smooth, so that
adjacent pixels are approximately equal, and (2) the noise is
pixel-wise independent. Tables 1 and 3, and Figures 4 and
6 show that these assumptions don’t hold completely for
natural images, which introduces a bias in the uMSE. This
bias also exists for the electron-microscopy images but it is
much smaller, because the images are smoother with respect
to the pixel resolution. Figure 8 shows the relative root

mean square error (RMSE) between clean copies of images
obtained via spatial subsampling following Algorithm 2 for
the natural images (left) and electron-microscopy images
(right) used for the experiments in Section 5. The difference
is substantially larger in natural images, because they are
less smooth with respect to the pixel resolution than the
electron-microscopy images.

In order to further analyze the effect of spatial subsampling
on the proposed metrics, we performed a controlled experi-
ment where we applied different degrees of smoothing (via
a Gaussian filter) to a natural image. We evaluated the rel-
ative RMSE of the corresponding subsampled references.
In addition, we fed the smoothed images contaminated by
noise into a denoiser and compared the uMSE of the de-
noised image with its true MSE. The results are shown in
Figure 9. We observe that smoothing results in a stark de-
crease of both the relative RMSE and the uMSE, suggesting
that spatial subsampling is effective as long as the under-
lying image content is sufficiently smooth with respect to
the pixel resolution (as supported also by the results on the
electron-microscopy data).

D. Comparison With Averaging-Based MSE
Estimation

Existing denoising benchmarks containing images corrupted
with real noise perform evaluation by computing the MSE
or PSNR using an estimate of the clean image obtained by
averaging multiple noisy frames (Abdelhamed et al., 2018;
Plotz & Roth, 2017; Xu et al., 2018; Zhang et al., 2019).
In this section, we show both theoretically and numerically
that this approach produces a poor estimate of the MSE and
PSNR, unless the signal-to-noise ratio of the data is very
low, or we use a large number of noisy frames.

The following lemma shows that in contrast to our proposed
metric uMSE, the approximation to the MSE obtained via
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Algorithm 2 Decomposition via spatial subsampling
Given an image I ∈ R2N×2N , let

S1(i, j) := I (2i− 1, 2j − 1) , S2(i, j) := I (2i, 2j − 1) ,

S3(i, j) := I (2i− 1, 2j) , S4(i, j) := I (2i, 2j) , 1 ≤ i, j ≤ n. (13)

The spatial decomposition of I is equal to four sub-images Y , A, B, C ∈ RN×N where Y (i, j), A(i, j), B(i, j), C(i, j)
are set equal to S1(i, j), S2(i, j), S3(i, j), S4(i, j), or to a random permutation of the four values.

Noisy image Subsampled
references

Subsampling
scheme

Figure 7. Spatial subsampling uses a single noisy image (left) to
extract four noisy references (center) corresponding approximately
to the same underlying clean image, but with independent noise.
The pixels of each 2×2 block are assigned to each of the references
either deterministically, or at random (right).

averaging is biased and not consistent, in the sense that
it does not converge to the true MSE when the number
of pixels tends to infinity. The metric does converge to the
MSE as the number of noisy images tends to infinity, but this
is of little practical significance, since this number cannot
be increased arbitrarily in actual applications.

Lemma D.1 (MSE via averaging). Consider a clean signal
x ∈ Rn, an estimate f(y) ∈ Rn (obtained by applying a
denoiser f to the data y ∈ Rn), and m noisy references

r̃
[m]
i := xi + z̃

[m]
i , 1 ≤ i ≤ n, 1 ≤ j ≤ m, (14)

where z̃
[m]
i , 1 ≤ i ≤ n, 1 ≤ j ≤ m, are i.i.d. zero-mean

Gaussian random variables with variance σ2. We define the
averaging-based MSE as

MSEavg :=
1

n

n∑
i=1

 1

m

m∑
j=1

r̃
[m]
i − f(y)i

2

. (15)

The MSEavg is a biased estimator of the true MSE

MSE :=
1

n

n∑
i=1

(xi − f(y)i)
2
, (16)

since its mean equals

E [MSEavg] = MSE +
σ2

m
. (17)
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Figure 8. Effect of spatial subsampling. The histograms show the
relative root mean square error (RMSE) between clean copies of
images obtained via spatial subsampling following Algorithm 2 for
the natural images (left) and electron-microscopy images (right)
used for the experiments in Section 5. The difference is substan-
tially larger in natural images, because they are less smooth with
respect to the pixel resolution than the electron-microscopy im-
ages.

Proof. By the assumptions, and linearity of expectation,

E [MSEavg] = E

 1

n

n∑
i=1

 1

m

m∑
j=1

z̃
[m]
i + xi − f(y)i

2


=
1

n

n∑
i=1

(xi − f(y)i)
2
+

1

n

n∑
i=1

E


 1

m

m∑
j=1

z̃
[m]
i

2


= MSE +
σ2

m
. (18)

As established in Section 4, the proposed uMSE metric is an
unbiased estimator of the MSE that is consistent as n → ∞
and only requires m := 3 noisy references. Figure 10 shows
a numerical comparison between uMSE and the averaging-
based MSE for one of the natural images used in the ex-
periments of Section 5. We observe that averaging-based
MSE requires m := 1510 in order to match the accuracy
achieved by the uMSE with only three noisy references.
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Figure 9. The bias produced by spatial subsampling is related
to image smoothness. The top graph shows the relative RMSE
of the subsampled references corresponding to a natural image
(the same as in Figure 4), after smoothing with a Gaussian filter
with different standard deviations. In order to evaluate the effect of
image smoothness on the uMSE, we fed the smoothed images con-
taminated by Gaussian i.i.d. noise with standard deviation equal
to 55 into a DnCNN denoiser (as in Figure 4). The bottom graph
shows the absolute difference between the MSE and the uMSE
as a function of the smoothness of the underlying clean image.
Smoothing results in a clear decrease of both the relative RMSE
and the uMSE, suggesting that spatial subsampling is effective as
long as the underlying image content is sufficiently smooth with
respect to the pixel resolution.

E. Proofs
E.1. Proof of Theorem 4.1

The following lemma shows that each individual term in the
uMSE is unbiased.

Lemma E.1 (Proof in Section E.5.2). If Conditions 1 and 2
in Section 4 hold,

E
[
ũSEi

]
= SEi, 1 ≤ i ≤ n. (19)

The proof then follows immediately from linearity of expec-
tation,

E
[
ũMSE

]
= E

[
1

n

n∑
i=1

ũSEi

]
=

1

n

n∑
i=1

E
[
ũSEi

]
=

1

n

n∑
i=1

SEi = MSE. (20)

E.2. Proof of Theorem 4.2

The following lemma bounds the variance of each individual
term in the uMSE.

Lemma E.2 (Proof in Section E.5.3). Under the assump-
tions of the theorem,

Var
[
ũSEi

]
≤ 14α, 1 ≤ i ≤ n. (21)
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Figure 10. Comparison of averaging-based MSE and uMSE.
The plot shows the MSE, uMSE and averaging-based MSEavg

corresponding to a natural image corrupted by Gaussian (σ = 15,
to simulate a noise level similar to that of the RAW videos in
Section 6) and denoised with a standard deep-learning denoiser
(DnCNN). The uMSE is computed with 3 noisy references. The
averaging-based MSEavg is computed with different number of
noisy references indicated by the horizontal axis. The blue shaded
region corresponds to an error that is smaller or equal to the error
incurred by the uMSE. Averaging-based MSE requires 1,510 noisy
images to achieve this accuracy.

The proof then follows from the fact that the variance of a
sum of independent random variables is equal to the sum of
their variances,

E
[(

ũMSE−MSE
)2

]
= Var

[
ũMSE

]
=Var

[
1

n

n∑
i=1

ũSEi

]
=

1

n2

n∑
i=1

Var
[
ũSEi

]
≤ 14α

n
. (22)

The bound immediately implies convergence in mean square
as n → ∞, which in turn implies convergence in probabil-
ity.

E.3. Proof of Corollary 4.3

The uPSNR is a continuous function of the uMSE, which
is the same function mapping the MSE to the PSNR. The
result then follows from Theorem 4.2 and the continuous
mapping theorem.

E.4. Proof of Theorem 4.4

To prove Theorem 4.4, we express the uMSE as a sum of
zero-mean random variables,

ũMSE =

n∑
i=1

t̃i, t̃i :=
ũSEi − SEi

n
, (23)

and apply the following version of the Lyapunov central
limit theorem.
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Theorem E.3 (Theorem 9.2 (Breiman, 1992)). Let t̃i, 1 ≤
i ≤ n, be independent zero-mean random variables with
bounded second and third moments, and let

s2n :=

n∑
i=1

E
[
t̃2i
]
. (24)

If the Lyapunov condition

lim
n→∞

∑n
i=1 E

[∣∣t̃i∣∣3]
s3n

= 0 (25)

holds, then the random variable

1

sn

n∑
i=1

t̃i (26)

converges in distribution to a standard Gaussian as n → ∞.

To complete the proof we show that the random variable

t̃i :=
ũSEi − SEi

n
(27)

satisfies the conditions of Theorem E.3. By Lemma E.1
its mean is zero. By Lemma E.2 its second moment is
bounded. To control sn, we apply the following auxiliary
lemma, which provides a lower bound on the variance of
each term in the uMSE.
Lemma E.4. Under the assumptions of Theorem 4.4,

Var
[
ũSEi

]
≥ µ

[4]
i + σ4

i

2
, (28)

where µ[4]
i and σ2

i denote the fourth central moment and the
variance of ãi, b̃i and c̃i.

The lemma yields a lower bound for s2n,

s2n :=

n∑
i=1

E
[
t̃2i
]

=
1

n2

n∑
i=1

E
[(

ũSEi − SEi

)2
]

=
1

n2

n∑
i=1

Var
[
ũSEi

]
≥ 2µ

[4]
i + 2σ4

n
. (29)

The following lemma controls the numerator in the Lya-
punov condition, and also shows that the third moment of t̃i
is bounded.
Lemma E.5 (Proof in Section E.5.5). Under the assump-
tions of Theorem 4.4, there exists a numerical positive con-
stant D such that

n∑
i=1

E
[∣∣t̃i∣∣3] ≤ Dη

n2
. (30)

Combining equation 29 and Lemma E.5, we obtain

∑n
i=1 E

[∣∣t̃i∣∣3]
s3n

≤ Dη

(2µ
[4]
i + 2σ4)1.5

√
n
, (31)

which converges to zero as n → ∞. The Lyapunov condi-
tion therefore holds and the proof is complete.

E.5. Proof of auxiliary results

E.5.1. NOTATION

To alleviate notation in our proofs, we define the denoising
error erri := f(y)i − xi and the centered random vari-
ables C(ãi) := ãi − xi, C(b̃i) := b̃i − xi and C(c̃i) :=
c̃i − xi, which are independent, have zero mean and satisfy
Var [ãi] = E

[
ã2i
]
= Var[b̃i] = E[b̃2i ] = Var [c̃i] = E

[
c̃2i
]
.

E.5.2. PROOF OF LEMMA E.1

By linearity of expectation and the fact that the variance
of independent random variables equals the sum of their
variances,

E
[
ũSEi

]
= E

[
(ãi − f(y)i)

2 − (b̃i − c̃i)
2

2

]

= E
[
(C(ãi)− erri))

2
]
−

E
[
(C(b̃i)− C(c̃i))

2
]

2

= E
[
C(ãi)

2
]
− 2erriE [C(ãi)] + SEi

−
Var

[
C(b̃i)− C(c̃i)

]
2

= Var [ãi] + SEi

− Var[C(b̃i)] + Var [C(c̃i)]

2

= Var [ãi] + SEi −
Var[b̃i] + Var [c̃i]

2
= SEi. (32)

E.5.3. PROOF OF LEMMA E.2

By linearity of expectation, the fact that the variance of inde-
pendent random variables equals the sum of their variances
and the fact that the mean square is an upper bound on the
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variance,

Var
[
ũSEi

]
= Var

[
(ãi − f(y)i)

2
]
+

Var
[
(b̃i − c̃i)

2
]

4

≤ E
[
(ãi − f(y)i)

4
]
+

E
[
(b̃i − c̃i)

4
]

4

= E
[
(C(ãi)− erri)

4
]
+

E
[(

C(b̃i)− C(c̃i)
)4

]
4

≤ E
[
C(ãi)

4
]
+ 4E

[
C(ãi)

3
]
|erri|

+ 6E
[
C(ãi)

2
]
err2i + err4i

+
E
[
C(b̃i)

4
]
+ 6E

[
C(b̃i)

2
]
E
[
C(c̃i)

2
]
+
[
C(c̃i)

4
]

4
≤ 14α, (33)

where we have also used the fact that µ2
2 ≤ µ

[4]
i by Jensen’s

inequality, which implies

E
[
C(ãi)

2
]
SEi ≤

√
µ
[4]
i γ4 ≤ α, (34)

E
[
C(b̃i)

2
]
E
[
C(c̃i)

2
]
≤ µ

[4]
i ≤ α. (35)

E.5.4. PROOF OF LEMMA E.4

The variance of independent random variables equals the
sum of their variances, so

Var
[
ũSEi

]
= Var

[
(ãi − f(y)i)

2
]
+

Var
[
(b̃i − c̃i)

2
]

4

≥
Var

[
(b̃i − c̃i)

2
]

4
. (36)

and since the mean of b̃i − c̃i is zero,

E
[
(b̃i − c̃i)

2
]
= Var[b̃i − c̃i]

= Var[b̃i] + Var[c̃i]

= 2σ2
i . (37)

By the definition of variance and linearity of expectation,

Var
[
(b̃i − c̃i)

2
]
= E

[
(b̃i − c̃i)

4
]
− E

[
(b̃i − c̃i)

2
]2

= E
[(

C(b̃i)− C(c̃i)
)4

]
− 4σ4

i

= E
[
C(b̃i)

4
]
+ E

[
C(c̃i)

4
]
+ 6E

[
C(b̃i)

2C(c̃i)
2
]
− 4σ4

i

= 2µ
[4]
i + 2σ4

i . (38)

E.5.5. PROOF OF LEMMA E.5

By linearity of expectation,

E
[∣∣∣ũSEi − SEi

∣∣∣3]

= E

∣∣∣∣∣(ãi − f(y)i)
2 − (b̃i − c̃i)

2

2
− err2i

∣∣∣∣∣
3


= E

∣∣∣∣∣(C(ãi)− erri)
2 − (C(b̃i)− C(c̃i))

2

2
− err2i

∣∣∣∣∣
3


≤ E
[
(C(ãi)− erri)

6
]
+

1

8
E
[
(C(b̃i)− C(c̃i))

6
]
+ err6i

+
3

2
E
[
(C(ãi)− erri)

4
]
E
[
(C(b̃i)− C(c̃i))

2
]

+
3

4
E
[
(C(ãi)− erri)

2
]
E
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4
]

+ 3E
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(C(ãi)− erri)

4
]
err2i

+ 3E
[
(C(ãi)− erri)

2
]
err4i

+
3

4
E
[
(C(b̃i)− C(c̃i))

4
]
err2i

+
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2
E
[
(C(b̃i)− C(c̃i))

2
]
err4i

+ 3E
[
(C(ãi)− erri)

2
]
E
[
(C(b̃i)− C(c̃i))

2
]
err2i

≤ Dη. (39)

The final bound in equation 39 is obtained by bounding each
term in the sum using the assumption that the maximum
entrywise denoising error and the central moments of ãi, b̃i
and c̃i are bounded. For example,

E
[
(C(ãi)− erri)

6
]
=

E
[
C(ãi)

6
]
+ err6i + 6E

[
C(ãi)

5
]
erri + 15E

[
C(ãi)

4
]
err2i

+ 15E
[
C(ãi)

2
]
err4i + 20E

[
C(ãi)

3
]
err3i . (40)

Finally, by linearity of expectation we have
n∑

i=1

E
[∣∣t̃i∣∣3] =

1

n3

n∑
i=1

E
[∣∣∣ũSEi − SEi

∣∣∣3]
≤ Dη

n2
. (41)

F. Additional Results
This section contains additional results, which are not in-
cluded in the main paper due to space constraints. They
include:

• Table 3 shows a controlled comparison of MSE and
uMSE on clean ground-truth images, and noisy frames
for both natural images with additive Gaussian noise
and TEM images with Poisson noise.
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• Table 4 shows a comparison between averaging-based
MSE and uMSE on RAW videos with real noise de-
scribed in Sections 6 and H.

• Figure 11 Shows the estimates of uMSE evaluated on
TEM data for two denoisers, described in Section 7.

• Figure 12 Shows that uMSE provides a consistent
ordering of images that are easier/harder to denoise,
across different denoisers.

• Figure 13 shows the empirical correlation of neighbor-
ing pixels in the TEM data, necessitating subsampling
in order to evaluate the uMSE and uPSNR.
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Figure 11. uMSE for real-world electron-microscopy data. The
figure shows the histograms of the uMSE (computed from a single
noisy image via spatial subsampling) of two denoisers (Neigh-
bor2Neighbor CNN and Gaussian smoothing) on the two test sets
described in Section 7. The uMSE discriminates between the dif-
ferent methods and test sets, in a way that is consistent with the
visual appearance of the denoised images.

G. Description of Controlled Experiments
In this section, we describe the architectures and training
procedure for models used in Section 5. For our experi-
ments with natural images, we use the pre-trained weights
released in (Zhang et al., 2017a) and (Mohan et al., 2020).
All models are trained on 180 × 180 natural images from
the Berkeley Segmentation Dataset (Martin et al., 2001)
synthetically corrupted with Gaussian noise with standard
deviation uniformly sampled between 0 and 100. The train-
ing set contains 400 images and is augmented via down-
sampling, random flips, and random rotations of patches in
these images (Zhang et al., 2017a; Mohan et al., 2020). We
use the standard test set containing 68 images for evaluation.
We describe each of the models we use in detail below.

1. Bilateral filter OpenCV implementation for the Bi-
lateral filter with a filter diameter of 15 pixels and
σvalue = σspace = 1.

2. DnCNN. DnCNN (Zhang et al., 2017a) consists of 20
convolutional layers, each consisting of 3 × 3 filters
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SE

 (C
NN

)
Figure 12. uMSE produces consistent image-level evaluations
across different denoisers. We compare the uMSE estimate per
image for both the Neighbor2Neighbor CNN and the Gaussian
smoothing denoisers on the low SNR data (green and red his-
tograms in Figure 11). While the ranges are different for each
denoiser (the CNN denoises more effectively), the uMSE values
are highly correlated, indicating that uMSE provides a consistent
evaluation of the individual images.

0 1 2 3 4
j

10 3

10 2

10 1

100

Co
rr(

p i
,p

j)

Figure 13. Empirical correlation of adjacent pixels in electron-
microscopy data. The graph shows the correlation coefficient
between a pixel and a pixel that is j pixels away for different values
of j. The correlation coefficient is computed after subtracting
a mean computed via averaging across frames. The correlation
between adjacent pixels is particularly high, so spatial subsampling
by a factor of two substantially reduces the pixel-wise correlation.
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Table 3. Controlled comparison of MSE and uMSE. The table shows the MSE computed from clean ground-truth images, compared to
two versions of the proposed estimator: one using noisy references corresponding to the same clean image (uMSE), and another using
a single noisy image combined with spatial subsampling (uMSEs). The metrics are compared on the datasets and denoising methods
described in Section G
.

Natural images (Gaussian noise) ·10−3

σ = 25 σ = 50 σ = 75 σ = 100

Method MSE uMSE uMSES MSE uMSE uMSES MSE uMSE uMSES MSE uMSE uMSES

Bilateral 4.38 4.4 2.64 6.88 6.87 5.26 12.3 12.3 11.1 23.5 23.2 22.5
DenseNet 2.58 2.59 2.11 4.70 4.65 2.81 6.23 6.16 4.02 7.44 7.44 5.00
DnCNN 2.85 2.84 1.81 4.72 4.71 2.85 6.21 6.24 3.96 7.48 7.60 5.05
UNet 2.76 2.77 1.91 4.78 4.76 2.84 6.32 6.22 3.89 7.47 7.68 5.05

Electron microscopy (Poisson noise) ·10−3

Bilateral BlindSpot DnCNN UNet

MSE uMSE uMSES MSE uMSE uMSES MSE uMSE uMSES MSE uMSE uMSES

9.57 9.55 9.54 3.97 4.00 3.96 3.00 3.03 2.94 4.18 4.10 4.12

Table 4. Comparison of averaging-based MSE and uMSE on RAW videos with real noise. The proposed uMSE metric, computed
using three noisy references, is very similar to an averaging-based PSNR estimate computed from 10 noisy references. The metrics are
compared on the datasets and denoising methods described in Section H. All numbers in the table are scaled by ·10−4

Image (Wavelet) Image (CNN) Video (Temp. Avg) Video (CNN)

ISO MSEavg uMSE MSEavg uMSE MSEavg uMSE MSEavg uMSE

1600 1.795 1.69 0.284 0.183 5.317 5.282 0.234 0.131
3200 2.887 2.866 0.379 0.336 8.151 8.134 0.267 0.217
6400 5.792 5.702 0.686 0.624 10.503 10.573 0.433 0.361
12800 15.205 15.11 1.22 1.31 19.967 19.871 0.741 0.78
25600 23.194 22.549 1.63 1.737 21.277 21.1 1.052 1.079

Mean 9.775 9.583 0.84 0.838 13.043 12.992 0.545 0.514
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and 64 channels, batch normalization (Ioffe & Szegedy,
2015), and a ReLU nonlinearity. It has a skip connec-
tion from the initial layer to the final layer, which has
no nonlinear units. We use the pre-trained weights
released by the authors.

3. UNet. Our UNet model (Ronneberger et al., 2015) has
the following layers:

(a) conv1 - Takes in input image and maps to 32 chan-
nels with 5× 5 convolutional kernels.

(b) conv2 - Input: 32 channels. Output: 32 channels.
3× 3 convolutional kernels.

(c) conv3 - Input: 32 channels. Output: 64 channels.
3× 3 convolutional kernels with stride 2.

(d) conv4- Input: 64 channels. Output: 64 channels.
3× 3 convolutional kernels.

(e) conv5- Input: 64 channels. Output: 64 channels.
3× 3 convolutional kernels with dilation factor of
2.

(f) conv6- Input: 64 channels. Output: 64 channels.
3× 3 convolutional kernels with dilation factor of
4.

(g) conv7- Transpose Convolution layer. Input: 64
channels. Output: 64 channels. 4× 4 filters with
stride 2.

(h) conv8- Input: 96 channels. Output: 64 channels.
3×3 convolutional kernels. The input to this layer
is the concatenation of the outputs of layer conv7
and conv2.

(i) conv9- Input: 32 channels. Output: 1 channels.
5× 5 convolutional kernels.

We use pre-trained weights released by the authors of
(Mohan et al., 2020).

4. DenseNet The simplified version of the DenseNet ar-
chitecture (Huang et al., 2017) has 4 blocks in total.
Each block is a fully convolutional 5-layer CNN with
3 × 3 filters and 64 channels in the intermediate lay-
ers with ReLU nonlinearity. The first three blocks
have an output layer with 64 channels, while the last
block has an output layer with only one channel. The
output of the ith block is concatenated with the input
noisy image and then fed to the (i + 1)th block, so
the last three blocks have 65 input channels. We use
pre-trained weights released by the authors of (Mohan
et al., 2020).

5. Noise2Noise Introduced in (Lehtinen et al., 2018), this
method proposes training a denoiser by using pairs of
independent noisy realizations of the same image as
input and target of a CNN. We apply this method using
the UNet architecture described above (3).

6. Noise2Self This method introduced in (Batson &
Royer, 2019b) proposes unsupervised denoisers by
masking a grid of pixels in the original image and
replacing their value by the average if its four neigh-
bouring pixels. The loss function is the MSE between
the denoised output and the original noisy image, only
taking into account the masked positions. We apply this
method using the UNet architecture described above
(3).

7. Neighbor2Neighbor Based on Noise2Noise, (Huang
et al., 2021) introduces an approach that obtains image
pairs by randomly down-sampling single images. This
is done ensuring that pixels located in the same posi-
tion in the sub-samplings are direct neighbors in the
original image. We apply this method using the UNet
architecture described above (3).

8. BlindSpot We use a BlindSpot UNet architecture from
(Sheth et al., 2021) with the following layers:

(a) conv1 - Takes in input image and maps to 48 chan-
nels with 9 × 9 convolutional kernel with 90◦

rotation symmetry and the central pixel blinded.
(b) conv2-6 - Input: 48 channels. Output: 48 chan-

nels. 9 × 9 convolutional kernels with 90◦ rota-
tion symmetry and the central pixel blinded, with
stride 2.

(c) conv7-11 - Input: 96 channels. Output: 48 chan-
nels. 9×9 convolutional kernels with 90◦ rotation
symmetry and the central pixel blinded, with dila-
tion factor of 2.

(d) conv12- Input: 96 channels. Output: 1 channel.
9× 9 convolutional kernel with 90◦ rotation sym-
metry and the central pixel blinded.

For our experiments with electron microscopy data, we
use the simulated dataset of Pt nanoparticles introduced
in (Mohan et al., 2022). Specifically, we used a subset of
5,583 images corresponding to white contrast (the simu-
lated dataset is divided into white, black and intermediate
contrast by a domain expert, see (Mohan et al., 2022) for
more details). 90% of the data were used for training. The
remaining 559 images were evenly split into validation and
test sets. The UNet architecture used in these experiments
is the one introduced in (Mohan et al., 2022) with 4 scales
and 32 base channels. In addition to bilateral filter, UNet,
and DnCNN models described for natural images, we used
a blindspot based network. BlindSpot (Laine et al., 2019)
is a CNN which is constrained to predict the intensity of a
pixel as a function of the noisy pixels in its neighbourhood,
without using the pixel itself. Following (Laine et al., 2019;
Sheth et al., 2021), we use a UNet architecture as the model
backbone.
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H. Description of Experiments with Videos in
RAW Format

As explained in Section 6, the dataset contains 11 unique
videos, each containing 7 frames, captured at five different
ISO levels using a surveillance camera. Each video has 10
different noise realizations per frame, which are averaged
to obtain an estimated clean version of the video. Following
(Sheth et al., 2021), we perform evaluation on five videos
from the test test.

The methods we use:

1. Image Denoiser (Wavelet). We use Daubechies
wavelet to perform denoising, which is the default
choice in skimage.restoration, a widely used image
restoration package. We implement denoising using
the function denoise wavelet() from the package using
the default options. We set sigma=0.01.

2. Image Denoiser (CNN). We perform image denoising
by re-purposing the video denoiser (UDVD) trained for
RAW videos in Ref. (Sheth et al., 2021). UDVD takes
in five consecutive frames, and output the denoised
image corresponding to the frame in the middle. To
simulate image denoising using UDVD, we repeat the
same frame 5 times (i.e, all frames are the same image),
and provide it as input to the trained network.

3. Video Denoiser (Temp. Avg.). We use 5 consecutive
frames to compute the denosied image corresponding
to the middle frame. We assign a weight of 0.75 to the
middle noisy frame, 0.1 to each of the previous and
next frame, and 0.025 to the rest of the two frames.

4. Video Denoiser (CNN). We use the unsupervised
video denoiser (UDVD) trained for RAW videos in
Ref. (Sheth et al., 2021). As explained, UDVD takes in
five consecutive frames, and output the denoised image
corresponding to the frame in the middle. We use the
pre-trained weights, and follow the experimental setup
described in Ref. (Sheth et al., 2021).

We use the pre-trained weights released by the authors of
(Sheth et al., 2021) as our image and video denoiser. These
weights are obtained by training UDVD on the first 9 real-
izations of the 5 videos from the test set of the raw video
dataset, holding out the last realization for early stopping
(see (Sheth et al., 2021) for more details).

I. Description of Experiments on Electron
Microscopy Data

Data acquisition: The dataset contains TEM images of
Pt nanoparticles on a CeO2 substrate. An electron beam
interacts with the sample, and then its intensity is recorded

on an imaging plane by the detector. The pixel intensity
approximately follows a Poisson distribution with parameter
equal to the intensity of the electron beam.

The data were recorded at room temperature at a pressure of
∼ 10−6 Torr. The electron beam intensity was 600e/Å

2
/s.

The instances are part of 25 videos, taken at a frame rate
of 75 frames per second. The instances show Pt particles
in the size range 1 - 5 nm. In a subset of frame series, the
particles become unstable and undergo structural dynamic
re-arrangements. The periods of instability are punctuated
by periods of relative stability. Consequently, the nanopar-
ticles show a variety of different sizes and shapes and are
also viewed along many different crystallographic direc-
tions. Data were collected using a FEI Titan ETEM in
EFTEM mode, Gatan Tantalum hot stage, K3 camera in
CDS counting mode.

Pixel-wise correlation: Our proposed unsupervised metrics
rely on the assumption that the noise is pixel-wise indepen-
dence. This is not the case for this dataset, as shown in Fig-
ure 13.We address this by performing spatial subsampling
by a factor of two, which reduces the pixel-wise correla-
tion by an order of magnitude. After this, some frames still
present relatively high pixel-wise correlations. We therefore
select the test sets from two sets of contiguous frames with
low correlation.

Training and test sets: The data were divided into three
sets: training & validation set, consisting of 70% of the data,
and two contiguous test sets with pixel-wise correlation:
one containing 155 images with moderate signal-to-noise
ratio (SNR), and one containing 383 images with low SNR,
which are more challenging. The moderate SNR test set
is interspersed with the training and validation sets, and
contains frames similar to those used to train the network.
The low SNR test set contains frames which are temporally
separated from the training and validation sets, and contains
nanoparticle with different structures.

Denoisers We compare the performance of four denois-
ers: (1) a convolutional neural network based on Neigh-
bor2Neighbor with a UNet architecture as in (Huang
et al., 2021); (2) a convolutional neural network based
on Noise2Self with a UNet architecture as in (Batson &
Royer, 2019b); (3) a convolutional neural network based on
BlindSpot with a single-frame same architecture based on
(Sheth et al., 2021); (2) Gaussian smoothing with standard
deviation σ = 25.

CNN training parameters The Neighbor2Neighbor and
Noise2Self CNNs were based on a basic UNet archi-
tecture with 5 double convolution hidden layers of size
[64, 128, 256, 512, 1024] and were trained using the sub-
sampling and masking functions provided in (Huang et al.,
2021; Batson & Royer, 2019b) respectively. They were
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trained for 1000 epochs using an Adam optimizer with an
initial learning rate of 0.001, and scheduled reduction of the
learning rate every 100 epochs. The networks have a total
of 17,261,824 parameters.

The BlindSpot model uses a BlindUNet (Sheth et al., 2021)
architecture with 5 convolutional hidden layers and 48 chan-
nels. It was trained for 1000 epochs using an Adam opti-
mizer with an initial learning rate of 0.001, and scheduled
reduction of the learning rate every 100 epochs. The net-
work has a total of 1,263,984 parameters.
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