PAC-Bayesian Generalization Bounds for Adversarial Generative Models

Sokhna Diarra Mbacke! Florence Clerc? Pascal Germain

Abstract

We extend PAC-Bayesian theory to generative
models and develop generalization bounds for
models based on the Wasserstein distance and
the total variation distance. Our first result on
the Wasserstein distance assumes the instance
space is bounded, while our second result takes
advantage of dimensionality reduction. Our re-
sults naturally apply to Wasserstein GANs and
Energy-Based GANs, and our bounds provide
new training objectives for these two. Although
our work is mainly theoretical, we perform numer-
ical experiments showing non-vacuous generaliza-
tion bounds for Wasserstein GANs on synthetic
datasets.

1. Introduction

Deep Generative models have become a central research
area in machine learning. Two of the most popular families
of deep generative models are Variational Autoencoders
(VAEs) (Kingma & Welling, 2014; Rezende et al., 2014)
and Generative Adversarial Networks (GANSs) (Goodfellow
et al., 2014). GANs are known for producing impressive
results in image generation (Brock et al., 2019; Karras et al.,
2019), generating fake images indistinguishable from real
ones. They also have been applied to video (Acharya et al.,
2018), text (de Rosa & Papa, 2021) and protein generation
(Repecka et al., 2021).

Motivation. In this work, we study the generalization
properties of GANs using PAC-Bayesian theory. Consider-
ing the prevalence of GANs in machine learning, the ques-
tion of generalization is important for numerous reasons.
First, quantitatively measuring the discrepancy between the
generator’s distribution and the true distribution is a difficult
problem. Indeed, there are known issues with the current
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evaluation metrics (Theis et al., 2016; Borji, 2019), and it
can be quite challenging to detect when the generator only
produces slight variations of the training samples. Moreover,
having generalization bounds not only contributes to the the-
oretical understanding of GANs themselves, but also to the
understanding of the structure of real-life datasets, if those
can be provably approximated by GAN-generated data. In
addition, given that GANSs are used for data-augmentation
in fields such as medical image classification (see e.g. Frid-
Adar et al., 2018), theoretical guarantees can substantiate
the soundness of such applications.

1.1. Notations and Preliminaries.

The set of K-Lipschitz functions defined on a space &’ is
denoted Lip - and the set of probability measures on X is
denoted M (X). Integral Probability Metrics (IPM, see
Miiller, 1997) are a class of pseudometrics' defined on the
space of probability measures. Given P, Q € M1 (X) and
a space F of real-valued functions defined on &, the IPM
induced by F is defined as

dr(P,Q)Zsup’/fdP—/fdQ‘- )

feF

Examples of IPMs include the total variation distance dpy/,
corresponding to the case F = {f: X - R: -1 < f <1}
and the Wasserstein distance Wj, corresponding to
JF =Lip;,.

Generative Adversarial Networks. GANs have two
main components: the generator g € G and the critic f € F,
where both G and F are parameterized by neural networks.
Given a n-sized training set S = {x1, ..., X, } iid sampled
from an unknown distribution P* on a space X, the genera-
tor is trained to produce samples that “look like” they came
from P* and the critic is trained to tell apart the real samples
from the fake ones. The original GAN of Goodfellow et al.
(2014) has been shown to minimize the Jensen-Shannon
divergence (JS) between the true distribution P* and the
generator’s distribution, denoted PY.

The original GAN suffers from many problems such as
training instability and mode collapse (Salimans et al., 2016).

"For the sake of readability, we will call also call pseudometrics
distances in this work.
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Upon providing some theoretical explanations for these
issues, Arjovsky et al. (2017) introduce the Wasserstein
GAN (WGAN), which replaces JS by the Wasserstein-1
distance (Villani, 2009) between P* and PY9. Thanks to
the Kantorovich-Rubinstein duality, the minimization of
W1(P*, P9) is equivalent to the following objective:

[F(x)] =

X~ P9

min max E
g f€Lip; | X~P

] S

In practice, however, Lip, is replaced by a family F of
neural networks referred to as the critic family. This leads
to the following objective

mindz(P*, PY), 3)
g

where dr is sometimes referred to as the neural divergence
or neural IPM (Arora et al., 2017; Biau et al., 2021), since
F is a family of neural networks.

Another variant of GANSs is the Energy-based GAN (Zhao
et al., 2017), which views the critic as an energy function
and uses a margin loss. More precisely, given a positive
number m called the margin, EBGAN’s critic and generator
minimize respectively

m}n {XNIEP f(x)+ xlEPg max (0, m — f(f())} ,

and
mgin {XNEPQ f(x) - XNEP f(X)} '

Note that the critic is constrained to be non-negative. Ar-
jovsky et al. (2017) showed that under an optimal critic, the
EBGAN’s generator minimizes (a constant scaling of) the
total variation distance drv (P*, P?).

Generalization. Since the true distribution P* is un-
known and the model has only access to its empirical coun-
terpart P}, the question of generalization naturally arises:
How to certify that the learned distribution PY is “close”
to the true one P*? The goal of this work is to study the
generalization properties of GANs using PAC-Bayesian the-
ory. More precisely, we prove non-vacuous PAC-Bayesian
generalization bounds for generative models based on the
Wasserstein distance and the total variation distance. Since
we use the IPM formulation of these metrics, our results are
naturally applicable to WGANs and EBGANS.

1.2. Related Works

There is a large body of works dedicated to the under-
standing of the generalization properties of GANs (Arora
et al., 2017; Zhang et al., 2018; Liang, 2021; Singh et al.,
2018; Uppal et al., 2019; Schreuder et al., 2021; Biau et al.,
2021). Given a family of generators G, a family of critics F,

and a discrepancy measure D, the usual goal is to upper
bound the quantity D(P*, P9), where § is an optimal so-
lution to the empirical problem mingeg D(Py, P9). From
a statistical perspective, the most common approach is to
quantify the rate of convergence of () := D(P*, P9) —
inf eg D(P*, PY), as the size of the training set n goes
to infinity. Assuming that the target distribution P* has a
smooth density, Singh et al. (2018); Liang (2021) and Up-
pal et al. (2019) provide rates of convergence dependent
on the ambient dimension of the instance space X’ and the
complexity of the critic family . Noting that the density as-
sumption on P* might be unrealistic in practice, Schreuder
et al. (2021) prove rates of convergence assuming P* is
a smooth transformation of the uniform distribution on a
low-dimensional manifold. This allows them to derive rates
depending on the intrinsic dimension of the data, as opposed
to its extrinsic dimension. Under simplicity assumptions on
the critic family, Zhang et al. (2018) provide upper bounds
for r(g), when D is the negative critic loss dz. They first
prove general bounds using the Rademacher complexity
of F, then bound this complexity in the case when F is a
family of neural networks with certain constraints. More re-
cently, Biau et al. (2021) developed upper bounds for 7(g),
but assuming D is the Wasserstein-1 distance 1W;. They
argue that since the use of dr in practice is purely moti-
vated by optimization considerations, W is a better way of
assessing the generalization properties of WGANSs.

One major distinction between this work and the ones cited
above, is that our definition of the generalization error does
not explicitly involve the modeling error inf cg D(P*, PY).
Instead, we define the generalization error as the discrep-
ancy between the empirical loss and the expected population
loss, allowing us to derive bounds that can be turned into
an optimization objective to be minimized by a learning
algorithm. Our approach to generalization is closer to the
one taken by Arora et al. (2017), who study the general-
ization properties of GANs by defining the generalization
error, for any generator g, as |D(P*, P9) — D(P*, PY)|,
where D( P, PY) is the discrepancy between the empirical
training and generated distributions. They show that models
minimizing W) do not generalize (in the sense that the gen-
eralization error cannot be made arbitrarily small, given a
polynomial number of samples), while models minimizing
dF do, under certain conditions on . A distinction between
our approach and the one taken by Arora et al. (2017) is that
we define the empirical risk as the expectation E D(P), PY)
with respect to the fake distribution P?, since in practice,
the samples defining P are drawn anew at each iteration.
Moreover, we study distributions p € Mi(g ) over the set
of generators, as well as individual generators g € G.

There are other differences between our approach and the
ones above. First, our bounds do not depend on the com-
plexity or smoothness of the critic family /. In other words,



PAC-Bayesian Generalization Bounds for Adversarial Generative Models

our generalization bounds apply systematically to any criticerative models based on the Wasserstein distance and the
family F , with no distinctions between the cases wHeris  total variation distance. First, assuming the instance space
a“small” subset oLip, and wheré= = Lip,. Theintuitive  is bounded, we prove generalizations bounds for Wasser-
explanation is that the complexity of the critic family is stein models dependent on the diameter of the instance
naturally “embedded” in the empirical and population risksspace. Then, we show that one can obtain bounds depen-
de ned in the PAC-Bayesian framework. Second, becauselent on the intrinsic dimension, assuming that the distri-
of the generality of the PAC-Bayesian theory, we make ndoutions are smooth transformations of a distribution on a
assumptions on the structure of the critic family, and somdow-dimensional space. Finally, we exhibit generalization
of our bounds do not even make assumptions on the hyounds for models based on the total variation distance. To
pothesis spac®. The fact that these results can be directlythe best of our knowledge, ours are the rst PAC-Bayes
applied to neural networks is a consequence of the generdlounds developed for the generalization properties of gen-
ity of PAC-Bayes bounds. Moreover, our bounds provideerative models. Our results naturally apply to Wasserstein
novel training objectives, giving rise to models that use theGANs and Energy-Based GANs. Moreover, our bounds
training data to not only learn the distributi®n, but also  provide new training objectives for WGANs and EBGANS,
obtain a risk certi cate valid on previously unseen data. leading to models with statistical guarantees. It is note-
worthy that we make no density assumptions on the true

Aside from the study of the generalization properties of S ) -
GANs. our work relates to the recent work of Ohana et alfind generated distributions. Although our main motivation

(2022), who develop PAC-Bayes bounds for “adaptative’ls theoretical, we perform numerical experiments showing

sliced Wasserstein distances. The sliced-Wasserstein dnon—vacuous generalization bounds for WGANS on syn-

tance (SW) (Rabin et al., 2011) is an optimization-focusec}%etlc datasets. We also report the results of preliminary

alternative to the Wasserstein distance. Given distribu’gxperlmentg on the MNIST dataset.

tionsP andQ on a high-dimensional space, SW computes ]
Wi (P1; Q) instead ofW,(P; Q), whereP; andQ; are 2. PAC-Bayesian Theory

projections ofP andQ on a 1-dimensional space. Note . .
PAC-Bayesian theory (introduced by McAllester, 1999) ap-
that the bounds developed by Ohana et al. (2022) apply tolies Probably Approximately Correct (PAC) inequalities to

the SW distance, whereas our bounds are developed for ﬂPeseudo-Ba esialearning algorithms—whose output could
Wasserstein distance between distributions on a high dimel: Y 9alg P

sional space. In addition, the bounds of Ohana et al. (202 © framgd as postenorprpbabnny dlstrlbu.tlon overa glags
L X . f candidate models— in order to provide generalization
focus on the discriminative setting, that is, the models the X .
o S : . .__bounds for machine learning models. Here, the term gener-
study optimize to nd the projections with the highest dis- =~ .
S alization bound refers to upper bounds on the discrepancy
criminative power. Then, they argue that these bounds ¢

. . etween a model's empirical loss and its population loss
be applied to the study of generative models based on thﬁe the loss on the trSe data distributionr)) pOptimizing
distributional sliced-Wasserstein (Nguyen et al., 2021). In;, " ’

) . . these bounds lead self-certi edlearning algorithms, that
contrast, our results are speci cally tailored to the generative . R
. i . .. __produce models whose behavior on the population is sta-
modeling setting and provide upper bounds on the differ:. . ) )
s . I . . tistically guaranteed to be close to their behavior on the
ence between the empirical risk of a critic and its population . .
risk ob;erved samples. PAC-Bayes h_as peen appheq to awide
' variety of settings such as classi cation (Germain et al.,
Finally, we mention a recent article (Ehef-Abdellatif = 2009; Parrado-Heandez et al., 2012), linear regression
et al., 2022) which uses PAC-Bayes to obtain generalizatioiiGermain et al., 2016; Shalaeva et al., 2020), meta-learning
bounds on theeconstruction lossf VAEs. In short, Clerief-  (Amit & Meir, 2018), variational inference for mixture mod-
Abdellatif et al. (2022) clip the reconstruction loss in order els (Cterief-Abdellatif & Alquier, 2018) and online learning
to utilize McAllester's bound (McAllester, 2003), which (Haddouche & Guedj, 2022). In recent years, PAC-Bayes
applies to[0; 1]-bounded loss functions. Moreover, they has been used to obtain non-vacuous generalization bounds
omit the KL-loss, meaning they do not analyze a VAE perfor neural networks (Dziugaite & Roy, 2018efez-Ortiz
se, but simply a stochastic reconstruction machine. Hencef al., 2021). See Guedj (2019) and Alquier (2021) for
theirs is not a PAC-Bayesian analysis of a generative modetecent surveys.

but of a reconstruction model. The wide variety of applications is due to the exibil-

1.3. Our Contributi ity of the PAC-Bayesian framework. Indeed, the theory

3. Qurtontributions is very general, and requires few assumptions. We con-
Bayesian theory to adversarial generative models. We dén unknown probability distributioR over an instance
velop novel PAC-Bayesian generalization bounds for gen-
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spaceX .2 Given a hypothesis clas$ and a real-valued loss  distributions, such as Gaussian or Laplace. Although the

function® : H X! [0;1 ), the empirical and population KL-divergence appears in most PAC-Bayes bounds, some

risks of each hypothesis2 H are respectively de ned as bounds have been developed with thenii divergence
(Bégin et al., 2016) and IPMs (Amit et al., 2022).

X
Iﬁs(h) = 1 “(h;xj) andR(h)= E [(h;x)]: Finally, note that Theorem 2.1 requires the prior distribution
Mo x P to be independent of the training st Even though this
restriction makes it easier to bound the exponential moment
(Rivasplata et al., 2020), it may also lead to large values of
the KL term in practice, since the posterior is likely to be

hypotheses. Similar to the risks for individual hypothe—far from the prior. A common strategy is to use a portion

th irical and t sks of te hvooth of the training data to learn the prior, while making sure
Ses, (f empirical and true nsks of an aggregate nypothesig;q portion is not used in the numerical computation of the
2 M ; (H) are respectively de ned as

bound (Rerez-Ortiz et al., 2021).

Rs( )= E [Rs(h)] andR( )= E [R(h)]: Aside from bounds for aggregate hypothese&sM 1 (H),
h h PAC-Bayes bounds can be formulated for individual hy-

The goal of PAC-Bayesian theory is to provide upper bound@0theses 2 H as well. Such bounds hold with high proba-
on the discrepancy betwe®( ) andRs( ) which hold ~ Pility over the random draw ofg single predmtmsamplgd
with high probability over the random draw of the training from the PAC-Bayesian posterior, and have appeared in, e.g.,
setS. As an example, consider the following general pAC_thonl (2907). In some cases, the derandomization step is
Bayes bound originally developed by Germain et al. (2009fUite stralghtfor_ward, asa result_of the structure of_ 'Fhe hy-
and further formalized by Haddouche et al. (2021). pothe_ses. For instance, Germain et al. (2009) _ut|I|z§ the
1 i o linearity of the hypotheses to express a randomized linear
Theorem 2.1.Let 2 M ;(H) be a prior distribution classi er as a single deterministic linear classi er. In the
independent of the dat®, : R* R* ! R* be aconvex

! ) -” general case, however, it can be quite challenging and costly
function, and 2 (0; 1) be a real number. With probability - 1, 4erangomize PAC-Bayesian bounds (Neyshabur et al.,

n
at Iea_stl over the randolm dawos P 7, the 2018; Nagarajan & Kolter, 2019; Biggs & Guedj, 2022).
fOIIOW'_ng holds for any 2 M 5 (H) such that and Below, we present a result by Rivasplata et al. (2020), who
' provide a general theorem for derandomizing PAC-Bayes

Instead of individual hypothesés2 H , PAC-Bayes focuses
on aposterior probability distributions over hypotheses
2 M 1(H). These distributions can be seersggregate

i 1 bounds.
D R()Rs() KL( ji )+log = 4  Theorem 2.2. With the de nitions and assumptions of The-
+log E E el (R(N:Rs(M) . ) orem 2.1, given a measurable functibn S H! R,
h s p n ' the following holds with probability at leagt  over the

o _ _ randomdraws o6 P " andh
whereKL( jj ) is the Kullback-Leibler divergence be-

tween distributions and . f(S;h) log 3—(h) +log 1, log hE E & (Sh.
s P "

The left-hand side of Equatiqd) quanti es the discrepancy ()
between the true risR ( ) and its empirical counterpart

. L . X Removing the expectation with respect to the hypothesis
Rs( ) for a given training seB, while the complexity term g P P yp

. S . . space, is very useful in applications to neural networks (Vial-
of the right-hand side involves the expectation with respecf, . ot 4 2021). Theorem 2.2 uses the Radon-Nikodym

toS P . Asthe data distributio® '? unknown, the . derivative of with respect to , which can lead to high
IaFter term need_s to be upper-bounded in order to obtain Jariance when the bound is used as an optimization objec-
hite and numerically computable bound. tive for neural networks. Viallard et al. (2021) empirically
Theorem 2.1 requires , Which is classic in PAC-Bayes highlighted this phenomenon, and formulated a generic dis-
bounds and necessary for the KL-divergence to be de nedntegrated bound where the Radon-Nikodym derivative is
However, it also requires which seems a bit more replaced by the Renyi-divergence betweeand .

restrictive. As noted by Haddouche et al. (2021), one has

to make sure that and - have the same support, which is 3 pAC-Bayesian Bounds for Generative
the case when they are from the same parametric family of Models

2A vast majority of the PAC-Bayes literature is devoted to theTh. fi t . Its. Wi id tri
prediction setting where each training instance is apay) of IS secton presents our main resulis. vve consider a metric

some featureg and a labely. We adopt slightly more general SPaceX; d), an unknown probability measuke onX and
de nitions that encompass unsupervised learning. atraining seS = fxy;:::;xngiid sampled fronP . The
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empirical counterpart @ de ned byS is denoted®,, . We

also consider a hypothesis spd&such that each generator

g 2 G induces a probability measuR® on X, from which
P9 " are generated.
Thus,

X 1
x, andP9= =

1
P, = =
n i=1

n Ri;
i=1

where 4, is the Dirac measure on samplie

3.1. Bounds for Wasserstein generative models

Let us consider a subsEt Lip; that issymmetricmean-
ingf 2 F implies f 2 F. We emphasize thd& can
be a small subset dfip,, or the whole setip,. Given a
generatog 2 G, we de ne its empirical risk as

We (Py;P9) = E[dr (P PRI (6)

where the expectation is taken with respect to the iid sam-

ple Sy that induces? ¢ anddr (P, ; P?) is the IPM induced
by F (Equation 1).

The generalization error is de ned as

E [WF (Pnrpg)] W F (anpg)y
S P N

Proof Idea.We provide a detailed outline of the proof here.
The full details can be found in the supplementary material
(Section A.2).

The proof of (i) relies on a technical lemma (Lemma A.3).
It is possible to viewdr (P, ; P9) as a functioiX?" | R
asP, (resp.PQ) is the uniform distribution om samples
that were selected accordingfo (resp.P?). Lemma A.3
states thadl (P, ; P9) has the bounded differences property
with bounds =n, meaning that if we were to change only
one sample, the new value @f (P, ; P¢) would differ by

at most =n (see De nition A.1). The proof (provided in
the appendix) uses properties of g and the fact that

F  Lip;.

We then use a result used to prove McDiarmid's inequality
(Lemma A.2, previously used by Ohana et al. (2022) for
their bounds on the sliced Wasserstein distance) and Fubini's
theorem to obtain that

2 2

an

ISE[Y] exp
where

- 9. g.
Y gESE exp SEg[dF(anPn)] dr (P75 Py)

namely the difference between the population and empirical hen, Markov's inequality combined with this result yields

risks. These de nitions can be extended to aggregate ge#fat with probability at least

erators by taking the expectation according ®M 1 (G).

over the random draw of
the training ses,

The following theorem provides bounds on the generaliza- 2 9

tion error of both (i) aggregate and (ii) individual generators. Y
Lip, be a symmetric set of real-

Theorem 3.1. LetF

valued functions orX, = sup,.,ox d(x;x9 < 1

be the diameter oK, P 2 M 1(X) be the true data-

generating distribution an& 2 X " a n-sized iid sample

from P . Consider a set of generatofa such that each

g 2 G induces a distributiori?9 on X, a prior distribution
overG, and real numbers> Oand 2 (0;1).

(i) For any probability measure overG such that
and , the following holds with probability at
leastl over the random draw d3:

E EMWe (PP E We (PyiPY)]

2
T KL )+log T+

an ()

(i) For any probability measure over G such that
and , the following holds with probability at
leastl over the random draw d8 andg

ISE[WF (Pn;Pg)] W F (Pn;Pg)

2

4n (8)

% logS-(g)+1og T+

“exp

4n

The rest of the proof follows the main steps of the proof of
Theorem 2.1, as presented by Haddouche et al. (2021). We
use the Radon-Nikodym derivatives to change the expecta-
tion overg into an expectation ovey . Applying

log (a monotone increasing function) to the inequality and
then using Jensen's inequality for concave functions, with
some further rewriting, yields (i).

In order to obtain (ii), we study = log Es[Y]. Similarly

to what happens in the proof of (i), we have that %.
However, using Jensen's inequality for convex functions,
we can exchange the expectation o8grandexp in the

de nition of Y to yield a new inequality. Combining it with

previous result %, we obtain that

2

logE E e (Es Esglde (PriPR)] Esg de (P iP)) .
Sg 4n

We then use the general desintegrated bound by Rivasplata
et al. (2020) stated in Theorem 2.2. We take

FSg= E [de(Py; PO Elde (PP
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Previously obtained inequality enables us to bound Indeed, the manifold hypothesis states that most high-
dimensional real-world datasets lie in the vicinity of low-

) dimensional manifolds. There is a vast body of work ded-
4n ' icated to testing this assumption and estimating the intrin-
hi . . %ic dimension of commonly used datasets (Fodor, 2002;
w |£:h gives us the desired result and concludes the pro%arayanan & Mitter, 2010 Fefferman et al., 2016; Pope
of (i). et al., 2021). Moreover, latent variable generative models
Note that our desintegrated bouf8®) still has the expecta- such as VAEs (Kingma & Welling, 2014), GANs (Good-
tion with respect to the fake sampg. Unlike the usual fellow et al., 2014) and their variants exploit the manifold
PAC-Bayesian bounds which are mostly applicable to supeRypothesis by learning models which approximate distribu-
vised learning, the loss we are bounding requires not onl§ions over high-dimensional spaces with transformations of
some data from the unknown distribution, but also somdow-dimensional latent distributions. This is also a main
data depending on the hypotheses. assumption of Schreuder et al. (2021), whose rates of con-
vergence are dependent on the intrinsic dimension of the
instance space. Taking a similar approach, we show that
by assuming that the true distribution is a smooth trans-
{ormation of a latent distribution over a low-dimensional
hypercube, we can prove a PAC-Bayesian bound depending
Bn the intrinsic dimension.

2 2

h i
logE E € (59
Sg

Theorem 3.1 requires the sampEggfrom the generated
distribution to have the same simeas the training set. In
practice, this is not a problem, since the user can easil
sample fromP 9. One might wonder, however, if the bounds
could be improved by increasing the number of fake sample
In our approach, the answer is no. Indeed, if the siZ8,d6

m 6 n, then we obtain bounds with last term; replaced  Before stating our next result, we recall the de nition of a
by 1 2 pushforward measure.

min(min) ) De nition 3.3 (Pushforward Measure)Given measurable
Although Theorem 3.1 provides upper bounds on the ©Xspaces( andZ, a probability measurB; overZ, and a

pected distance between empirical measures, it also impliea5suraple functiog: Z ! X, the pushforward measure

upper bounds on the distance between the full distributiongyg neg by g andP; is the probability distributiory]P;
as shown in the following corollary. onX de ned as

Corollary 3.2. With the de nitions and assumptions of The-
orem 3.1, the following properties hold for any probability 9lPz (A) = Pz(g '(A));

measure such that and
for any measurable st X . In more practical terms, sam-

(i) With probability at leasi.  over the random draw  Plingx fromg]Pz means sampling a latent vecor Pz

of S: rst, then settingx = g(z). For example, a GAN's genera-
tor de nes a pushforward distribution.
JE dr (P ,P9) E Wr (P P9)] Theorem 3.4. Let P 2 M 1(X) be the true data-
1 1 2 generating distribution an® 2 X " a n-sized iid sample
+ = KL( jj )+log = + a fromP . We consider a set of generatdessuch that each
n

g 2 G induces a distributio?® on X, a prior distribution
overG, and real numbers> Oand 2 (0;1). We also
(i) With probability atleasi. ~ over the random draw  consider a latent spacg = [0; 1] , a latent distribution
ofSandg : P, onZ, and a true generatog : Z ! X such that
P = g]Pz and eachg 2 G is a functiong : Z ! X
with P9 = g]Pz . Finally, we assum& [f g g Lipy for
some positive real numbé&r.

de (P P9 W £ (Py;PY)
1 d 1 2
+ = log (@) +log = +

4n

(i) For any probability measure overG such that
The proof of Corollary 3.2 is in the supplementary material and , the following holds with probability at
(Section A.2). As a special case, when= Lip,, Corol- leastl  over the random draw c&:
lary 3.2 provides upper bounds on the Wasserstein distance
between the full distribution® andP9. gE |Sz[vvF (P, ;P9I gE We (P,;P9)]
The manifold assumption. The bounds of Theorem 3.1 1 KL( jj )+log 1 + K 2dz : ©
depend on the diameter of the instance space, which can be 4n

a handicap for real-world datasets such as image datasets.

6
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(i) For any probability measure overG such that leastl over the random draw d3:
and , the following holds with probability at
leastl  over the random draw & andg gE ISE[DF (P,;P9)] gE [De (P,;P9)]
-pY -pdY 1 . 1 4 (11)
ISE[VVF(Pn,P)] W e (P,;P9) Z KL( jj )+log = + —:
n
1 lo i( )+lo 1, K ’d, . (10)
gd g ¢ 4n

(i) For any probability measure over G such that
and , the following holds with probability at

The proof can be found in Section A.3 in the appendix. The least1 over the random draw &8 andg

proof is very similar to that of (i) of Theorem 3.1 but the
technical lemma we rely on differs: instead of bounding
small perturbations af (P, ; P9) using the diameter ,

we bound those byﬂ]i (see Lemma A.5). E[Dr (P,;P9] D ¢ (P,;P9)

As noted by Schreuder et al. (2021), the Lipschitz assump- d 1
tion on the true generatgy may be realistic in practice. — log—(g)+log - +
Indeed, the generator learned by a GAN is a Lipschitz func-

tion of its input (Seddik et al., 2020) and GAN-generated

data has been shown to be a good substitute for real-life datBhe proof of Theorem 3.5 is in the appendix (Section A.4).
in many applications (Frid-Adar et al., 2018; Wang et al.,The proof is very similar to that of (i) of Theorem 3.1 but
2018; Sandfort et al., 2019; Zhang et al., 2022). the technical lemma we rely on differs: instead of bounding
small perturbations of (P, ; P9) using the diameter ,

we bound those b)% (see Lemma A.7). A result similar
to Corollary 3.2 for bounding the distance between the full
distributions is also given by Corollary A.8.

4 (12
F.

A result similar to Corollary 3.2 can be proven for Theo-
rem 3.4 (see Corollary A.6).

3.2. Bounds for Total-Variation generative models _ o
Note that unlike the bounds for the Wasserstein distance,

In this section, we prove PAC-Bayesian generalizationhe hounds for the total variation distance do not involve the
bounds for models based on the total variation distancgjze of the latent or instance space. This is not surprising,
One such model is the EBGAN (Zhao et al., 2017). IN-sincedry can be seen as a special casé\af when the
deed, Arjovsky et al. (2017) show that given an Optimalunderlying metric orX isd = 1y ,;. Results by Arjovsky
critic, the EBGAN's generator minimizes a constant scalinget 5. (2017) show that the topology induced by the total vari-
of the total variation distance between the real and faketion distance is as strong as the one induced by the Jensen

distributions. Shannon divergence, implying that EBGANs may suffer
Let us assumeF is a symmetric set of functions from some of the issues of the original GAN. Therefore, we
f :X! [ 1;1]and denote focus our experiments on WGANSs.
. - . . 3.3. Rate of convergence
D (PniP9) = E [dr (Pn: P J

The rate of convergence of the bounds proposed in this work
depends on the choice of the hyperparameté&Zhoosing
= n leads to a fast rate of 1, but the bounds do not con-
verge to0. The optimal rats for a convergenceds n 172
and is obtained with = " n. Note that unlike previous
Theorem 3.5. Let(X ; d) be a metric space® 2 M 1(X)  results for WGANSs (e.g. Biau et al., 2021; Schreuder et al.,
be the true data-generating distribution asd2 X " an- ~ 2021), our optimal rate of convergence does not depend on
sized iid sample fror® . Consider a set of generatos  the (intrinsic or extrinsic) dimension of the dataset. This is
such that eacly 2 G induces a distributioP?¢ on X, a  because our rates quantify the speed at which the empiri-
prior distribution overG and real numbers > 0 and cal risk of a distributiorP 9 reaches its pOpUlatiOn risk. In
2 (0;1). contrast, the usual rate of *=9, whered is the (intrinsic
or extrinsic) dimension of the instance spaceguanti es
the speed at which the population risk of the distribution
(i) For any probability measure overG such that P9 minimizing the empirical problemming,g D(P,,; P9)
and , the following holds with probability at reaches the best possible performainég,c D(P ;P9).

WhenF is the set of al[ 1; 1]-valued functions de ned on
X, thenDg (P, ; P?9) is the expected total variation distance
between the real and fake empirical distributions.
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4. Experiments Computational cost. The additional cost of training using
our objective is very low. Indeed, we optimize the Gibbs
posterior during training, instead of averaging over multiple

Before presenting our experiments, we discuss some of thgeneratorg . This means that at each iteration, we
practical aspects of minimizing PAC-Bayesian bounds. Firsttompute the empirical risk using samples from the training
we use probabilistic neural networks (Langford & CaruanasetS and the distributiof? 9 given by a random generator
2001) with a Gaussian distribution on each parameter. 9 . Moreover, since both the prior and the posterior are
Gaussian distributions with diagonal covariance matrices,
Prior learning.  As illustrated by Equatioif7) the opti- the KL dive'rgence is easily computed (seéz-Ortiz et al.,
mization of PAC-Bayes bounds requires a tradeoff betwee021, Section 5.2).
the empirical risk and the KL divergen&d.( jj ). When
using neural networks, controlling the KL divergence can beNumerical computation of the bounds. The numerical
challenging, given the high dimensionality of the hypothesiscomputation of our (non-desintegrated) bounds requires
classH in that case. If the prior is independent from the the empirical risk, the KL divergence, and an additional
data-generating distribution, then an optimal posteritr  term dependent on the data-generating process (for instance,
likely to be very far from , leading to a KL divergence that Equation(7) requires the diameter of the instance space,
is orders of magnitude larger than the empirical risk. Towhile Equation(9) requires the intrinsic dimension and the
circumvent this issue, it is common in the PAC-Bayes literaLipschitz constant of ). For real-life datasets, both the in-
ture (Ferez-Ortiz et al., 2021) to use a portion of the trainingtrinsic dimension and the smoothness of the data-generating
set to learn the prior. Given a training set of size, the  process are unknown. Although there exists estimations
prior's mean is learned omg < n samples, the posterior ~ of the former for some datasets (e.g. Pope et al., 2021),
is learned on alh samples, and the bound in computed onto the best of our knowledge, there are no estimations of
the remainingn  ng samples. Both and have diagonal the latter in the literature. Finally, note that although the
covariance matrices, and the prior's covariance matrix igoounds for WGANs assume the critic famfy  Lip,, in
chosen, whereas the posterior's is learned. Note that thefgractice, once can still optimize the bounds and obtain risk
are other strategies for choosing a PAC-Bayesian prior, sucberti cates when the critic network’s Lipschitz constat
as xing the mean vector t0 or random values from the is larger, sincé 2 Lip, if and only if Kf 2 Lip, . Hence,
standard normal distributioN (0;1). However, learning in order to obtain valid risk certi cates, one needs to scale
the prior usually leads to a more balanced optimizatiorthe bounds accordingly, which requires the Lipschitz con-
objective and tighter risk certi cates. stant of the critic network to be known. This is not the
case when using techniques such as the celebrated gradient
The impact of . In our experiments the hyperparameter, Penalty (Gulrajani et al., 2017).
o plays two roles. First, the prioris an isotropic Gaussian
distribution with a covariance matrixl, and second, the 4.2. Synthetic datasets
initial value of the posterior's covariance matrix is alsg .
Note that the covariance matrix of the posterids a learned
diagonal matrix , but we use gl as the initial value.
Hence, o has a dual impact on the optimization. Since
the KL divergenceKL( jj ) gets larger as the prior gets
narrower, if ¢ istoo small, then the optimization may be too
focused on the KL term, hence neglecting the empirical ris
However, because of the initial value of , the variance of
the posterior is likely to remain close to the variance of
the prior, which helps control the KL divergence. On the
other hand, if ¢ is too large, then minimizinglL( jj )

4.1. Preliminary Discussion

We perform experiments on two synthetic datasets: a mix-
ture of 8 Gaussians arranged on a ring, and a mixture
of 25 Gaussians arranged on a grid. These are standard
synthetic datasets for GAN experiments, see, e.g, Du-
moulin et al. (2017); Srivastava et al. (2017); Dieng et al.
k(2019). In order to formally ensure the diameter of the in-
Stance space is nite, we truncate the data so that the rst
dataset is contained in a disc of radRi2 and the second
dataset in a square of si@2, both centered at the ori-
gin. We optimized the right-hand side of Equatia plus

may require the posteriorto have a large variance as well, Ey [We (P,;P?)], estimating the latter expectation by

hence putting some weight on suboptimal generators anﬁemdomly sampling 100 generators fromin our chosen

) i \ .. models, both the generator and critic are fully connected net-
worsening the generative model's performance. This is

illustrated in Figures 1 and 2: wher = 0:1, the model's Wq_r_ks, and we use the Bk orthonormallzgtlon algor.|thm
- : : Bjorck & Bowie, 1971) to enforce Lipschitz continuity on
empirical and true risks are relatively large, compared t

the other values of 5. Figures 4 and 5 in the appendix he critic. We performed experiments using both ReLU and

show samples generated from the different models. One Ca%roupSort activations (Anil et al., 2019), and we report the

observe that for both synthetic datasets, wher 01, the results using GroupSort as it leads to more stability.
models do not learn the data-generated distribution well. The standard deviation of the prior is denoted g

8
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Figure 1.Negative critic losses and risk certi cates of a model Figure 2.Negative critic losses and risk certi cates of a model
trained on a mixture of 8 Gaussian distributions arranged on a ringrained on a mixture of 25 Gaussian distributions arranged on a
The x-axis shows the value of the prior parameters' stdSee  grid. The x-axis shows the value of the prior parameters' std
Appendix (Fig. 4) for illustrations of the generated samples. See Appendix (Fig. 5) for illustrations of the generated samples.

and we performed a sweep over the values 2  we used different values of, and computed the FID scores
f10 7;10 ®;10 °;0:000% 0:001;0:01;0:1g, and x the  on 2000 random samples from each model. See Section B.2
hyperparameter = 137, wheren is the size of the train-  for more details.

ing set. The standard deviation of the posterior is learned,
and we use ¢ as a starting point. Samples from the learned

distributions are displayed in the appendix (Figures 4 and 5).

Figures 1 and 2 show the risks (negative critic losses) ofRECENt years have seen a growing interest in PAC-Bayesian
the training and the test sets, as well as the risk certi catdheory, as a framework for deriving statistical guarantees for

given by Equatior(7), for the different values of the hyper- avariety c_)f machipe Iearning models (Guedj, 2019). Despite
parameter o. The expectations with respectdo  are the long list of topics for whlch PAC-BayeS|ar! bqunds havg
approximated by averaging ov&60 generators indepen- l?een de\_/eloped, generative models were missing from this
dently sampled from. list. In th!s work, we developed PAC-Bayesian bounds for
adversarial generative models. We showed that these bounds
We observe that the learned generator has similar empiricglan be numerically computed and provide non-vacuous risk
and test risks. This is a known asset of learning by opticerti cates for synthetic datasets.
mizing a PAC-Bayesian bound, as it prevents over tting the . . .
training samples. We even notice that some model instancd future works, we will explore risk certi cates on real-
have an empirical risk slightly larger than their test risk, alife datasets_. Unl|ke_ synthetic datas_ets_ fo_r which we can
phenomenon rarely observed when training a discriminativé'ave all the information such as the intrinsic and extrinsic
(prediction) model. In our generative setting, this indicates?imensions, real-life datasets come with the challenge that
that the critic's ability to distinguish the real samples from SOMe information is unknown. Computing the bounds of
the fake ones is consistent, whether the real samples af&'€0rem 3.1 would require the use of the diameter of the
from the training set or the test set. The computed risk ceihstance space, which is clearly irrelevant to the structure of
ti cates lie in the same order of magnitude than the test los<'€ dataset. On the other hand, the bounds of Theorem 3.4
which quali es them asion-vacuous require some information about the smoo_thness of the Qgta
generating process. In future works, we will explore empiri-
cal estimations of that quantity.

. Conclusion and Future Works

4.3. Experiments on MNIST

We performed preliminary experiments on the MN'STAcknowledgementS

dataset (Deng, 2012) using the standard DCGAN archi-

tecture (Radford et al., 2016), which requires the images td his research is supported by the Canada CIFAR Al Chair
be re-sized to 64 x 64 pixels. Here, we used gradient penaltiProgram, and the NSERC Discovery grant RGPIN-2020-
(Gulrajani et al., 2017) to enforce Lipschitz continuity on 07223. F. Clerc is funded by IVADO through the DEEL
the critic. Similar to the experiments on synthetic datasetgroject and by a grant from NSERC.
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A. Proofs
A.l. Preliminaries

We start this section with the following de nition.

De nition A.1 (Bounded differences)A functionf : X" ! R is said to have thbounded differences properifyfor some
non-negative constants;:::;c,, we have foran i n,

In other words, if we change th# argument of while keeping all the others xed, the value of the function cannot change
by more tharg;.

The following lemma is used to prove a special case of McDiarmid's inequality (McDiarmid, 1989).
Lemma A.2. Letf : X" ! R be a function that has the bounded differences property with constadts i n. Then,

h h i
Eexp E[Z] Z exp 2=8; (13)

P
where =, &
Below, we include a summary of the proof by Ying (2004) (with minor modi cations) for completeness.

Proof. The proof relies on the clever use of the following functions: for eachk  n, we de ne a functiorg, : X¥ ! R
by

where we have denotest = inf », g«(X1;:::;Xk) andbx = supy, ok(X1;:::;Xk). These results allow us to conclude
using Hoeffding's lemma that for eveky
4

X
Finally, we use the fact that
X
ElZ] Z=  g(X1;:11%k)
k=1

to rewriteE e (E[Z] 2) ysing Fubini's thorem. We get the desired result by induction using previously-shown inequality.
O

A.2. Proof of Theorem 3.1
Lemma A.3. LetP; Q be probability measures ok andP,; Q, be the empirical distributions corresponding to the iid
samplexi;:::;X, Pandyg;:::;yn  Q respectively, meaning
1 X 1 X
Pa)= = () and Qu()= Sy (x)
i=1 i=1

foranyx 2 X .
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LetF Lip, be a symmetric subset bip,. Recall the de nition of the IPM de ned by :
z z
dr (P;Q) = sup fdP fdQ
f 2F

Then the empirical IPMI: (P,; Qn), seen as a functiok 2" | R, has the bounded differences property vath - and
= diamX),foralll i 2n.

Proof. We show, without loss of generality, thgt = —. We have

( ) # ! #)
1 X X X 1 X
=5 sup f(xi) f(yi) sup f(xi)+ f(x3) f(yi)
foF i i=1 foF g i=1
AR X0 X 1 X "
o Sup f(xi) f(yi) f(xi) f(xp)+ f(yi)
f2F i i=1 i=1 i=1

~suplf (xn)  f ()]
f2F

ot
The rstinequality (second to third lines) follows from a property of the supremum and the last inequality follows from
F Lip; and dianfX)= . O

WhenF = Lip,, then Lemma A.3 states that the Wasserstein distance between empirical measures has the bounded
differences property, which follows from a result by Weed & Bach (2019).

Combining Lemmas A.2 and A.3 yields the following result.
Proposition A.4. LetP andQ be two probability measures ofi andP,, ; Q, be their empirical counterparts corresponding
to Sp andSq respectively. Then
h h ii 2 2
E exp E[dr (Pn;Qn)]  dr (Pn;Qn) exp

where both expectations are taken o(8p;Sg) P " Q ".

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1.

(i) For a given generatay 2 G, Proposition A.4 implies
2 2

4an

g. g.
SEQ exp S;Eg [dF (Pn ) F)n )] dr (Pn , Pn) exp
where we writeEs;s, instead ofEss ) p n po o in order to simplify the notation. Taking the average with

respect to the prior 2 M 1 (G) and using Fubini's theorem, we get

2 2
4n

g g-
EgESEg exp SEg[dF(PnyPn)] dr (P7; Pn) exp

E (14)
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Now, de ning
def g. g. .
Y gE SEg exp S:Eg [dF (Pn!Pn)] dF (Pn'Pn) ’
we have thaY is a positive random variable and Markov's inequality implies
1
PY ZE[Y]

for any real number 2 (0; 1). Taking complementary event, we get that with probability at I&éast over the

randomdrawoS P ",

2 2
an

where the last inequality follows froifi4). So we've just shown that with probability at ledst  over the random

draw of the trainingsed P ",

Y 1 E[Y] }exp

2 2
4n

1
g. g. =
gE SEg exp SEQ [de (PPl de (PJ;P,) exp

Now, assume 2 M 1 (G) is such that and . We can change the expectation with respect iiato an
expectation with respect tousing the Radon-Nikodym derivati\%;L to obtain

d 1
gE di SEg exp SEg [dF (Pr$1 Pn )] dF (Pr$7 Pn) —exp

Taking the logarithm on both sides and using Jensen's inequality yields

d 1
g- g. =
E Elog &+ E[CPHP) d(PHP)  logT+

d

which is equivalent to
2 2

4n '’

d 1
Elog & +EE  E[PIP) d-(PEP)  logT+

1
since andg— = g— . This last inequality can be re-written as follows:

h i 2 2
. 1
& E Eld= (PP de(PRiP,)  KLC i )+log =+ —

or, using the linearity of the expectation and the de nitidz (P, ; P9) = Es, [dr (P,;PJ)],
2 2

EEWE (PiP9)] E We (PEP,) KL i )+log *+
The proof above uses the ideas of Germain et al. (2009) and Haddouche et al. (2021). We provided details for
completeness and clarity.

(ii) Denote h i
=logE E E e (Es Esgldr (P, P de (P, iP2)) :
Sg s,

First, using Fubini's theorem and Proposition A.4 we have
i
=log E EE e (Es Esglde (P, P de (P, :P2))
g SS,

h 2 2
log E e
g

2 2
4n

15
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Then, using the convexity of the exponential and Jensen’s inequality, we obtain

¢ =logE E E |*(EsEsgldr (P P)—dr (P, 3))]
S g~m Sy

> log]E E eEsq(Es Esgldr (P, P))—dr (P, P))
g’\"ﬂ'

=1logE E e A(Es Esg[dr (P, P3)]~Esg de (Pn,PR))
S g~m
The combination of these two inequalities yields

2/A2
logE E (B Esglde (o PI-Esq dr (P, PY) < X 27 (15)
S g~m 4n

Now, a result by Rivasplata et al. (2020) states that for any measurable function f, the following holds with probability
at least 1 — § over the random draw of S ~ P*®" and g ~ p:

dp 1
< 1(8.9)]
f(S,9) <log d (9) +log 5 + IOgIggINEW [e }

Taking
7(5.9) = A ( E [ds (P!, PY) — E [df(Pi,PfZ)D 7
S,Sg Sg
we get

dp 1
— * pg or z
A( (B, (P2 P - B [dn(P1 P < 10w 52 a) + g 5+

:Sg 0
log]E E ¢ A(Es:sgldr (P, P3)]—Esq [dF(anpr%’)]).
S g~
Combining this result with (15), we obtain
dp 1 A2A2
E P PO - E P P9I <log — log - .
A(JB, (P2 P2 = E (P PD]) < tog 20a) + hom 3 + 21

O

Remark. As stated in the main paper, increasing the number of fake samples S, from n to m worsens the bounds. This is
because in that case, the constants ¢; = % of Lemma A.3 become ¢; = max(%, %), leading to a worse bound.

Next, we prove Corollary 3.2.

Proof of Corollary 3.2. Denote S = {x1,...,%x,}and Sg = {y1,...,y»} the iid datasets corresponding to the empirical
distributions P and PZ respectively. The properties of the supremum imply

el e [ran} < & [ [reme- [rom)

Moreover, since S and S, are iid datasets, we have

i;f(Xi)] = E [f(x)] and E li ;f(}’i)] =B, f(y)]-

Therefore,

dr(P*,P9) = sup E [ foz —{Zf(yz*)

feF S5

S,5g fer g

Sup{ fo, —;f(yl)}_sl% dr (P, P9).

Combining this inequality with Theorems 3.1-(i) and 3.1-(ii) yields the desired results. O
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A.3. Proof of Theorem 3.4

The proof of Theorem 3.4 is similar to the proof of Theorem 3.1. The only difference is that instead of Lemma A.3, we use
the following result.

Lemma A.5. Let Z = [0,1)%2 and Pz be a probability measure on Z. Let P, () be probability measures on X such that
P = 18Pz and QQ = g28Pz with g1, g2 € Lipy, K > 1. Let P,,, Qy, be the empirical distributions corresponding to the
iid samples X1, ...,X, ~ Pand yi,...,yn. ~ Q respectively. Then the function W : X*" — R, defined as

W}‘(Xl,---axn>YI7~-~>Yn) :W]:(PTHQTL)7

has the bounded differences property with c; = KT‘/E, foralll <i < 2n.

Proof. First, letwy, ..., wy,w),21,...,2, ~ Pz suchthatforall 1 <i <n,

/

x; = g1(w;), x5, = g1(w),) and y; = g2(z;). (16)
We have

W.F(Xl,'~';xn>}’1a~-w}’n)—W]-‘(X17~~~»X;17Y17~"a}’n)

\/\
/—/H
)

S
|—|
i]=
\
3‘
M
T
M1
[y
B
[y
%
_|_

[M]=

—

<
.
——

fer i=1 =1 i=1
= Lsup [ ) — 1))
o feg " "
K\dz
=

In order to prove the last inequality, we just need to show that for any f € F, f(x,) — f(x},) < Kv/dz. Let f € F.
Using (16) and the assumptions F C Lip,, g1 € Lipg and Z = [0, 1]%2, which implies diam(Z) = \/dz, we have

Fxn) = f(x,) = flgr(wn)) = fgr(w))) < K\/dz.

The following result is similar to Corollary 3.2 and bounds the distance between the full distributions.

Corollary A.6. With the definitions and assumptions of Theorem 3.4, the following properties hold for any probability
measure p such that p < mand m < p.

(i) With probability at least 1 — § over the random draw of S':

X N 1 1 AK2dz
E ds(P*,P) < E [Wr(P5, P+ = [KL(p||7) +log 5 | + . (17)
g~p g~p A o dn
(ii) With probability at least 1 — § over the random draw of S and g ~ p
1 dp 1 AK?dz
dr(P*,P9) < Py P9+ — |log — log . 18
(P P?) < W (P51 + 5 o 3240 +1ow 5| + 20 1s)
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A.4. Proof of Theorem 3.5

The proof of Theorem 3.5 requires the following result.

Lemma A.7. Let P, Q) be probability measures on X and P,,, Q,, be the empirical distributions corresponding to the iid
samples X1,...,X, ~ Pandy,...,yn ~ Q respectively. Then the empirical total variation distance has the bounded
differences property with ¢; = %,for all1 <i<2n.

Proof. We have

Df(xla"'aX7L;Y17"'7yn)7’D.7:(X1a"'axlnay17"'7yn)

= {SUP [Zf X;) Z (YZ)] — sup [foz +f( ) Zf(YZ)]}

fer i—1 fer

3=

n—1 n
< % {sup [Zf x;) Z (ve) = D flxi) = F(x) + Zf(yi)] }
feF — P e
=~ sup [f(x0) — f(x,,)]
fer
2
< -
n
The last inequality follows from —1 < f < 1,forany f € F. 0

The following result is similar to Corollaries 3.2 and A.6. It bounds on the distance between the full distributions.

Corollary A.8. With the definitions and assumptions of Theorem 3.5, the following properties hold for any probability
measure p such that p < mand m < p.

(i) With probability at least 1 — § over the random draw of S:

1 1 4
E dx(P*,P9) < E [Dx(P}, P9+ < {KL(p| ) + log } + —. (19)
g~p g~p A 4] n
(i) With probability at least 1 — § over the random draw of S and g ~ p
1 dp 1 4N
P*, P9) < Dx(P: P9)+ — |log— log — —. 2
AP P) < Dr(PL P + 5 [tog 42(0) 1o 5| + 20)

B. Samples from the experiments
B.1. Synthetic datasets

We used two datasets: a Gaussian mixture with eight components arranged on a ring, and a Gaussian mixture with nine
components on a grid. Figure 3 shows real samples from the actual training sets, and Figures 4 and 5 show samples from the
trained models.

B.2. MNIST dataset

In our experiments with the MNIST dataset (Deng, 2012), we used the standard DCGAN architecture (Radford et al., 2016)
for the generator and the critic. We experimented with different values for the hyperparameter o to train the probabilistic
models. We computed the FID scores (Heusel et al., 2017) for the different models using 2000 random samples and the
off-the-shelf implementation provided in the Pytorch-ignite library (Fomin et al., 2020), with a inception network (Szegedy
et al., 2016) pre-trained on Imagenet. Since the Inception network requires 3-channel images, we transformed the original
MNIST images by copying the single channel twice. The scores obtained for different models are displayed in Table B.2
and random (not cherry-picked) samples are displayed on Figures 6 to 11.
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