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Abstract

We introduce a multi-fidelity estimator of covari-
ance matrices that employs the log-Euclidean ge-
ometry of the symmetric positive-definite man-
ifold. The estimator fuses samples from a hier-
archy of data sources of differing fidelities and
costs for variance reduction while guaranteeing
definiteness, in contrast with previous approaches.
The new estimator makes covariance estimation
tractable in applications where simulation or data
collection is expensive; to that end, we develop
an optimal sample allocation scheme that min-
imizes the mean-squared error of the estimator
given a fixed budget. Guaranteed definiteness is
crucial to metric learning, data assimilation, and
other downstream tasks. Evaluations of our ap-
proach using data from physical applications (heat
conduction, fluid dynamics) demonstrate more ac-
curate metric learning and speedups of more than
one order of magnitude compared to benchmarks.

1. Introduction
Covariance estimation is a fundamental task for under-
standing the relationships between multiple features of data
points. It arises in a wide range of machine learning appli-
cations such as metric learning (Zadeh et al., 2016; Huang
et al., 2015), graphical models (Loh & Bühlmann, 2014;
Ravikumar et al., 2011), and classification (Hastie et al.,
2001), as well as in spatial statistics (Cressie, 2015) and in
science and engineering applications such as filtering and
data assimilation (Schillings & Stuart, 2017; Bergemann &
Reich, 2010; Law et al., 2015). The canonical Monte Carlo
approach to estimating the covariance matrix Σ = Cov[y]
of a random variable y with d components is to take n sam-
ples y1, . . . ,yn and compute the sample covariance matrix
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Σ̂n =
1

n

∑n

i=1
(yi − ȳ) (yi − ȳ)

>
, (1)

where1 ȳ = E[y]. The mean-squared error (MSE) of the
estimator Σ̂n in the Euclidean metric, i.e., E[dF(Σ̂,Σ)2]
where dF(A,B) = ‖A−B‖F and ‖·‖F denotes the Frobe-
nius norm, decays asO(1/n) if the samples are independent
and identically distributed (i.i.d.). Furthermore, if Σ lies
in the space Sd++ of symmetric (strictly) positive definite
(SPD) d × d matrices, then the sample covariance matrix
Σ̂n is in Sd++ almost surely for n > d.

We are interested in situations where obtaining a realization
of y incurs a high cost c0 > 0 and thus straightforward
application of the Monte Carlo estimator (1) becomes com-
putationally intractable. High sampling cost is a pervasive
issue in science and engineering, where sampling typically
corresponds to measuring the response of processes and sys-
tems that must be either numerically simulated or physically
observed. We note that there exist a wide range of tech-
niques for covariance estimation in high dimensions (Bickel
& Levina, 2008; Ledoit & Wolf, 2012; Loh & Wainwright,
2012; Fan et al., 2011; Tsiligkaridis & Hero, 2013; Loh
& Bühlmann, 2014; Donoho et al., 2018). Our focus here
instead is on situations where drawing each sample incurs
high cost; see also the discussion in the Conclusions.

Multi-fidelity estimation The opportunity that we exploit
is that in many applications there is a multi-fidelity hierarchy
of data sources from which correlated auxiliary samples can
be obtained; see Peherstorfer et al. (2018) for a survey.
Multi-fidelity approaches have found increasing utility in
machine learning—e.g., for optimization (Poloczek et al.,
2017; Wu et al., 2020; Li et al., 2020), classification and
sequential learning (Marques et al., 2018; Gundersen et al.,
2021; Palizhati et al., 2022), and sampling (Cai & Adams,
2022; Prescott & Baker, 2020; Alsup et al., 2022).

Let (Ω,F ,P) be a probability triple. In the multi-fidelity
setting, in addition to the original “high-fidelity” random
variable y ≡ y(0) : Ω → Rd generating the sample set
{y(0)(ωi)}n0

i=1, one has access to a number of low-fidelity
surrogate random variables y(1), . . . ,y(`) : Ω → Rd
and obtains corresponding sets of samples {y(`)(ωi)}n`

i=1,

1If the mean of y is unknown, one can replace ȳ with the
sample mean 1

n

∑n
i=1 yi and normalize (1) with 1/(n− 1).
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` = 1, . . . , L. For a particular ω ∈ Ω, the realizations
y(0)(ω), y(1)(ω), . . . ,y(L)(ω) are correlated, but the real-
izations within each set {y(`)(ωi)}n`

i=1 are i.i.d., for ` =
0, . . . , L. We assume that the surrogates y(1), . . . ,y(L) are
sorted in order of decreasing fidelity to y(0) as measured by
correlation coefficients 1 ≥ |ρ1| ≥ |ρ2| ≥ · · · ≥ |ρL|. Here
ρ` is a notion of multivariate correlation between y(0)(ω)
and y(`)(ω), ` = 1, . . . , L, that will be formally defined
in Section 3.3. Corresponding to decreasing fidelity, the
surrogate random variables have decreasing sampling costs,
c0 ≥ c1 ≥ · · · ≥ cL.

Loss of definiteness in Euclidean multi-fidelity covari-
ance estimation Direct application of multi-level and multi-
fidelity Monte Carlo estimation (Giles, 2008; Cliffe et al.,
2011; Teckentrup et al., 2013; Ng & Willcox, 2014) based
on control variates to (co)variance estimation has been pro-
posed in, e.g., Bierig & Chernov (2015); Qian et al. (2018);
Mycek & De Lozzo (2019). These multi-fidelity estima-
tors, however, rely on differences of single-fidelity Monte
Carlo estimators, which can lead to a loss of definiteness
of the estimated covariance matrix, as we will detail in
Section 2. Ignoring this loss-of-definiteness can result in
errors in downstream tasks (e.g., instabilities in Kalman fil-
tering, distances becoming negative in a learned metric, in-
admissible graph structures). Accordingly, post-processing
strategies (Hoel et al., 2016; Chernov et al., 2021) have
been proposed that eliminate negative eigenvalues, but elim-
ination of eigenvalues introduces potential for large errors,
requires hand-tuning of thresholds, and often, as the authors
note, incurs high computational cost; see also Qi & Sun
(2006); Popov et al. (2021).

Our contribution: Guaranteed positive multi-fidelity
log-Euclidean covariance estimation We introduce a
multi-fidelity covariance estimator based on control vari-
ates in the log-Euclidean geometry for Sd++ (Arsigny et al.,
2006). The log-Euclidean geometry equips Sd++ with vector-
space structure by placing it in one-to-one correspondence
with Sd, the vector space of d× d symmetric matrices, and
defining notions of logarithmic addition and scalar multi-
plication for elements of Sd++. In particular, we make use
of this vector space structure to safely “subtract” sample
covariance matrices as part of a control variate construction
in the tangent space to Sd++, which we identify with Sd.
The log-Euclidean vector space can be equipped with the
log-Euclidean metric for SPD matrices, which itself induces
Riemannian structure on Sd++. An additional advantage of
the log-Euclidean geometry used here, as compared to many
other geometries for Sd++ (see Section 3.1), is that com-
putations remain efficient as the most complex operations
required are matrix exponentials and logarithms.

Summary of main contributions The main contributions
and key features of this work are summarized as follows:

(a) We introduce a multi-fidelity estimator that preserves
definiteness of covariance matrices in the finite-sample
regime and that has first-order minimal mean squared error
(MSE) in the log-Euclidean metric.

(b) We provide analysis that leads to a first-order optimal
sample allocation between the high-fidelity and surrogate
models for gaining orders of magnitude speedups compared
to using high-fidelity samples alone.

(c) We demonstrate the algorithmic benefits of the log-
Euclidean geometry by showing that our estimator can be
implemented with few lines of code (Appendix F), relying
on standard numerical linear algebra routines. This low
barrier to implementation allows the estimator to be readily
plugged into existing code with minimal effort and even as
a post-processing step.

2. Multi-Fidelity Covariance Estimation in
Euclidean Geometry and Loss of
Definiteness

Recall from the introduction that we generate a set of
high-fidelity samples {y(0)(ωi)}n0

i=1 and sets of surrogate
samples {y(`)(ωi)}n`

i=1 over different fidelity levels ` =
1, . . . , L. The classical approach to multi-fidelity estima-
tion, i.e., in the Euclidean geometry, is to use the surrogate
samples to define control variates that reduce the variance of
the standard Monte Carlo estimator (1) (Bierig & Chernov,
2015; Qian et al., 2018; Mycek & De Lozzo, 2019). This ap-
proach yields the Euclidean multi-fidelity (EMF) covariance
estimator

Σ̂
EMF

n = Σ̂
(0)

n0
+
∑L

`=1
α`

(
Σ̂

(`)

n`
− Σ̂

(`)

n`−1

)
, (2)

where α = [α1, . . . , αL]> ∈ RL are the control variate
weights and

Σ̂
(`)

n`
=

1

n`

n∑̀
i=1

(
y(`)(ωi)− ȳ(`)

n`

)(
y(`)(ωi)− ȳ(`)

n`

)>
,

Σ̂
(`)

n`−1
=

1

n`−1

n`−1∑
i=1

(
y(`)(ωi)− ȳ(`)

n`

)(
y(`)(ωi)− ȳ(`)

n`

)>
(3)

are sample covariance matrices computed from
{y(`)(ωi)}n`

i=1 and {y(`)(ωi)}
n`−1

i=1 , ` = 1, . . . , L. We
require for well-definedness that n` ≥ n`−1, ` = 1, . . . , L.
For levels `, t ∈ {0, . . . , L} and integers mi,mj ∈ Z+,
notice that the sample covariance matrices

Σ̂
(`)

mi
=

1

mi

mi∑
i′=1

(
y(`)(ωi′)− ȳ(`)

mi

)(
y(`)(ωi′)− ȳ(`)

mi

)>
,

Σ̂
(t)

mj
=

1

mj

mj∑
j′=1

(
y(t)(ωj′)− ȳ(t)

mj

)(
y(t)(ωj′)− ȳ(t)

mj

)>
2
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are correlated because they are constructed from eval-
uations of y(`) and y(t) on the common set of events
{ωi}

min{mi,mj}
i=1 . This correlation is the key ingredient to

achieving variance reduction in (2) over equivalent-cost
single-fidelity estimators; see Section 3.3.

Loss of definiteness The use of regular subtraction and
scalar multiplication in Equation (2) treats the symmetric

positive definite matrices Σ̂
(`)

n`
and Σ̂

(`)

n`−1
, ` = 0, . . . , L,

as elements of the Euclidean vector space Sd. However,
SPD matrices do not constitute a vector space under the
Euclidean geometry and thus the Euclidean multi-fidelity
estimator (2) may become indefinite due to the presence of
subtraction. That is, positive definiteness of (2) in the finite-
sample regime cannot be guaranteed even if its constituent
single-fidelity sample covariance matrices are definite.

3. Log-Euclidean Multi-Fidelity (LEMF)
Covariance Estimator

3.1. Log-Euclidean Geometry and its Benefits

We begin by orienting ourselves within the log-Euclidean
geometry for Sd++ as defined in Arsigny et al. (2006). For
A, B ∈ Sd++ and λ ∈ R we have notions of logarithmic
addition ⊕ and scalar multiplication �,

A⊕B = Exp(Log A + Log B) ,

λ�A = Exp(λ · Log A) = Aλ,
(4)

corresponding to regular addition and scalar multiplication
of log A and log B in Sd. Here Exp : Sd → Sd++ is the
matrix-exponential and Log : Sd++ → Sd is its inverse
(Arsigny et al., 2007, Def. 2.1). The mappings Log and Exp
place Sd and Sd++ in one-to-one correspondence, enabling
Sd++ to make use of the vector space structure of Sd. The
definitions of ⊕ and � (4) satisfy the axioms of a vector
space, and we can equip this vector space Sd++(⊕,�) with
the log-Euclidean metric,

dLE(A,B) = ‖Log A− Log B‖F . (5)

Computations related to the log-Euclidean geometry can
be performed economically because efficient algorithms
exist for computing matrix exponentials and logarithms.
Efficient computation is a major advantage as compared to
the geometries induced by other metrics such as the affine
invariant metric (Bhatia, 2007; Huang et al., 2015).

Review of other geometries for Sd++ The set of d×d sym-
metric positive definite matrices Sd++ forms a Riemannian
manifold embedded in the vector space of d × d symmet-
ric matrices Sd. One can equip Sd++ with a number of
geometries in addition to the Euclidean (which we have
shown to be problematic for multi-fidelity estimation) and
log-Euclidean geometries discussed here. There is, e.g., the

affine-invariant geometry (Bhatia, 2007), often billed as the
“canonical choice,” which gives rise to the affine-invariant
metric,

dAff(A, B) =
∥∥Log

(
A−1B

)∥∥
F
. (6)

Other choices include the Bures-Wasserstein geometry, aris-
ing from the L2-Wasserstein distance between multivariate,
nondegenerate, mean-zero Gaussians (Malagò et al., 2018);
and the Log-Cholesky geometry, obtained by parametrizing
SPD matrices in terms of their Cholesky factors and defin-
ing a Riemannian metric on the space of lower-triangular
matrices with positive diagonal entries (Lin, 2019). Choice
of geometry for Sd++ is application-dependent and often de-
pends on factors such as cost to compute geodesic distance,
availability of the Riemannian exponential and logarithmic
maps in closed form, and whether the so-called “swelling
effect” (Arsigny et al., 2006) is an issue. We choose the
log-Euclidean geometry for its computational advantages,
described at the end of the previous paragraph.

3.2. Log-Euclidean Multi-Fidelity Estimation

We construct the log-Euclidean multi-fidelity (LEMF) co-
variance estimator via linear control variates in the log-
Euclidean geometry for Sd++,

Σ̂
LEMF

n = Σ̂
(0)

n0
⊕

L⊕
`=1

α` �
(
Σ̂

(`)

n`
	 Σ̂

(`)

n`−1

)
=

Exp

(
Log Σ̂

(0)

n0
+

L∑
`=1

α`

(
Log Σ̂

(`)

n`
− Log Σ̂

(`)

n`−1

))
,

(7)

where we have used the convention A	B = A⊕−1�B.
The estimator (7) has the same algebraic structure as
(2), but is guaranteeably positive definite at finite n =
(n0, n1, . . . , nL) as the following proposition shows:

Proposition 3.1. The log-Euclidean multi-fidelity covari-
ance estimator (7) exists and is positive definite almost
surely whenever n0, n1, . . . , nL > d.

In addition to interpreting (7) as a linear control variate
construction in the log-Euclidean geometry for Sd++, we
can equivalently view the LEMF estimator as a Euclidean
linear control variate estimate of Log Σ on Sd,

Log Σ̂
LEMF

n = Log Σ̂
(0)

n0
+

L∑
`=1

α`

(
Log Σ̂

(`)

n`
−Log Σ̂

(`)

n`−1

)
,

(8)
which we then map to Sd++ via the matrix exponential. Vari-
ance reduction in (8) is achieved on Sd via the standard
Euclidean control variate framework and then propagated
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to Sd++ via Exp(·). Furthermore, (7) has the form of a log-

Euclidean Fréchet average of Σ̂
(0)

n0
and L small perturba-

tions induced by the surrogate sample covariance matrices;
see Appendix A for details.

The LEMF estimator requires computing 2L + 1 matrix
logarithms and one matrix exponential. Note that obtaining
the sample sets {y(`)(ωi)}n`

i=1, ` = 0, . . . , L, is typically
much more computationally expensive than computing ma-
trix logarithms and exponentials.

3.3. The MSE of the LEMF Estimator

For the following analysis, we assume without loss of gen-
erality that y(`), ` = 0, . . . , L, have zero mean, for ease
of exposition. As introduced in Section 1, the surrogates
y(1), . . . ,y(L) are ordered by decreasing fidelity,

1 = ρ0 > |ρ1| > · · · > |ρL| ≥ ρL+1 = 0,

where ρ` is a multivariate generalization of the Pearson
correlation coefficient,

ρ` =
Tr
(
Cov[y(0)(y(0))>, (y(`))(y(`))>]

)
σ0σ`

, (9)

with generalized variances defined as

σ2
` = Tr(Cov[y(`)(y(`))>]), ` = 0, . . . , L. (10)

The covariance of y(`)(y(`))>, ` = 0, . . . , L is a symmetric
positive semidefinite linear operator from Sd to Sd,

Cov[y(`)(y(`))>] =

E
[(

y(`)(y(`))> −Σ(`)
)
⊗
(
y(`)(y(`))> −Σ(`)

)]
,

(11)

where we define Σ(`) = E[y(`)(y(`))>]. Similarly, the
cross-covariance between y(`)(y(`))> and y(m)(y(m))>,
`,m ∈ {0, . . . , L} is

Cov
[
y(`)(y(`))>, y(m)(y(m))>

]
=

E
[(

y(`)(y(`))> −Σ(`)
)
⊗
(
y(m)(y(m))> −Σ(m)

)]
.

(12)

In writing (11) and (12) we do not invoke any particular
representation for linear operators on Sd. Rather, we only
assume that ⊗ is an outer product for symmetric matrices
compatible with the Frobenius inner product, that is,

Tr(A⊗B) = 〈A,B〉F , A,B ∈ Sd.

The following proposition derives the MSE of the log-
Euclidean estimator in the log-Euclidean metric (5).

Proposition 3.2. Assume that ‖Σ− I‖F < h/4 with h < 1

and ‖Σ − Σ(`)‖F < h/4 for ` = 1, . . . , L. Then, for
coefficient vector α ∈ Rn and sufficiently large numbers of
samples n ∈ NL+1, the MSE in the log-Euclidean metric of
the LEMF estimator defined in (7) is

E
[
dLE

(
Σ̂

LEMF

n , Σ
)2
]

= E
[∥∥∥Log Σ̂

LEMF

n − Log Σ
∥∥∥2

F

]
=
σ2

0

n0
+

L∑
`=1

(
1

n`−1
− 1

n`

)
(α2
`σ

2
` − 2α`ρ`σ`σ0) +O(h2) .

(13)

Note that the technical condition ‖Σ − I‖F < h/4 can
always be established by re-scaling ỹ(`) = C−1/2y(`) with
a matrix C ∈ Sd++ and using C as the base of the matrix
logarithm and exponential in the estimator (7); we consider
I as the base here for ease of exposition.

Below we relate the MSE of the Euclidean estimator Σ̂
EMF
n

(2) in the Euclidean metric with the MSE of the log-
Euclidean estimator (7) Σ̂

LEMF
n in the log-Euclidean metric:

Corollary 3.3. The MSE in the Euclidean metric of the Eu-
clidean multi-fidelity estimator (2) with sample size vector
n and coefficients α is

E
[
dF

(
Σ̂

EMF

n ,Σ
)2
]

= E
[∥∥∥Σ̂EMF

n −Σ
∥∥∥2

F

]
=

σ2
0

n0
+

L∑
`=1

(
1

n`−1
− 1

n`

)
(α2
`σ

2
` − 2α`ρ`σ`σ0) . (14)

Corollary 3.3 shows that the MSE of the LEMF estimator
in the log-Euclidean metric is equal to the MSE of the EMF
estimator in the Euclidean metric up to first order. Note that
it does not comment on a cross-comparison (e.g., MSE of
the LEMF in the Euclidean metric and vice-versa); we will
explore such comparisons numerically in Section 4.

3.4. Optimal Sample Allocation for the LEMF

Proposition 3.2 and Corollary 3.3 show the dependence of
the MSE in the log-Euclidean and Euclidean metrics of the
LEMF and EMF estimators on the sample allocations n and
coefficients α. We now derive n∗ and α∗ that minimize the
respective MSEs up to first order and so achieve an optimal
sample allocation across the hierarchy of data sources.

We start with α∗: because the first-order approximation of
the MSE in (13) and the MSE in (14) are both quadratic in
the coefficients α1, . . . , αL, we can directly minimize for
α1, . . . , αL and obtain

α? = [α?1, . . . , α
?
L] , α?` = ρ`

σ0

σ`
, (15)
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which are independent of the sample sizes.

In preparation for finding n∗, we define the costs of the
multi-fidelity estimators as

c(n) =
∑L

`=0
n`c` . (16)

Following Peherstorfer et al. (2016), Proposition 3.4 derives
the optimal sample allocation n∗ to obtain an estimator with
first-order minimal MSE and costs c(n∗) ≤ B for a fixed
computational budget B > 0.

Note that in writing (16), we assume that the costs of gen-
erating samples of the random variables y(0), . . . ,y(L) are
much higher than the cost of constructing a multi-fidelity
covariance estimate, and in particular eclipse the cost of
computing the matrix exponential and the 2L + 1 matrix
logarithms required by the LEMF estimator (7). This sit-
uation is often the case, e.g., in science and engineering
applications when generating samples may correspond to
evaluating computationally intensive physics-based mod-
els. One could explicitly account for the cost of construct-
ing the LEMF estimator by inserting a modified budget of
B̂ = B − clog/exp into Proposition 3.4, where clog/exp is
the cost of the matrix logarithms and exponential, and sub-
sequently obtain a result analogous to Corollary 3.5 with a
more complicated condition for when the LEMF estimator
outperforms an equivalent-cost high-fidelity estimator.

Proposition 3.4. Let B > 0 denote the computational bud-
get and let Proposition 3.2 apply. The first-order optimal
sample allocationn? for the LEMF estimator (2) that solves

min
n∈RL+1

E
[
dLE

(
Σ̂

LEMF

n ,Σ
)2
]

such that c(n) ≤ B
(17)

is

n?` = B

√
c0(ρ2

` − ρ2
`+1)

c`(1− ρ2
1)

/
L∑
i=0

ci

√
c0(ρ2

i − ρ2
i+1)

ci(1− ρ2
1)

.

(18)

Because the MSE of the Euclidean estimator (in dF(·, ·))
is equal to the first-order approximation of the MSE of the
log-Euclidean estimator (in dLE(·, ·)), we directly obtain
that (18) is the optimal sample allocation for the Euclidean
estimator as well. In practice, we round either up or down
and so use either dn?e or bn?c.

If the correlation coefficients ρl and costs c`, ` = 0, . . . , L
are known, one can determine the optimal α? and n? for
fixed budget B; or, alternatively, determine α? and n? so
that the MSE of the LEMF estimator is below a threshold
ε > 0. In situations when ρ` and c` are unknown, it is

common to estimate them in pilot studies (Cliffe et al., 2011;
Peherstorfer et al., 2016) and even to reuse the pilot samples
in the actual estimator (Konrad et al., 2022).

3.5. Discussion of the LEMF Estimator

Interpretation Proposition 3.4 shows that when the corre-
lation coefficients (9) are close to 1, then the LEMF estima-
tor (7) allocates more of the budget to the cheaper surrogate
samples. In the extreme case where ρ` = 0, the entire bud-
get is allocated to obtaining high-fidelity samples and one
recovers the single-fidelity estimator (1) with n = B/c0.

The following corollary shows that the corrrelation coeffi-
cients ρ` and costs c` dictate whether the proposed LEMF
estimator leads to lower MSE than the equivalent-cost single
(high)-fidelity estimator.
Corollary 3.5. Let Proposition 3.4 apply. Then, the first-
order term of the MSE of the LEMF estimator with n∗ is

E
[
dLE

(
Σ̂

LEMF

n? ,Σ
)2
]

=̇
σ2

0

B

(
L∑
`=0

√
c`(ρ2

` − ρ2
`+1)

)2

,

(19)
which will be smaller than the first-order log-Euclidean
MSE of the cost-equivalent single-fidelity estimator (1) that
uses n0 = B/c0 high-fidelity samples if and only if∑L

`=0

√
c`
c0

(ρ2
` − ρ2

`+1) < 1 . (20)

Equation (20) demonstrates that for fixed c0, the benefit
of using the LEMF estimator (7) over the equivalent-cost
high-fidelity estimator (1) is a function of both the surrogate
model correlations with the high-fidelity model, ρ1, . . . , ρL,
and the surrogate model costs, c1, . . . , cL. It is particularly
instructive to consider the bifidelity case with only one
surrogate model (L = 1). In this setting, condition (20)
simplifies to√

1− ρ2
1 +

√
c1
c0
ρ2

1 < 1 ⇐⇒ 2

√
1− ρ2

1

ρ2
1

<
c0 − c1√
c0c1

.

(21)
If the normalized reduction in cost c0−c1√

c0c1
achieved by the

low-fidelity model is large, then the minimum required gen-
eralized correlation ρ1 such that condition (21) is satisfied
decreases. Conversely, in the limit ρ1 → 1 we only require
c1 < c0 in order to see a benefit from using the LEMF esti-
mator. In Figure 1 we visually demonstrate this relationship
by plotting the region in (ρ, c1/c0) space for which (21)
holds and the LEMF estimator has a lower first-order MSE
than the equivalent-cost high-fidelity estimator.

Truncated multi-fidelity estimator In addition to the EMF
estimator and equivalent-cost single-fidelity estimators, we
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𝜌1

0.0 0.5 1.0

c 1
/
c 0

10-4

10-3

10-2

10-1

100

Figure 1. The shaded region corresponds to pairs (ρ1, c1/c0) of
correlation coefficient and cost ratio for which (21) holds and thus
the LEMF estimator has lower first-order error than the equivalent-
cost single-fidelity estimator. Note that a lower correlation ρ1
requires a smaller cost ratio c1/c0 for the LEMF estimator to
achieve lower error than the single-fidelity estimator.

will compare the proposed LEMF estimator to the EMF
estimator with positive definiteness enforced via eigenvalue
truncation. Following Hoel et al. (2016), we define the
truncated multi-fidelity covariance estimator as

Σ̂
+δ

n = Tδ
(
Σ̂

EMF

n

)
, (22)

where δ > 0 is a small threshold and the truncation operator
Tδ acts on symmetric matrices via Tδ(A) = Q (Λ ∨ δ) Q>

with A = QΛQ> denoting the eigen-decomposition of
A and Λ ∨ δ denoting the diagonal matrix whose diagonal
entries are max(λii, δ); see the Introduction for a discussion
about drawbacks of the truncated estimator.

4. Numerical Examples
4.1. Motivating Example with Gaussians

Consider the problem of estimating the covariance of a
Gaussian random variable y ∼ N(0,Σ), with Σ ∈ S4

++.
For this motivating example, we obtain low-fidelity sam-
ples y(`) = y + ε(`) by corrupting a high-fidelity sample
y with independent noise at different noise levels ε(`) ∼
N(0,Γ(`)) for ` = 1, 2, 3. The matrices Γ(1), . . . ,Γ(3) are
chosen such that noise levels lead to generalized correlations
of ρ1 ≈ 0.93, ρ2 ≈ 0.74, and ρ3 ≈ 0.58; see Appendix G.
We impose unit costs for drawing a high-fidelity sample
y and costs c1 = 10−2, c2 = 10−3, and c3 = 10−4 for
drawing the surrogate samples. Because the samples are
Gaussian, their empirical second moments follow a Wishart
distribution and the generalized variances (10) and correla-
tions (9) can be computed exactly; see Appendix G. Table 1
shows the MSE of the multi-fidelity estimators compared

with that of single-fidelity covariance estimators using high-
fidelity or surrogate samples alone with the same budget
B = 15. The LEMF estimator has 2× lower MSE than the
other estimators in the log-Euclidean and affine-invariant
metric, while being competitive in the Euclidean metric.

4.2. Uncertainty Quantification of Steady-State Heat
Flow

Physics model The steady-state heat equation over the do-
main X = (0, 1) with a variable heat conductivity is

−div (exp(κ(x;θ))∇u(x;θ)) = f(x), x ∈ X , (23)

where we impose Dirichlet boundary conditions u(0,θ) =
0, u(1,θ) = 1 and constant source f(x) = 1. We model
the log heat conductivity κ as a degree-4 sine-polynomial
κ(x; θ) =

∑4
k=1 θk sin(2πkx), whose coefficients are

given by the components of θ = [θ1, . . . , θ4]> ∈ R4.

We obtain a high-fidelity observation model G(0) : R4 →
R10 by approximating the solution u(·,θ) via a second-
order finite difference scheme with 65,536 grid points and
observing the resulting temperature at d = 10 equally
spaced points xi = i/11, i ∈ {1, . . . , 10}, in the interior
of the domain X (see Figure 8 in Appendix H). The surro-
gate model G(1) is obtained by approximating the solution
u(·,θ) with only 1,024 grid points and performing the same
measurement process. We identify the costs of the high-
fidelity and surrogate models with the number of grid points
involved, c0 = 216 and c1 = 210.

Covariance estimation We model θ ∼ N(0, I4×4) and de-
fine high-fidelity samples as y(0) = G(0)(θ) and surrogate
samples as y(1) = G(1)(θ). Our aim is to estimate the
covariance of y(0), which is a 10× 10 matrix. We first esti-
mate the generalized variances and correlations σ0, σ1, ρ1

in a pilot study to compute the optimal multi-fidelity sample
allocations n? = [n

(0)
? , n

(1)
? ] and α? for seven values of

budget B in the interval [106, 2 × 109]; see Appendix H.
We then obtain n(1)

? ≥ n
(0)
? realizations θ1, . . . ,θn(1)

?
of

the input random variable θ and compute the n(0)
? high-

fidelity samples {y(0)(θi)}
n(0)
?
i=1 and n(1)

? surrogate samples

{y(1)(θi)}
n(1)
?
i=1 . Note that the first n(0)

? surrogate samples
use the same realizations of θ as the high-fidelity samples,
creating statistical coupling, and thus correlation, between
the high-fidelity and surrogate samples.

Results Figure 2 compares the MSE in the log-Euclidean,
affine-invariant, and Euclidean metrics (6) of the single-
fidelity and multi-fidelity estimators over 100 trials. Using
the surrogate samples alone leads to estimates with large
bias with respect to the true (high-fidelity) covariance. For
example, the bias of the surrogate-only estimator can be
seen in Figure 3c, which displays the convergence of each
estimate of Σ2,5 to the truth; see also Appendix H.
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MSE high-fidelity only surrogate only Euclidean MF truncated MF (δ = 10−16) LEMF (ours)
log-Euclidean 1.72 5.82 NaN 66.88 0.83
affine-invariant 4.99 5.82 NaN 125.11 2.69

Euclidean 3.00 4.00 0.51 0.51 0.71

Table 1. Motivating example: The LEMF estimator leverages cheap surrogate samples to reduce the MSE compared to cost-equivalent
single-fidelity estimators and other multi-fidelity estimators that rely on post-processing via truncation.
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Figure 2. Heat flow: In the log-Euclidean metric, our LEMF estimator achieves the MSE tolerance below ≈ 10−1 with ≈ 30× speedup
compared to the single-fidelity estimator that uses high-fidelity samples alone. Only using surrogate samples leads to a large bias that
prevents reaching an MSE below 10−1. The Euclidean multi-fidelity estimator is indefinite in more than 10% of the 100 trials used here
and therefore does not provide a valid covariance matrix in this example. (Plot with min/max over 100 trials is shown in Appendix H.)
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Figure 3. Heat flow: Plot (a): Our LEMF estimator achieves a 32× speedup. Plot (b): Our LEMF estimator remains positive definite even
for small sample sizes, whereas the Euclidean estimator becomes indefinite. Plot (c): Entries of our LEMF estimates converge quickly to
the entries of the true covariance, whereas surrogate-only estimators incur a large bias and high-fidelity-only estimators incur high costs.

The EMF estimator is unbiased and achieves competitively
low MSE in the Euclidean metric but becomes indefinite in
more than 10% of trials (see Appendix H). For this reason
its MSE in the log-Euclidean and affine-invariant metrics
is infinite/nonexistent (see Figure 3b), as the log-Euclidean
and affine-invariant distances between an element of Sd++

and any non positive-definite matrix are∞. When we “fix”
the EMF estimator via eigenvalue truncation (using a thresh-
old of δ = 10−16 in (22)), obtaining the positive-definite
truncated EMF estimator, we introduce the possibility of
large MSE in the log-Euclidean and affine-invariant metrics

because we have modify the spectrum, which can be seen
well for small budgets in Figure 2.

By contrast, the proposed log-Euclidean multi-fidelity es-
timator uses surrogate samples in conjunction with high-
fidelity samples and inherently retains positive definiteness,
thus achieving about one order of magnitude speedup across
metrics as compared to the estimator that uses the high-
fidelity samples alone; Figure 3a. The MSE of the LEMF es-
timator decays as O(1/B), in consort with the other Monte
Carlo estimators which use high-fidelity samples.
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Figure 4. Metric learning: An example of the final-time buoyancy
for class i = 1. Our measurements consist of buoyancy values at
nine spatial locations in the domain, indicated by black dots in the
plot above. We use the observations to estimate a metric which
distinguishes between observations corresponding to θ sampled
from class i = 0 and from class i = 1.

4.3. Metric Learning: Surface Quasi-Geostrophy

We now apply our multifidelity covariance estimators in
an intermediate step in the metric learning of Zadeh et al.
(2016) to enable easier classification of fluid regimes
from buoyancy measurements given by a surface quasi-
geostrophic model (Held et al., 1985).

Physics model In the model presented in Held et al. (1985),
the evolution of the buoyancy b(x, t) over a periodic spatial
domain X = [−π, π]× [−π, π] is governed by

∂tb(x, t;θ) + J(ψ, b) = 0 , (24)

where ψ is the streamfunction and x =
(x, y). The initial buoyancy is b0(x;θ) =
− 1

(2π/|θ5|)2 exp
(
−x2 − exp(2θ1)y2

)
, the con-

tours of which form ellipses parametrized by
θ = [θ1, . . . , θ5]> ∈ R5. θ1 is the log-aspect ratio
and controls the origination of vortices in the buoyancy over
time, and θ5 controls the amplitude of b0. The parameters
θ2, θ3, and θ4 determine additional aspects of the dynamics
(24); see Appendix I for details. We sample the parameters
θ ∈ R5 from a two-component Gaussian mixture whose
means differ only in the coordinate corresponding to
the log-aspect ratio; see Appendix I. We use i ∈ {0, 1}
to denote the mixture component from which a given
realization of θ is sampled.

The high-fidelity parameter-to-observable map G(0) maps
θ onto d = 9 observations of the numerical solution of
equation (24) in the spatial domain; see Figure 4 as well as
Figure 12 in Appendix I. For G(0), numerical solution of
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Figure 5. Metric learning: When using the learned metric to
compute distances between observations of the surface quasi-
geostrophic model, our LEMF estimator achieves a > 20% lower
error in the distances than using high-fidelity samples alone. The
Euclidean estimator provides an indefinite metric in this example.

(24) is computed up to time T = 24 using finite differences
with 256 grid points along each coordinate dimension and
with a time-step of ∆t = 0.005 2. High-fidelity samples
y(0) are thus given by y(0) = G(0)(θ) and have covariance
Σ ∈ S9

++.

The surrogate parameter-to-observable map G(1) and ran-
dom variable y(1) are defined in the same way except that in
solving Equation (24) we only use 64 grid points along each
coordinate dimension. Evaluating G(1) is 16 times faster
than evaluating G(0), with c0 = 2562 and c1 = 642.

Metric learning We now apply our covariance estimator (7)
to learn a metric on the data manifold. We use a slight mod-
ification of the geometric mean metric learning approach
introduced in Zadeh et al. (2016), which learns an SPD
matrix A to define the metric

dA(y1,y2) =
√

(y1 − y2)>A(y1 − y2) .

The matrix A is an interpolation in the affine-invariant ge-
ometry for Sd++ between the inverse of a similarity matrix
S = Cov[y | i = 0]+Cov[y | i = 1] and a dissimilarity ma-
trix D = S+µµ>, whereµ = E[y | i = 0]−E[y | i = 1] .
Following Zadeh et al. (2016), this interpolation is given by

A = S−1/2(S1/2DS1/2)tS−1/2 , t ∈ [0, 1] .

We apply our multifidelity techniques to estimating the two
covariance matrices that comprise S, Cov[y | i = 0] and
Cov[y | i = 1]. In constructing A we set t = 0.1, motivated
by (Zadeh et al., 2016, Figure 3).

Results Prior to applying our multi-fidelity estimators in
this setting, we take a total of 24, 000 pilot samples between

2We use the Python package pyqg to compute our solutions;
see http://pyqg.readthedocs.org/
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Figure 6. Metric learning: Our LEMF estimator achieves the lowest MSE compared to the cost-equivalent benchmark estimator that uses
high-fidelity samples alone. The Euclidean multi-fidelity estimator is indefinite over 100 trials and therefore fails to learn a valid metric.

(y(0),y(1)) | i = 0 and (y(0),y(1)) | i = 1 in order to
estimate the generalized variances σ2

0 and σ2
1 and correlation

ρ1 in both classes. We additionally use these pilot samples
to obtain a reference estimate of A, which we denote A0.

We estimate Cov[y(0) | i = 0] and Cov[y(0) | i = 1] as
follows: we construct multifidelity estimators from a combi-
nation of 15 high-fidelity samples and an additional number
nlo,i of low-fidelity samples computed according to the op-
timal ratio in Proposition 3.4. We correspondingly construct
equivalent-cost single-fidelity estimators with budgets

Bi = 15chi + nlo,iclo, i ∈ {0, 1},

spent entirely on high- or low-fidelity samples. We estimate
Cov[y | i = 0] and Cov[y | i = 1] using the EMF, LEMF,
and truncated EMF (δ = 10−16) estimators and the high-
fidelity- and low-fidelity-only estimators with the sample
allocations described above. The two covariance estimates
are combined to obtain estimates of the metric matrix A.

We first study the performance of the learned metrics relative
to the reference metric. Let {y(0)

j }5000
j=1 ∈ R9 be a test

set of 5,000 points and consider the mean relative error of
distances MRE(A) with respect to the reference metric A0;
see Appendix I for a definition. Figure 5 shows the MRE
for each estimator averaged over 50 independent trials. The
LEMF estimator outperforms the single-fidelity estimator
and the truncated MF estimator (22) by more than 20%. The
Euclidean multi-fidelity estimator gives indefinite estimates
of A, which cannot constitute valid metrics.

We further compare the MSEs of the learned metric matrices
relative to the reference A0. Figure 6 shows that the LEMF
estimator (7) yields a closer approximation of the reference
metric; in particular the LEMF estimator gives a more accu-
rate estimate of A relative to the high-fidelity-only estimator
while the other estimators give less accurate estimates. The
surrogate-only estimator is limited by its large bias. The
EMF estimator (2) is again indefinite in >10% of trials.

5. Conclusions
We showed that formulating multi-fidelity estimation in a
non-Euclidean geometry can be beneficial for enforcing
structure: The proposed LEMF estimator leverages the log-
Euclidean geometry for SPD matrices to guarantee that
the resulting covariance matrix estimates are positive def-
inite. This property is in contrast to state-of-the-art multi-
fidelity estimators that can lose definiteness, especially in
the small-sample regime, which is typical in science and
engineering applications in which drawing samples is ex-
pensive. Our LEMF estimator preserves definiteness and
leverages surrogates to achieve speedups of more than one
order of magnitude in our experiments. The experiments
further show that preserving definiteness is key for enabling
tasks such as metric learning and classification, for which
indefinite Euclidean multi-fidelity estimators are invalid. Fu-
ture work includes combining the multi-fidelity approach
with, e.g., shrinkage and other regularization schemes for
high-dimensional covariance estimation.
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A. Connection to Fréchet Averaging
In addition to being a control-variate estimator in the log-
Euclidean geometry, Equation (7) can also be viewed as a
Fréchet average. Recall that the LEMF estimator takes the
form

Log Σ̂
LEMF

n = Log Σ̂
(0)

n0

+

L∑
`=1

α`

(
Log Σ̂

(`)

n`
− Log Σ̂

(`)

n`−1

)
.

Defining the SPD “difference” matrices

D` = Exp(Log Σ̂
(`)

n`
− Log Σ̂

(`)

n`−1
) = Σ̂

(`)

n`
	 Σ̂

(`)

n`−1
,

` = 1, . . . , L

we equivalently have

Log Σ̂
LEMF

n = Log Σ̂
(0)

n0
+

L∑
`=1

α` Log D`. (25)

Assuming that α1, . . . , αL > 0 3, we see in (25) by defi-
nition of the Fréchet mean in the log-Euclidean geometry
(Arsigny et al., 2006) that Σ̂

LEMF

n satisfies

Σ̂
LEMF

n ≡ ELE,α(Σ̂
(0)

n0
,D1, . . . ,DL)

= arg min
Σ∈Sd++

(
d2

LE(Σ, Σ̂
(0)

n0
) +

L∑
`=1

α` d
2
LE(Σ,D`)

)

where α =
[
1 α1 · · · αL

]> ∈ RL+1. Thus Σ̂
LEMF

n

can be interpreted as a weighted Fréchet average between

high-fidelity Σ̂
(0)

n0
and the low-fidelity perturbations D`,

` = 1, . . . , L, with weights assigned according to how much

Σ̂
(0)

n0
is correlated in a generalized sense with each D`.

B. Proof of Proposition 3.1
We have defined the log-Euclidean multi-fidelity estimator
by

Σ̂
LEMF

n = Σ̂
(0)

n0
⊕

L⊕
`=1

α` �
(
Σ̂

(`)

n`
	 Σ̂

(`)

n`−1

)
=

Exp

(
Log Σ̂

(0)

n0
+

L∑
`=1

α`

(
Log Σ̂

(`)

n`
− Log Σ̂

(`)

n`−1

))
.

(26)

3If α` < 0 for some `, we can define β` = −α` and redefine
D` = Σ̂

(`)

n`−1
	 Σ̂

(`)

n`
by reversing the order of subtraction in order

to ensure that the Fréchet weights are all positive.

Because we have assumed n0, n1, . . . , nL > d, the sample

covariance matrices Σ̂
(`)

n`
, and Σ̂

(`)

n`−1
, ` = 0, . . . , L are

positive definite almost surely. That is, they are members
of Sd++. Because Sd++(⊕,�) is a vector space, it follows
immediately that the top line of (26)

Σ̂
LEMF

n = Σ̂
(0)

n0
⊕

L⊕
`=1

α` �
(
Σ̂

(`)

n`
	 Σ̂

(`)

n`−1

)
∈ Sd++

is positive definite. It remains to show that the bottom line
of (26) is equivalent to the top line. This we accomplish by
straightforward algebra,

Σ̂
LEMF

n = Σ̂
(0)

n0
⊕

L⊕
`=1

α` �
(
Σ̂

(`)

n`
	 Σ̂

(`)

n`−1

)
= Σ̂

(0)

n0
⊕

L⊕
`=1

α` �
(
Σ̂

(`)

n`
⊕ Exp(−Log Σ̂

(`)

n`−1
)
)

= Σ̂
(0)

n0
⊕

L⊕
`=1

Exp
(
α`

(
Log Σ̂

(`)

n`
− Log Σ̂

(`)

n`−1

))
= Σ̂

(0)

n0
⊕ Exp

(
L∑
`=1

α`

(
Log Σ̂

(`)

n`
− Log Σ̂

(`)

n`−1

))

= Exp

(
Log Σ̂

(0)

n0
+

L∑
`=1

α`

(
Log Σ̂

(`)

n`
− Log Σ̂

(`)

n`−1

))
.

(27)

C. Proof of Corollary 3.3
We first note that, by properties of inner and outer products
on Sd, for two random matrices A,B ∈ Sd with E[A] =
E[B] = 0 we have

E [〈A, B〉F] = E[Tr(A⊗B)]

= Tr(E[A⊗B]) = Tr(Cov[A,B]), (28)

where we have used linearity of trace. In the special case
where A = B we have

E[‖A‖2F] = E[〈A, A〉F] = Tr (Cov[A]) . (29)

We now proceed with the remainder of the proposition.

Recall that the EMF estimator is defined

Σ̂
EMF

n = Σ̂
(0)

n0
+
∑L

`=1
α`

(
Σ̂

(`)

n`
− Σ̂

(`)

n`−1

)
,

where α = [α1, . . . , αL]> ∈ RL are the control variate
weights and

Σ̂
(`)

n`
=

1

n`

∑n`

i=1
y

(`)
i

(
y

(`)
i

)>
,

Σ̂
(`)

n`−1
=

1

n`−1

∑n`−1

i=1
y

(`)
i

(
y

(`)
i

)> (30)
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are sample covariance matrices computed from {y(`)
i }

n`
i=1,

` = 0, . . . , L and we have assumed that E[y(`)] is known
and without loss of generality equal to 0, ` = 0, . . . , L.
Because the means of y(0), . . . ,y(L) are known, in defining
the SCMs in Equation (30) we have normalized by n` and
n`−1 to obtain unbiased sample covariance estimates. Under
this assumption the EMF estimator (2) with SCMs defined
as in (30) is unbiased,

E
[
Σ̂

EMF

n

]
=

E
[
Σ̂

(0)

n0
+
∑L

`=1
α`

(
Σ̂

(`)

n`
− Σ̂

(`)

n`−1

)]
= Σ.

Because of the unbiasedness, the Frobenius norm MSE of
Σ̂

EMF

n is thus equal to the trace of the covariance of Σ̂
EMF

n ,

E[||Σ̂
EMF

n −Σ||2F ] = E[||Σ̂
EMF

n − E[Σ̂
EMF

n ]||2F ]

= Tr(Cov[Σ̂
EMF

n ]).

The covariance of Σ̂
EMF

n can be decomposed

Cov[Σ̂
EMF

n ] = Cov[Σ̂
(0)

n0
]

+

L∑
`=1

α2
` (Cov[Σ̂

(`)

n`
] + Cov[Σ̂

(`)

n`−1
])

+

L∑
`=1

α`

(
Cov[Σ̂

(`)

n`
, Σ̂

(0)

n0
] + Cov[Σ̂

(0)

n0
, Σ̂

(`)

n`
]

− Cov[Σ̂
(`)

n`−1
, Σ̂

(0)

n0
]− Cov[Σ̂

(0)

n0
, Σ̂

(`)

n`−1
]
)

+

L∑
`=1

L∑
m=`+1

α`αm

(
Cov[Σ̂

(`)

n`
, Σ̂

(m)

nm
]− Cov[Σ̂

(`)

n`−1
, Σ̂

(m)

nm
]

− Cov[Σ̂
(`)

n`
, Σ̂

(m)

nm−1
] + Cov[Σ̂

(`)

n`−1
, Σ̂

(m)

nm−1
]
)

+

L∑
`=1

L∑
m=`+1

α`αm

(
Cov[Σ̂

(m)

nm
, Σ̂

(`)

n`
]− Cov[Σ̂

(m)

nm
, Σ̂

(`)

n`−1
]

− Cov[Σ̂
(m)

nm−1
, Σ̂

(`)

n`
] + Cov[Σ̂

(m)

nm−1
, Σ̂

(`)

n`−1
]
)

−
L∑
`=1

α2
`

(
Cov[Σ̂

(`)

n`
, Σ̂

(`)

n`−1
)] + Cov[Σ̂

(`)

n`−1
, Σ̂

(`)

n`
]
)
(31)

We will need a result analogous to Lemma 3.2 in Peherstor-
fer et al. (2016) in order to simplify (31).

Lemma C.1. Consider Σ̂
(`)

mi
= 1

mi

∑mi

i′=1 y
(`)
i′ (y

(`)
i′ )> and

Σ̂
(t)

mj
= 1

mj

∑mj

j′=1 y
(t)
j′ (y

(t)
j′ )>, where `, t ∈ {0, . . . , L}

and mi,mj ∈ Z+. It holds that

Cov[Σ̂
(`)

mi
, Σ̂

(t)

mj
]

=
1

max{mi,mj}
Cov[y(`)(y(`))>, y(t)(y(t))>]

Proof. Proceeding algebraically, we see

Cov[Σ̂
(`)

mi
, Σ̂

(t)

mj
] =

Cov

 1

mi

mi∑
i′=1

y
(`)
i′ (y

(`)
i′ )>,

1

mj

mj∑
j′=1

y
(t)
j′ (y

(t)
j′ )>


=

1

mimj
Cov

 mi∑
i′=1

y
(`)
i′ (y

(`)
i′ )>,

mj∑
j′=1

y
(t)
j′ (y

(t)
j′ )>

 .
y

(`)
i′ (y

(`)
i′ )> and y

(t)
j′ (y

(t)
j′ )> are independent except in the

case that i′ = j′. Thus the terms that remain are

Cov[Σ̂
(`)

mi
, Σ̂

(t)

mj
] =

1

mimj

min{mi,mj}∑
i′=1

Cov[y
(`)
i′ (y

(`)
i′ )>, y

(t)
i′ (y

(t)
i′ )>]

=
min{mi,mj}

mimj
Cov[y(`)(y(`))>, y(t)(y(t))>]

=
1

max{mi,mj}
Cov[y(`)(y(`))>, y(t)(y(t))>].

We return to Equation (31) with this result and simplify,
seeing that the doubly-indexed sums are zero,

Cov[Σ̂
EMF

n ] = 1
n0

Cov[y(0)(y(0))>]

+

L∑
`=1

α2
` (

1
n`

+ 1
n`−1

)Cov[y(`)(y(`))>]

+

L∑
`=1

α`(
1
n`
− 1

n`−1
)
(
Cov[y(`)(y(`))>, y(0)(y(0))>] +

+ Cov[y(0)(y(0))>, y(`)(y(`))>]
)

−
L∑
`=1

α2
`

2
n`
Cov[y(`)(y(`))>].

We rearrange and write the covariance of Σ̂
EMF

n compactly
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as

Cov[Σ̂
EMF

n ] = 1
n0

Cov[y(0)(y(0))>]

+

L∑
`=1

( 1
n`−1

− 1
n`

)
(
α2
`Cov[y(`)(y(`))>]

− α`
(
Cov[y(`)(y(`))>,y(0)(y(0))>]

+ Cov[y(0)(y(0))>,y(`)(y(`))>]
))

.

The MSE of Σ̂
EMF

n is equal to the trace of its covariance,

E[||Σ̂
EMF

n −Σ||] = Tr(Cov[Σ̂
EMF

n ])

=
σ2

0

n0
+

L∑
`=1

(
1

n`−1
− 1

n`
)(α2

`σ
2
` − 2α`ρ`σ0σ`)

which is the result we sought to show.

D. Proof of Proposition 3.2
Proof. Canceling the matrix logarithm with the matrix ex-
ponential in the LEMF estimator (7) yields∥∥∥Log Σ̂

LEMF

n − Log Σ
∥∥∥

F
=∥∥∥∥∥Log Σ̂

(0)

n0
+

L∑
`=1

α`

(
Log Σ̂

(`)

n`
− Log Σ̂

(`)

n`−1

)
− Log Σ

∥∥∥∥∥
F

.

Since ‖Σ− I‖F < h/4 < 1 we may define the matrix
logarithm through its Taylor series

Log(Σ) =

∞∑
k=1

(−1)k+1

k
(Σ− I)k , (32)

which converges absolutely. Similarly, by the triangle in-
equality∥∥∥Σ(`) − I

∥∥∥
F
≤ ‖Σ− I‖F +

∥∥∥Σ(`) −Σ
∥∥∥

F
≤ h

2
< 1 .

(33)
For the sample covariance matrices Σ(`)

n`
and Σ(`)

n`−1
, the law

of large numbers implies almost surely that for any δ` > 0
sufficiently large sample size n` guarantees

max
{∥∥∥Σ̂(`)

n`
−Σ(`)

∥∥∥
F
,
∥∥∥Σ̂(`)

n`−1
−Σ(`)

∥∥∥
F

}
< δ` , (34)

for ` = 0, . . . , L. Setting δ` = h/4 and applying the trian-
gle inequality again with the result of (33) gives

max
{∥∥∥Σ̂(`)

n`
− I
∥∥∥

F
,
∥∥∥Σ̂(`)

n`−1
− I
∥∥∥

F

}
<

δ` +
∥∥∥Σ(`) − I

∥∥∥
F
< δ` +

h

2
<

3h

4
< 1 . (35)

Expanding the Taylor series for each matrix logarithm up
to first-order (i.e. Log(Σ) ≈ Σ− I) and canceling out the
resulting identity matrices gives

∥∥∥Log Σ̂
LEMF

n − Log Σ
∥∥∥

F
=∥∥∥∥∥Σ̂(0)

n0
+

L∑
`=1

α`

(
Σ̂

(`)

n`
− Σ̂

(`)

n`−1

)
−Σ + M

∥∥∥∥∥
F

, (36)

where the matrix M is the remainder of the first-order Taylor
expansions

M =

∞∑
k=2

(−1)k+1

k
(Σ̂

(0)

n0
− I)k

+

L∑
`=1

α`

( ∞∑
k=2

(−1)k+1

k
(Σ̂

(`)

n`
− I)k

)

−
L∑
`=1

α`

( ∞∑
k=2

(−1)k+1

k
(Σ̂

(`)

n`−1 − I)k

)

−
∞∑
k=2

(−1)k+1

k
(Σ− I)k .

(37)

Applying both the triangle and reverse-triangle inequalities
gives

∣∣∣∥∥∥Log Σ̂
LEMF

n − Log Σ
∥∥∥

F
−
∥∥∥Σ̂EMF

n −Σ
∥∥∥

F

∣∣∣ ≤ ‖M‖F .

(38)
To bound the right-hand-side of (38), we again use the trian-
gle inequality and that

∥∥Ak
∥∥

F
≤ ‖A‖kF to obtain

‖M‖F ≤
∞∑
k=2

1

k

∥∥∥Σ̂(0)

n0
− I
∥∥∥k

F

+

L∑
`=1

α`

( ∞∑
k=2

1

k

∥∥∥Σ̂(`)

n`
− I
∥∥∥k

F

)

+

L∑
`=1

α`

( ∞∑
k=2

1

k

∥∥∥Σ̂(`)

n`−1
− I
∥∥∥k

F

)

+

∞∑
k=2

1

k
‖Σ− I‖kF .

(39)

By (35) and the assumption ‖Σ− I‖F < h/4, each series
in (39) converges absolutely. Bounding 1/k with 1 and
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factoring out a quadratic power for each term in (39) gives

‖M‖F ≤
∥∥∥Σ̂(0)

n0
− I
∥∥∥2

F

∞∑
k=0

∥∥∥Σ̂(0)

n0
− I
∥∥∥k

F

+

L∑
`=1

α`

∥∥∥Σ̂(`)

n`
− I
∥∥∥2

F

( ∞∑
k=0

∥∥∥Σ̂(`)

n`
− I
∥∥∥k

F

)

+

L∑
`=1

α`

∥∥∥Σ̂(`)

n`−1
− I
∥∥∥2

F

( ∞∑
k=0

∥∥∥Σ̂(`)

n`−1
− I
∥∥∥k

F

)

+ ‖Σ− I‖2F
∞∑
k=0

‖Σ− I‖kF .

(40)

Evaluating each of these geometric series gives the bound

‖M‖F ≤

∥∥∥Σ̂(0)

n0
− I
∥∥∥2

F

1−
∥∥∥Σ̂(0)

n0
− I
∥∥∥

F

+

L∑
`=1

α`

∥∥∥Σ̂(`)

n`
− I
∥∥∥2

F

1−
∥∥∥Σ̂(`)

n`
− I
∥∥∥

F

+

L∑
`=1

α`

∥∥∥Σ̂(`)

n`−1
− I
∥∥∥2

F

1−
∥∥∥Σ̂(`)

n`−1
− I
∥∥∥

F

+
‖Σ− I‖2F

1− ‖Σ− I‖F
.

(41)

By (35) we have that

max

 1

1−
∥∥∥Σ̂(`)

n`
− I
∥∥∥

F

,
1

1−
∥∥∥Σ̂(`)

n`−1
− I
∥∥∥

F

 <

1

1− 3h/4
< 4 , (42)

and similarly

1

1− ‖Σ− I‖F
<

1

1− h/4
<

4

3
. (43)

Substituting the bounds (42) and (43) into (41) gives

‖M‖F ≤ 4
∥∥∥Σ̂(0)

n0
− I
∥∥∥2

F

+ 4

L∑
`=1

α`

∥∥∥Σ̂(`)

n`
− I
∥∥∥2

F

+ 4

L∑
`=1

α`

∥∥∥Σ̂(`)

n`−1
− I
∥∥∥2

F

+
4

3
‖Σ− I‖2F .

(44)

Applying the bound (35) with (44) gives

‖M‖F ≤ 4

(
3h

4

)2

+ 8

L∑
`=1

α`

(
3h

4

)2

+
4

3

(
h

4

)2

≤

(
7

3
+

9

2

L∑
`=1

α`

)
h2 = Kh2 . (45)

Factoring using the difference of squares formula (a2−b2 =
(a− b)(a+ b)) gives∣∣∣∣∥∥∥Log Σ̂

LEMF

n − Log Σ
∥∥∥2

F
−
∥∥∥Σ̂EMF

n −Σ
∥∥∥2

F

∣∣∣∣ =∣∣∣∥∥∥Log Σ̂
LEMF

n − Log Σ
∥∥∥

F
+
∥∥∥Σ̂EMF

n −Σ
∥∥∥

F

∣∣∣
×
∣∣∣∥∥∥Log Σ̂

LEMF

n − Log Σ
∥∥∥

F
−
∥∥∥Σ̂EMF

n −Σ
∥∥∥

F

∣∣∣ ,
(46)

Applying the law of large numbers again, we know that
almost surely for sufficiently large sample sizes

max
{∥∥∥Σ̂EMF

n −Σ
∥∥∥

F
,
∥∥∥Log Σ̂

LEMF

n − Log Σ
∥∥∥

F

}
< 1 .

(47)
Combining the bound (45) with (38) and substituting
into (46) gives∣∣∣∣∥∥∥Log Σ̂

LEMF

n − Log Σ
∥∥∥2

F
−
∥∥∥Σ̂EMF

n −Σ
∥∥∥2

F

∣∣∣∣ ≤ 2Kh2 .

(48)
Taking the expectation and applying Jensen’s inequality
gives the result.∣∣∣∣E [∥∥∥Log Σ̂

LEMF

n − Log Σ
∥∥∥2

F

]
− E

[∥∥∥Σ̂EMF

n −Σ
∥∥∥2

F

]∣∣∣∣
≤ E

[∣∣∣∣∥∥∥Log Σ̂
LEMF

n − Log Σ
∥∥∥2

F
−
∥∥∥Σ̂EMF

n −Σ
∥∥∥2

F

∣∣∣∣]
≤ 2Kh2 . (49)

E. Proof of Proposition 3.4 and Corollary 3.5
Since the Euclidean MSE (Corollary 3.3) has the exact same
form as the MSE of the scalar multi-fidelity Monte Carlo
estimator in Peherstorfer et al. (2016), the optimal allo-
cations and weights there apply directly to the Euclidean
multi-fidelity covariance estimator (2) and in first-order to
the LEMF estimator (7), with the exception that our defini-
tions of σ2

` and ρ` are generalized for matrices. Equation 20
directly follows from (19).

F. Algorithmic Description and Code Sketch
of LEMF Estimator

The code shown in Figure 7 sketches an implementation
of the LEMF estimator. It is important to note that it only
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from numpy import cov
from scipy.linalg import logm, expm

# compute sample-size vector n[] and coefficients a[] as in Proposition 3.4
# collect samples n_l x d of level l = 0, ..., L in array samps[l]

S = logm(cov(samps[0].T))
for i in range(len(a)):
S = S + a[i]*(logm(cov(samps[i+1].T))-logm(cov(samps[i+1][:n[i]].T)))

S = expm(S)

Figure 7. This code sketches an implementation of the LEMF estimator. It builds on standard numerical linear algebra routines that are
readily available in NumPy/SciPy (Harris et al., 2020; Virtanen et al., 2020).

requires numerical linear algebra functions that are readily
available in, e.g., NumPy/SciPy (Harris et al., 2020; Virta-
nen et al., 2020). A detailed implementation to reproduce
the shown numerical results is provided in the supplemental
material.

G. Supplemental to “Motivating Example
with Gaussian”

Consider high-fidelity samples y(0) ∼ N(0,Σ) with Σ ∈
Sd++ and low-fidelity samples which correspond to high-
fidelity samples corrupted by additional independent noise,

y(`) = y + ε(`) , ε ∼ N(0,Γ(`)) . (50)

Because the samples are Gaussian we may compute ex-
plicitly the generalized variances (10) and generalized cor-
relations (9) needed for the optimal sample allocation in
Theorem 3.4.

Generalized variance For the generalized variance we
have that

Tr(Cov[y(0)(y(0))>])

= E
[∥∥∥y(0)(y(0))> −Σ

∥∥∥2

F

]
= E

[∥∥∥y(0)(y(0))>
∥∥∥2

F

]
− 2E

[〈
y(0)(y(0))>, Σ

〉
F

]
+ ‖Σ‖2F

= E
[
Tr(y(0)(y(0))>y(0)(y(0))>)

]
− ‖Σ‖2F .

Focusing on the first term we see

Tr

(∥∥∥y(0)
∥∥∥2

y(0)(y(0))>
)

=
∥∥∥y(0)

∥∥∥2 d∑
i=1

(
y

(0)
i

)2

=
∥∥∥y(0)

∥∥∥4

,

so that

Tr
(
Cov[y(0)(y(0))>]

)
= E

[∥∥∥y(0)
∥∥∥4
]
− ‖Σ‖2F ,

and is analogous to the formula Var[x] = E[x2] − E[x]2

for scalar random variables. For a multivariate Gaussian
random variable with zero mean we have that

E
[∥∥∥y(0)

∥∥∥4
]

= Tr(Σ)2 + 2Tr(Σ2) . (51)

Therefore,

Tr(Cov[y(0)(y(0))>]) = Tr(Σ2) + Tr(Σ)2 . (52)

Similarly, we may apply (52) for the low-fidelity samples
y(`) ∼ N(0,Σ + Γ(`)).

Generalized correlation In order to compute the gener-
alized correlation we compute the cross-covariance,

Tr(Cov[y(0)(y(0))>, (y(`))(y(`))>])

= E
[〈

y(0)(y(0))> −Σ, (y(`))(y(`))> −Σ(`)
〉

F

]
= E

[
Tr
(
y(0)(y(0))>(y(`))(y(`))>

)]
− Tr(ΣΣ(`))

= E
[(

(y(0))>(y(`))
)2
]
− Tr(ΣΣ(`)) ,

where we have used the notation Σ(`) = Σ + Γ(`). Writing
y(`) = y(0) + ε(`) and expanding the squared inner product
gives(

(y(0))>(y(`))
)2

=

(∥∥∥y(0)
∥∥∥2

+ (y(0))>ε(`)

)2

=
∥∥∥y(0)

∥∥∥4

+ 2
∥∥∥y(0)

∥∥∥2

(y(0))>ε(`)+(
(y(0))>ε(`)

)2

.

For the first term we may use (51) while for the second term
we have by independence that

E
[∥∥∥y(0)

∥∥∥2

(y(0))>ε(`)

]
=

E
[∥∥∥y(0)

∥∥∥2

y(0)

]>
E
[
ε(`)
]

= 0 .
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For the last term we rely on properties of the trace operator.

E
[(

(y(0))>ε(`)
)2
]

= E
[
Tr
(

(y(0))>ε(`)(y(0))>ε(`)
)]

= E
[
Tr
(

(y(0))>ε(`)(ε(`))>y(0)
)]

= E
[
Tr
(
y(0)(y(0))>(ε(`))(ε(`))>

)]
= Tr

(
E[y(0)(y(0))>]E[(ε(`))(ε(`))>]

)
= Tr(ΣΓ(`)) .

Combining everything gives the cross-covariance

Tr(Cov[y(0)(y(0))>, (y(`))(y(`))>])

= Tr(Σ)2 + Tr(Σ2) = σ2
0 , (53)

which is analogous to the scalar setting where Cov[y, ε] = 0
so that Cov[y, y + ε] = Var[y]. Using the notation σ0, σ`,
and ρ` defined in Section 3.3 we have that the generalized
correlation is given by

ρ` =
σ0

σ`
. (54)

Notice that σ` > σ and so ρ` < 1.

Example set up For the example presented in Section 4.1,
we select Σ randomly from the Wishart(4) ensemble, that
is, Σ = A>A where A ∈ R4×4 has i.i.d. standard normal
entries. The particular realization of Σ we obtained was

Σ =


2.52 −0.17 0.67 −0.98
−0.17 0.64 −0.29 0.35
0.67 −0.29 0.49 −0.52
−0.98 0.35 −0.52 1.31

 .
The noise covariance matrices defining the low-fidelity sam-
ples at each level ` ∈ {1, 2, 3} are given by

Γ(1) = 0.1I4×4, Γ(2) = 0.5I4×4, Γ(3) = I4×4 ,

and result in generalized correlations (9)

ρ1 ≈ 0.93, ρ2 ≈ 0.74, ρ3 ≈ 0.58 .

We impose sampling costs c0 = 1 and c` = 10−`−1 for
` ∈ {1, 2, 3}. Setting the computational budget to B = 15
and taking sample sizes bn∗c from Theorem 3.4 yields

n = 12, n1 = 199, n2 = 505, n3 = 2073 .

Using the derived sample allocation we draw the corre-
sponding number of samples from each level to obtain the
three multi-fidelity estimators: EMF (2), LEMF (7), and
the truncated estimator (22). For the truncated multi-fidelity
estimator, we set a threshold of δ = 10−16 on the eigen-
values. Additionally, we also draw nhigh = B/c = 15

high-fidelity samples and nlow = B/c3 = 1.5 × 105 low-
fidelity samples y(3) to compute single-fidelity estimates
with the same computational budget. The results reported in
Table 1 are estimated MSE averaged over 100 independent
trials. Across all 100 trials, about 5% of the EMF estimates
were indefinite.

H. Supplemental to “Uncertainty
Quantification of Steady-State Heat Flow”

For demonstration purposes, we show in Figure 8 the numer-
ical solution of the steady-state heat-flow problem (23) for
three different, randomly sampled parameters θ. Observa-
tions y(`), ` ∈ {0, 1}, consist of temperature measurements
at 10 equidistant locations over the spatial domain, where
` corresponds to the number of grid points used to numeri-
cally solve (23). Our goal in this example is to estimate the
covariance of y(0), the observations corresponding to the
highest number of solver grid points.

We perform a pilot study to estimate the generalized vari-
ances and correlations σ0, σ1, ρ1 needed to compute the
optimal multi-fidelity sample allocations n? = [n

(0)
? , n

(1)
? ]

and coefficients α?. We use 105 samples of θ for the pilot
study to avoid mixing errors of the optimal sample alloca-
tion with the MSEs of the estimators.

Figure 9 is analogus to Figure 2 and shows the MSEs of our
LEMF estimator compared to the MSEs of single-fidelity
and other multi-fidelity estimators, except that now the min-
imum and maximum MSEs over all 100 trials are shown
with error bars.

Figure 10a-b shows speedups of our LEMF estimator with
respect to the Euclidean and affine-invariant metric. As
the budget is increased, the Euclidean estimator becomes
indefinite less frequently, which can be seen in Figure 10c.

Figure 11 visualizes the convergence behavior of various
estimators. Our LEMF estimator converges more quickly
to the true value of Σ element-wise than the single-fidelity
estimators; this is particularly true for the diagonal elements
of Σ. The y-scale is comparable to that of Figure 3c and
the x-scale shows the costs and is the same as the x-axis of
Figure 3c.

I. Supplemental to “Metric Learning: Surface
Quasi-Geostrophy”

We follow the surface quasi-geostrophic (SQG) model for
the evolution of surface buoyancy b : X × [0,∞) → R in
the periodic domain X = [−π, π]2 × (−∞, 0] presented

18



Multi-Fidelity Covariance Estimation

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

nu
m

er
ic

al
so

lu
tio

n
u
(x
,θ

)

spatial domain x

Figure 8. Supplemental to heat flow example: Three sample solu-
tions (temperature) of the steady-state heat equation (23) corre-
sponding to different random parameters θ ∈ R4.

in Held et al. (1985) and Capet et al. (2008).

∂

∂t
b(x, t;θ) + J(ψ, b) = 0 , z = 0 ,

b =
∂

∂z
ψ

∆ψ = 0 , z < 0

ψ → 0 , z → −∞ .

(55)

Here x = [x, y, z]> ∈ X and the Jacobian is

J(ψ, b) =

(
∂ψ

∂x

)(
∂b

∂y

)
−
(
∂b

∂x

)(
∂ψ

∂y

)
. (56)

The SQG equation (55) is solved by applying a Fourier
transform and integrating in time with finite differences.
The parameter vector θ = [θ1, . . . , θ5]> defines the initial
buoyancy b0 : R2 → R at the surface z = 0 as well as the
flow. The initial buoyancy is given by the Gaussian

b0(x, y;θ) = − 1

(2π/|θ5|)2
exp

(
−x2 − exp(2θ1)y2

)
,

(57)
where θ1 is the log aspect ratio that determines the shape of
the ellipse, see Figure 12, and θ5 controls the amplitude. Of
the remaining parameters θ2 is the gradient Coriolis param-
eter, θ3 is the log buoyancy frequency, and θ4 is background
zonal flow along the x-axis.

The high-fidelity random variable consists of nine equally-
spaced observations of the solution b(x, T ;θ) with T = 24,
where b(·, · ;θ) is computed numerically using a time step of
size ∆t = 0.005 and 256 grid points along each coordinate
axis. The surrogate random variable consists of observations
of the solution at the same locations and time except with

b(·, · ;θ) computed numerically using only 64 grid points
along each coordinate axis. The costs of each sampling
each random variable are taken to be proportional to the
total number of spatial grid points used in the solvers, c0 =
2562 = 65, 536 and c1 = 642 = 4, 096. The observation
points are shown in plot (c) and (d) in Figure 12.

The input parameters θ are drawn from a Gaussian mixture
model where i ∈ {0, 1} is a latent variable determining the
mixture component sampled from. The full distribution of
θ is

p(θ | i) = N(µi,C) , i ∼ Bernoulli(1/2) ,

where

µ0 = [1, 0, 0, 0, 4]> , µ1 = [0.1, 0, 0, 0, 4]> ,

and

C =


0.32

0.0032

0
0.082

0.32

 .
Note that we fix the third parameter θ3 = 0, but the covari-
ance matrix of the output observations y(0) and y(1) will
still be positive definite.

The first class i = 0 corresponds to an initial buoyancy with
a larger log-aspect ratio, which introduces an instability,
while the second class i = 1 corresponds to a smaller log-
aspect ratio. Figure 12 shows the buoyancy at initial and
final time for stochastic inputs corresponding to both classes.
We sample the class variable i from a Bernoulli distribution
with parameter 1/2, i.e., i = 0 and i = 1 are drawn with
equal probability.

We define the mean relative error of distances MRE(A) for
the metric A with respect to the reference metric A0 as

MRE(A) =
1

5000

∑5000

i=1

|dA(yi,0)− dA0(yi,0)|
dA0

(y,0)
.
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Figure 9. Supplemental for heat-flow problem: Plots analogous to Figure 2, except that the minimum and maximum MSE over all 100
trials are shown as error bars. Note that the surrogate-only estimator is not shown to ease exposition. The Euclidean multi-fidelity
estimator is shown only in plot (c) because it becomes indefinite and therefore the MSE cannot be computed in the log-Euclidean and the
affine-invariant metric.
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Figure 10. Supplemental for heat flow problem: Plots (a) and (b) show the speedups of our LEMF estimator compared to the single-fidelity
estimator that uses the high-fidelity samples alone. Note that the Euclidean estimator is indefinite for more than 10% of the trials and thus
the speedup with respect to the affine-invariant metric cannot be computed. Plot (c) shows the percentage of the trails of the Euclidean
multi-fidelity estimator that lead to an indefinite covariance matrix estimate.
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Figure 11. Supplemental for heat-flow problem: The plot shows the convergence behavior of the estimators. Our LEMF estimator is closer
to the true value (dashed black) than the single-fidelity estimator, especially for low costs and for diagonal entries of the covariance matrix.
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(a) class i = 0, initial buoyancy (b) class i = 1, initial buoyancy

(c) class i = 0, final-time buoyancy (d) class i = 1, final-time buoyancy

Figure 12. Supplemental for metric learning: Plots show examples of the buoyancy at initial (top) and final time (bottom) for θ sampled
from class i = 0 (left) and i = 1 (right). Observations consist of solution values at nine spatial locations in the domain, as depicted in
plots (c) and (d). We use the observations to estimate a metric which will distinguish between observations corresponding to θ sampled
from class i = 0 and θ sampled from class i = 1.
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