
Normalizing Flows for Interventional Density Estimation

Valentyn Melnychuk 1 Dennis Frauen 1 Stefan Feuerriegel 1

Abstract
Existing machine learning methods for causal in-
ference usually estimate quantities expressed via
the mean of potential outcomes (e.g., average
treatment effect). However, such quantities do
not capture the full information about the distri-
bution of potential outcomes. In this work, we
estimate the density of potential outcomes after in-
terventions from observational data. For this, we
propose a novel, fully-parametric deep learning
method called Interventional Normalizing Flows.
Specifically, we combine two normalizing flows,
namely (i) a nuisance flow for estimating nuisance
parameters and (ii) a target flow for parametric es-
timation of the density of potential outcomes. We
further develop a tractable optimization objective
based on a one-step bias correction for efficient
and doubly robust estimation of the target flow pa-
rameters. As a result, our Interventional Normal-
izing Flows offer a properly normalized density
estimator. Across various experiments, we demon-
strate that our Interventional Normalizing Flows
are expressive and highly effective, and scale well
with both sample size and high-dimensional con-
founding. To the best of our knowledge, our Inter-
ventional Normalizing Flows are the first proper
fully-parametric, deep learning method for den-
sity estimation of potential outcomes.

1. Introduction
Causal inference increasingly makes use of machine learn-
ing methods to estimate treatment effects from observational
data (e.g., van der Laan et al., 2011; Künzel et al., 2019;
Curth & van der Schaar, 2021; Kennedy, 2022). This is
relevant for various fields including medicine (e.g., Bica
et al., 2021), marketing (e.g., Yang et al., 2020), and policy-
making (e.g., Hünermund et al., 2021). Here, causal infer-

1LMU Munich & Munich Center for Machine Learning
(MCML), Munich, Germany. Correspondence to: Valentyn Mel-
nychuk <melnychuk@lmu.de>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

ence from observational data promises great value, espe-
cially when experiments for determining treatment effects
are costly or even unethical.

The vast majority of the machine learning methods for
causal inference estimate averaged quantities expressed by
the (conditional) mean of potential outcomes. Examples
of such quantities are the average treatment effect (ATE)
(e.g., Shi et al., 2019; Hatt & Feuerriegel, 2021), the con-
ditional average treatment effect (CATE) (e.g., Shalit et al.,
2017; Hassanpour & Greiner, 2019; Zhang et al., 2020), and
treatment-response curves (e.g., Bica et al., 2020; Nie et al.,
2021). Importantly, these estimates only describe averages
without distributional properties.

However, making decisions based on averaged causal quan-
tities can be misleading and, in some applications, even
dangerous (Spiegelhalter, 2017; van der Bles et al., 2019).
On the one hand, if potential outcomes have different vari-
ances or number of modes, relying on the average quantities
provides incomplete information about potential outcomes,
and may inadvertently lead to local – and not global – optima
during decision-making. On the other hand, distributional
knowledge is needed to account for uncertainty in potential
outcomes and thus informs how likely a certain outcome
is. For example, in medicine, knowing the distribution of
potential outcomes is highly important (Gische & Voelkle,
2021): it gives the probability that the potential outcome
lies in a desired range, and thus defines the probability of
treatment success or failure.1 Motivated by this, we aim to
estimate the density of potential outcomes.

An example highlighting the need for estimating the density
of potential outcomes is shown in Fig. 1. Here, we simu-
lated outcomes according to a given structural causal model
(SCM). The potential outcomes Y [a] can be sampled by set-
ting the binary treatment to a specific value in the equation

1For example, patients with prediabetes are oftentimes treated
with metformin monotherapy, which reduces blood glucose sugar
(HbA1c) by an average of 1.1% (95% confidence interval: 0.9 to
1.3%) (Hirst et al., 2012). Yet, there is often large skewness in
the potential outcome. While metformin monotherapy is highly
effective for some individuals, it fails to achieve glycemic targets
for 50% of the patients (Shin, 2019). Here, it is indicated that a
second-line anti-diabetes drug is prescribed. Crucially, standard
confidence intervals cannot disclose that metformin is harmful to
some patients while densities can.

1

Normalizing Flows for Interventional Density Estimation

−5 0 5 10 15 20

y

0.00

0.05

0.10

0.15

0.20

0.25

D
en

si
ty

(a)

P(Y [0] = y)

P(Y [1] = y)

−5 0 5 10 15 20

y

(b)

P(Y = y | A = 0)

P(Y [0] = y)

P(Y [0] = y | A = 1)

−5 0 5 10 15 20

y

(c)

P(Y = y | A = 1)

P(Y [1] = y)

P(Y [1] = y | A = 0)

X :=UX ; UX ∼ Mixture
(
0.5N(0, 1) + 0.5N(b, 1)

)
π(x) =

N(X; 0, 1)

N(X; 0, 1) + N(X; b, 1)

A :=

{
1, −UA < log

(
π(x)/(1 − π(x))

)
0, otherwise

;UA ∼ Logistic(0, 1)

Y :=UY +

{
X2 − 1.82X + 2, A = 1

2.18X + 1.5, A = 0
; UY ∼ N(0, 1)

Figure 1. Motivating example showing the densities of observational, interventional, and counterfactual distributions of outcome Y . These
are simulated via the structural causal model on the right (here: N(x;µ, σ2) are densities of the normal distribution; and b = 3 is a
covariates shift, which regulates the probability of treatment assignment). Potential outcomes have different distributions but the same
mean E(Y [0]) = E(Y [1]) ≈ 4.77 and the same variance var(Y [0]) = var(Y [1]) ≈ 4.06. Here, Y [a] is the potential outcome given
treatment a. (a) Interventional distributions. (b) and (c) Observational and counterfactual distributions for the same outcomes. As shown
here, the observational, interventional, and counterfactual distributions can be substantially different.

for Y (cf. Appendix B). At the same time, by filtering for
only the (un)treated population and applying the same equa-
tion with a counterfactual treatment, we obtain counterfac-
tual outcomes Y [a] | A = a′. We observe that the potential
outcomes have the same mean (i.e., E(Y [0]) = E(Y [1]))
and the same variance (i.e., var(Y [0]) = var(Y [1])). Hence,
the ground-truth ATE equals zero. Nevertheless, the dis-
tributions of potential outcomes (i. e., P(Y [a])) are clearly
different. Hence, in medical practice, acting upon the ATE
without knowledge of the distributions of potential outcomes
could have severe, negative effects. To show this, let us
consider a “do nothing” treatment (a = 0) and some med-
ical treatment (a = 1). Further, let us consider an out-
come to be successful if some risk score Y is below the
threshold of five. Then, the probability of treatment suc-
cess (i. e., P(Y [1] < 5.0) ≈ 0.63) is much larger than the
probability of success after the “do nothing” treatment (i. e.,
P(Y [0] < 5.0) ≈ 0.51), highlighting the importance of
treatment.

In this paper, we aim to estimate the density of potential
outcomes after intervention a, i. e., P(Y [a] = y). From
this point on, we refer to this task as interventional den-
sity estimation (IDE). Estimating the density of interven-
tions has several crucial advantages: it allows to identify
multi-modalities in the distribution of potential outcomes;
it allows to estimate quantiles of the distribution; and it
allows to compute the probability with which a potential
outcome lies in a certain range. Importantly, traditional
density estimation methods are not applicable for IDE due
to the fundamental problem of causal inference: that is,
the counterfactual outcomes are typically never observed,
and, hence, the sample from ground-truth interventional
distribution is also inaccessible. Efficient IDE is also sig-
nificantly more challenging than an efficient estimation of
the averaged causal quantities. The reason is that density
is a functional, infinitely-dimensional target estimand, and,
hence, standard efficiency theory is not applicable.

Existing literature offers either semi- or non-parametric
methods for IDE.2 Examples are kernel density estimation

2We distinguish the interventional distribution (i.e., P(Y [a]))

(Kim et al., 2018) and kernel mean embeddings of distribu-
tions (Muandet et al., 2021). However, both methods have a
crucial limitation: estimated densities could be unnormal-
ized or even return negative values (which, by definition,
is not possible). Furthermore, both methods neither scale
well with the sample size nor with the dimensionality of
covariates. As a remedy, Kennedy et al. (2023) introduced
a theory for efficient semi-parametric IDE estimation, ren-
dering fully-parametric modeling possible. However, the
authors did not provide a proper, flexible instantiation of the
theory: the solutions proposed in (Kennedy et al., 2023) are
either (i) non-universal (e. g., limited to the exponential fam-
ily) or (ii) not proper density estimators (e. g., the truncated
series estimator).

Here, we propose a proper fully-parametric method. Dif-
ferent from semi- and non-parametric methods, our fully-
parametric method has several practical advantages: it auto-
matically provides properly normalized density estimators,
it allows one to sample from the estimated density, and
it generally scales well with large and high-dimensional
datasets. However, to the best of our knowledge, there is no
fully-parametric, deep learning method for IDE. To achieve
this, we later make a non-trivial extension of the theoretical
results for semi-parametric IDE estimation from (Kennedy
et al., 2023) adopted to fully-parametric IDE estimation.

In this paper, we develop a novel, fully-parametric deep
learning method: Interventional Normalizing Flows (INFs).
Our INFs build upon normalizing flows (NFs) (Tabak &
Vanden-Eijnden, 2010; Rezende & Mohamed, 2015), but
which we carefully adapt for causal inference. This requires
several non-trivial adaptations. Specifically, we combine
two NFs: a (i) nuisance flow for estimating nuisance param-
eters, and a (ii) target flow for a parametric estimation of the
density of potential outcomes. Here, we construct a novel,
tractable optimization objective based on a one-step bias
correction to allow for efficient and doubly robust estima-

and the counterfactual distribution (i.e., P(Y [a] | A = a′)), which
are different in general. This can be seen by comparing plots
(a) vs. (b) and (c) in Fig. 1. For further information, we refer to
Appendix B.

2

Normalizing Flows for Interventional Density Estimation

Table 1. Overview of methods for interventional density estimation from observational data.

Method Parametric Estimator type Efficiency wrt. Base density model Proper density Universal

Kim et al. (2018) semi-parametric A-IPTW L1 distance kernel density estimation (KDE) ✗ ✓

Muandet et al. (2021) non-parametric plug-in — distributional kernel mean embeddings (DKME) ✗ ✓

Kennedy et al. (2023) semi- / fully-parametric A-IPTW moment condition exponential family ✓ ✗

truncated series (TS) ✗ ✓

INFs (this paper) fully-parametric A-IPTW moment condition normalizing flows (NFs) ✓ ✓

A-IPTW: augmented inverse propensity of treatment weighted

tion. In the end, we develop a two-step training procedure
to train both the nuisance and the target flows.

Overall, our main contributions are following:3

1. We introduce the first proper fully-parametric, deep
learning method for interventional density estimation,
called Interventional Normalizing Flows (INFs). Our
INFs provide a properly normalized density estimator.

2. We extend the results of (Kennedy et al., 2023) and
derive a tractable optimization problem with a one-step
bias correction for efficient and doubly robust estimation.
This allows for an effective two-step training procedure
with our INFs.

3. We demonstrate in various experiments that our INFs
are highly expressive and effective. A major advan-
tage owed to the parametric form of the target flow
is that our INFs scale well to both large and high-
dimensional datasets in comparison to other non- and
semi-parametric methods.

2. Related work
Recently, there has been a great interest in using machine
learning and, specifically, deep learning for estimating
causal quantities. Examples are machine learning for esti-
mating ATE (e.g., Shi et al., 2019; Hatt & Feuerriegel, 2021),
CATE (e.g., Johansson et al., 2016; Alaa & van der Schaar,
2018; Wager & Athey, 2018; Curth & van der Schaar, 2021;
Hatt et al., 2022; Kuzmanovic et al., 2023), and treatment-
response curves (e.g., Bica et al., 2020; Schwab et al., 2020;
Nie et al., 2021; Schweisthal et al., 2023). In this regard,
some papers proposed uncertainty-aware methods, e. g., by
using the variance of potential outcomes (Alaa & van der
Schaar, 2017; Jesson et al., 2020), or the conditional out-
come distribution (Jesson et al., 2021; 2022). However, the
aforementioned works are all concerned with estimating av-
eraged causal quantities expressed via the mean of potential
outcomes or epistemic uncertainty around these quantities.4

In contrast, we aim to estimate the density of outcomes after

3Code is available at https://github.com/
Valentyn1997/INFs.

4Jesson et al. (2020; 2021) considered epistemic uncertainty
of CATE estimation (=uncertainty due to estimation) and uncer-
tainty due to violations of causal assumptions (e. g., positivity or
exchangeability).

the intervention, i. e., the aleatoric uncertainty of the po-
tential outcomes (=uncertainty due to the data-generating
process at the population level).

2.1. Interventional density estimation

Table 1 lists existing methods for IDE. Importantly, these
are either non-parametric or semi-parametric. Kim et al.
(2018) developed a doubly robust kernel density estimation
(KDE) with functional regressions. Muandet et al. (2021)
proposed kernel mean embeddings of distributions (DKME),
which provides a non-parametric plug-in estimator. How-
ever, both methods (Kim et al., 2018; Muandet et al., 2021)
have limitations. (1) They do not provide a properly nor-
malized density estimator. Hence, the estimated densities
can be unnormalized or even negative, yet which, by def-
inition, is not possible. (2) They do not offer direct sam-
pling, which would allow one to sample from the estimated
density without an additional algorithm. This may compli-
cate computations of the test log-probability or empirical
Wasserstein distance during evaluation. (3) Another limita-
tion of both non-parametric and semi-parametric methods
is that they typically scale not well. This is unlike fully-
parametric methods, which scale well to both large and
high-dimensional datasets.

Kennedy et al. (2023) introduced a theory for efficient semi-
parametric IDE, which also extends to fully-parametric
estimation. The authors proposed a hypothetical estima-
tor as a solution to a multivariate system of integral equa-
tions, namely a bias-corrected moment condition (see Eq. 19
therein). However, the theory comes without an algorithmic
instantiation in the form of a proper universal density esti-
mator: the proposed solutions are either (i) non-universal
or (ii) not proper density estimators. By (i), we refer to the
exponential family, as it requires a very strong assumption
about the data and is not universal.5 By (ii), we refer to the
truncated series, which are not a proper density estimator
in the sense that the estimated density could have negative
values and is only normalized in a bounded region of the
outcome space (Efromovich, 2010). Therefore, they would
be a particularly bad model for the distributions with heavy
tails and multiple low-density regions. Also, truncated se-

5Although, more flexible extensions of exponential families
exist, e. g., (Ranganath et al., 2015), they contain an intractable
normalization constant and thus are not proper estimators.

3

https://github.com/Valentyn1997/INFs
https://github.com/Valentyn1997/INFs

Normalizing Flows for Interventional Density Estimation

ries estimators do not scale well beyond one-dimensional
distributions (Gellerstedt & Sjölin, 2022). For example,
large amounts of training data are required to sufficiently
outnumber the degrees of freedom of the model.

The methods for IDE above (Kim et al., 2018; Muandet
et al., 2021; Kennedy et al., 2023) build upon standard
assumptions for causal identifiability via back-door adjust-
ment.6 We later adopt the same assumptions for IDE (see
Section 3), and we then develop a fully-parametric, deep
learning method called INFs. As one of our contributions,
we adopt the theoretical framework of Kennedy et al. (2023)
and convert the bias-corrected moment condition into a
tractable optimization objective, for which we then show
how to solve it effectively with deep learning. Our method
has three favorable properties: it yields a proper density
estimator, it allows for direct sampling, and it scales well.

2.2. Efficient estimation

In the context of treatment effect estimation, the so-
called augmented inverse propensity of treatment weighted
(A-IPTW) estimators were developed for efficient, semi-
parametric estimation of finitely-dimensional target esti-
mands (parameters) (Robins, 2000). Formally, A-IPTW
estimation performs a first-order bias correction of plug-in
models (Bickel et al., 1993; Chernozhukov et al., 2018).
A-IPTW estimation also offers the property of being dou-
ble robust, i. e., fast convergence rates even if one of the
nuisance parameter estimators converges slowly (Kennedy,
2020).

Our task is different from the above: interventional den-
sity is a functional, infinitely-dimensional target estimand,
because of which the standard efficiency theory does not
apply here. As a remedy, Kennedy et al. (2023) proposed
to estimate finitely-dimensional projection parameters and
then formulated a semi-parametric estimation as a solution
to the bias-corrected moment condition. Nevertheless, no
flexible algorithmic instantiation in the form of a proper
universal density estimator has been implemented so far.
Later, we make a non-trivial extension to derive a tractable
optimization problem for our INFs.

2.3. Normalizing flows

Normalizing flows were introduced for expressive varia-
tional approximations in variational autoencoders (Tabak &
Vanden-Eijnden, 2010; Rezende & Mohamed, 2015). We
provide a background on NFs in Appendix B. One practical
benefit of NFs is that they yield universal density approxi-
mators (Dinh et al., 2014; 2017; Huang et al., 2018; Durkan

6A recent work by Bhattacharyya et al. (2022) develops IDE
for any identifiable interventional distribution in an arbitrary causal
Bayesian network, but only for discrete variables.

et al., 2019). Furthermore, NFs can be leveraged for condi-
tional density estimation (e. g., via so-called hypernetworks
(Trippe & Turner, 2018)). NFs were previously used for
causal inference, but in a different setting from ours (see
Appendix A).

Research gap: Existing methods for IDE are either non- or
semi-parametric. To the best of our knowledge, our work is
the first to propose a fully-parametric, deep learning method
for IDE.

3. Setup: Interventional density estimation
Notation. Let P(Z) be a distribution of a random variable
Z, and let P(Z = z) be its density or probability mass
function. Let πa(x) = P(A = a | X = x) denote the
propensity score. Further, 1(·) is the indicator function;
Pn{f(X)} = 1

n

∑n
i=1 f(Xi) is the sample average of a

random f(X); and PB
b {f(X)} is the average evaluated on

a minibatch B of size b. For readability, we sometimes
highlight random variables and the corresponding averaging
operator in green color. Furthermore, P(Y | X,A) is the
conditional distribution of the outcome Y .

Problem statement. In this work, we aim at estimating
the interventional density from observational data, namely
P̂(Y [a] = y). To compare the goodness-of-fit of different
estimators, we evaluate the distributional distance between
the ground-truth interventional density and the estimated
density. Such distributional distances include, e.g., the aver-
age log-probability and the empirical Wasserstein distance.

We build upon the standard setting of potential outcomes
framework (Rubin, 1974), where Y [a] stands for the poten-
tial outcome after intervening on treatment by setting it to
a. That is, we consider an observational sample D with
dX -dimensional covariates X ∈ X ⊆ RdX , a treatment
A ∈ {0, 1}, and a dY -dimensional continuous outcome
Y ∈ Y ⊆ RdY , drawn i.i.d. We consider dY = 1 if not
stated explicitly. We assume the treatment to be binary, but
note that our INFs also work with categorical treatments.
We denote D = {Xi, Ai, Yi}ni=1 ∼ P(X,A, Y), where n is
the sample size, and i is the index of an observation. For ex-
ample, in critical care, the patient covariates X are different
risk factors (e.g., age, gender, weight, prior diseases), the
treatment is whether a ventilator is applied, and the outcome
is the probability of patient survival. The covariates X are
also called confounders if P(Y [a]) ̸= P(Y | A = a).

Identifiability. To identify the interventional density, we
make the following identifiability assumptions with respect
to the data-generating mechanism of D: (1) Positivity: For
some ϵ > 0, P(1− ϵ ≥ πa(X) ≥ ϵ) = 1. (2) Consistency:
If A = a for some patient, then Y = Y [a]. (3) Exchange-
ability: A ⊥⊥ Y [a] | X for all a. Note that these assump-
tions are standard in the literature (Kim et al., 2018; Muan-

4

Normalizing Flows for Interventional Density Estimation

det et al., 2021; Kennedy et al., 2023). Under assumptions
(1)–(3), the density of interventional distribution P(Y [a])
can be expressed in terms of observational distribution with
back-door adjustment, i.e.,

P(Y [a] = y) = E
X∼P(X)

(
P(Y = y | X,A = a)

)
, (1)

where P(Y = y | X,A) is the conditional density of the
outcome. For more details on the potential outcomes frame-
work and identifiability, we refer to Appendix B.

Plug-in estimator. A straightforward approach for IDE
(Robins & Rotnitzky, 2001) is the following: first, one
estimates the conditional outcome distribution, P̂(Y | X,A)
(here, any method for conditional density estimation could
be used). Then, one takes a sample average over covariates
X:

P̂PI(Y [a] = y) = Pn{P̂(Y = y | X,A = a)}. (2)

This estimator is an unbiased but inefficient estimator of
interventional density, which is known as semi-parametric
plug-in estimator. Semi-parametric IDE, unlike, e. g., semi-
parametric ATE estimation, is highly problematic. For large
sample sizes, the semi-parametric estimator requires averag-
ing over the full sample for each evaluation point. Motivated
by this, we aim to develop a proper fully-parametric estima-
tor.

4. Theoretical background for
fully-parametric IDE

In this section, we introduce a theory for fully-parametric
estimation of interventional density. First, we provide a the-
oretic background, as introduced in (Kennedy et al., 2023).
Here, we describe a projection parameter as a solution to
the moment condition and then we list two estimators, i. e.,
covariate-adjusted (CA) estimator and efficient augmented
inverse propensity of treatment weighted (A-IPTW) estima-
tor. Second, we elaborate on the A-IPTW estimator and
translate it into an optimization objective, which constitutes
one of our contributions.

We start by defining a parametric model,{
g(y;βa) | βa ∈ Rd

}
, where βa ∈ Rd are parameters of es-

timator, and g(·;βa) is a density, i. e.,
∫
y∈Y g(y;βa) dy = 1.

For IDE, we approximate the interventional distribution
P(Y [a]) with a distribution from our parametric model. We
aim at minimizing the distributional distance (specifically
KL-divergence) between P(Y [a]) and g(·;βa) via

β̂a =argmin
βa

KL
(
P(Y [a])

∥∥ g(·;βa))
=argmin

βa

E
Y a∼P(Y [a])

(
− log g(Y a;βa)

)
,

(3)

where β̂a are called projection parameters as they project the
true interventional density onto a class {g(·;βa);βa ∈ Rd}.
4.1. Projection parameters as solution to moment

condition (Kennedy et al., 2023)

Covariate-adjusted estimator. Let the d-dimensional ran-
dom variable T (Y ;βa) = −∇βa

log g(Y ;βa) denote the
score function. Following Kennedy et al. (2023), the pro-
jection parameters can be equivalently expressed under
mild conditions7 as a solution to the moment condition
m(βa)

!
= 0, where

m(βa) = E
Y a∼P(Y [a])

T (Y a;βa)

= E
X∼P(X)

(
E
(
T (Y ;βa) | X,A = a

))
.

(4)

Here, the moment condition is the expected score function
of the potential outcome. Throughout the paper, we assume
that the moment condition has a unique solution, and, there-
fore, the minimization task in Eq. (3) and the root-finding
task in Eq. (4) are equivalent.

In practice, we have neither observations from the inter-
ventional distribution nor counterfactual outcomes. There-
fore, we cannot use the ground-truth P(Y [a]) but, instead,
must use the plug-in estimator distribution from Eq. (2).
Specifically, we can obtain a plug-in estimator of projection
parameters, i. e., β̂PI

a , either by minimizing a cross-entropy
loss or by solving the moment condition, both of which are
equivalent:

β̂PI
a = argmin

βa

E
Ŷ a∼Pn{P̂(Y |X,A=a)}

− log g(Ŷ a;βa)

⇐⇒ m̂PI(βa) = E
Ŷ a∼Pn{P̂(Y |X,A=a)}

T (Ŷ a;βa)
!
= 0.

(5)

Then, we can define a parametric covariate-adjusted (CA)
estimator as P̂CA(Y [a] = y) = g(y; β̂PI

a). By choosing a
sufficiently expressive class of densities for both g and the
conditional density estimator P̂(Y | X,A) (e. g., normaliz-
ing flows), CA can be shown to consistently estimate the
interventional density (see Appendix B.5 in Kennedy et al.
(2023)).

Augmented inverse propensity of treatment weighted
estimator. In the following, we aim to develop an effi-
cient estimator of the projection parameter β̂a from Eq. (3)
or, equivalently, the moment condition m̂(βa) at fixed βa
from Eq. (4). For this, we make use of semi-parametric
efficiency theory (van der Laan & Robins, 2003; Kennedy
et al., 2023). We provide a background on efficiency theory
in Appendix B.

Kennedy (2022) showed that the efficient influence function

7We assume that g(·, βa) is differentiable in βa and that the
minimizer of Eq. (3) is unique.

5

Normalizing Flows for Interventional Density Estimation

ϕa(T,P) for the functional E(E(T | X,A = a)) equals to

ϕa(T ;P) =
1(A = a)

πa(X)

(
T − E(T | X,A = a)

)
+ E(T | X,A = a)− E

X∼P(X)
(E(T | X,A = a)).

(6)

Here, we use red color to show the nuisance parameters
of P that are influencing the functional. We emphasize
that the nuisance parameters (i. e., the propensity score and
conditional expectations/probabilities) can be either known
or estimated.

The efficient influence function in Eq. (6) allows us to con-
struct an efficient estimator of the moment condition. Fol-
lowing (Kennedy et al., 2023), we transform the plug-in
estimator m̂PI(βa) from Eq. (5) into an efficient estimator
with the help of a one-step bias correction. In our case, the
bias-corrected moment condition has the following form:

m̂A-IPTW(βa) = m̂PI(βa)+Pn

{
ϕa(T (Y ;βa); P̂)

} !
= 0, (7)

where P̂ = {π̂a(x), P̂(Y | X,A)} are the estimated nui-
sance parameters of P. We call the solution of the bias-
corrected moment equation β̂A-IPTW

a an augmented inverse
propensity of treatment weighted (A-IPTW) estimator of
the projection parameters. Then, estimated interventional
density is P̂A-IPTW(Y [a] = y) = g(y; β̂A-IPTW

a).

4.2. Projection parameters as a solution to optimization
objective

Previously, Kennedy et al. (2023) proposed to directly solve
the bias-corrected moment condition, i. e., a system of non-
linear equations, yet which is generally much harder to solve
computationally. In contrast, we develop an optimization ob-
jective that can be directly incorporated into a loss of a deep
learning density estimator. For that, we transform the bias-
corrected moment condition into the following tractable
optimization task (see Appendix C for all details).

We first note that the plug-in estimator of moment condition
m̂PI(βa) can be rewritten as

m̂PI(βa) = E
Ŷ a∼Pn{P̂(Y |X,A=a)}

T (Ŷ a;βa) (8)

=

∫
Y
T (y;βa)Pn{P̂(Y = y | X,A = a)} dy (9)

= Pn

{
Ê
(
T (Y ;βa) | X,A = a

)}
, (10)

where the last equality follows from the definition of the
conditional expectation. Then, we notice that the last term
of the influence function, E

X∼P(X)
(E(T | X,A = a)), is, in

fact, non-random and could be brought out from the sample
average in Eq. 7. Furthermore, after switching from P to
P̂, this term exactly coincides with m̂PI(βa), so that the

one-step bias-corrected equation is simplified to

m̂A-IPTW(βa) = E
Ŷ a∼Pn{P̂(Y |X,A=a)}

T (Ŷ a;βa) (11)

+ Pn

{
1(A = a)

π̂a(X)

(
T (Y ;βa)− E

Y∼P̂(Y |X,A=a)
T (Y ;βa)

)}
.

(12)

After taking the antiderivative with respect to βa, we yield
the following optimization objective

β̂A-IPTW
a = argmin

βa

[
E

Ŷ a∼Pn{P̂(Y |X,A=a)}

(
− log g(Ŷ

a
; βa)

)
︸ ︷︷ ︸

cross-entropy loss
(13)

− Pn

{
1(A = a)

π̂a(X)

(
log g(Y ; βa) − E

Y ∼P̂(Y |X,A=a)

(
log g(Y ; βa)

))}
︸ ︷︷ ︸

one-step bias correction

]
.

Unlike the plug-in estimator (β̂PI
a), the A-IPTW estimator

achieves efficiency and possesses a double robustness prop-
erty. Here, formally speaking, we still mean efficiency with
respect to the moment condition, i. e. m(βa). This way
of defining efficiency is particularly useful when the solu-
tion to the moment condition in Eq. (4) is non-unique, e. g.,
due to the usage of parametric deep learning models. In
this case, we can informally define the so-called efficient
estimation of the projection parameters with respect to the
equivalence class. All the parameters β̂A-IPTW

a , which fall
into this class, will satisfy the efficiently estimated moment
condition, Eq. (7).

5. Interventional Normalizing Flows
In the following, we describe our Interventional Normal-
izing Flows: a proper fully-parametric method for inter-
ventional density estimation via deep learning. First, we
describe all the components of our architecture and, then,
introduce an efficient estimation using one-step bias correc-
tion.

5.1. Components

In our INFs, we combine two normalizing flows, which we
refer to as (i) nuisance flow and (ii) target flow (see Fig. 2).
The rationale for this is based on our derivations in Section 3,
according to which a fully-parametric IDE requires two
models: (i) one for the estimation of nuisance parameters,
and (ii) one for the subsequent optimization of the learning
objective with respect to projection parameters. Accord-
ingly, both NFs in our INFs have thus different objectives:
(i) the nuisance flow estimates the nuisance parameters (i.e.,
the propensity score and the conditional outcome distribu-
tion); and (ii) the target flow uses the estimated nuisance
parameters to estimate the projection parameters.

6

Normalizing Flows for Interventional Density Estimation

Nuisance flow

FC

FC

Target flow

CNF
NF

Target flowNuisance flow

FC Fully-connected subnetwork

NF Normalizing flow,
parametrized by

Losses

Gradient blocking

Noise regularization

Outputs with corresponding
distributions

Inputs / connections

Nuisance flow

Legend

One-step bias
correction

Figure 2. Overview of Interventional Normalizing Flows. Our INFs combine two normalizing flows, which we call “nuisance flow”
and “target flow”. The nuisance flow estimates the nuisance parameters, i.e., the propensity score π̂a(X) and the conditional outcome
distribution P̂(Y | X,A). The target flow utilizes them to estimate the projection parameters β̂A-IPTW

a .

(i) Nuisance flow. The nuisance flow has three components:
two fully-connected (FC) subnetworks and a conditional
normalizing flow parameterized by θ. The first FC sub-
network (FC1) takes the covariates X as input and, then,
outputs a representation R ∈ RdR together with a propen-
sity score π̂a(X). The second FC subnetwork (FC2) takes
the representation R and the observed treatment Ai as input
and, then, outputs the parameters of flow, conditioned on
X and A, i. e., θ(X,A). Together, FC1 and FC2 form a
so-called hypernetwork (Ha et al., 2017) for the conditional
normalizing flow, which allows us to learn the conditional
outcome distribution via back-propagation.

Let LN be the loss of the nuisance flow. Here, we com-
bine a conditional negative log-likelihood (LNLL) and bi-
nary cross-entropy loss for the propensity score (Lπ), i.e.,
LN(P̂, π̂a) = Pn{LNLL+αLπ} with LNLL = − log P̂(Y =
Y | X,A); Lπ = BCE(π̂A(X), A), where α > 0 is a hy-
perparameter. In general, conditional normalizing flows are
prone to overfitting when trained via a conditional negative
log-likelihood. To address this, we later employ noise regu-
larization (Rothfuss et al., 2019) in the conditional density
estimation.

(ii) Target flow. The target flow uses the outputs of the
nuisance flow and then learns the interventional distribu-
tion. We first describe the naı̈ve variant of the target flow
without one-step bias correction (we introduce this later in
Section 5.2). Different from the conditional normalizing
flow in the nuisance flow, the target flow is a non-conditional
normalizing flow, parameterized by βa. Specifically, we con-
sider two separate normalizing flows, that is, one for each
potential outcome (i.e., a = 0 and a = 1, respectively).8

To fit the target flow, we must solve the moment condition
from Eq. (5) or, equivalently, minimize a cross-entropy loss:

LCE(βa) = E
Ŷ a∼Pn{P̂(Y |X,A=a)}

− log g(Ŷ a;βa) (14)

= −
∫
y∈Y

log g(y;βa)Pn{P̂(Y = y | X,A = a)}dy,

8One can use a single normalizing flow with a hypernetwork
for categorical treatments.

where the later integration is performed numerically with
quadrature (dY = 1) or Monte Carlo (dY > 1) methods.

5.2. One-step bias correction

To provide an efficient estimation for the parameters of the
target flow, we augment the cross-entropy loss (Eq. (14))
with a one-step bias correction. To evaluate the bias correc-
tion term, we need to compute a conditional cross-entropy
loss:

LCCE(X;βa) = E
Y∼P̂(Y |X,A=a)

− log g(Y ;βa),

= −
∫
y∈Y

log g(y;βa)P̂(Y = y | X,A = a) dy.

Finally, we obtain the loss of the target flow (LT), which is
now suitable for our A-IPTW estimation from Eq. (13). We
thus yield

LT(βa) = LCE(βa)+Pn

{
1(A = a)

π̂a(X)

(
−log g(Y ; βa)−LCCE(X; βa)

)}
.

(15)

5.3. Training and inference

Training. To train both components in our INFs, we make
use of a two-step training procedure. Specifically, we first
fit the nuisance parameters using the nuisance flow. Then,
we freeze the parameters of the nuisance flow and fit the
target flow. We additionally employ the exponential moving
average (EMA) of the target parameters with a smoothing
hyperparameter γ to stabilize the training for small mini-
batch sizes (Polyak & Juditsky, 1992). We show the full
algorithm in Appendix D and further implementation details
in Appendix E.

Inference time. One main advantage of our nuisance-target
model is that the target flow has constant inference time
(e.g., during the evaluation phase). Hence, contrary to state-
of-the-art baselines, the inference of our INFs do not depend
on the dimensionality of covariates (or representation) and
the size of the training data. This is a major advantage
over semi-parametric plug-in estimators. For a detailed run-

7

Normalizing Flows for Interventional Density Estimation

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Covariate shift b

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

lo
g-

p
ro

b
o
u
t

a = 0

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Covariate shift b

−4.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

lo
g-

p
ro

b
o
u
t

a = 1

Method

TARNet∗

MDNs

CNF [=
∧

INFs w/o target flow]

KDE

DKME

CNF + TS

INFs w/o bias corr

INFs (main)

Figure 3. Results for synthetic data based on the SCM from Figure 1. Reported: mean over ten-fold train-test splits. Some runs for MDNs
resulted in the log-probout = −∞ and, thus, are not shown.

time comparison, we refer to Appendix L. To this end, our
method offers great scalability, such as required in medicine.

6. Experiments
To show the effectiveness of our INFs, we use established
(semi-)synthetic datasets that have been previously used for
treatment effect estimation (Shi et al., 2019; Curth & van der
Schaar, 2021). The benefit of (semi-)synthetic datasets is
that both factual and counterfactual outcomes are available
(i.e., Y f

i and Y cf
i). Therefore, we can obtain a sample from

the ground-truth interventional distribution, i. e., Y [a]i =
1(Ai = a)Y f

i + 1(Ai ̸= a)Y cf
i , which we can then use for

IDE benchmarking.

Evaluation metric. We use the average log-probability
as our standard metric for comparing density estimators.
It is given by log-probD = 1

n

∑n
i=1 log P̂(Y [a] = Y [a]i),

where higher values indicate a better fit. The maximum
value of the average log-probability is upper-bounded by
the entropy, which, in general, is different for each potential
outcome. Therefore, we separately report the results for
each potential outcome. Of note, the log-probability is
equivalent to the empirical KL-divergence.

Baselines. We use state-of-the-art IDE baselines (see
Sec. 2.1): (1) an extended TARNet (TARNet∗) (Shalit et al.,
2017) estimating the mean of a conditional homoscedastic
normal distribution; (2) mixture density networks (MDNs)
(Bishop, 1994)9; (3) conditional normalizing flow (CNF)
(Trippe & Turner, 2018); (4) kernel density estimation
(KDE) (Kim et al., 2018); (5) distributional kernel mean em-
beddings (DKME) (Muandet et al., 2021); and (6) truncated
series estimator with CNF (CNF+TS) as a more flexible
baseline from (Kennedy et al., 2023). TARNet∗, MDNs, and
CNF are semi-parametric plug-in estimators (see Eq. (2)).
Importantly, KDE, DKME and CNF+TS do not guarantee a
proper density estimation (unlike our INFs). We thus per-
formed an additional re-normalization and negative values
clipping, so that we can use the average log-probability as
an evaluation metric. Details on the baselines are in Ap-

9MDNs were previously used to estimate the conditional distri-
bution of outcome for quantifying the ignorance regions of CATE
estimation (Jesson et al., 2021; 2022). However, this is different
from our IDE task.

pendix F and on hyperparameter tuning in Appendix G.

Ablation studies. We compare three variants of our INFs:
(1) INFs (main): Our INFs as introduced above using A-
IPTW estimation. (2) INFs w/o target flow: A simplified
variant which uses only the conditional density estimation
from the nuisance flow as a semi-parametric plug-in estima-
tor, and thus without target flow. This variant is identical
to the CNF baseline. (3) INFs w/o bias corr: We use
the covariate-adjusted fully-parametric estimator, where the
target flow only uses the cross-entropy loss from Eq. (14)
but without one-step bias correction. The ablations have
the same hyperparameters as our main method for better
comparability.

Synthetic data. We generate synthetic data using the SCM
(dX = 1) from Fig. 1. Here, we vary the covariate shift
b, which controls the overlap between the treated and non-
treated population. Notably, low values of b correspond to
the case, where both populations are similar or the same,
while high values of b result in the violation of the posi-
tivity assumption. Further details on the synthetic dataset
are in Appendix H. Our INFs achieve clear performance
improvements over the baselines, especially for larger b
(Fig. 3). Moreover, the ablation studies confirm that our
proposed deep learning architecture with one-step bias cor-
rection is superior. In Appendix I, we further provide a
two-dimensional benchmark, where our INFs again perform
best.

IHDP dataset. The Infant Health and Development Pro-
gram (IHDP) (Hill, 2011) is a semi-synthetic dataset with
two synthetic potential outcomes generated from real-world
medical covariates (n = 747, dX = 25, see details
in Appendix H). Here, we used ten-fold train/test splits
(90%/10%) and perform hyperparameter tuning based on
the first split. Results are in Table 2. TARNet∗ is known
to entail a ground-truth conditional distribution model and
should thus not be interpreted as a baseline but as an up-
per performance bound. Our INFs reach an equally good
performance and, importantly, outperform all the other base-
lines for both potential outcomes. The ablation study again
confirms that our main INFs are superior over the other
variants without the target flow and without bias correction.
In Appendix J, we repeat the evaluation using the empirical
Wasserstein distance with similar findings.

8

Normalizing Flows for Interventional Density Estimation

Table 2. Results for IHDP dataset. Reported: mean ± sd.

a = 0 a = 1
log-probin log-probout log-probin log-probout

TARNet∗ [=∧ ground-truth for IHDP] −0.919 ± 0.011 −0.928 ± 0.088 −0.635 ± 0.010 −0.634 ± 0.075
MDNs −0.927 ± 0.024 −0.942 ± 0.080 −0.679 ± 0.048 −0.684 ± 0.077
CNF [=∧ INFs w/o target flow] −0.943 ± 0.032 −0.970 ± 0.072 −0.679 ± 0.061 −0.674 ± 0.091
KDE (Kim et al., 2018) −0.942 ± 0.010 −0.948 ± 0.069 −0.700 ± 0.044 −0.708 ± 0.098
DKME (Muandet et al., 2021) −0.940 ± 0.010 −0.952 ± 0.082 −0.665 ± 0.015 −0.670 ± 0.063
CNF+TS (Kennedy et al., 2023) −1.000 ± 0.030 −1.056 ± 0.237 −0.683 ± 0.080 −0.668 ± 0.128
INFs w/o bias corr −0.932 ± 0.013 −0.936 ± 0.112 −0.667 ± 0.028 −0.670 ± 0.067
INFs (main) −0.912 ± 0.010 −0.929 ± 0.099 −0.658 ± 0.020 −0.659 ± 0.090
Higher = better (best in bold, second best underlined)

ACIC 2016 & 2018 datasets. ACIC 2016 & 2018 provide a
collection of 77 and 24 semi-synthetic datasets, respectively,
with various data-generating mechanisms (Dorie et al., 2019;
Shimoni et al., 2018) (see details in Appendix H). We
perform five random train/test splits (80%/20%) for each
dataset, tune hyperparameters on the first split, and evaluate
the average in- and out-sample log-probability on every split.
Table 3 provides the performance comparison. Again, our
INFs have a clear performance improvement over the base-
lines and other model variants. Compared to MDNs as the
second-best method, our INFs scale much better in terms of
runtime, especially for large sample sizes (see Appendix L).

Table 3. Results for ACIC 2016 and ACIC 2018. Reported: % of
runs with the best performance.

ACIC 2016 (77 datasets) ACIC 2018 (24 datasets)
% bestin % bestout % bestin % bestout

TARNet∗ 3.90% 6.23% 7.08% 7.50%
MDNs 28.96% 29.35% 21.25% 18.75%
CNF [=∧ INFs w/o target flow] 14.42% 15.97% 14.17% 14.58%
KDE (Kim et al., 2018) 1.04% 1.04% 10.42% 9.58%
DKME (Muandet et al., 2021) 0.39% 0.78% 8.75% 10.83%
CNF+TS (Kennedy et al., 2023) 8.18% 8.96% 5.83% 5.42%
INFs w/o bias corr 5.45% 7.27% 4.58% 5.42%
INFs (main) 37.66% 30.39% 27.92% 27.92%
Higher = better (best in bold)

HC-MNIST dataset. Hidden confounding MNIST dataset
(Jesson et al., 2021) is a semi-synthetic dataset constructed
on top of the canonical image dataset of handwritten digits
(MNIST) (LeCun, 1998). To satisfy the exchangeability
assumption, we add a hidden confounder to the set of all
covariates, i. e., 28x28 images (dX = 784 + 1). Dataset
details are in Appendix H. For our experiments, we use
only the train subset of the original MNIST (n = 42, 000).
We use ten random train/test splits (80%/20%) and tune
hyperparameters on the first split. Table 4 shows the results
of the experiments. Note that the semi-parametric plug-
in estimators suffer from scalability issues and are thus
excluded. Further, our INFs outperform the variant without
a bias correction and other available baselines.

Scalability. Experiments with ACIC 2018 and HC-MNIST
datasets show the scalability of our INFs for datasets with
large sample sizes (n > 25, 000) and with high-dimensional
covariates (dX > 100). We provide a runtime comparison
in Appendix L. For HC-MNIST, non- and semi-parametric
methods become highly impractical due to memory and

Table 4. Results for HC-MNIST. Reported: mean ± sd over ten
random train-test splits.

a = 0 a = 1
log-probin log-probout log-probin log-probout

KDE (Kim et al., 2018) −1.354 ± 0.002 −1.354 ± 0.004 −1.380 ± 0.001 −1.382 ± 0.003
DKME (Muandet et al., 2021) −1.471 ± 0.003 −1.467 ± 0.009 −1.395 ± 0.001 −1.398 ± 0.003
CNF+TS (Kennedy et al., 2023) −1.368 ± 0.015 −1.370 ± 0.017 −1.331 ± 0.001 −1.335 ± 0.005
INFs w/o bias corr −1.430 ± 0.181 −1.429 ± 0.181 −1.400 ± 0.171 −1.402 ± 0.170
INFs (main) −1.339 ± 0.005 −1.338 ± 0.009 −1.329 ± 0.002 −1.332 ± 0.007
Higher = better (best in bold)

time constraints. For example, our INFs took ∼5 min per
experiment, while KDE took ∼26 min and DKME ∼18
min. This is a major advantage of our fully-parametric IDE
estimator (INFs) over semi-parametric plug-in estimators
and other baselines.

Case study. We performed a case study using data from
California’s tobacco control program to estimate its effect
on tobacco sales. Previous evidence was primarily based on
point estimates without information on the interventional
density (Abadie et al., 2010). Our INFs suggest that the
program would lead to a large reduction in tobacco sales
(see Appendix M).

Discussion. Interestingly, both components of our INFs are
important for the final performance (see our ablation stud-
ies). (i) The nuisance flow with the help of noise regulariza-
tion performs consistent estimation of the nuisance parame-
ters. (ii) The target flow uses estimated nuisance parameters
to solve the optimization objective. In the overwhelming ma-
jority of experiments, a large part of the performance of our
INFs are attributed to the second-stage estimation, i. e., the
target flow. The target flow is also crucial for computational
performance. While simple NFs have a similar estimation
performance in terms of goodness-of-fit, only our INFs have
constant inference time (e.g., during the evaluation phase
regardless of the size of the training data). This is a major
advantage of fully-parametric treatment effect estimators
over semi-parametric plug-in estimators.

Regarding the choice of the normalizing flows, the neural
spline flows are one of the possible choices of the universal
density approximators.10 We demonstrated that they out-
perform other baselines in the overwhelming majority of
the experiments. We further advocate neural spline flows as
they are both flexible and parsimonious.

Conclusion: For decision-making in personalized medicine,
it is not only important to know what effect treatments have
on patient health but also how likely it is that treatments
achieve the desired outcome. To address this, we propose
a novel method for estimating the density of potential out-
comes. Specifically, we present our Interventional Nor-
malizing Flows, which is the first, fully-parametric, deep
learning method for this purpose.

10Universal and efficient high-dimensional density estimation is
still an open problem in the deep learning community.

9

Normalizing Flows for Interventional Density Estimation

References
Abadie, A., Diamond, A., and Hainmueller, J. Synthetic

control methods for comparative case studies: Estimating
the effect of California’s tobacco control program. Jour-
nal of the American Statistical Association, 105(490):
493–505, 2010.

Alaa, A. M. and van der Schaar, M. Bayesian inference of in-
dividualized treatment effects using multi-task Gaussian
processes. In Advances in Neural Information Processing
Systems, 2017.

Alaa, A. M. and van der Schaar, M. Bayesian nonpara-
metric causal inference: Information rates and learning
algorithms. IEEE Journal of Selected Topics in Signal
Processing, 12(5):1031–1046, 2018.

Balgi, S., Pena, J. M., and Daoud, A. Personalized public
policy analysis in social sciences using causal-graphical
normalizing flows. In Association for the Advancement
of Artificial Intelligence, 2022.

Bareinboim, E., Correa, J. D., Ibeling, D., and Icard, T. On
Pearl’s hierarchy and the foundations of causal inference.
In Probabilistic and Causal Inference: The Works of
Judea Pearl, pp. 507–556. Association for Computing
Machinery, 2022.

Bellot, A. and van der Schaar, M. Policy analysis using
synthetic controls in continuous-time. In International
Conference on Machine Learning, 2021.

Bhattacharyya, A., Gayen, S., Kandasamy, S., Raval, V., and
Variyam, V. N. Efficient interventional distribution learn-
ing in the PAC framework. In International Conference
on Artificial Intelligence and Statistics, 2022.

Bica, I., Jordon, J., and van der Schaar, M. Estimating the ef-
fects of continuous-valued interventions using generative
adversarial networks. In Advances in Neural Information
Processing Systems, 2020.

Bica, I., Alaa, A. M., Lambert, C., and van der Schaar,
M. From real-world patient data to individualized treat-
ment effects using machine learning: current and future
methods to address underlying challenges. Clinical Phar-
macology & Therapeutics, 109:87–100, 2021.

Bickel, P. J., Klaassen, C. A., Ritov, Y., and Wellner, J. A.
Efficient and adaptive estimation for semiparametric mod-
els, volume 4. Springer New York, NY, 1993.

Bishop, C. M. Mixture density networks. 1994.

Brouillard, P., Lachapelle, S., Lacoste, A., Lacoste-Julien,
S., and Drouin, A. Differentiable causal discovery from
interventional data. In Advances in Neural Information
Processing Systems, 2020.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E.,
Hansen, C., Newey, W., and Robins, J. Double/debiased
machine learning for treatment and structural parameters.
The Econometrics Journal, 21(1):C1–C68, 2018.

Curth, A. and van der Schaar, M. Nonparametric estimation
of heterogeneous treatment effects: From theory to learn-
ing algorithms. In International Conference on Artificial
Intelligence and Statistics, 2021.

Dinh, L., Krueger, D., and Bengio, Y. NICE: Non-linear
independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real NVP. In International Conference on
Learning Representations, 2017.

Dolatabadi, H. M., Erfani, S., and Leckie, C. Invertible
generative modeling using linear rational splines. In
International Conference on Artificial Intelligence and
Statistics, 2020.

Dorie, V., Hill, J., Shalit, U., Scott, M., and Cervone, D.
Automated versus do-it-yourself methods for causal infer-
ence: Lessons learned from a data analysis competition.
Statistical Science, 34(1):43–68, 2019.

Durkan, C., Bekasov, A., Murray, I., and Papamakarios, G.
Neural spline flows. In Advances in Neural Information
Processing Systems, 2019.

Efromovich, S. Orthogonal series density estimation. Wiley
Interdisciplinary Reviews: Computational Statistics, 2(4):
467–476, 2010.

Garreau, D., Jitkrittum, W., and Kanagawa, M. Large
sample analysis of the median heuristic. arXiv preprint
arXiv:1707.07269, 2017.

Gellerstedt, K. and Sjölin, J. Analysis of scattered higher
dimensional data using generalized fourier interpolation.
arXiv preprint arXiv:2202.13801, 2022.

Gische, C. and Voelkle, M. C. Beyond the mean: A flexible
framework for studying causal effects using linear models.
Psychometrika, 87:868–901, 2021.

Grünewälder, S., Lever, G., Gretton, A., Baldassarre, L., Pat-
terson, S., and Pontil, M. Conditional mean embeddings
as regressors. In International Conference on Machine
Learning, 2012.

Ha, D., Dai, A. M., and Le, Q. V. HyperNetworks. In
International Conference on Learning Representations,
2017.

10

Normalizing Flows for Interventional Density Estimation

Hassanpour, N. and Greiner, R. Learning disentangled repre-
sentations for counterfactual regression. In International
Conference on Learning Representations, 2019.

Hatt, T. and Feuerriegel, S. Estimating average treatment
effects via orthogonal regularization. In International
Conference on Information and Knowledge Management,
2021.

Hatt, T., Berrevoets, J., Curth, A., Feuerriegel, S., and
van der Schaar, M. Combining observational and random-
ized data for estimating heterogeneous treatment effects.
arXiv preprint arXiv:2202.12891, 2022.

Hill, J. L. Bayesian nonparametric modeling for causal infer-
ence. Journal of Computational and Graphical Statistics,
20(1):217–240, 2011.

Hirst, J. A., Farmer, A. J., Ali, R., Roberts, N. W., and
Stevens, R. J. Quantifying the effect of metformin treat-
ment and dose on glycemic control. Diabetes Care, 35
(2):446–454, 2012.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A.
Neural autoregressive flows. In International Conference
on Machine Learning, 2018.

Hünermund, P., Kaminski, J. C., and Schmitt, C. Causal ma-
chine learning and business decision making. In Academy
of Management Proceedings, 2021.

Ilse, M., Forré, P., Welling, M., and Mooij, J. M. Com-
bining interventional and observational data using causal
reductions. arXiv preprint arXiv:2103.04786, 2021.

Jesson, A., Mindermann, S., Shalit, U., and Gal, Y. Identify-
ing causal-effect inference failure with uncertainty-aware
models. In Advances in Neural Information Processing
Systems, 2020.

Jesson, A., Mindermann, S., Gal, Y., and Shalit, U. Quanti-
fying ignorance in individual-level causal-effect estimates
under hidden confounding. In International Conference
on Machine Learning, 2021.

Jesson, A., Douglas, A. R., Manshausen, P., Solal, M., Mein-
shausen, N., Stier, P., Gal, Y., and Shalit, U. Scalable
sensitivity and uncertainty analyses for causal-effect esti-
mates of continuous-valued interventions. In Advances
in Neural Information Processing Systems, 2022.

Johansson, F., Shalit, U., and Sontag, D. Learning repre-
sentations for counterfactual inference. In International
Conference on Machine Learning, 2016.

Kennedy, E. H. Optimal doubly robust estimation of hetero-
geneous causal effects. arXiv preprint arXiv:2004.14497,
2020.

Kennedy, E. H. Semiparametric doubly robust targeted
double machine learning: A review. arXiv preprint
arXiv:2203.06469, 2022.

Kennedy, E. H., Balakrishnan, S., and Wasserman, L. Semi-
parametric counterfactual density estimation. Biometrika,
2023.

Khemakhem, I., Monti, R., Leech, R., and Hyvarinen, A.
Causal autoregressive flows. In International Conference
on Artificial Intelligence and Statistics, 2021.

Kim, K., Kim, J., and Kennedy, E. H. Causal ef-
fects based on distributional distances. arXiv preprint
arXiv:1806.02935, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. arXiv preprint arXiv:1312.6114, 2013.

Künzel, S. R., Sekhon, J. S., Bickel, P. J., and Yu, B. Met-
alearners for estimating heterogeneous treatment effects
using machine learning. Proceedings of the National
Academy of Sciences, 116(10):4156–4165, 2019.

Kuzmanovic, M., Hatt, T., and Feuerriegel, S. Estimat-
ing conditional average treatment effects with missing
treatment information. In International Conference on
Artificial Intelligence and Statistics, 2023.

LeCun, Y. The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/, 1998.

MacDorman, M. and Atkinson, J. Infant mortality statistics
from the linked birth/infant death data set–1995 period
data. Monthly Vital Statistics Report, 46(6 Suppl 2):1–22,
1998.

Muandet, K., Kanagawa, M., Saengkyongam, S., and
Marukatat, S. Counterfactual mean embeddings. Journal
of Machine Learning Research, 22:1–71, 2021.

Müller, J., Schmier, R., Ardizzone, L., Rother, C., and
Köthe, U. Learning robust models using the principle
of independent causal mechanisms. In DAGM German
Conference on Pattern Recognition, 2021.

Nie, L., Ye, M., Liu, Q., and Nicolae, D. VCNet and func-
tional targeted regularization for learning causal effects
of continuous treatments. In International Conference on
Learning Representations, 2021.

Niswander, K. R. The collaborative perinatal study of the
National Institute of Neurological Diseases and Stroke.
The Woman and Their Pregnancies, 1972.

11

Normalizing Flows for Interventional Density Estimation

Pearl, J. Causality. Cambridge university press, 2009.

Polyak, B. T. and Juditsky, A. B. Acceleration of stochastic
approximation by averaging. SIAM Journal on Control
and Optimization, 30(4):838–855, 1992.

Ranganath, R., Tang, L., Charlin, L., and Blei, D. Deep
exponential families. In International Conference on
Artificial Intelligence and Statistics, 2015.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International Conference on Ma-
chine Learning, 2015.

Robins, J. M. Robust estimation in sequentially ignorable
missing data and causal inference models. In Proceedings
of the American Statistical Association, 2000.

Robins, J. M. and Rotnitzky, A. Comment on the Bickel
and Kwon article, “Inference for semiparametric models:
Some questions and an answer”. Statistica Sinica, 11(4):
920–936, 2001.

Rothfuss, J., Ferreira, F., Boehm, S., Walther, S., Ul-
rich, M., Asfour, T., and Krause, A. Noise regulariza-
tion for conditional density estimation. arXiv preprint
arXiv:1907.08982, 2019.

Rubin, D. B. Estimating causal effects of treatments in
randomized and nonrandomized studies. Journal of Edu-
cational Psychology, 66(5):688, 1974.

Schwab, P., Linhardt, L., Bauer, S., Buhmann, J. M., and
Karlen, W. Learning counterfactual representations for
estimating individual dose-response curves. In AAAI
Conference on Artificial Intelligence, 2020.

Schweisthal, J., Frauen, D., Melnychuk, V., and Feuerriegel,
S. Reliable off-policy learning for dosage combinations.
arXiv preprint arXiv:2305.19742, 2023.

Shalit, U., Johansson, F. D., and Sontag, D. Estimating
individual treatment effect: generalization bounds and
algorithms. In International Conference on Machine
Learning, 2017.

Shi, C., Blei, D., and Veitch, V. Adapting neural networks
for the estimation of treatment effects. In Advances in
Neural Information Processing Systems, 2019.

Shimoni, Y., Yanover, C., Karavani, E., and Goldschm-
nidt, Y. Benchmarking framework for performance-
evaluation of causal inference analysis. arXiv preprint
arXiv:1802.05046, 2018.

Shin, J.-I. Second-line glucose-lowering therapy in type
2 diabetes mellitus. Current Diabetes Reports, 19:1–9,
2019.

Shpitser, I. and Pearl, J. What counterfactuals can be tested.
In Conference on Uncertainty in Artificial Intelligence,
2007.

Spiegelhalter, D. Risk and uncertainty communication. An-
nual Review of Statistics and Its Application, 4(1):31–60,
2017.

Tabak, E. G. and Vanden-Eijnden, E. Density estimation
by dual ascent of the log-likelihood. Communications in
Mathematical Sciences, 8(1):217–233, 2010.

Titterington, D. M., Afm, S., Smith, A. F., Makov, U., et al.
Statistical analysis of finite mixture distributions, volume
198. John Wiley & Sons Incorporated, 1985.

Trippe, B. L. and Turner, R. E. Conditional density esti-
mation with Bayesian normalising flows. arXiv preprint
arXiv:1802.04908, 2018.

van der Bles, A. M., van der Linden, S., Freeman, A. L.,
Mitchell, J., Galvao, A. B., Zaval, L., and Spiegelhalter,
D. J. Communicating uncertainty about facts, numbers
and science. Royal Society Open Science, 6(5):181870,
2019.

van der Laan, M. J. and Robins, J. M. Unified methods
for censored longitudinal data and causality, volume 5.
Springer New York, NY, 2003.

van der Laan, M. J. and Rubin, D. Targeted maximum likeli-
hood learning. The International Journal of Biostatistics,
2(1):Article 11, 2006.

van der Laan, M. J., Rose, S., et al. Targeted learning:
Causal inference for observational and experimental data,
volume 10. Springer, 2011.

Vowels, M. J., Akbari, S., Camgoz, N. C., and Bowden, R.
A free lunch with influence functions? Improving neural
network estimates with concepts from semiparametric
statistics. arXiv preprint arXiv:2202.09096, 2022.

Wager, S. and Athey, S. Estimation and inference of hetero-
geneous treatment effects using random forests. Journal
of the American Statistical Association, 113(523):1228–
1242, 2018.

Wang, R., Chaudhari, P., and Davatzikos, C. Harmoniza-
tion with flow-based causal inference. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, 2021.

Wehenkel, A. and Louppe, G. Graphical normalizing flows.
In International Conference on Artificial Intelligence and
Statistics, 2021.

12

Normalizing Flows for Interventional Density Estimation

Yang, J., Eckles, D., Dhillon, P., and Aral, S. Targeting for
long-term outcomes. arXiv preprint arXiv:2010.15835,
2020.

Zhang, Y., Bellot, A., and van der Schaar, M. Learning
overlapping representations for the estimation of individ-
ualized treatment effects. In International Conference on
Artificial Intelligence and Statistics, 2020.

13

Normalizing Flows for Interventional Density Estimation

A. Related work: Normalizing flows for causal inference
NFs have been used in the wider area of causal inference, yet in vastly different tasks than ours. Examples include, e. g.,
robust prediction by employing causal mechanisms (Müller et al., 2021); combining interventional and observational datasets
(Ilse et al., 2021); and causal discovery (Brouillard et al., 2020). Further, several works aim to model Bayesian networks or
structural causal models (SCMs) with known or unknown causal diagrams. For example, NFs were used as a probabilistic
model for Bayesian networks aimed at causal discovery, as well as downstream interventional and counterfactual inference
(Khemakhem et al., 2021; Wang et al., 2021; Wehenkel & Louppe, 2021). Balgi et al. (2022) build upon a temporal SCM
with exogenous noise, where NFs are used for interventional and counterfactual queries. Importantly, all the aforementioned
methods assume continuous variables in SCMs and independence of exogenous noise.11 Hence, these methods are not
applicable in our case, which considers semi-Markovian SCMs and which is thus a different inference task.12 In sum, NFs
have not yet been adapted to IDE, which is our novelty.

11This is commonly known as a causal Markov condition.
12This is stated in our identifiability assumptions: there is no limitation on the exogenous noise independence between outcome and

covariates. Hence, our setting is more general.

14

Normalizing Flows for Interventional Density Estimation

B. Background materials
B.1. Normalizing flows

Normalizing flows (NFs) (Tabak & Vanden-Eijnden, 2010; Rezende & Mohamed, 2015) are flexible probabilistic models
with a tractable density. A normalizing flow describes the change of the density of a continuous random variable after
applying a sequence of invertible transformations. Given a random variable Z with some known density P(Z = ·), e. g.,
normal or uniform, we define a transformed variable

X = t(Z) Z ∼ P(Z), (16)

where t(·) : Z → X denotes an invertible forward transformation with inverse t−1(·) : X → Z . Importantly, the
transformation is defined between spaces of the same dimensionality dZ = dX . To find a distribution of X , we can apply
the multivariate change of variables formula

P(X = x) = P(Z = z)
∣∣∣det dZ

dX

∣∣∣ = P(Z = t−1(x))
∣∣∣det dt−1

dX
(x)
∣∣∣, (17)

where det dt−1

dX (x) is the Jacobian determinant of the inverse transformation t−1(·). Then, using the inverse function
theorem, we obtain

dt−1

dX
=
(dt

dZ

)−1

, (18)

so that the Jacobian of the inverse transformation can be substituted with the inverse Jacobian of forward transformation.
Using the properties of the determinant, Eq. (17) can be simplified to

P(X = x) = P(Z = t−1(x))
∣∣∣det dt

dZ

(
t−1(x)

)∣∣∣∣−1

. (19)

The name normalizing comes from the fact that any regular continuous distribution X can be transformed to a normal Z
with a specific t−1(·).
We can construct arbitrarily complex densities by applying a composition of K transformations t1, t2, . . . , tK :

X = ZK = tK(ZK−1) = tK(tK−1(ZK−2)) = . . . = tK ◦ . . . ◦ t1(Z0), (20)

where Z0 is called a base distribution. One calls this chain of transformations a flow. Finally, the density of X can be
recursively found as

P(ZK = zK) = P(ZK−1 = zK−1)
∣∣∣det dtK

dZK−1
(zK−1)

∣∣∣−1

= P(Z0 = z0)

K∏
k=1

∣∣∣det dtk
dZk−1

(zk−1)
∣∣∣−1

, (21)

where z0, z1, . . . , zK are found via Eq. (20). Consequently, we now can directly evaluate the log-likelihood of an observation
Xi = ZKi and, with a proper parametrization of transformations, back-propagate through it. Examples of simple
transformations include affine, planar, and radial (Rezende & Mohamed, 2015).

B.2. Causal model and identification

In this section, we provide a brief background on the underlying causal model in this paper, using both the potential
outcomes and the structural causal model framework. These frameworks are equivalent in the sense that they both allow for
identification of the interventional density and yield the same statistical estimand.

Potential outcomes framework. The observed variables in our model are covariatesX ∈ X ⊆ RdX , a treatmentA ∈ {0, 1},
and a dY -dimensional continuous outcome Y ∈ Y ⊆ RdY . In the main paper, we used the potential outcomes framework
(Rubin, 1974) to define the causal estimates. In particular, we defined Y [a] as the potential outcome after intervening on
treatment by setting it to a. By imposing Assumptions (1)–(3) in Section 3, this allows us to define the interventional density
(our causal estimand) via

P(Y [a] = y) =

∫
x∈X
P(Y = y | X = x,A = a)P(X = x) dx = E

X∼P(X)

(
P(Y = y | X,A = a)

)
. (22)

15

Normalizing Flows for Interventional Density Estimation

SCM framework. Equivalently to the potential outcomes framework, we can also define the interventional density within
the structural causal model (SCM) framework (Pearl, 2009; Bareinboim et al., 2022). More precisely, we can define a
(semi-Markovian) SCM by introducing independent exogenous latent variables UA ∼ P(UA) and UXY ∼ P(UXY); and
the functional assignments X := fX(UXY), A := fA(X,UA), and Y := fY (X,UXY). Here, X,A and Y are observed
endogenous variables, satisfying Assumptions (1)–(3). We show a corresponding causal diagram G in Fig. 4.

Figure 4. Causal diagram G corresponding to the potential outcome framework assumptions.

Interventions vs. counterfactuals. We follow Pearl’s hierarchy on causal inference (Bareinboim et al., 2022) and distinguish
the interventional and the counterfactual distribution. In SCM language, we can use Pearl’s do-notation do(A = a) to
denote an intervention on the treatment A. This corresponds to setting A = a in a diagram G where all arrows leading to A
are removed.

We can then define the potential outcome Y [a] via its interventional density

P(Y [a] = y) = P(Y = y | do(A = a)) (23)

and obtain the identification result from Eq. (22).

In contrast, the counterfactual density aims to answer individualized questions “what would have happened if we had used a
different treatment a for the population, which already received treatment a′”:

P(Y [a] = y | A = a′) (24)

where a′ ̸= a. If the treatment is binary, the counterfactual density can be expressed in terms of interventional and
observational densities:13

P(Y [a] = y | A = a′) =
1

P(A = a′)

(
P(Y [a] = y)− P(Y = y | A = a)P(A = a)

)
. (25)

This is the distributional equivalent to the average treatment effect of the treated (ATT). However, most of the treatment
effect estimation literature focuses on interventional causal estimands (such as the ATE). Our paper is therefore in line with
previous work. We acknowledge that other papers oftentimes call the interventional distribution counterfactual distributions
for simplicity.

Comparison to other identification strategies. For the identification of the interventional density, we mainly rely on the
three main assumptions of positivity, consistency, and exchangeability (or, equivalently, on the back-door adjustment from
Eq. (22)). This is a common setup in treatment effect estimation (van der Laan & Rubin, 2006; Shalit et al., 2017; Wager &
Athey, 2018). More complex adjustment rules (e.g., front-door adjustment, adjustment for napkin graph) have the following
limitations: (1) they require more unusual, complex assumptions which are often violated in practice; and (2) they require
a complex efficient estimation theory Vowels et al. (2022). Nevertheless, this could be an interesting direction for future
research.

B.3. Efficiency theory and influence functions

In this section, we give a brief background on semi-parametric efficiency theory and influence functions. Our background
builds upon Kennedy et al. (2023), and we thus refer to it for mathematical details and further explanations.

13In the case of categorical treatment, additional identification assumptions are required, e. g., the exact knowledge of SCM (Shpitser &
Pearl, 2007).

16

Normalizing Flows for Interventional Density Estimation

Let us consider a semi-parametric statistical model {P ∈ P}, where P is a family of probability measures. We are interested
in estimating a functional ψ : P → R. If ψ is sufficiently smooth, it admits the so-called von Mises or distributional Taylor
expansion

ψ(P̄)− ψ(P) =
∫
ϕ(t, P̄) d(P̄− P)(t) +R2(P̄,P), (26)

where R2(P̄,P) is a second-order remainder term and ϕ(t,P) is the so-called efficient influence function of ψ, satisfying∫
ϕ(t,P)dP(t) = 0 and

∫
ϕ(t,P)2dP(t) <∞.

The efficient influence function ϕ(·, ·) plays an important role in the theory of efficient semi-parametric estimation. Under
certain assumptions, it can be shown that, for any sequence of estimators ψ̂n, it holds that

inf
δ>0

lim inf
n→∞

sup
TV(P,Q)<δ

nEQ

[
(ψ̂n − ψ(Q))2)

]
≥ var (ϕ(T,P)) , (27)

where TV denotes total variation. Hence, ϕ characterizes the best possible variance an estimator can achieve (in a local
min-max sense).

Let now P̂ be an estimator of P and ψ(P̂) the so-called plug-in estimator of ψ(P). The von Mises expansion from Eq. (26)
implies that ψ(P̂) yields a first-order plug-in bias because

ψ(P̂)− ψ(P) = −
∫
ϕ(t, P̂) dP(t) +R2(P̂,P) (28)

due to that
∫
ϕ(t, P̂) dP̂(t) = 0. A simple way to correct for the plug-in bias is to estimate the bias term from the right-hand

side of Eq. (28) and add it to the plug-in estimator via

ψ̂A-IPTW = ψ(P̂) + Pn(ϕ(T, P̂)). (29)

Under certain assumptions, it can be shown that the bias-corrected estimator ψ̂A-IPTW is asymptotically normal with mean
zero and variance var (ϕ(T,P)). Hence, by Eq. (27), ψ̂A-IPTW is (asymptotically) efficient in the sense that it is consistent
with the best possible variance.

Application to interventional density estimation: We now return to the specific statistical model in our paper, i.e., we aim
at interventional density estimation. In other words, the estimand ψ(P) we are interested in is the function

P(Y [a] = ·) = E
X∼P(X)

(
P(Y = · | X,A = a)

)
. (30)

Given an initial estimator P̂(Y = · | X,A = a) and the marginal empirical probability measure Pn{·}, the plug-in estimator
becomes

P̂PI(Y [a] = ·) = Pn{P̂(Y = · | X,A = a)}. (31)

As described above, this estimator suffers from plug-in bias and is not efficient. However, a one-step bias correction
for our setting is not as simple due to the fact that the interventional density is a functional target estimand and, hence,
infinite-dimensional. As a remedy, Kennedy et al. (2023) proposes an elegant solution by introducing the finite-dimensional
projection parameter

β̂a = argmin
βa

KL
(
P(Y [a])

∥∥∥ g(·;βa)), (32)

which is equivalent to solving the moment condition

m(βa) = E
X∼P(X)

(
E
(
T (Y ;βa) | X,A = a

)) !
= 0, (33)

where T = T (Y ;βa) = −∇βa
log g(Y ;βa). The advantage of this approach is that the moment m(βa) is a finite-

dimensional quantity, which means efficiency theory can be applied. The plug-in estimator for the moment is

m̂PI(βa) = E
Ŷ a∼Pn{P̂(Y |X,A=a)}

T (Ŷ a;βa). (34)

17

Normalizing Flows for Interventional Density Estimation

Kennedy et al. (2023) also derived the efficient influence function for the moment:

ϕa(T ;P) =
1(A = a)

πa(X)

(
T − E(T | X,A = a)

)
+ E(T | X,A = a)− E

X∼P(X)
(E(T | X,A = a)). (35)

Hence, a bias-corrected estimator for the projection parameter can be obtained by solving

m̂A-IPTW(βa) = m̂PI(βa) + Pn

{
ϕa(T (Y ;βa); P̂)

} !
= 0. (36)

Estimating the projection parameter via Eq. (36) requires solving a (potentially high-dimension) system of non-linear
equations, which is often infeasible in practice. Hence, as a remedy, we propose in this paper to reformulate Eq. (36) as an
optimization problem which can be incorporated directly into the loss of a neural network (see Appendix C).

18

Normalizing Flows for Interventional Density Estimation

C. Bias-corrected moment condition as an optimization task
We aim to transform the bias-corrected moment condition into an optimization objective:

m̂A-IPTW(βa) = m̂PI(βa) + Pn

{
ϕa(T (Y ;βa); P̂)

} !
= 0. (37)

We first note that the plug-in estimator of moment condition m̂PI(βa) can be rewritten as

m̂PI(βa) = E
Ŷ a∼Pn{P̂(Y |X,A=a)}

T (Ŷ a;βa) =

∫
Y
T (y;βa)Pn{P̂(Y = y | X,A = a)} dy (38)

= Pn

{∫
Y
T (y;βa) P̂(Y = y | X,A = a) dy

}
= Pn

{
Ê
(
T (Y ;βa) | X,A = a

)}
, (39)

where the last equality follows from the definition of the conditional expectation. Notably, we see that the moment condition
could be equivalently solved with either the conditional distribution, P(Y | X,A = a), or with the functional regression,
E
(
T (Y ;βa) | X,A = a

)
.

Let us unroll the bias correction term of Eq. (7):

Pn{ϕa(T ; P̂)} = Pn

{
1(A = a)

π̂a(X)

(
T − Ê(T | X,A = a)

)
+ Ê(T | X,A = a)− Pn

{
Ê(T | X,A = a))

}}
(40)

= Pn

{
1(A = a)

π̂a(X)

(
T − Ê(T | X,A = a)

)
+ Ê(T | X,A = a)

}
− Pn

{
Ê(T | X,A = a))

}
, (41)

where nuisance parameters are marked with red color. Here, the last term is, in fact, the plug-in estimator of the moment
condition, i. e., −m̂PI(βa). Therefore, we can simplify the one-step bias corrected moment condition via

m̂A-IPTW(βa) = Pn

{
1(A = a)

π̂a(X)

(
T − Ê(T | X,A = a)

)
+ Ê(T | X,A = a)

}
(42)

= E
Ŷ a∼Pn{P̂(Y |X,A=a)}

T (Ŷ a;βa) + Pn

{
1(A = a)

π̂a(X)

(
T (Y ;βa)− E

Y∼P̂(Y |X,A=a)
T (Y ;βa)

)}
, (43)

where we use the conditional density estimator but not an estimator for the functional regression. This allows us to transform
the A-IPTW moment condition into an optimization objective (Eq. (13)) by taking antiderivative with respect to βa.

19

Normalizing Flows for Interventional Density Estimation

D. Two-step training procedure
Algorithm. Our INFs are trained with a two-step procedure. The procedure is shown in Algorithm 1. Recall that we use
noise regularization as the main regularization technique for the nuisance flow, and exponential moving average (EMA) for
the target flow to stabilize training. A-IPTW estimation is also known to become unstable in a finite sample setting (Shi
et al., 2019), so that inverse values of propensity score become too large. Thus, we manually discard observations with too
small propensity score (π̂a(X) < 0.05) from bias correction.

Algorithm 1 Training procedure of INFs
Input: number of iterations niter,N, niter,T; minibatch sizes bN, bT; learning rates ηN, ηT; intensities of the noise regulariza-
tion σ2

x, σ
2
y; EMA smoothing γ; grid size K.

Init: parameters of the nuisance flow: FC(0)
1 ,FC(0)

2 {Fitting the nuisance flow}
for i = 0 to niter,N do
B = {X,A, Y } ← minibatch of size bN

R, π̂a(X)← FC(i)
1 (X)

ξx ∼ N(0, σ2
x); ξy ∼ N(0, σ2

y); R̃← R+ ξx; Ỹ ← Y + ξy {Noise regularization}
θ(X,A)← FC(i)

2 (A, R̃)

P̂(Y | X,A)← normalizing flow with parameters θ(X,A)
LNLL ← − log P̂(Y = Ỹ | X,A)
Lπ ← BCE(π̂A(X), A)

LN(P̂, π̂a)← PB
bN
{LNLL + αLπ}

FC(i+1)
1 ,FC(i+1)

2 ← optimization step wrt. LN(P̂, π̂a) with learning rate ηN
end for
Output: nuisance parameters: P̂(Y | X,A), π̂a(X)

Init: parameters of the target flows: β(0)
a , β(0)

a,EMA ← β
(0)
a {Fitting the target flows}

for i = 0 to niter,T do
B = {X,A, Y } ← minibatch of size bT
for a ∈ {0, 1} do
LCE(β

(i)
a)← −h∑K

j=1 log g(yj ;β
(i)
a)PB

bT
{P̂(Y = yj | X,A = a)}

LCCE(X;β
(i)
a)← −h∑K

j=1 log g(yj ;β
(i)
a)P̂(Y = yj | X,A = a)

bias correction(β(i)
a)← PB

bT

{
1(A=a&π̂a(X)≥0.05)

π̂a(X)

(
− log g(Y ;β

(i)
a)− LCCE(X;β

(i)
a)
)}

LT(β
(i)
a)← LCE(β

(i)
a)+bias correction(β(i)

a)

β
(i+1)
a ← optimization step wrt. LT(β

(i)
a) with learning rate ηT

β
(i+1)
a,EMA ← γβ

(i)
a,EMA + (1− γ)β(i+1)

a {EMA update}
end for

end for
Output: β̂a

A-IPTW ← β
(niter,T)
a,EMA

Differences to standard two-step meta-learners. There are two key differences between our nuisance-target model
and standard two-step meta-learners (e. g., Curth & van der Schaar, 2021): (1) We aim to estimate the density of the
non-individualized potential outcomes after an intervention. Standard two-step meta-learners are designed to estimate
individualized causal estimands, e. g., CATE using the doubly robust (DR) learner. However, it is not standard in the
literature to train a second model for non-individualized causal estimands (e. g., ATE). Here, standard practice is to simply
average estimated nuisance parameters, thereby only leveraging the first step (e. g., A-IPTW estimator). In contrast, our
approach is to train a second model for estimating the target causal estimand, i. e., our target flow. (2) Meta-learners
for CATE estimation (e. g., DR learner) infer adjusted pseudo-outcomes once and use them to fit a second-step model.
Our target flow (second-step model) needs access to the nuisance flow to estimate the A-IPTW adjusted objective from
Eq. (15). This is different from the standard second-step CATE estimation, as we do not deal with a single pseudo-outcome,
but with a full continuum of pseudo-outcomes, i. e., conditional distribution. Therefore, the second-step model requires
extra computational heuristics, e. g., a feasible way to approximate the cross-entropy and smoothing of the training with

20

Normalizing Flows for Interventional Density Estimation

minibatches (see Appendix E). To the best of our knowledge, this kind of learning was not implemented or evaluated before
in the context of two-step causal inference.

21

Normalizing Flows for Interventional Density Estimation

E. INFs implementation details
Implementation. We implemented our INFs using PyTorch and Pyro. For both the nuisance and target flow, we employ
neural spline flows (Durkan et al., 2019) with standard normal, N(0, 1), as a base distribution. Neural spline flows construct
an invertible transformation of the base distribution with the help of monotonic rational-quadratic splines. They are
characterized by two main hyperparameters: a number of knots nknots and a span of the transformation interval [−B;B].
nknots controls the expressiveness of estimated density (i. e., the maximal number of modes the flow can model) and B
affects the support of the transformation. In our experiments, we heuristically set B = ymax − ymin + 5, considering that
the outcome is standard normalized.

For the nuisance flow, we use fully-connected subnetworks each with one hidden layer (with h = 10 hidden units), and the
dimensionality of representation is set to dR = 10.

Training. During training (see full algorithm in Appendix D), we adopt noise regularization (Rothfuss et al., 2019) and
add an independent Gaussian noise ξx ∼ N(0, σ2

x), ξy ∼ N(0, σ2
y) to the representation and output of the nuisance flow,

i. e., R̃ = R+ ξx; Ỹ = Y + ξy . For faster learning, we approximate a full-sample average Pn{·} with a minibatch average
PB
b {·} for all the losses, where b is the minibatch size. We use stochastic gradient descent (SGD) for fitting the parameters of

the nuisance flow, and Adam optimizer (Kingma & Ba, 2015) for the target flow with learning rates ηN and ηT, respectively.
We fix the weighting hyperparameters of the loss to α = 1 and the EMA smoothing hyperparameter to γ = 0.995.

We numerically approximate the cross-entropy and conditional cross-entropy losses via rectangle quadrature rule14 (one-
dimensional outcome) or Monte Carlo method (multi-dimensional outcome):

LCE(βa) ≈
{
−h∑K

j=1 log g(yj ;βa)Pn{P̂(Y = yj | X,A = a)}, if dY = 1,

−PK{log g(Ŷ a;βa)}, if dY > 1,
(44)

LCCE(X;βa) ≈
{
−h∑K

j=1 log g(yj ;βa) P̂(Y = yj | X,A = a), if dY = 1,

−PK{log g(Ŷ X,a;βa)}, if dY > 1,
(45)

where ymin ≤ y1 < · · · < yK ≤ ymax is an equidistant grid of points on Y with step size h, {Ŷ a
j }Kj=1 is an i.i.d. sample

drawn from Pn{P̂(Y | X,A = a)}, and {Ŷ X,a
j }Kj=1 is an i.i.d. sample drawn from P̂(Y | X,A = a). The grid or sample

sizes, respectively, are set to K = 100. Both ymin and ymax are set to the empirical minimum and maximum of the train
sub-sample.

Note that we would need sample splitting for training both flows to guarantee the asymptotic properties, i. e., efficiency and
double robustness (see Kennedy et al., 2023, Remark 5). Nevertheless, we used all data for both components and trained our
INFs with an auxiliary regularization because sample splitting can affect the performance in settings with limited data. This
is consistent with previous work on deep learning for efficient treatment effect estimation (Curth & van der Schaar, 2021).

Hyperparameter tuning. We perform extensive hyperparameter tuning only for the nuisance flow. Hyperparameters for
tuning include, e. g., number of knots of neural spline flows nknots,N, the minibatch size bN, the learning rate ηN, and the
intensities of the noise regularization σ2

x, σ
2
y . On the other hand, we discovered, that the target flow works well with the

same plain set of hyperparameters in almost all the experiments. Those include the minibatch size bT = 64 and the learning
rate ηT = 0.005. The number of knots nknots,T is chosen at hand for each dataset. Further details on hyperparameter tuning
are provided in Appendix G.

14We also experimented with the trapezoidal quadrature rule, but this did not bring any noticeable performance gain.

22

Normalizing Flows for Interventional Density Estimation

F. Baselines
In the following, we describe the baseline methods in detail. We use three naı̈ve semi-parametric plug-in estimators: an
extended treatment-agnostic representation network (TARNet∗) (Shalit et al., 2017), mixture density networks (MDNs)
(Bishop, 1994) and conditional normalizing flow (CNF) (Trippe & Turner, 2018). Further, we use three state-of-the-art IDE
baselines: kernel density estimation (KDE) (Kim et al., 2018), distributional kernel mean embeddings (DKME) (Muandet
et al., 2021), and a truncated series estimator with CNF (CNF+TS) as suggested by (Kennedy et al., 2023).

F.1. Naı̈ve semi-parametric plug-in estimators

Semi-parametric plug-in estimators estimate the conditional outcome distribution and perform averaging over covariates
during evaluation, as introduced in Eq. (2).

TARNet∗, MDNs, and CNF make use of hypernetworks (Ha et al., 2017), which take covariates X and treatment A
as an input and output parameters, i. e., θ(X,A) of the estimated conditional distribution P̂(Y | X,A). Hypernetwork
architectures are considered to be state-of-the-art for neural conditional density estimation and can be found in, e. g.,
Gaussian mixtures (Bishop, 1994), variational autoencoders (Kingma & Welling, 2013), and normalizing flows (Trippe &
Turner, 2018). For comparability, we use the same network structure of the nuisance flow in our INFs as the hypernetwork
for the conditional distribution parameters. This gives two fully-connected subnetworks stacked on each other, i. e. FC1

and FC2, as introduced in Section 5.1. To regularize both conditional distribution estimators, we use noise regularization
(Rothfuss et al., 2019).

TARNet∗. The treatment-agnostic representation network (TARNet) (Shalit et al., 2017) was proposed to estimate nuisance
parameters for CATE, i. e., conditional means of outcomes. To obtain density estimates as outputs, we report results from an
extended variant which we refer to as TARNet∗. Specifically, we extended the original TARNet by modeling conditional
outcome distribution as a homoscedastic normal distribution. For this, we add one unconditional parameter of standard
deviation, σ, so that the conditional density equals to

P̂(Y = y | X,A) = N(y;µ(X,A), σ2), (46)

where N(y;µ, σ2) is a density of the normal distribution, and µ(X,A) is conditional mean of outcome. Notably, we do
not use the two separate outcome heads (as in the original TARNet) but only one, i. e., FC2. This is crucial to ensure a fair
comparison with other plug-in estimators. We estimate the standard deviation σ using maximum likelihood. Note also that
TARNet∗ is restricted to normal conditional outcome distributions and thus is not a universal density estimator. In contrast
to our INFs, TARNet∗ is unable to capture heavy-tailed, multi-modal, and skewed distributions.

MDNs. Mixture density networks (Bishop, 1994) are built on top of a mixture of normal distributions, and can approximate
any density arbitrarily well (Titterington et al., 1985), i.e.,

P̂(Y = y | X,A) =
nC∑
j=1

wj(X,A)N(y;µj(X,A), σ
2
j (X,A)) (47)

where nC is a number of mixture components, wj ≥ 0,
∑nC

j=1 wj = 1 are mixture weights, and N(y;µj , σ
2
j) is a density of

the normal distribution. In the case of MDNs, the hypernetwork outputs logits of mixture weights and parameters of the
normal distribution (i.e., mean and logarithm of the standard deviation), i. e., θ = {logits(wj), µj , log σj}. Here, the number
of mixture components nC controls the smoothness of the estimator and represents the main hyperparameter for tuning.

CNF. We implement conditional normalizing flow (Trippe & Turner, 2018) with the help of neural spline flows (Durkan
et al., 2019). Neural spline flows construct an invertible function parameterized by θ, i. e., f(·; θ) : R → R, which is a
monotonic rational-quadratic spline with nknots knots. This spline transforms the density of a base distribution on the interval
[−B;B]. Outside of the interval, f(·) equals to the identity function. This allows us to perform flexible parametric density
estimation with the help of the change of variables formula, i.e.,

P̂(Y = y | X,A) = N
(
f−1

(
y; θ(X,A)

)
; 0, 1

) ∣∣∣∣ dfdY (f−1(y; θ(X,A))
)∣∣∣∣−1

(48)

where f−1(·; θ) is the inverse transformation, and the density of standard normal distribution N(y; 0, 1) serves as a base
distribution. As already discussed in Appendix E, B affects the support of transformation, and the number of knots nknots
controls the flexibility of the estimator and represents the main hyperparameter for tuning.

23

Normalizing Flows for Interventional Density Estimation

F.2. Kernel density estimation (KDE)

Kernel density estimation (KDE) is a semi-parametric method for IDE (Kim et al., 2018). It builds upon the idea of a density
functional, namely Ty(Y ;ha), to transform a random variable Y into a proper density via

Ty(Y ;ha) =
1

ha
K

(∥Y − y∥2
ha

)
=

1

ha
√
2π

exp

(
−∥Y − y∥

2
2

2h2a

)
, (49)

where K(x) = 1√
2π

exp(−x2/2) is a radial basis function (RBF) with a treatment-specific smoothing parameter ha called
bandwidth, and ∥·∥2 is the L2-norm.

Robins & Rotnitzky (2001) proposed a semi-parametric plug-in estimator of the interventional density

P̂PI(Y [a] = y) = Pn

{
Ê
(
Ty(Y ;ha) | X,A = a

)}
, (50)

where µ̂a,y(X) = Ê
(
Ty(Y ;ha) | X,A = a

)
is a functional regression of X and A on Ty(Y ;ha). Kim et al. (2018) further

extended this estimator to an A-IPTW-style semi-parametric estimator

P̂A-IPTW(Y [a] = y) = Pn

{
1(A = a)

π̂a(X)

(
Ty(Y ;ha)− µ̂a,y(X)

)
+ µ̂a,y(X)

}
, (51)

where π̂a(X) is an estimator of the propensity score. This estimator is efficient with respect to the L1 distance between two
interventional distributions.

The main challenge here is building a functional regression µ̂a,y(X). Unfortunately, the work by Kim et al. (2018) does not
provide effective, practical solutions. Even more so, Eq. (51) does not guarantee that the estimated density is proper, i. e.,
integrates to 1 and is positive, especially in a small sample regime or when the propensity score has extremely low values.

To estimate the nuisance parameters, namely, the propensity score and the functional regression, we use the same network
structure as for the nuisance flow of our INFs (see Section 5.1). In this way, we estimate the propensity score and perform a
functional regression with two joined, fully-connected subnetworks (i.e., FC1 and FC2). The first subnetwork, FC1, outputs
a representation R and estimates the propensity score. The second subnetwork, FC2, then takes the representation R and the
treatment A, and performs an outcome regression: Ŷ = Ê(Y | X,A). The functional expression, i. e., Eq. (49), is predicted
via µ̂a,y(X) = Ty(Ê(Y | X,A);ha). Although, this is a biased estimator of µa,y(X), it ensures a proper normalization,
i.e.,

∫
Y µ̂a,y(X) dy = 1.

To fit FC1 and FC2, we use the sum of mean-squared error (LMSE) and binary cross-entropy (Lπ) losses via

LKDE(Ê, π̂a) = Pn{LMSE + αLπ} with LMSE = (Ŷ − Y)2; Lπ = BCE(π̂A(X), A), (52)

where α is a hyperparameter. In our experiments, we set α = 1 and fit the nuisance parameters (i.e., π̂a and Ê(Y |
X,A)) using the Adam optimizer with niter = 10000 iterations. Both learning rate η and minibatch size b are subject to
hyperparameter tuning.

We employ a median heuristic (Garreau et al., 2017) for choosing the bandwidth ha, i.e.,

hmed
a =

√
1

2
Median

(
∥Yi − Yj∥22 | A = a

)
, 1 ≤ i < j ≤ n, (53)

where ∥·∥2 is the L2-norm, and where Yi, Yj are observations from the train subset, conditioned on A = a. To address the
numeric instability of the A-IPTW estimator, we discard observations with too small propensity scores (π̂a(X) < 0.05)
from averaging in Eq. (51), similarly to our INFs.

F.3. Distributional kernel mean embeddings (DKME)

Distributional kernel mean embeddings (DKME) (Muandet et al., 2021) is a non-parametric plug-in estimator of interven-
tional densities. This method builds a kernel mean embedding (KME), namely, µY |X,A=a, for the conditional distribution
P(Y | X,A = a) via

µY |X,A=a(y) := E
Y∼P(Y |X,A=a)

la(y, Y), (54)

24

Normalizing Flows for Interventional Density Estimation

where la(·, ·) is a measurable positive definite kernel associated with a reproducing kernel Hilbert spaceH, so that µY |X,A=a

provides a mapping from the space of conditional distributions to the space of functionsH. If la(·, ·) is properly normalized,
then µY |X,A=a(y) is in fact a conditional density estimator.

To estimate the KME of the conditional outcome distribution (conditional mean embedding), we use the i.i.d. sample
D = {Xi, Ai, Yi}ni=1, and split it into control and treated subsamples: D = {X0

i , Y
0
i }n0

i=1 ∪{X1
i , Y

1
i }n1

i=1. Then, µY |X,A=a

can be estimated via

µ̂Y |X,A=a(y) =

na∑
i=1

wa
i (X) la(y, Y

a
i), (55)(

wa
1(X), . . . , wa

na
(X))⊺ = (Ka + naεI)

−1 ka(X) ∈ Rna , (56)

ka(X) =
(
k(X,Xa

1), . . . , k(X,X
a
na
)
)⊺ ∈ Rna , (57)

where I ∈ Rna×na is an identity matrix, ε > 0 is a regularization hyperparameter, Ka ∈ Rna×na is a kernel matrix
with elements Ka

ij = k(Xa
i , X

a
j), and k(·, ·) is a second kernel representing conditional dependencies between X and Y

(Grünewälder et al., 2012).

Muandet et al. (2021) further developed a KME for interventional distribution, i. e., µY [a], and its empirical estimate, µ̂Y [a]:

µY [a](y) = E
X∼P(X)

µY |X,A=a(y) (58)

µ̂Y [a](y) = Pn{µ̂Y |X,A=a(y)} =
na∑
i=1

βa
i la(y, Y

a
i), (59)

(βa
1 , . . . , β

a
na
)⊺ = (Ka + naεI)

−1 K̃a 1m ∈ Rna , (60)

where K̃a ∈ Rna×n is a kernel matrix with elements K̃a
ij = k(Xa

i , Xj), and 1m = (1/n, . . . , 1/n)⊺.

For our experiments, we choose both kernels, i. e., outcome kernel, la(·, ·), and conditional kernel, k(·, ·), to be RBF kernels
with bandwidth parameters ha,l and hk, respectively. Therefore, µ̂Y [a](y) represents a valid interventional density estimator.
Nevertheless, due to small sample sizes, some βa

i could be negative and the estimated density ends up having negative
values.

We set the bandwidth of the outcome kernel, ha,l according to the median heuristic from Eq. (53). The bandwidth of the
conditional kernel hk and the regularization hyperparameter ε are subjects to the hyperparameter tuning. Motivated by the
interpretation of conditional mean embedding as kernel ridge regression (Grünewälder et al., 2012), we use out-sample MSE
of the ridge regression with parameters hk and ε as a tuning criterion.

F.4. Truncated series estimator with CNF (CNF+TS)

The truncated series (TS) estimator (Efromovich, 2010) is a fully-parametric estimator, which is used as a second-step model
in (Kennedy et al., 2023). The parametric density model uses so-called orthogonal basis functions b(y) = {bj(y)}dj=1 and is
parameterized by the set of parameters β ∈ Rd:

g(y;β) = q(y) +

d∑
j=1

βjbj(y), (61)

where q(y) is some fixed density (e. g., uniform) d is the basis dimensionality, and
∫
Y bj(y) dy = 0. g(y;β) is also called a

projection onto the orthogonal basis. This density estimator also naturally extends to higher dimensions. For example, a
two-dimensional density estimation thus yields

g(y;β) = q(y) +

d∑
j=1

d∑
k=1

βjkbj(y1)bk(y2), (62)

where β ∈ Rd×d is a parameters tensor and b(y) = {bj(y1)bk(y2)}dj,k=1.

25

Normalizing Flows for Interventional Density Estimation

Following (Kennedy et al., 2023), we bound the support of Y to [0, 1], set q(y) = 1, and take b(y) as cosine basis:

bj(y) =
√
2 cos(πjy), (63)

which satisfies
∫ 1

0
bj(y) dy = 0.

The estimation of IDE projection parameters is done differently from INFs. Specifically, truncated series estimator aims to
minimize L2 distance, but not KL-divergence via

β̂a = argmin
βa

∫
Y
(g(y;βa)− P(Y [a] = y))

2
dy. (64)

In the case of Y having support [0, 1] and q(y) = 1, the projection parameters have a closed form solution

β̂a = E
Y a∼P(Y [a])

(
b(Y a)

)
. (65)

Kennedy et al. (2023) proposed an efficient estimator of the L2 projection parameters via one-step bias correction

β̂A-IPTW
a = Pn

{
1(A = a)

π̂a(X)

(
b(Y)− µ̂a(X)

)
+ µ̂a(X)

}
, (66)

where π̂a(X) is an estimator of the propensity score and µ̂a(X) = Ê(b(Y) | X,A = a) is a functional regression of X and
A on b(Y).

In our experiments, we fit the truncated series together with CNF, which was also done in (Kennedy et al., 2023), but with a
different conditional density estimator. Then, µ̂a(X) can be approximated via

µ̂a(X) ≈
{
h
∑K

j=1 b(y) P̂(Y = yj | X,A = a), if dY = 1,

PK{b(Ŷ X,a)}, if dY > 1,
(67)

where P̂(Y | X,A = a) is conditional distribution, modeled by CNF, ymin ≤ y1 < · · · < yK ≤ ymax is an equidistant grid
of points on Y with step size h, and {Ŷ X,a

j }Kj=1 is an i.i.d. sample drawn from P̂(Y | X,A = a). The grid (or sample sizes)
are set to K = 100 (the same, as for INFs).

Importantly, the density g(y;βa) is not guaranteed to be positive and post-hoc re-normalization is required in finite-sample
estimation (Efromovich, 2010). Such issues cannot be addressed by, e. g., tuning the basis dimensionality, d. Specifically, by
setting it too low, the density estimator will be underfitting; by setting it too high, it struggles with negative values due to
heavy tails or low-density regions. For details on choosing d, we refer to Appendix G.

26

Normalizing Flows for Interventional Density Estimation

G. Hyperparameter tuning
We performed hyperparameters tuning of the nuisance parameters models for all the baselines based on five-fold cross-
validation using the train subset. For each baseline, we performed a grid search with respect to different tuning criteria,
evaluated on the validation subsets. Table 5 shows grids for hyperparameter tuning and other parameters, such as tuning
criteria, number of training iterations, and optimizers. We aimed for a fair comparison and thus kept the number of
parameters, network structures, and grid size similar across models. For the sake of reproducibility, we make the chosen
hyperparameters for all the experiments public (see YAML files in our GitHub15).

Importantly, to facilitate the convergence of baseline methods, we additionally perform a standard normalization of both
factual and counterfactual outcomes for all the datasets.

For the second-step models, e. g., (i) the target flow of INFs and (ii) truncated series of CNF+TS, we did not perform
tuning but instead proceeded as follows. For (i), we heuristically set the number of knots of the target flow, nknots,T, to the
optimal number of knots of the nuisance flow. We observed that this is the only important hyperparameter, as it controls
the expressiveness of the estimator. For (ii), tuning the main hyperparameter, i. e., the basis dimensionality, d, had a major
negative side-effect. It resulted in either underfitting the density (for too small d) or negative density values due to too high
flexibility (for large d). As a remedy, we set d = 10 in all the experiments.

15https://anonymous.4open.science/r/AnonymousInterFlow-E2F3

27

https://anonymous.4open.science/r/AnonymousInterFlow-E2F3

Normalizing Flows for Interventional Density Estimation

Table 5. Hyperparameter tuning for baselines.

Model Sub-model Hyperparameter Range / Value

TARNet∗ —

Intensity of noise regularization (σ2
x) 0.0, 0.012, 0.052, 0.12

Intensity of noise regularization (σ2
y) 0.0, 0.012, 0.052, 0.12

Learning rate (η) 0.001, 0.005
Minibatch size (b) 32, 64
Tuning strategy random grid search with 50 runs
Tuning criterion LNLL
Number of train iterations (niter) 5000
Optimizer SGD (momentum = 0.9)

MDNs —

Number of mixture components (nC) 5, 10, 20
Intensity of noise regularization (σ2

x) 0.0, 0.012, 0.052, 0.12

Intensity of noise regularization (σ2
y) 0.0, 0.012, 0.052, 0.12

Learning rate (η) 0.001, 0.005
Minibatch size (b) 32, 64
Tuning strategy random grid search with 50 runs
Tuning criterion LNLL
Number of train iterations (niter) 5000
Optimizer SGD (momentum = 0.9)

KDE —

Learning rate (η) 0.001, 0.005, 0.1
Minibatch size (b) 32, 64, 128
Tuning strategy full grid search
Tuning criterion LMSE + αLπ

Number of train iterations (niter) 10000
Optimizer Adam (betas=(0.9, 0.999))

DKME —

Kernel smoothness (σk = 2h2k) 0.0001, 0.001, 0.01, 0.1, 1, 10, 20
Regularization parameter (ε) 0.0001, 0.001, 0.01, 0.1, 1, 10
Tuning strategy full grid search
Tuning criterion MSE of ridge regression

CNF+TS
CNF Same as INFs/ nuisance flow (=∧ CNF)

TS Basis dimensionality (d) 10
Tuning strategy w/o tuning

INFs

nuisance flow (=∧ CNF)

Number of knots (nknots,N) 5, 10, 20
Intensity of noise regularization (σ2

x) 0.0, 0.012, 0.052, 0.12

Intensity of noise regularization (σ2
y) 0.0, 0.012, 0.052, 0.12

Learning rate (ηN) 0.001, 0.005
Minibatch size (bN) 32, 64
Tuning strategy random grid search with 50 runs
Tuning criterion LNLL
Number of train iterations (niter,N) 5000
Optimizer SGD (momentum = 0.9)

target flow

Number of knots (nknots,T) dataset specific∗

Learning rate (ηT) 0.005
Minibatch size (bT) 64
Tuning strategy w/o tuning
Number of train iterations (niter,T) 4000
Optimizer Adam (betas=(0.9, 0.999))

∗ nknots,T = 5 (synthetic data), = 10 (IHDP, HC-MNIST datasets), = nknots,N (ACIC 2016 & 2018 datasets)

28

Normalizing Flows for Interventional Density Estimation

H. Dataset details
H.1. Synthetic dataset

We sample n = 1000 observations from the SCM (Fig. 1) and use a ten-fold split for train/test samples (90%/10%). We
separately perform hyperparameter tuning based on the first split for each baseline and each level b. We then report an
average out-sample log-likelihood over ten folds.

H.2. IHDP dataset

The IHDP dataset (Hill, 2011) uses a real-world dataset with 25 covariates (6 continuous, 19 binary) and one binary treatment,
capturing aspects related to children and their mothers. Both treated and untreated, synthetic outcomes of IHDP are sampled
from different conditional normal distributions. These distributions are homoscedastic (σ2 = 1) but have substantially
different conditional means. We used the setting “B” in (Hill, 2011) with a following data generating mechanism:

X ∼ Real-World(·),
A ∼ Real-World(X),

Y ∼ N
(
A (Xβ − ω) + (1−A) (exp((X +W)β)), 1

)
,

(68)

where β, W , ω are constant parameters of the simulation. For further details, we refer to (Hill, 2011).

H.3. ACIC 2016 & 2018 datasets

Covariates of ACIC 2016 are taken from a large study of developmental disorders (Niswander, 1972), and covariates of
ACIC 2018 are derived from the linked birth and infant death data (MacDorman & Atkinson, 1998). ACIC 2016 and
ACIC 2018 differ in the number of true confounders, the varying level of overlap, and the form of conditional outcome
distributions. ACIC 2016 has 77 different data-generating mechanisms with 100 equal-sized samples for each mechanism
(n = 4802, dX = 82).16 ACIC 2018 provides 63 distinct data-generating mechanisms with around 40 non-equal-sized
samples for each mechanism (n ranges from 1, 000 to 50, 000, dX = 177). Notably, ACIC 2018 has a constant CATE for
most of the datasets, but heterogeneous propensity scores.

H.4. HC-MNIST

Jesson et al. (2021) introduced a complex high-dimensional, semi-synthetic dataset based on the MNIST image dataset
LeCun (1998), namely HC-MNIST. This dataset maps high-dimensional images onto a one-dimensional manifold, where
potential outcomes depend in a complex way on the average intensity of light and the label of an image. The treatment also
uses this one-dimensional summary, ϕ, together with an additional (hidden) synthetic confounder, U . This is described by
the following data-generating mechanism:

U ∼ Bern(0.5),
X ∼ MNIST-image(·),
ϕ :=

(
clip

(
µNx−µc

σc
;−1.4, 1.4

)
−Minc

)
Maxc−Minc
1.4−(−1.4) ,

α(ϕ; Γ∗) := 1
Γ∗ sigmoid(0.75ϕ+0.5) + 1− 1

Γ∗ ,

β(ϕ; Γ∗) := Γ∗

sigmoid(0.75ϕ+0.5) + 1− Γ∗,

A ∼ Bern
(

u
α(ϕ;Γ∗) +

1−u
β(ϕ;Γ∗)

)
,

Y ∼ N
(
(2A− 1)ϕ+ (2A− 1)− 2 sin(2(2A− 1)ϕ)− 2(2u− 1)(1 + 0.5ϕ), 1

)
,

(69)

where c is a label of the digit from the sampled image X; µNx is the average intensity of the sampled image; µc and σc are
the mean and standard deviation of the average intensities of the images with the label c; and Minc = −2 + 4

10c,Maxc =
−2 + 4

10 (c + 1). The parameter Γ∗ defines what factor influences the treatment assignment to a larger extent, i.e., the
additional confounder or the one-dimensional summary. We set Γ∗ = exp(1). For further details, we refer to (Jesson et al.,
2021).

16After one-hot-encoding of categorical covariates.

29

Normalizing Flows for Interventional Density Estimation

For the experiments with HC-MNIST, we use a larger network size for our INFs (compared to other benchmarking
experiments) to allow for more flexibility. We set the number of hidden units in fully-connected subnetworks to h = 30, and
the dimensionality of representation dR = 30. We also increase the number of training iterations to niter,N = 15, 000 and
niter,T = 5000.

Fig. 5 shows both ground-truth interventional, P(Y [a]), and observational, P(Y | A = a), distributions together with our
INFs A-IPTW estimator, P̂INFs(Y [a]). Remarkably, the interventional distributions in HC-MNIST are multi-modal and
differ a lot from observational distributions.

−3 −2 −1 0 1 2 3 4

y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(Y [0] = y)

P(Y = y | A = 0)

P̂INFs(Y [0] = y)

−3 −2 −1 0 1 2 3 4

y

P(Y [1] = y)

P(Y = y | A = 1)

P̂INFs(Y [1] = y)

Figure 5. Empirical ground-truth interventional and conditional distributions of the HC-MNIST synthetic outcome. We also plot our INFs
density estimator, i. e., P̂INFs(Y [a]).

30

Normalizing Flows for Interventional Density Estimation

I. Synthetic two-dimensional data
In the following, we benchmark our INFs for estimating an interventional density of the multidimensional outcome, dY = 2.

Noisy moons synthetic data. We used a standard two-dimensional toy data generator, namely moons data.17 It draws
samples from two interleaving half-circles with different noise levels ε. The noise level controls the level of the overlap
between two half-circles (a higher σ corresponds to a better overlap, and, thus, a satisfaction of the positivity assumption).
We draw n = 1000 observations of two-dimensional covariates, i. e., dX = 2, and use an inclusion to the top or bottom semi-
circle as a treatment. Finally, we generate the synthetic outcome by rotating the covariates by a random treatment-specific
angle, i. e., α0 and α1:

X,A ∼ Make-Moons(·, σ),
ε ∼ N(0, 0.12),

α0 = π
4 + ε, α0 = −π

4 + ε,

Y := R(α1A+ α0 (1−A))X + ε12,

(70)

where 12 = (1, 1)T , and R(α) =
(
cosα − sinα
sinα cosα

)
is an α-angle rotation matrix. We set σ = 0.75.

For the benchmarking with the noisy moons data, we increased the number of the training iterations for all the plug-in
methods (niter = 10000) and for our INFs, (niter,N = 10000, niter,T = 5000). To model two-dimensional (conditional)
density, we employed an auto-regressive extension of neural spline flows (Dolatabadi et al., 2020). We decreased the number
of sampled points for approximating the cross-entropy, K = 70, to speed up the training, and set the number of knots for
the target flow to nknots,T = 5. As the truncated series estimator of CNF+TS requires large amounts of training data in
high-dimensional density estimation, we reduce the basis dimensionality to d = 5.

Results. Table 6 shows the results. Here, our INFs (main) scores second best in terms of in-sample performance, but, more
importantly, best in out-sample performance. MDNs, although scoring the best with in-sample average log-probability, do
not generalize well. Finally, we again confirmed, that our INFs are superior over their ablations and other existing methods,
e.g., KDE and DKME. We also see that CNF+TS performs the worst, confirming that truncated series do not scale well to
higher dimensions.

Table 6. Results for synthetic experiments using the noisy moons synthetic data. The performance is benchmarked using the empirical
in-sample / out-sample average log-probability for the two potential outcomes (i.e., a = 0 and a = 1). Reported: mean ± standard
deviation over ten-fold train-test splits.

a = 0 a = 1
log-probin log-probout log-probin log-probout

TARNet∗ −2.907 ± 0.121 −3.005 ± 0.263 −2.781 ± 0.092 −2.955 ± 0.222
MDNs −2.698 ± 0.050 −2.887 ± 0.173 −2.683 ± 0.051 −2.827 ± 0.165
CNF [=∧ INFs w/o target flow] −2.767 ± 0.087 −2.935 ± 0.239 −2.807 ± 0.162 −2.900 ± 0.183

KDE (Kim et al., 2018) −2.913 ± 0.015 −2.916 ± 0.052 −2.898 ± 0.013 −2.901 ± 0.049
DKME (Muandet et al., 2021) −2.872 ± 0.016 −2.875 ± 0.056 −2.847 ± 0.012 −2.849 ± 0.067
CNF+TS (Kennedy et al., 2023) −3.803 ± 0.067 −3.879 ± 0.329 −4.095 ± 0.148 −4.255 ± 0.503

INFs w/o bias corr −2.787 ± 0.057 −2.794 ± 0.130 −2.785 ± 0.048 −2.788 ± 0.135
INFs (main) −2.764 ± 0.030 −2.766 ± 0.102 −2.780 ± 0.022 −2.785 ± 0.134
Higher = better (best in bold, second best underlined)

17https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

31

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html

Normalizing Flows for Interventional Density Estimation

J. Additional results
J.1. IHDP dataset

Here, we provide additional results for the IHDP dataset with an alternative evaluation metric, that is, the empirical
Wasserstein distance.

Evaluation metric. For one-dimensional outcomes, the Wasserstein distance between two distributions can be simply
expressed via quantile functions

W p(P1,P2) =

(∫ 1

0

|F−1
1 (q)− F−1

2 (q)|p dq
)1/p

, (71)

where F−1
1 (q) and F−1

2 (q) are quantile functions of P1 and P2, respectively. The Wasserstein distance is not upper-bounded
and equals zero if and only if both distributions are the same. Here, we compute the empirical Wasserstein distance, i. e.,
Ŵ 1, based on empirical quantile functions. This requires two samples: one from the ground-truth interventional distribution
and another from the estimated density. Therefore, methods which do not provide proper density and, specifically, direct
sampling (e. g., KDE, DKME, and CNF+TS) cannot be used for evaluation.

Table 7 shows the results. Note that TARNet∗ is the plug-in with the ground-truth conditional density estimator for this
specific dataset, due to the fact of how the data was constructed. Hence, we do not consider TARNet∗ as a baseline but
rather interpret it as a bound for the best performance. We see that all baselines (MDNs, CNF, INFs w/o bias correction)
are inferior by a large margin. In contrast, our INFs achieve a performance similar to the bound. In particular, our INFs
perform overall best: our INFs are superior over the two other naı̈ve plug-in estimators and the variant of INFs without bias
correction. In sum, the results corroborate our findings from the main paper and add to the effectiveness of our INFs.

Table 7. Additional results for semi-synthetic experiments using the IHDP dataset. The performance is benchmarked using the empirical
in-sample / out-sample Wasserstein distance (i.e., Ŵ 1

in and Ŵ 1
out) for the two potential outcomes (i.e., a = 0 and a = 1). Reported: mean

± standard deviation over ten-fold train-test splits.

a = 0 a = 1

Ŵ 1
in Ŵ 1

out Ŵ 1
in Ŵ 1

out

TARNet∗ [=∧ ground-truth for IHDP] 0.048 ± 0.014 0.131 ± 0.040 0.046 ± 0.024 0.126 ± 0.065
MDNs 0.067 ± 0.053 0.156 ± 0.054 0.121 ± 0.076 0.183 ± 0.071
CNF [=∧ INFs w/o target flow] 0.118 ± 0.048 0.192 ± 0.069 0.111 ± 0.087 0.146 ± 0.082

INFs w/o bias corr 0.075 ± 0.030 0.137 ± 0.051 0.107 ± 0.060 0.128 ± 0.057
INFs (main) 0.040 ± 0.009 0.132 ± 0.051 0.100 ± 0.037 0.117 ± 0.055
Higher = better (best in bold, second best underlined)

J.2. ACIC 2016 & 2018 datasets

In the following, we present detailed results of the experiments with ACIC 2016 and ACIC 2018 datasets. Fig. 6 reports
the median performance for the individual datasets in ACIC 2016, and Fig. 7 for ACIC 2018. In the latter, datasets are
grouped by sample size. We also show the performance gain of our INFs (when INFs score better than the baselines). The
percentage of the datasets with the positive performance gain for our INFs roughly corresponds to the percentage reported
in the Table 3. For ACIC 2016, our INFs are the best method for 30 + 19 = 49 out of 2 * 77 = 154 potential outcomes of
individual datasets (32%) with respect to out-of-sample average log-probability. For comparison, the second-best baseline
(MDNs) are only best for 22 + 24 = 46 out of 2 * 77 potential outcomes of individual datasets (30%), and thus inferior. For
ACIC 2018, our INFs are the best method for 8 + 9 = 17 out of 2 * 24 potential outcomes of individual datasets (35%). For
comparison, the second-best baseline (also MDNs) is only best for 5 + 4 = 9 out of 2 * 24 potential outcomes of individual
datasets (19%), and thus again inferior. This thus provides consistent performance that our INFs are highly effective.

32

Normalizing Flows for Interventional Density Estimation

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

lo
g
-p

ro
b
in

+0.010

+0.026

+0.008
+0.002

+0.003

+0.002
+0.002

+0.003

+0.008

+0.001 +0.002

+0.013

+0.007

+0.001
+0.001+0.002

+0.002 +0.004

+0.002

+0.001

+0.002+0.006

+0.000

+0.000

+0.001

+0.003

+0.005

+0.002
+0.009

+0.004

a = 0

TARNet∗

MDNs

CNF [=
∧

INFs w/o target flow]

KDE

DKME

CNF + TS

INFs w/o bias corr

INFs (main)

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

lo
g-

p
ro

b
o
u
t

+0.000

+0.006

+0.001

+0.009

+0.005

+0.013

+0.004

+0.004
+0.006+0.013

+0.000
+0.001

+0.005
+0.007

+0.001

+0.001

+0.002

+0.010

+0.023

+0.000

+0.006

+0.000
+0.001

+0.004

+0.010

+0.007

+0.000

+0.010

+0.022

+0.010

a = 0

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

lo
g-

p
ro

b
in

+0.013

+0.008

+0.003+0.002

+0.006 +0.001 +0.013

+0.003

+0.004

+0.006

+0.016

+0.008+0.005

+0.005
+0.006

+0.009
+0.001

+0.003+0.006

+0.000

+0.003

+0.003

+0.003

a = 1

10
35

65
4
36

.c
sv

10
37

42
7
74

.c
sv

11
45

29
2
66

.c
sv

12
62

07
0
42

.c
sv

12
90

48
2
60

.c
sv

13
41

57
5
92

.c
sv

14
23

07
4
79

.c
sv

14
63

84
8
37

.c
sv

16
62

27
8
59

.c
sv

17
06

31
1
08

.c
sv

17
17

03
9
28

.c
sv

17
19

80
9
73

.c
sv

17
45

70
9
90

.c
sv

17
85

41
5
73

.c
sv

18
66

25
0
88

.c
sv

18
77

67
8
28

.c
sv

20
05

61
7
02

.c
sv

20
18

70
2
56

.c
sv

20
61

02
6
72

.c
sv

20
76

85
0
59

.c
sv

21
13

00
8
29

.c
sv

21
33

44
1
31

.c
sv

22
46

12
5
11

.c
sv

23
54

27
9
43

.c
sv

23
89

74
6
49

.c
sv

24
75

13
3
59

.c
sv

25
03

68
8
54

.c
sv

25
90

40
7
73

.c
sv

25
95

43
7
70

.c
sv

26
29

33
2
60

.c
sv

27
09

68
8
50

.c
sv

27
17

87
2
98

.c
sv

27
21

63
5
61

.c
sv

27
99

71
3
58

.c
sv

28
36

45
6
72

.c
sv

29
76

53
1
49

.c
sv

29
80

36
2
85

.c
sv

30
38

33
8
97

.c
sv

31
07

80
9
72

.c
sv

31
22

45
6
01

.c
sv

31
36

68
6
96

.c
sv

32
37

44
1
48

.c
sv

32
38

03
8
54

.c
sv

32
47

27
71

.c
sv

32
50

79
9
76

.c
sv

33
67

20
3
79

.c
sv

34
12

79
08

.c
sv

34
29

60
78

.c
sv

34
70

23
9
04

.c
sv

34
90

98
7
15

.c
sv

34
98

33
7
05

.c
sv

36
79

60
48

.c
sv

39
00

02
13

.c
sv

39
52

99
79

.c
sv

46
97

61
33

.c
sv

47
36

08
68

.c
sv

48
45

05
40

.c
sv

48
81

36
36

.c
sv

48
97

72
35

.c
sv

53
43

02
36

.c
sv

56
89

57
33

.c
sv

57
39

06
31

.c
sv

58
12

62
34

.c
sv

58
51

57
05

.c
sv

66
09

67
14

.c
sv

69
81

60
59

.c
sv

73
06

87
55

.c
sv

74
33

94
61

.c
sv

76
03

97
53

.c
sv

76
9
36

21
.c

sv
78

74
70

24
.c

sv
80

14
87

13
.c

sv
86

73
93

05
.c

sv
92

5
60

39
.c

sv
93

51
02

89
.c

sv
95

12
16

68
.c

sv
96

84
74

23
.c

sv

Dataset ID

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

lo
g-

p
ro

b
o
u
t

+0.021

+0.005

+0.002
+0.000

+0.012

+0.008

+0.007

+0.004

+0.000 +0.009

+0.006

+0.009

+0.005

+0.002

+0.018

+0.012

+0.000

+0.006

+0.004

a = 1

Figure 6. Detailed results for ACIC 2016. For each dataset, we perform five random train-test splits, tune the baselines on the first split,
and evaluate the average in-sample / out-sample log-probability for each of the two potential outcomes separately. Shown: median over
five runs and improvement of our INFs (main), when they score better than other baselines.

33

Normalizing Flows for Interventional Density Estimation

−2

−1

0

1

2

3

4

5

6

lo
g-

p
ro

b
in

+0.024
+0.019

+0.732 +0.006

+0.012

+0.001
+0.007

a = 0

TARNet∗

MDNs

CNF [=
∧

INFs w/o target flow]

KDE

DKME

CNF + TS

INFs w/o bias corr

INFs (main)

−2

−1

0

1

2

3

4

5

6

lo
g-

p
ro

b
o
u
t

+0.049

+0.012

+0.038
+0.024

+0.704

+0.027

+0.001
+0.005

a = 0

−2

−1

0

1

2

3

4

5

6

lo
g-

p
ro

b
in

+0.063
+0.021 +0.012

+0.005

+0.084

a = 1

00
ea

30
e8

66
f1

41
d

98
80

d
58

24
a3

61
a7

6a
.c

sv

19
4f

e0
e3

c1
64

4d
41

a5
08

5b
92

d
2f

e7
e5

4.
cs

v

1f
8b

1ff
c2

47
b

45
f8

84
e9

5d
8c

a4
98

9f
d

9.
cs

v

2f
d

4b
7c

57
4b

e4
77

aa
d

c0
95

78
6d

8d
ec

24
.c

sv

4c
05

1f
19

2c
0b

4c
71

85
75

3d
61

0a
0b

3f
73

.c
sv

52
27

b
b

5f
c1

32
4e

31
a2

f3
e1

2b
ce

91
35

b
f.

cs
v

53
69

0f
22

4a
aa

41
5b

b
2c

d
2e

5a
86

56
c0

99
.c

sv

5a
b

f3
4f

c6
14

d
4d

5f
9a

42
02

40
94

63
7e

d
9.

cs
v

60
15

68
e5

8b
a5

48
72

97
fa

93
14

ec
f4

07
d

6.
cs

v

6d
2e

2a
79

f5
ec

48
6a

87
02

ab
3c

44
3c

b
88

e.
cs

v

71
5f

33
72

8d
05

45
b

b
a4

99
d

b
7a

10
50

cb
02

.c
sv

7a
49

ac
2f

2e
0f

41
09

b
1a

d
cc

33
b

56
b

f0
a9

.c
sv

85
1a

50
3c

9d
fd

48
b

58
8e

d
d

24
f8

0d
fc

8b
7.

cs
v

8b
f5

94
ca

a1
66

4f
32

a1
60

c0
28

47
9e

d
d

81
.c

sv

9d
52

49
ef

b
a2

44
30

8a
93

f5
4d

7ff
7c

ad
7b

.c
sv

a3
c4

c6
68

a3
f8

4b
a3

ac
42

b
f7

8c
3c

a3
5b

1.
cs

v

b
27

44
e8

0e
70

44
6c

2a
91

54
11

3d
78

b
88

c7
.c

sv

d
4a

d
72

85
d

a1
24

87
59

99
0d

16
7c

7d
1a

f0
d

.c
sv

d
92

6e
5a

55
75

04
03

d
b

b
92

a0
4b

62
30

60
65

.c
sv

d
ca

9e
ca

ff
81

94
a4

b
9c

cd
94

08
93

ad
b

54
3.

cs
v

e0
23

37
28

79
a3

43
90

9d
80

36
90

22
80

90
d

6.
cs

v

e2
46

15
64

b
07

64
ae

aa
f5

2e
94

fb
9c

67
ad

2.
cs

v

e2
c3

a1
72

7f
ab

41
71

96
46

ce
5c

93
35

a6
12

.c
sv

ff
69

5a
5ff

54
64

ee
1b

7d
ed

a7
4b

a5
42

5d
7.

cs
v

Dataset ID

−2

−1

0

1

2

3

4

5

6

lo
g-

p
ro

b
o
u
t

+0.044

+0.004 +0.116
+0.031

+0.003

+0.002

+0.011

+0.003 +0.132

a = 1

n = 1000 n = 2500 n = 5000 n = 10000 n = 25000 n = 50000

Figure 7. Detailed results for ACIC 2018, sorted with respect to sample sizes. For each dataset, we perform five random train-test splits,
tune the baselines on the first split, and evaluate the average in-sample / out-sample log-probability for each of the two potential outcomes
separately. Shown: median over five runs and improvement of our INFs (main), when they score better than other baselines.

34

Normalizing Flows for Interventional Density Estimation

K. Qualitative insights
In the following, we qualitatively inspect situations where our INFs fail to better understand their strengths and limitations.
We base our qualitative analysis on the ACIC 2016 & 2018 datasets. Figure 8 showcases five specific datasets, where our
INFs scored worst or second worst in comparison to the other baselines. We observe that INFs tend to struggle for datasets
with outliers (e.g., 48977235.csv, 206102672.csv); for datasets that include a combination of heavy tails and multiple modes
(e.g., 6d2e2a79f5ec486a8702ab3c443cb88e.csv, 851a503c9dfd48b588edd24f80dfc8b7.csv); and over-parametrization of
the target flow, i.e., misspecified number of knots, nknots,T (e.g., 00ea30e866f141d9880d5824a361a76a.csv).

48977235.csv (ACIC 2016)

−10 −5 0 5 10 15 20

y

0.0

0.2

0.4

0.6
P(Y [0] = y)

P(Y = y | A = 0)

P̂INFs(Y [0] = y)

−10 −5 0 5 10 15 20

y

P(Y [1] = y)

P(Y = y | A = 1)

P̂INFs(Y [1] = y)

206102672.csv (ACIC 2016)

−20 −15 −10 −5 0

y

0.0

0.2

0.4

P(Y [0] = y)

P(Y = y | A = 0)

P̂INFs(Y [0] = y)

−20 −15 −10 −5 0

y

P(Y [1] = y)

P(Y = y | A = 1)

P̂INFs(Y [1] = y)

6d2e2a79f5ec486a8702ab3c443cb88e.csv (ACIC 2018)

−5 −4 −3 −2 −1 0 1 2

y

0

1

2

P(Y [0] = y)

P(Y = y | A = 0)

P̂INFs(Y [0] = y)

−5 −4 −3 −2 −1 0 1 2

y

P(Y [1] = y)

P(Y = y | A = 1)

P̂INFs(Y [1] = y)

851a503c9dfd48b588edd24f80dfc8b7.csv (ACIC 2018)

−3 −2 −1 0 1

y

0

2

4
P(Y [0] = y)

P(Y = y | A = 0)

P̂INFs(Y [0] = y)

−3 −2 −1 0 1

y

P(Y [1] = y)

P(Y = y | A = 1)

P̂INFs(Y [1] = y)

00ea30e866f141d9880d5824a361a76a.csv (ACIC 2018)

−3 −2 −1 0 1 2 3

y

0.0

0.2

0.4

0.6 P(Y [0] = y)

P(Y = y | A = 0)

P̂INFs(Y [0] = y)

−3 −2 −1 0 1 2 3

y

P(Y [1] = y)

P(Y = y | A = 1)

P̂INFs(Y [1] = y)

Figure 8. Examples of experiments where our INFs struggle to better understand their strengths and limitations. We picked five datasets
from ACIC 2016 & 2018 where our INFs were inferior to the baselines (i.e., performing worst or second worst). In the plots, we show
the empirical ground-truth interventional and conditional distributions of the outcomes. We also plot our INFs density estimator, i. e.,
P̂INFs(Y [a]). Note that the x-axes range from the minimum to maximum observation in the dataset plus an offset.

35

Normalizing Flows for Interventional Density Estimation

L. Runtime comparison
INFs are a fully-parametric model and, therefore, provide a decent speed up at inference time. This is particularly important
for scalability, that is, for datasets with large sample sizes and high-dimensional covariates. In Figure 9, we report the total
runtime of the baselines and the different variants of our INFs together with a summary of the computational complexity.
We see that the runtime of both full INFs and INFs w/o bias corr. stay relatively constant. In contrast to that, for the other
baselines, the complexity grows polynomially with respect to the sample size. This demonstrates the benefits of our INFs in
terms of scalability.

0 10000 20000 30000 40000 50000

Sample size

0

5

10

15

20

25

30

D
u

ra
ti

on
,

m
in

s

Method

TARNet∗

MDNs

CNF [=
∧

INFs w/o target flow]

KDE

DKME

CNF + TS

INFs w/o bias corr

INFs (main)

Method Training time Evaluation time

TARNet∗, MDNs, CNF O(nt · dX · dR) O(nt · ne · dR)
KDEa O(nt · dX · dR) O(nt · ne)

DKMEb O(n2
t · (nt + dX)) O(nt · ne)

INFs, CNF+TS O(nt · dX · dR) O(ne)

nt, ne: sizes of train / evaluation subsets, respectively
dR: size of representation
dX : dimensionality of covariates
a with simplified variant of the functional regression, as in Appendix F
b complexity of matrix inversion is taken as O(n3

t)

Figure 9. Total runtime (in minutes) of the experiments using ACIC 2018 datasets with different sample sizes (left) and computational for
different models (right). Reported: mean ± standard deviation over four datasets and five runs for each size (lower is better). Experiments
are carried out on Intel(R) Xeon(R) Silver 4316 CPU @ 2.30GHz.

36

Normalizing Flows for Interventional Density Estimation

M. Case study: California’s tobacco control program
Overview. To show a real-world application of our INFs, we provide additional results using a case study where we evaluate
the effect of California’s tobacco control program (Abadie et al., 2010). This refers to the effect of Proposition 99, a
large-scale tobacco control program introduced in California after 1988. Proposition 99 increased California’s cigarette tax
by 25 cents per pack, and earmarked the tax revenues to health and anti-smoking education. The main conclusion of Abadie
et al. (2010) is that the effects of the tobacco control program are much larger than previously reported. The dataset has also
found widespread use in causal inference ever since (e.g., Bellot & van der Schaar, 2021). In the original paper (Abadie
et al., 2010), the results were based on a synthetic control method but without providing density estimates.

Dataset. After an initial preprocessing, the dataset consists of 39 states, including California. For each state, we observe
several covariates (e. g., beer consumption per capita, GDP per capita, retail price, and percent of people aged 15–24) and
the outcome, i. e., cigarette sales per capita. These are recorded annually for each year from 1970 to 2001. Further details on
the datasets are in (Abadie et al., 2010).

To apply our INFs, we make several gross assumptions. First, as there is only one treated state, it is impossible to satisfy the
positivity assumption. Therefore, we consider a tuple (state, year) as an independent unit of measurement, thus obtaining
n = 1209 observations with 12 treated observations (i. e., those of the state of California after 1989). We also add a year as
a covariate, which gives dX = 4 + 1. We acknowledge that, even after the previous pre-processing, we still cannot formally
guarantee the independence between units of measurement, as the observations of one state over time are not independent.
Second, we assume the consistency holds, and there is no spillover effect between neighboring states so that the potential
outcome of one state is independent of the others.

Results. We plot the empirical conditional and the estimated interventional distributions in Fig. 10. The results go in line
with the conclusion in (Abadie et al., 2010). Our main finding is that the introduction of the Proposition 99 (a = 1) to all the
states from 1970 would substantially reduce tobacco sales. In particular, the mass of the interventional density is shifted to
the left which accounts for the reduction of the consumption.

As a robustness check, we analyze the role of the smoothness hyperparameter. Our conclusion remains consistent if
one specifies different smoothness hyperparameter for the target flow, i. e. nknots,T = 5 and 10. The specification of this
hyperparameter is based on the prior knowledge of a researcher and cannot be chosen via observational data. However, we
find consistent evidence of a positive effect.

50 100 150 200 250 300

y, per-capita cigarette sales from 1970 to 2000 (in packs)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

nknots,T = 5

P(Y = y | A = 0)

P(Y = y | A = 1)

P̂INFs(Y [0] = y)

P̂INFs(Y [1] = y)

50 100 150 200 250 300

y, per-capita cigarette sales from 1970 to 2000 (in packs)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

nknots,T = 10

P(Y = y | A = 0)

P(Y = y | A = 1)

P̂INFs(Y [0] = y)

P̂INFs(Y [1] = y)

Figure 10. Empirical ground-truth conditional and estimated interventional distributions of cigarette sales per capita from 1970 to 2001.
Treatment a = 1 corresponds to the introduction of the Proposition 99, that is, a comprehensive tobacco tax along with educational
programs. We plot our INFs density estimator, P̂INFs(Y [a]) with different smoothness hyperparameter values nknots,T of the target flow.

37

