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Abstract

Diffusion models are a class of generative models
that learn to synthesize samples by inverting a
diffusion process that gradually maps data into
noise. While these models have enjoyed great
success recently, a full theoretical understanding
of their observed properties is still lacking, in
particular, their weak sensitivity to the choice of
noise family and the role of adequate scheduling
of noise levels for good synthesis. By identify-
ing a correspondence between diffusion models
and a well-known paradigm in cognitive science
known as serial reproduction, whereby human
agents iteratively observe and reproduce stimuli
from memory, we show how the aforementioned
properties of diffusion models can be explained
as a natural consequence of this correspondence.
We then complement our theoretical analysis with
simulations that exhibit these key features. Our
work highlights how classic paradigms in cog-
nitive science can shed light on state-of-the-art
machine learning problems.

1. Introduction

Diffusion models are a class of deep generative models that
have enjoyed great success recently in the context of im-
age generation (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song & Ermon, 2019; Rombach et al., 2022; Ramesh et al.,
2022), with some particularly impressive text-to-image ap-
plications such as DALL-E 2 (Ramesh et al., 2022) and
Stable Diffusion (Rombach et al., 2022). The idea behind
diffusion models is to learn a data distribution by training a
model to invert a diffusion process that gradually destroys
data by adding noise (Sohl-Dickstein et al., 2015). Given
the trained model, sampling is then done using a sequential
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procedure whereby an input signal (e.g., a noisy image) is it-
eratively denoised at different noise levels which, in turn, are
successively made finer until a sharp sample is generated.
Initially, the noise family was restricted to the Gaussian
class (Sohl-Dickstein et al., 2015; Song & Ermon, 2019;
Ho et al., 2020) and the process was understood as a form
of Langevin dynamics (Song & Ermon, 2019). However,
recent work showed that this assumption can be relaxed
substantially (Bansal et al., 2022; Daras et al., 2022) by
training diffusion models with a wide array of degradation
families. One feature of this work is that it highlights the
idea that sampling (i.e. synthesis) can be thought of more
generally as an alternating process between degradation and
restoration operators (Bansal et al., 2022). This in turn calls
into question the theoretical understanding of these models
and necessitates new approaches.

A hint at a strategy for understanding diffusion models
comes from noting that the structure of the sampling pro-
cedure in these generalized models (i.e., as a cascade of
noising-denoising units), as well as its robustness to the
choice of noise model, bears striking resemblance to a clas-
sic paradigm in cognitive science known as serial repro-
duction (Bartlett & Bartlett, 1995; Xu & Griffiths, 2010;
Jacoby & McDermott, 2017; Langlois et al., 2021). In a
serial reproduction task, participants observe a certain stim-
ulus, e.g., a drawing or a piece of text, and then are asked to
reproduce it from memory (Figure 1A). The reproduction
then gets passed on to a new participant who in turn repeats
the process and so on. The idea is that as people repeatedly
observe (i.e., encode) a stimulus and then reproduce (i.e., de-
code) it from memory, their internal biases build up so that
the asymptotic dynamics of this process end up revealing
their inductive biases (or prior beliefs) with regard to that
stimulus domain. By modeling this process using Bayesian
agents, Xu & Griffiths (2010) showed that the process can
be interpreted as a Gibbs sampler, and more so, that the
stationary behavior of this process is in fact independent
of the nature of cognitive noise involved, making serial re-
production a particularly attractive tool for studying human
priors (Figure 1B).

The main contribution of the present paper is to make the
correspondence between diffusion and serial reproduction
precise and show how the observed properties of diffusion
models, namely, their robustness to the choice of noise fam-
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ily, and the role of adequate noise level scheduling for good
sampling, jointly arise as a natural consequence. Moreover,
by analyzing in what precise ways these properties could
break in practice we derive a new measure, which we term
‘inversion complexity’, that quantifies the smoothness of
noise schedules, and we show empirically how it can track
reconstruction error across different noise schedules. The
paper proceeds as follows. In Section 2 we review the math-
ematical formulation of serial reproduction and diffusion
models and set the ground for the analysis that follows. In
Section 3, we establish a correspondence between sampling
in diffusion models and serial reproduction and show how
it explains key properties of these models. In Section 4 we
complement our theoretical analysis with simulations, and
then conclude with a discussion in Section 5.

2. Background
2.1. Serial Reproduction

We begin with a brief exposition of the mathematical formu-
lation of the serial reproduction paradigm (Xu & Griffiths,
2010; Jacoby & McDermott, 2017). A serial reproduction
process is a Markov chain over a sequence of stimuli (im-
ages, sounds, text, etc.) xo — T3 — -+ — Ty —> ...
where the dynamics are specified by the encoding-decoding
cascade of a Bayesian agent with some prior 7(z) and a
likelihood model p(Z|x). The prior captures the previous ex-
periences of the agent with the domain (i.e., their inductive
bias), and the likelihood specifies how input stimuli z map
into noisy percepts & (e.g., due to perceptual, production
or cognitive noise). Specifically, given an input stimulus
x, the agent encodes x; as a noisy percept Z;, and then at
reproduction decodes it into a new stimulus x4y by sam-
pling from the Bayesian posterior (a phenomenon known as
probability matching) (Griffiths & Kalish, 2007),
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The generated stimulus z;4; is then passed on to a new
Bayesian agent with similar prior and likelihood who in turn
repeats the process and so on. From here, we see that the
transition kernel of the process can be derived by integrating
over all the intermediate noise values against the posterior
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Crucially, by noting that Z;; is a dummy integration vari-
able we see that the prior () satisfies the detailed-balance
condition with respect to this kernel (see Appendix A)

p(xipilze)m(xe) = p(e]zeq1)m(Te41)- (3)

This in turn implies that the prior 7r(x) is the stationary dis-
tribution of the serial reproduction process irrespective of
the noise model p(&|x), so long as it allows for finite tran-
sition probabilities between any pair of stimuli to preserve
ergodicity (Xu & Griffiths, 2010; Griffiths & Kalish, 2007).
This insensitivity to noise is what makes serial reproduction
a particularly attractive tool for studying inductive biases in
humans (Figure 1B). It is also worth noting that another way
to derive these results is by observing that the full process
over stimulus-percept pairs (x, Z) whereby one alternates
between samples from the likelihood p(Z|z) and samples
from the posterior p(x|#) implements a Gibbs sampler from
the joint distribution p(z, &) = p(Z|x)7(x).

2.2. Diffusion Models

We next review the basics of diffusion models and set the
ground for the analysis in the next section. Following
Sohl-Dickstein et al. (2015) and Ho et al. (2020), a dif-
fusion model is a generative model that learns to sample
data out of noise by inverting some specified forward pro-
cess q(xg, . ..,xr) that gradually maps data xg ~ qq(zo)
to noise x7 ~ ¢, (z7), where gq4(x) and g, (xr) are given
data and noise distributions, respectively. Such forward
process can be implemented as a Markov chain

T
q(xo, - wr) = qa(wo) [ [ alwilzin) @
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with some pre-specified transition probabilities

q(ze|xi—1) = Ty, (ze]ae—1;8;) where Ty, is a noise
(diffusion) kernel and (3; being some diffusion parameter
for which the noise distribution ¢, is stationary, i.e.,
J Tq, (ylx)gn(z)dz = g¢n(y). This ensures that for a
sufficiently large time ¢ = 1" we are guaranteed to transform

g4(x) into gy, ().

A common explicit example of this is a Gaussian kernel
Ty, (@|zi—1; Be) = N(2e;v/1 — Brw—1, Bi]) where I is
the identity matrix (Ho et al., 2020), however we will not
assume that. The inversion is then done by solving a vari-
ational problem with respect to a trainable reverse process
po(xo, . .., xr) which itself is assumed to be Markov

po(zo,s. .., T o(Te—1]x¢) 5)
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where p(z7) = ¢, (z7), that is, the reverse process starts
from noise and iteratively builds its way back to data. Since
we are interested in the optimal structure of py we will
suppress 6 in what follows. The reverse process induces a
probability distribution over data p(z() by marginalizing
Equation (5) over all ;- (. The variational objective is then
given by a bound K on the log-likelhood of the data under
the reverse process L = — [ gq(z0) log p(zo)dzo and can
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Figure 1. Serial reproduction paradigm. A. Participants observe (encode) a stimulus and then try to reproduce (decode) it from memory. As
the process unfolds, the generated samples gradually change until they become consistent with people’s priors. Drawings are reproduced
from (Bartlett & Bartlett, 1995). B. Data from a real serial reproduction task reproduced from (Langlois et al., 2021). Participants
observed a red dot placed on a background image (here a triangle) and were instructed to reproduce the location of that dot from memory.
The new dot location then gets passed to a new participant who in turn repeats the task. The initial uniform distribution gets transformed
into a highly concentrated distribution around the triangle’s corners, capturing people’s visual priors.

be written as (Sohl-Dickstein et al., 2015)

T
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where H, is the entropy of the noise distribution g,, which
is a constant. Finally, by defining the forward posterior

q(zi|ri—1)q(T4-1)
J a(@e]®—1)q(Z—1)dTs
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where ¢(x;—1) and g(x) are the marginals of the forward

process (Equation (4)) at steps ¢ — 1 and ¢, respectively, we
can rewrite K as (see Appendix B)
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where D, is the Kullback-Leibler divergence and Cj is
a constant. While Equation (8) is not necessarily the most
tractable form of the bound K, it will prove useful in the
next section when we make the connection to serial repro-
duction (see Appendix A, Egs. 17-26 in Ho et al. (2020) for
a similar derivation).

Before proceeding to the next section, it is worth pausing for
a moment to review the existing theoretical interpretations
of diffusion models and the challenges they face. Two gen-
eral formulations of diffusion models exist in the literature,
namely, Denoising Diffusion Probabilistic Models (DDPMs)
(Ho et al., 2020; Sohl-Dickstein et al., 2015) which adopt a
formulation similar to the one used here, and Score-Based
Models (Song & Ermon, 2019; Daras et al., 2022) which
learn to approximate the gradient of the log-likelihood of the
data distribution under different degradations, also known as
the score of a distribution, and then incorporate that gradient
in a stochastic process that samples from the data distribu-
tion. These formulations are not entirely independent and in
fact have been shown to arise from a certain class of stochas-
tic differential equations (Song et al., 2020). Importantly,
these analyses often assume that the structure of noise is
Gaussian, either to allow for tractable expressions for vari-
ational loss functions (Sohl-Dickstein et al., 2015), or as
a way to link sampling to well-known processes such as
Langevin dynamics (Song & Ermon, 2019). This theoretical
reliance on Gaussian noise has been recently called into
question as successful applications of diffusion models with
a wide variety of noise classes were demonstrated empiri-
cally (Bansal et al., 2022; Daras et al., 2022). We seek to
remedy this issue in the next section.
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3. Diffusion Sampling as Serial Reproduction
3.1. Mathematical Derivation

As noted in the introduction, the sampling procedure for
diffusion models is strikingly similar to the process of serial
reproduction. In what follows we will make this statement
more precise and show how it allows to explain key features
of diffusion models. First, observe that the non-negativity
of the KL divergence implies that the bound in Equation (8)
is maximized by the solution

q(¢]zi—1)g(z-1)

Ja(@i|Zi-1)q(@—1)dTr

©))
In other words, what the diffusion model is approximating
at each step t — 1 is simply a Bayesian posterior with the
diffusion kernel g(z|x¢—1) = Ty, (z¢]xe—1; i) serving as
likelihood and the forward marginal at step ¢ — 1, namely
g(xi—1), serving as a prior. For clarity, in what follows we
will denote the optimal posterior distribution at step ¢ — 1
(Equation (9)) as p;—1(x|y) and the marginal at step ¢ — 1
as qi—1(x).

plri—1lre) = q(ze1|ze) =

Next, to make contact with the recent literature that extends
diffusion models to generalized noise families which de-
compose sampling into a process that alternates between
restoration and degradation (Bansal et al., 2022; Daras et al.,
2022) we define the sampling process for a diffusion model
as a Markov sequence x7 — I — Tp—_1 — -+ —> Ty —
Ty — x4-1 — -+ — xo, where xp ~ ¢, (x7), Tt is a
noisy version of x, under the noise kernel Ty, (Z¢|x; B¢),
and the transition £; — x;_; is done by denoising using
the posterior p;—1. While this might seem at first to be at
odds with the standard definition of sampling in Gaussian
DDPMs whereby sampling is done by iterative applications
of the posterior in Equation (9), we will show in Section
3.2 that our definition is in fact equivalent. From here, the
transition kernel for the sampling process at step t — 1 which
we denote by pg 1 (z:—1|z¢) is given by

Ps,t—1 xt 1|90t) =/pt 1(1‘t 1|9€t) q”(mt‘xtaﬁt)dxt
/ Ty, (Ztlze—1; Be) Ty, (¢]2e; Be)
I T,

iL’t\It 1,50% 1(17t 1)dIt 1

qi—1(ze—1)dZy.
(10)

This kernel has an identical structure to the serial repro-
duction kernel in Equation (2), and as such, the forward
marginal ¢, satisfies detailed balance with respect to it.
In other words, we have a set of detailed-balance conditions
given by

= Ps,t—l(l’t—l |l”t>Qt—1($t)-
(11)

In particular, the last of these p ¢ satisfies this condition for

the true data distribution since by definition go(x) = qq4(z).

Ps,t—1 (It |It—1)Qt—1 (l’t—l)

Now, observe that unlike the case in serial reproduction
where we had a single distribution 7 (z) satisfying detailed
balance at all steps, here we have a sequence of such dis-
tributions. Nevertheless, we can still analyze the induced
sampling distribution p4 () in light of Equation (11). In-
deed, by substituting the detailed-balance conditions we
have

ps(0) = /ps,0($0|9€1) oo Dsr—1(xr—1|zr)gn (r)dT T

= Qd(xo)/ps7o(x1\m0)ql(x1) X e X

dn (xT)

dx .
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From here we see that the performance of ps(xg) as a good
approximator of the true data distribution g4 (z¢) critically
depends on whether the integral on the right-hand-side of
Equation (12) sums up to one. Observe that the integral can
be evaluated step-by-step by first integrating over xr, then
x7_1 and down to x1. For the x7 integral we have

(2
/Ps,Tf1($T|fo1)MdCUT =

QT—1(JUT)
/ T(Z|xr—1; Br)
qr(%)

(13)
/T(f\xT;ﬁT)qn(xT)dedﬁ;.

Now, using the fact that ¢, is stationary with respect to
Ty, and that by construction g (z) = g, (z), the rightmost
intergral and the denominator cancel out and the remaining
integral over z integrates to 1. Going one step further to the
integral over zp_; (and its own latent Z) we have

qr—1(xr—
/ p&pz(w,ﬂm)w
QT—Q(xT—l)

Unlike before, we are no longer guaranteed stationarity for
gr—1- One trivial solution for this is to use a very strong
(abrupt) diffusion schedule {;} such that the marginals be-
have like g9 = g4 and g;~o = gn, that is, within one step we
are pretty much at noise level. From the perspective of the
Bayesian posterior in Equation (9), this limit corresponds
to the case where the Bayesian inversion simply ignores
the very noisy input and instead relies on its learned prior
which happens to be the data distribution for pg. Such a
solution, however, is not really feasible in practice because
it means that the denoising network that approximates the
final Bayesian posterior pg must learn to map pure noise
to true data samples in one step, but this is precisely the
problem that we are trying to solve. We therefore exclude
this solution.
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B. Reverse process: generation

E. Robustness to noise type: generation with a different stationary distribution
X4

Xz X3 X4 Xs Xs X7 Xs
ORI g I gigs

A(X¢|X¢-1)

X2 X3 X4 x5 x6

Ps(X¢-1]X¢)

X, Xg X3 X4 X5 Xs x7

C. Robustness to noise type: generation with different noise - bimodal

Xg X3 X4 X5 x6 x7

D. Robustness to noise type: generation with different noise - fade

X4 X3 X3 X4 X5 Xe X7 Xs

Figure 2. Simulation results for the optimal sampling process. Data was generated by sampling two dimensional vectors from a Swiss-roll
distribution. We considered different diffusion noise families and computed their corresponding reverse sampling processes. Each image
corresponds to the distribution of samples at a given iteration in a process. A. Forward process for a Gaussian noise kernel. B. The
corresponding reverse sampling process. C. Reverse sampling process for a bimodal kernel. D. Reverse sampling for a fade-type noise

with uniform stationary distribution. E. Reverse sampling for a fade-type noise with mixture stationary distribution.

Luckily, there is another way around this problem, namely, if
the diffusion parameter S7_1 is chosen such that it changes
qr—1 only by a little so that it is approximately stationary,
that is,

qr-1(%) ~ / drr 1T (&|z7-1; Br-1)97-1(TT-1),
s)
then the integral in Equation (14) will again be close to 1,
as the denominator cancels out with the rightmost integral.
By induction, we can repeat this process for all lower levels
and conclude that

ps(x0) = qa(wo) (16)

Crucially, under this schedule denoising networks only need
to learn to invert between successive levels of noise. This
suggests that the structure of the optimal sampling pro-
cesses allows one to trade a hard abrupt noise schedule

with a feasible smooth one by spreading the reconstruction
complexity along the diffusion path in a divide-and-conquer
fashion. It is worth noting at this point that the fact that the
data distribution ¢,4(x) appears on the right-hand-side of
the formula for the sampling distribution p,(z() in Equa-
tion (12) is suggestive of a bound on the sampling error
Dxr[ga(xo)||ps(zo)] that can incorporate the stationarity
condition in Equation 15. While we are not aware of an ana-
lytical formula for this bound, we will explore it empirically
in Section 4.

3.2. Connecting to a Wider Range of Diffusion Models

Before moving on to the empirical analysis, we complete
our theoretical derivation by showing that our definition of
the sampling process is equivalent to the one used in the
well-studied Gaussian DDPM formalism of Ho et al. (2020).
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Figure 3. Effect of noise schedule on reconstruction error. A. Different noise injection schedules for a Gaussian noise kernel. B.
Reconstruction error as measured by the KL divergence between the generated distribution and the true data distribution. C. A measure of
inversion “complexity” as quantified by the maximum KL divergence between two consecutive marginals along the forward diffusion

path.

As noted in that paper (Section 3.2 of Ho et al. (2020)),
the posterior is taken to be of the form p(z;_i|x;) =
N(zy—1; (g, t), 2wy, t)) with X(z¢,t) = o1, where
(s, t) is a trainable function and I is the identity ma-
trix. This can be also written as x;_1 = p(x¢,t) + o¢2
where z ~ N(0, I). In other words, the posterior is given
by a Gaussian distribution around a function of the input
w(x, t) with some diagonal covariance matrix with variance
o?. Intuitively, equivalence then follows from the fact that
introducing an additional noising step in the sampling pro-
cess is simply adding Gaussian noise to a Gaussian posterior
which corresponds to a redefinition of the mean and vari-
ance parameters (which are design parameters; (Dhariwal
& Nichol, 2021)). More explicitly, our sampling process

is defined as x+ — Zr — x7_1 — .-+ — xq, that is,
we start from an initial sample x7 and then successively
add noise to it and then denoise it with the posterior. Now,
since the initial 7 ~ g, (z7) is sampled from the sta-
tionary noise distribution, adding noise to it (i.e., transi-
tioning to 1) does not change its distribution so we can
equivalently start by denoising xr using the posterior (as
in DDPM) and then adding noise and so on. Mathemati-
cally, this corresponds to applying to the generated poste-
rior sample (i.e., the denoised x7) a generic noisy trans-
formation of the form z — ax + oz’ where 2z’ ~ N (0, 1)
where o and ¢ are some scaling and variance parameters
(similar to Equation 2 in Ho et al. (2020)). Now, when
combined with the Gaussian posterior above this yields
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Figure 4. Reconstruction error of a DDPM trained on various datasets for different noise schedules (as captured by the total number of
steps interpolating between two noise levels in the forward process). A. Performance quantified using FID score. B. Example samples

from different models.

xr_1 = ap(zr,T) + acrz + oz’ which corresponds to
p(xr_1|lzr) = N(zr—_1; au(zr, T), (a?c2 + o2)I), but
this is equivalent to the formula used in Ho et al. (2020)
up to a redefinition of the mean and variance, namely,
pr(zr,T) — au(zr,T) and 0% — o?02 + 2. The
same holds for all subsequent steps which, as in the case of
DDPM, terminate with a final application of the posterior de-
noiser. Thus, we see that the two definitions are equivalent

up to a redefinition of the trainable posterior parameters.

3.3. Summary

We have shown that the sampling process of an optimal
diffusion model approximates the true data distribution irre-
spective of the choice of noise family, so long as the noise
schedule {3;} is chosen such that it alters the input distri-
bution gradually. This result is consistent with recent work
suggesting that a good scheduling heuristic minimizes the
sum of Wasserstein distances between pairs of distributions
along the diffusion path of the forward process (Daras et al.
(2022); see also Dhariwal & Nichol (2021)). It also explains
the necessary thinning in 3; for later stages of the synthe-
sis where the marginal becomes more and more structured.
In the next section, we provide empirical support for this
theoretical analysis.

4. Simulations

To test the theoretical findings of the previous section, we
selected a simulation setup in which the Bayesian posteriors
are tractable and can be computed analytically. Specifically,
similar to Sohl-Dickstein et al. (2015), we considered a case
where the data is given by two-dimensional vectors (z,y) in
the range —0.5 < z,y < 0.5 that are sampled from a Swiss-
roll-like data distribution. For tractability, we discretized
the space into a finite grid of size 41 x 41 (1,681 bins) with
wrapped boundaries (to avoid edge artifacts). We then ana-
lytically computed the forward (noising) distributions using
Equation (4) (Figure 2A) and the reverse sampling distribu-
tions using Equation (10) (Figure 2B) (we did not train any
neural networks). As for the noise families, we considered
multiple options to test whether the process is indeed robust
to noise type. Specifically, we considered Gaussian noise
with a linear variance schedule o, = 0.03 + 0.04 * (¢/T)
(Figure 2A-B), a bimodal noise kernel consisting of a mix-
ture with two modes symmetrically positioned 0.07 units
away from the center resulting in diagonal smearing (Figure
2C), a fade-type noise where there is an increasing proba-
bility p; = 0.01 4 0.99 * (¢/T) to sample from a different
pre-specified distribution, namely, uniform (Figure 2D) and
Gaussian mixture (Figure 2E). T' denotes the total number
of steps as before (See Supplementary Section C for ad-
ditional details about the simulations). As can be clearly
seen, in all of these cases, whether we changed the noise
kernel or the stationary noise distribution, the sampler was
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able to converge on a good approximation for the underly-
ing Swiss-roll distribution (see Supplementary Figure S2
for additional simulations with the posterior-only sampling
scheme and Supplementary Figures S3-S4 for examples of
bad samplers due to inadequate noise schedules).

Next, we wanted to test how the approximation accuracy
of the sampler depends on the graduality of the noise in-
jection in the forward process as captured by the number
of diffusion steps. To that end, we restricted ourselves to
the Gaussian case and considered different noise schedules
by varying the number of steps interpolating between two
fixed levels of variance, that is, oy = 0.01 + 0.04 * (¢/T")
for different values of the number of steps 7" (Figure 3A).
To quantify accuracy, we computed the reconstruction er-
ror as measured by the KL divergence between the gen-
erated data distribution and the true data distribution, i.e.,
D r[qa(xo)||ps(xo)] for each of the chosen schedules (Fig-
ure 3B). We also added a measure of inversion “complex-
ity”” which measures the biggest change between consecu-
tive distributions along the forward diffusion path, that is,
max D [ge+1(x)]|ge(x)]. The idea is that the bigger this
number is the less gradual (more abrupt) the noise injection
is, making the learning of the denoiser harder in practice,
i.e., recovering a clean sample from noisy data (Figure 3C;
see also Figure S1 for an additional stationarity metric). As
predicted, we see that adding more steps results in lower
reconstruction error and lower complexity. In addition, we
also see that beyond a certain number of steps the accuracy
of the sampler saturates, presumably because the forward
process has enough time to reach stationarity and to do that
in a smooth way (see also Figure S5 for another similar
simulation with a different noise type).

Finally, we also performed diffusion experiments with deep
neural networks to validate that this dependence on the
number of steps indeed occurs. Specifically, we trained a
Denoising Diffusion Probabilistic Model (Ho et al., 2020)
to denoise MNIST (LeCun & Cortes, 2005), FMNIST (Xiao
et al., 2017), KMNIST (Clanuwat et al., 2018), and CI-
FARI10 (Krizhevsky et al., 2009) imagesl. For this model,
the noise at step ¢ depends on the diffusion parameter
Bt = Bmin+ (Bmaz — Bmin) xt/T. To investigate the effect
of the noise schedule, we set 5,,;, = 0.0001, Bpqe = 0.02
and retrained the model multiple times with a different num-
ber of total steps each time (I' € [50, 500]). To evaluate
the sample quality from each trained model, we generated
6,000 images using the same number of steps as the model
was trained on, and computed the Fréchet inception distance
(FID; (Heusel et al., 2017)) between each set of generated
images and the training set. Smaller FID values correspond
to better image generation quality. We report the results in

'We used Brian Pulfer’'s PyTorch re-implementation
of DDPM - https://github.com/BrianPulfer/
PapersReimplementations

Figure 4A alongside a sample of the resulting images for
different values of 1" (Figure 4B). We see that similar to
the idealized case, gradual noise schedules with a bigger
number of steps tend to improve sample quality and reach
some saturation level beyond a certain number of steps. We
should note that the number of steps needed for high qual-
ity samples may be reduced by an appropriate choice of a
sampling method, however, the overall dependence on the
number of steps remains the same (see e.g., Tables 1-4 and
Figures 1, A.1-3 of Watson et al. (2021)).

5. Discussion

In this work, we derived a correspondence between diffu-
sion models and an experimental paradigm used in cognitive
science known as serial reproduction, whereby Bayesian
agents iteratively encode and decode stimuli in a fashion
similar to the game of telephone. This was achieved by ana-
lyzing the structure of the underlying optimal inversion that
the model was attempting to approximate and integrating it
in a diffusion sampling process. Crucially, this allowed us
to provide a new theoretical understanding for key features
of diffusion models that challenged previous formulations,
specifically, their robustness to the choice of noise family
and the role of noise scheduling (note also that our frame-
work is relevant for discrete diffusion models (Austin et al.,
2021) as we did not commit to any specific data space z,
and the information theoretic quantities used in the deriva-
tion are well-defined for discrete variables). Our analysis
also identified in what ways these features could break in
practice and yielded a simple practical metric (inversion
complexity) that can help to formalize when a network can
or cannot be trained to perform the inversion, and can lead
to estimates on reconstruction errors. Finally, we validated
our theoretical findings by simulating the optimal process
as well as by training real diffusion models.

We conclude with some remarks regarding promising future
directions. First, in this work we focused on probabilistic dif-
fusion models, as these are the most common. Nevertheless,
a new class of models suggests that it is possible to imple-
ment completely deterministic diffusion processes (Bansal
et al., 2022). A related formulation of serial reproduction
(Griffiths & Kalish, 2007) where the assumption of proba-
bility matching is replaced with deterministic maximum-a-
posteriori (MAP) estimation such that the Gibbs sampling
process becomes an Expectation-Maximization algorithm
(EM) could provide a suitable setup for reinterpreting such
diffusion models. Second, in the present work we assumed
asymptotic stationarity (Sohl-Dickstein et al., 2015) as we
wanted to focus on the simplest theoretical setup that would
allow addressing the question of robustness to noise types.
However, recent work suggests that this assumption too can
be relaxed (Watson et al., 2021); a follow-up study could
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extend our work to include such setups. Third, In the present
work we considered a discrete time formulation of diffu-
sion models to make contact with the widely used DDPM
formalism as well as the core literature on serial reproduc-
tion. However, both diffusion models and serial reproduc-
tion have alternative continuous time formulations (see e.g.,
Thompson & Griffiths (2021); Xu & Griffiths (2010); Song
& Ermon (2019)) which could allow for an analytical per-
turbation analysis of reconstruction error as a function of
stationarity violations in the forward process. Fourth, future
work could use this new perspective as an inspiration for
defining better noise scheduling metrics by directly trading
off intermediate stationarity, convergence rate, and sample
accuracy. Finally, this interpretation also suggests that it
may be possible to come up with multi-threaded sampling
procedures that incorporate multiple serial processes with
different learned ‘priors’ and selection strategies as a way
of generating samples that possess a collection of desired
qualities. This is inspired by the idea that serial reproduc-
tion can be interpreted as a process of cumulative cultural
evolution whereby a heterogeneous group of agents jointly
reproduce and mutate stimuli so as to optimize them for
different properties (Xu et al., 2013; Thompson et al., 2022;
van Rijn et al., 2022). We hope to explore these avenues in
future research.

Reproducibility.  Code for reproducing all simula-
tions of the optimal sampler is available at the follow-
ing link: https://github.com/raja-marjieh/
diffusion-sr.?
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A. Appendix - Derivation of Equation (3)

The explicit derivation of the detailed balance condition in Equation (3) is as follows

P(E¢|es1)p(Ze| )
fp xt|-73t+1 $t+1)d$t+1
p(&t|z)p(Ee|Te41)
fp(a%t|;%t)7r(:it)dit

= p(zt|ver1)m(Te41)

P(eg1]we)m(ze) T(@p 1) (w0 )dTy

7)

w(xt)ﬂ'(xt_,_l)dit
where the first equality follows from Equation (2), the second equality from the fact that £, is a dummy integration
variable, and the third equality from Equation (2) and the fact that Z, is also a dummy integration variable.

B. Appendix - Derivation of Equation (8)

To get to Equation (8), we simply plug Equation (7) into Equation (6) which yields

Q(xt\xt 1

T
K = Z/q(xo,... ,xr)log [Pl 1%” dxo...dovp — Hg,
t=1
)

T
ZZ/Q(xo,...,xT)log pliSlitics 1)} drg...dvr — Hy, (18)
— L a(wiale)g(ze)

q
)
-'L't 1\$t }

T
= /q(mo,...,a:T)log
1 It 1|33t

t=

dzro...drT + Cq

where we defined C, = Zthl [ q(zo,...,x7)log(q(wi—1)/q(x:)) — Hy, which is simply a constant with respect to p.
Next, observe that the Markovian decomposition in Equation (4) implies that

/q(xo, cooyxr)dag .. dri_1dxegs .. der = (x| ze—1)q(2e—1) (19)

where ¢(z¢—1) = [ q(xi—1|zi—2) ... q(x1]20)qn(x0)dxg . . . dz4_o is the marginal at step ¢ — 1. By combing this with
Bayes formula in Equation (7) we can write

T
K= Z/ (z¢|zi—1)g(x4—1) log [pé e t)} dxe_1dze + Cy

g\ T¢— 1|t

(20)
= —Z/ q T — 1|.’,Et l‘t) 10g |: Ext 1|Z't):| dxt_ldxt —|—Oq

Tt 1|9€t)

= —Ey,~qDicr [q(e—1]2e)||p(2-1|24)]] + Cf

which is the desired result. It’s worth noting that a similar result can be found in Ho et al. (2020).

C. Appendix - Additional Simulation Details
C.1. Simulations with the Idealized Model

We ran idealized simulations in two dimensions (z,y) in the range —0.5 < z,y < 0.5. We used a 41 by 41 finite
grid (1,681 bins) with bin width of 0.025. For the data distribution we used a Swiss-roll distribution similar to Sohl-
Dickstein et al. (2015). We made training a bit more challenging by avoiding bins that have zero density. This was
done by interpolating the Swiss-roll distribution p with a uniform distribution over the finite grid p,, so in practice
we used p’ = 0.9 -p + 0.1 - p,. We computed marginal distributions as vectors over the 1,681 bins, and conditional
distributions as 1,681 by 1,681 matrices. In all cases, we computed noise terms with wrapped boundaries so that boundary
artifacts are avoided. We used three types of noise: (1) Gaussian noise, (2) bimodal noise and (3) fade noise. The
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Gaussian noise over (z,y) was defined as p(y,z) = C - exp (—3(y — 2)"E(y — x)), where & = o - I is a diagonal
matrix, o is the noise parameter, and C' is a normalization constant. The bimodal distribution was defined as follows:
p(y,z) = C - (exp(—3(y — 2+ p)"2(y — 2+ p) + exp (—3(y — 2 — 1) "X(y — = — p))), where p = (0.05,0.05)
and ¥ = o - I5. The fade noise depended on a parameter f between O and 1, and linearly interpolated between not
changing the distribution and completely changing it to some final distribution pg. It was defined by the following formula:
p(y,x) =1 —f)-0(y —x) + f - pr. Where 6(z) is the Dirac two-dimensional delta function. For stationary distribution
we chose either uniform (Fig. 2D) or a mixture with three modes (Fig. 2E). The three equally weighted modes were located
in points z; = (0.1,0.2), x2 = (—0.2,—0.1), 23 = (0.2, —0.2) and had covariance matrix of 0.0128 * I3, 0.0128 « I5, and
0.0128 x I3, where I5 is the 2 by 2 identity matrix and I3 is the matrix [2, 1;1, 2]. We provide the code reproducing all
figures and simulation as part of the Supplemental materials.

C.2. Simulations with DDPM

For our experiments with deep neural networks, we trained a Denoising Diffusion Probabilistic Model (Ho et al.,
2020) to denoise MNIST (LeCun & Cortes, 2005), FMNIST (Xiao et al., 2017), KMNIST (Clanuwat et al., 2018),
and CIFAR10 (Krizhevsky et al., 2009) images. We used Brian Pulfer’s PyTorch re-implementation of DDPM —
(https://github.com/BrianPulfer/PapersReimplementations). The UNet (Ronneberger et al., 2015)
used by this implementation is designed to be compatible with single-channel images of size 28x28 (which is standard
for MNIST variants) so CIFAR10 images first had to be resized and transformed to grayscale. Our focus is not on the
technical implementation of DDPM, so we direct interested readers to Brian Pulfer’s repository as it contains helpful
documentation and commentary. The key detail is that for this model, the noise at step ¢ depends on the diffusion parameter
Bt = Bmin + (Bmaz — Bmin) * t/T where T is the total number of steps and ¢t = 0, 1,2, ..., T. To investigate the effect of
the noise schedule, we set 3,,,;, = 0.0001, 8,4, = 0.02 and retrained the model multiple times with a different number
of total steps each time (7" € [50, 500]). For each dataset, this process took less than 2 hours to run on a single RTX 3080
Laptop GPU. To evaluate the sample quality from each trained model, we generated 6,000 images using the same number of
steps as the model was trained on, and computed the Fréchet inception distance (FID; (Heusel et al., 2017)) between each
set of generated images and the training set of the respective dataset.

A. Noise schedule
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Figure S1. Effect of noise schedule on a complementary stationarity metric. A. Different noise injection schedules for a Gaussian noise
kernel similar to Figure 3. B. Stationarity of the forward path as quantified by the RMSE of the integral on the right-hand-side of the
second equality in Equation (12) minus the identity vector.
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A. Gaussian Noise: Sampling with Noise Injection
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E. Fade Noise with Non-uniform Stationary Distribution: Sampling with Noise Injection
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Figure S2. Comparison between sampling with noise injection and without noise injection for different noise types.
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A. Gaussian noise
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B. Bimodal noise
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C. Fade noise with a different stationary distribution
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Figure S3. Examples of bad noise schedules. Similar to the other simulations we had 7" = 10 steps, but unlike before the schedules here
have a fixed noise parameter that did not change over the 10 steps. A. Gaussian noise. We used a constant ¢ = 0.01 in all steps. B.
Bimodal noise. We used a constant o = 0.001 in all steps. C. Fade noise. We used a constant f = 0.0001 in all steps. (see Supplementary
Section C, for the definitions of these parameters).
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Figure S4. Evaluation metrics for the bad noise schedules shown in Figure S3 and an additional better Gaussian schedule with more steps
(T = 100) for reference. A. Performance (reconstruction error), B. Complexity, C. Stationarity (see Figure S1 for definition).
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