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Abstract
In reinforcement learning, the credit assignment
problem is to distinguish luck from skill, that
is, separate the inherent randomness in the en-
vironment from the controllable effects of the
agent’s actions. This paper proposes two novel
algorithms, Quantile Credit Assignment (QCA)
and Hindsight QCA (HQCA), which incorpo-
rate distributional value estimation to perform
credit assignment. QCA uses a network that
predicts the quantiles of the return distribution,
whereas HQCA additionally incorporates infor-
mation about the future. Both QCA and HQCA
have the appealing interpretation of leveraging
an estimate of the quantile level of the return
(interpreted as the level of “luck”) in order to
derive a “luck-dependent” baseline for policy gra-
dient methods. We show theoretically that this ap-
proach gives an unbiased policy gradient estima-
tor that can yield significant variance reductions
over a standard value estimate baseline. QCA
and HQCA significantly outperform prior state-of-
the-art methods on a range of extremely difficult
credit assignment problems.

1. Introduction
Credit assignment (Minsky, 1961) is a critical aspect of
sequential decision making. On a high level, the central
problem of credit assignment is to understand the relation-
ship between actions and outcomes, and equivalently, to
determine to what extent an outcome is caused by external
factors instead of actions. For example, a player may have
won a football game not because of the actions they took,
but because the competitors were weak or they happened to
score a low-quality shot on goal. Therefore, when attribut-
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ing credits, it is important to separate “action” from “luck”,
i.e., external factors that actions cannot control.

Model-free reinforcement learning (RL) algorithms such
as policy gradient methods (Williams, 1992; Sutton et al.,
1999) use time as a proxy to perform credit assignment,
where actions are credited based upon temporal proxim-
ity to subsequent rewards. In spite of the simplicity of
such a credit assignment mechanism, such methods tend
to introduce high variance due to the uncertainty from the
environment. As a result, the agent often requires a larger
number of samples to learn good policies, i.e., associating
actions with desired outcomes in the optimal way.

A number of prior works have sought to improve the credit
assignment mechanisms in model free RL for this type of
environment. One important line of work proposed to in-
corporate hindsight information from the future to perform
more efficient credit assignment (Andrychowicz et al., 2017;
Harutyunyan et al., 2019). Recently, this has entailed ef-
ficient algorithms (e..g, (Mesnard et al., 2020)) that sig-
nificantly improve over baseline methods in environments
where it is important to carry out precise credit assignment
for the agent to perform well.

A ubiquitous and indispensable notion to model-free credit
assignment is random return, i.e., the cumulative sum of
reward received by the agent. In this work, we investigate
Quantile Credit Assignment (QCA), an credit assignment
approach that fully exploits the rich structure of random
returns in a generic way. QCA leverages the full distribution
of the random return, to formalize the notion of “luck” in
credit assignment. By performing credit assignment with
QCA, model-free agents can disentangle the effect of ac-
tions from random external factors more efficiently, leading
to much faster policy improvement. Furthermore, we show
that QCA can also be flexibly combined with other credit
assignment methods, such as incorporating hindsight infor-
mation. Overall, QCA greatly improves data efficiency in
high-variance environments and enable the agents to have
robust performance.

Our main contributions are as follows: (1) We formalize the
notion of luck with distributions of random return, and how
this relates to theoretically grounded variance reduction of
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policy gradient (PG) estimator (Section 3); (2) We propose
a scalable implementation of QCA in model-free agents
(Section 4); (3) We demonstrate how QCA can combine with
orthogonal credit assignment mechanisms such as hindsight
information, leading to hindsight QCA (HQCA, Section 5);
(4) Finally, we show that QCA and HQCA improves over
prior approaches in benchmark tasks (Section 6).

2. Background
We use capital letters for random variables and lower-case
for the value they may take. Consider a generic MDP
(X ,A, R, P, γ). At each time step t, given a current state
Xt ∈ X and selected action At ∈ A, the agent receives
a reward Rt = R(Xt, At) and makes a transition to the
next state Xt+1 ∼ P (·|Xt, At). Without loss of generality,
we assume a fixed initial state X0 = x0 ∈ X . In the case
of a partially observed environment, we assume the agent
receives an observation Ot at every time step, and simply
define state Xt to be the history of previous observations
and actions Xt = (As−1, Rs−1, Os)s≤t.

Starting from state action pair Xt = x,At = a and follow-
ing policy π, the agent receives a cumulative sum of reward
(also called the return) Zπx,a :=

∑∞
s=t γ

s−tRs. Similarly,
we define the return distribution ηπx corresponding to the re-
turn obtained when following π from state x. In general, the
return is a random variable and we define its distribution as
ηπx,a. The value function and Q-function are the expectations
of these random returns: Qπ(x, a) = EZπ

x,a∼ηπx,a

[
Zπx,a

]
and V π(x) = EZπ

x∼ηπx [Zπx ].

In general, the agent acts according to a stochastic policy
πθ(·|Xt) where θ are policy parameters.

Notation. In what follows, whenever clear from context,
we will omit the explicit dependence on π to simplify no-
tation, writing ηx,a, ηx, Zx,a, Zx, Q, V instead of ηπx,a, ηπx ,
Zπx,a, Zπx , Qπ , V π .

2.1. Policy Gradient Estimators and Baselines

We begin by recalling the form of policy gradient (PG) al-
gorithms and the intuition behind their credit assignment
mechanisms. As a baseline, consider a form of commonly
used policy gradient estimator (Williams, 1992; Sutton et al.,
1999), which we will also call the single-action policy gradi-
ent estimator. Given a trajectory (Xt, At, Rt)

∞
t=0 generated

under πθ, the policy gradient estimator is defined as follows:∑
t≥0

γt∇θ log πθ(At|Xt) (ZXt,At
− Vψ(Xt)) , (1)

where Vψ(x) is a state-dependent baseline function. It has
been shown that the above estimator is an unbiased estima-
tor of the gradient of value function ∇θV

π(x0) (Williams,

1992). The baseline function is usually trained to be an ap-
proximation to the value function Vψ(Xt) ≈ V (Xt), such
that it provides an average estimate of the random return
ZXt

from Xt when following policy π. As a result, the
difference ZXt,At

− Vψ(Xt) is an estimation to the advan-
tage function Q(Xt, At) − V (Xt), which helps identify
directions in which the policy can improve.

3. Quantile Credit Assignment PG Estimators
The single-action policy gradient estimator (Equation (1))
uses ZXt,At − Vψ(Xt) to measure the relative advantage
of taking action At at state Xt compared to other actions.
However, when the random return ZXt,At contains high
variance (such as the level of “luck”, capturing the intrinsic
randomness of the environment as well as the randomness
coming from the agent’s own future actions), the policy gra-
dient estimator can easily mistake the sign of the advantage
estimate, resulting in highly sub-optimal credit assignment.
Intuitively, we’d like to remove the amount of ’luck’ con-
tained in the random return ZXt,At

in order to identify the
contribution that the individual action At had on that re-
turn. For that purpose we design a policy gradient estimator
that identifies the luck level τ ∈ [0, 1] (τ is defined as the
quantile level) of the random variable return ZXt,At and
assigns credit to the action At chosen in Xt at this level of
randomness, by subtracting in the policy gradient estimator
a baseline function Q(x, π, τ) that depend on this levels of
luck. This defines the quantile credit assignment (QCA) pol-
icy gradient estimator and the corresponding QCA baseline
is described next.

QCA Baseline. For any given policy πθ, recall that ηx,a
is the random return distribution at (x, a). We define Fηx,a

:
R → [0, 1] as its CDF and let

Q(x, a, τ) := F−1
ηx,a

(τ) (2)

be the inverse CDF evaluated at quantile level τ ∈ [0, 1]
(Q(x, a, τ) is also called the quantile function). Sampling
from ηx,a is equivalent to generating uniformly τ ∼ U(0, 1)
and pushing it through the quantile function Q(x, a, τ). For-
mally, let Zx,a ∼ ηx,a be a sample of random return, we
have

Zx,a =D Q(x, a, τ), τ ∼ U(0, 1)

where =D denotes equality in distribution. Our key insight
is to identify the quantile level τ as the luck level in generat-
ing the random return Z. When τ is small (corresponding
to an unlucky situation), the return is small; when τ is large
(a lucky situation), the return is high. Based on Q(x, a, τ),
we define the QCA baseline

Q(x, π, τ) :=
∑
a

π(a|x)Q(x, a, τ). (3)

2



Quantile Credit Assignment

For any given quantile (or luck) level τ ∈ [0, 1], the QCA
baseline takes an average of Q(x, a, τ) over actions under
policy π. By taking the average over actions, the QCA base-
line Q(x, π, τ) removes the randomness due to sampling
immediate actions a ∼ π(·|x) and retains the other sources
of randomness captured in τ . Given a random return ZXt,At

,
we can understand it as being generated by certain luck level
τ̂t via ZXt,At = Q(Xt, At, τ̂t). Assume that we can iden-
tify the luck level τ̂t, a natural advantage estimate would
be the difference between the random return and the QCA
baseline evaluated at the same luck level τ̂t. This gives the
QCA advantage estimate

ZXt,At −Q(Xt, π, τ̂t) =

ZXt,At
−
∑
a

π(a|x)F−1
ηXt,a

(FηXt,At
(ZXt,At

)),

(which is analogous to ZXt,At
− V (Xt) in the usual advan-

tage estimator). Finally, we define the QCA PG estimator∑
t≥0

γt∇θ log πθ(At|Xt) (ZXt,At −Q(Xt, π, τ̂t)) . (4)

Compared to the single-action PG estimator in Equation (1),
the QCA PG estimator applies a baseline Q(Xt, π, τ̂t) that
depends both on the state x and the level of luck τ̂t in-
ferred from the random return ZXt,At

. Intuitively, the QCA
advantage estimate ZXt,At − Q(Xt, π, τ̂t) represents the
advantage of having chosen action At instead of a random
action drawn from π in Xt, for the same amount of luck
(i.e., quantile level τ̂t) as in the observed return ZXt,At

. An
equivalent yet alternative view is that by correlating the ran-
dom return ZXt,At

= Q(Xt, At, τ̂t) and the QCA baseline
Q(Xt, π, τ̂t) by the common luck level τ̂t, the QCA PG
baseline achieves provable variance reduction compared to
the regular PG estimator, as we will formally show below.

Discussion about alternative baselines. In addition to the
QCA baseline Q(Xt, π, τ̂t), an alternative approach is to de-
fine the baseline as V (Xt, τ̂t) where V (x, τ) := F−1

ηx (τ) is
the quantile function for the return distribution ηx from state
x. We refer to this as the value QCA (VQCA) baseline. A
conceptual drawback of the VQCA baseline V (x, τ) is that
since the return distribution ηx also contains randomness
in the action sampling a ∼ π(·|x), its quantile level might
differ significantly from the quantile levels of the QCA base-
line. As a simple example, when the returns from ηx,a with
fixed (x, a) are deterministic, Q(x, a, τ) is constant for all
τ ∈ [0, 1]. However, the return distribution ηx can still have
non-zero variance due to stochasticity in choosing actions.
Since now the quantile level τ reflects the randomness in
the choice of actions instead of the external randomness, we
do not advise using V (x, τ) as a baseline in policy gradient
estimators; we provide additional theoretical results regard-
ing VQCA in Appendix B, including an example in which
it increases variance relative to a standard value baseline.

3.1. Theoretical Analysis

We now provide several key statistical properties that es-
tablish QCA as a principled method for credit assignment,
and also give intuition as to when we should expect the
benefits of QCA to particularly be pronounced. Our first
result proves the unbiasedness of the QCA policy gradient
estimator.

Proposition 3.1. The QCA baseline results in unbiased
policy gradient estimators when using exact return quan-
tile functions Qπ, as shown in A. That is, with ZXt,At

=
Qπ(Xt, At, τ̂t), we have

∇θV
π(x0) = E

[∑
t

γt∇θ log πθ(At|Xt)

(ZXt,At
−Qπ(Xt, π, τ̂t))

]
.

Next, we establish that the component of the QCA that
estimates the advantage is never worse than the classical
state-value function baseline, as measured by variance, and
is generally strictly better as shown in A. Traditionally, this
has motivated a number of improved baseline functions
for policy gradient estimators (see, e.g., (Gu et al., 2016;
Liu et al., 2017; Wu et al., 2018; Grathwohl et al., 2017)).
Though this does not always guarantee that the full gradient
estimator has smaller variance, it is often the case as em-
pirically validated in aforementioned prior work and in our
experiments.

Proposition 3.2. The QCA baseline provides an advantage
estimate which has no greater variance than that associated
with the value baseline when using exact quantile functions
Qπ. More precisely, considering a random return Zx,A
generated from a state-action pair (x,A), with A ∼ π(·|x),
and writing Zx,A = Qπ(x,A, τ̂) we have

Var (Zx,A −Qπ(x, π, τ̂)) = Var (Zx,A − V π(x))−

Eτ ′∼U([0,1])

[
(Qπ(x, π, τ ′)− V π(x))

2
]
.

Proposition 3.2 tells us that whenever there is an action a
with positive probability π(a|x) > 0, and a corresponding
non-deterministic distribution over returns, we see benefits
from the QCA baseline. Further, we should expect large
variance reduction when using the QCA baseline (compared
to the classical value baseline) precisely when there is high
variance in the distribution over returns. With the unbiased
property established in Proposition 3.1, it can be guaranteed
that quantiles can be used in the baseline of policy gradient
without biasing the agent; we note that the assumption that
the quantile function is exact is crucial to the unbiasedness
property established in Proposition 3.1, in contrast to clas-
sical state-based baselines in policy gradients, which are
guaranteed to be unbiased even when the value function is
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inexact. In summary, while the idea of learning quantiles
of the distribution of the return is not new, the great novelty
here is that we use it to define a baseline for policy gradient,
which further decreases the variance.

4. Implementing QCA
In this section, we introduce the core architectural and algo-
rithmic components of the QCA algorithm.

4.1. Learning the Quantile Function

Central to the QCA baseline is the quantile function
Q(x, a, τ). In practice, since we do not have access to
the ground truth quantile function, we parameterize a quan-
tile network Qψ(x, a, τ) ≈ Q(x, a, τ) as an approximation.
The network outputs m quantile predictions Q(x, a, τi) with
τi =

2i−1
2m . The i-th quantile prediction is trained using the

quantile regression loss (Koenker & Bassett Jr, 1978),

τi (Zx,a −Q(x, a, τi))+ + (1− τi) (Zx,a −Q(x, a, τi))−
(5)

where Zx,a is a random return generated at (x, a) under pol-
icy π. By minimizing the above loss function, Qψ(x, a, τi)
is guaranteed to form a close approximation to the true
quantile function. Intuitively, the more quantile level m
we use, the more accurate the approximation is (see, e.g.,
(Bellemare et al., 2023) for characterizations of the approx-
imation error). Since learning accurate quantile function
is of major significance to QCA, we propose two architec-
tural and algorithmic improvements on top of the vanilla
quantile network (Dabney et al., 2018), this includes (1) a
parameterization that ensures quantile predictions are mono-
tonic Qψ(x, a, τi) ≤ Qψ(x, a, τi+1), which introduces a
useful inductive bias for learning quantiles in general; (2)
a novel combination of dueling architecture (Wang et al.,
2016) with quantile network, which accelerates learning
quantiles through the shared parameterization. Due to space
limits, we introduce details in Appendix C.

4.2. Finding the Quantile Level

Recall that in order to define the QCA baseline, we need to
identify the quantile level τ̂t for return ZXt,At

by solving
the equality Q(Xt, At, τ̂t) = ZXt,At . With the quantile
predictions, a challenge with solving the plug-in equality
Qψ(Xt, At, τ̂t) = ZXt,At

is that there is a finite number m
of predicted quantiles, there might not exist a solution with
τ̂t ∈ {τi, 1 ≤ i ≤ m}.

To remedy the above issue, given the set of quantile pre-
dictions Qψ(x, a, τi) output by the network and given a
return sample ZXt,At

we select the quantile level τ̂t such
that ZXt,At = Qψ(Xt, At, τ̂t). This is done by consid-
ering that our quantile estimate Qψ(Xt, At, τ) interpo-

Quantile Regression Loss

Figure 1. Architecture and pseudocode of the QCA algorithm.
QCA trains the quantile function Qψ(x, a, τi) with the quantile
regression loss; then uses the quantile function to construct QCA
baseline and QCA PG estimator.

lates piecewise-linearly the quantiles Qψ(Xt, At, τi) and
Qψ(Xt, At, τi+1) within each interval τ ∈ [τi, τi+1], for
1 ≤ i < m. Thus for the index It such that ZXt,At

∈
[Qψ(Xt, At, τIt), Qψ(Xt, At, τIt+1)], we define

τ̂t = (1− α)τIt + ατIt+1 (6)

with α =
ZXt,At

−Qψ(Xt, At, τIt)

Qψ(Xt, At, τIt+1)−Qψ(Xt, At, τIt)
.

In the specific extreme cases where ZXt,At <
Qψ(Xt, At, τ1) (or ZXt,At > Qψ(Xt, At, τm)) we select
the extreme quantile levels: τ̂t = τ1 (resp. τ̂t = τm). By
doing this, we ensure that a meaningful quantile level τ̂t can
be recovered from the learned quantile function, despite a
finite quantile approximation to the full quantile function.

4.3. The QCA Algorithm

Putting all elements together, we describe the full-fledged
QCA algorithm implementation. Throughout, the agent
follows the policy network πθ. At time t, from state Xt,
the agent takes action At ∼ πθ(·|Xt) and observes return
ZXt,At along the trajectory thereafter,

• Train the quantile network Qψ(Xt, At, τi) (for all 1 ≤
i ≤ m) using the quantile regression loss (Eqn 5);

• Identify τ̂t such that zXt,At
= Qψ(Xt, At, τ̂t) using the

interpolation strategy in Eqn 6;

• Compute the QCA baseline Q(Xt, π, τ̂t) using Eqn 3;
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• Update the policy network by the QCA PG estimator

∇ log πθ(At|Xt) (ZXt,At −Qψ(Xt, π, τ̂t)) . (7)

5. Hindsight QCA
The basic QCA algorithm infers the quantile level τ̂t from
the information about the return ZXt,At

only. However, it
could be the case that information collected after action At
has been chosen in state Xt can give additional information
about the “luck” level of the return. Consider as an example
the situation where one has to drive home from work and
there are several possible routes. However the length of the
travel (the return ZXt,At

) may be affected by the weather
(impacting the traffic globally) for any route. So observing
the weather may directly inform the agent about the level
of luck τ̂t without having to learn the quantile function
from the returns only. One should be able to generalize the
identification of the luck τ̂t level by leveraging information
observed along the trajectory (Xs, As, Rs)s≥t instead of
relying on the return only.

Motivated by the above example, we introduce Hindsight
QCA (HQCA) as a generalization of QCA which uses hind-
sight information.

5.1. Finding the Hindsight Quantile Level

Inspired by prior work on counterfactual credit assignment
(CCA; Mesnard et al., 2020)), we let ϕt be a feature vector
that summarizes future (hindsight) information collected
along the trajectory (observations, actions and rewards
(Xs, As, Rs)s>t) after time t. As a concrete example to
represent ϕt, , we can compute the feature using a backward
RNN. Note that the return ZXt,At =

∑
s≥t γ

s−tRs is a
special case of hindsight information that can be captured
in ϕt.

HQCA makes use of an additional network (called the hind-
sight τ -network) P (τ |Xt, At, ϕt) from which we predict
the quantile level τ̂t of the return ZXt,At

from the state of
the agent Xt, the selected action At and the feature ϕt. We
now describe how to train the network P (τ |Xt, At, ϕt) such
that it can accurately identify the quantile level based on
hindsight features ϕt.

Training the hindsight τ -network. In order to train the
hindsight τ -network one could think of concatenating the
τ network and the quantile network using a variational
auto-encoder approach where the encoder (the hindsight
τ -network) would produce a distribution over the quantile
levels τ (the latent variable), which injected into the decoder
(the quantile network) would output the quantiles Q(x, a, τ),
and both networks would be train by regressed these quan-
tiles toward the observed returns. However this training
would not produce a latent representation (the quantile level

τ ) that is independent of the action At, given Xt (since
the hindsight feature ϕt may reveal information about this
action), thus possibly biasing the PG estimate.

Instead, we use two separate losses to train these networks.
The quantile network is still trained using quantile regres-
sion like in the previous section. And the hindsight τ -
network P (·|Xt, At, ϕt) is trained (using cross entropy) to
predict the quantile level τ̂t estimated by the quantile net-
work using Eqn 6. Since the hindsight feature ϕt is injected
as input to the hindsight τ -network, the corresponding re-
current network ϕt = Φ((Xs, As, Rs)s>t) is trained using
the same loss as the hindsight τ -network.

Once all networks have been learned perfectly, we have the
property that the quantile level τ̂t output by the hindsight
τ -network is independent of the action At selected in Xt.

5.2. The Hindsight QCA Algorithm

The Hindsight QCA algorithm simply consists in selecting
the quantile level τ̂t as the output of the hindsight τ -network
instead of using the one defined by the quantile network.
Once τ̂t has been selected, everything else is the same as
in QCA: we compute the QCA baseline Q(Xt, π, τ̂t) using
Eqn 3 and improve the policy network by following the PG
estimate using Eqn 7.

The benefit of this approach is that the hindsight τ -network
has access to information (through ϕt) about the future ob-
servations (Xs, As)s>t (which is not the case of the quantile
network) in addition to the return. This information can be
useful to better identify the ’luck level’ τ̂t because the map-
ping from the full trajectory to the luck level may generalize
better than the same prediction from the return only. For
illustration, in the example mentioned above, we expect
that the hindsight feature will learn to pay attention to the
weather and that this feature will be leveraged by the hind-
sight τ -network to predict a specific luck level as a function
of the observed weather regardless of the route chosen.

Putting it all together. The training process of Hind-
sight QCA is the following. At time t, from state Xt, the
agent takes action At ∼ πθ(·|Xt) and observes a trajectory
(Xs, As, Rs)s≥t,

• Train the quantile network Qψ(Xt, At, τi) (for all 1 ≤
i ≤ m) using the quantile regression loss (Eqn 5),

• Define the target distribution η̂t = (1 − α)δτIt +
αδτIt+1

, where α and It are defined as in Eqn 6,

• Train the hindsight τ -network by minimizing the cross
entropy loss between η̂t and P (τ |Xt, At, ϕt), whose
gradient further propagates through the hindsight net-
work ϕt = Φ((Xs, As, Rs)s≥t) for training,
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• Identify the hindsight quantile level

τ̂t = argmax
{τi}1≤i≤m

P (τi|Xt, At, ϕt),

or τ̂t =
m∑
i=1

τiP (τi|Xt, At, ϕt),

• Compute the QCA baseline Q(Xt, π, τ̂t) using Eqn 3,

• Update the policy network by the QCA PG estimator
using Eqn 7.

Notice that we describe two ways to define the quantile level
τ̂t from the hindsight τ -network P (τi|x, a, ϕ). Experimen-
tally these two methods give very similar performances.

Comparison to CCA (Mesnard et al., 2020). HQCA
shares similarities with the Counterfactual Credit Assign-
ment (CCA) algorithm in that hindsight information from
the future is captured by a feature ϕt and used in a pol-
icy gradient algorithm. In CCA, ϕt is learnt to predict the
future return while enforcing the property of conditional
independence with the action At given Xt. This property
is required to avoid biasing the PG estimate. In HQCA, we
do not enforce this independence property between ϕt and
At (and in general we expect ϕt and At to be dependent).
However, because we use quantile regression to train the
quantile network, the target quantile levels used to train the
hindsight τ -network are uniformly distributed and indepen-
dent of Xt, At. This enforces the property that the hindsight
quantile level τ̂t is independent of At given Xt (it is actually
independent of At and Xt), which guarantees unbiasedness
of the PG estimate once the networks have been trained.

Quantile Cross Entropy 

Figure 2. Architecture and pseudocode of the HQCA algorithm.
On top of QCA, HQCA uses a backward RNN to compute the
hindsight feature ϕt that can be used by the hindsight τ -network
P to identify the quantile level. This is then used for computing
the baseline and PG estimators.

6. Experiments
In order to validate the hypothesis that QCA and HQCA
perform well in environments where disentangling “skill”
from “luck” is difficult, we investigate the performances
of the proposed algorithms in three high variances environ-
ments that are described below. In parallel, we also run
three strong baselines: (i) a straightforward policy gradient
with baseline (PG); (ii) CCA, to see how well a previous
state-of-the-art credit assignment method performs; and (iii)
a PG agent with a distributional critic (as in QCA), but using
only the mean estimated by the critic as a baseline, to disen-
tangle improvements to credit assignment in (H)QCA from
improvements in representation learning that are often ob-
served with distributional critics (Barth-Maron et al., 2018;
Hoffman et al., 2020; Duan et al., 2021; Nam et al., 2021;
Shahriari et al., 2022). All results are reported as median
performances over 20 seeds with interquartile range repre-
sented by a shaded area. Note that the same amount of time
or less was spent to tuned QCA and HQCA in comparison
to the time spent to tune the baselines.

6.1. High-Variance Key-To-Door

First, we propose to look at a new version of the Key-To-
Door family, initially proposed by Hung et al. (2019), as
a testbed for credit assignment in noisy environments. In
this partially observable grid-world (Figure 7), the agent
has to pick up a key in the first room for which it gets no
immediate reward. In a second room, the agent can pick up
10 apples that each give an immediate reward. This is what
we call the distraction pĥase. In the final room, the agent
may open a door only if it is carrying a key, and receive a
small reward for doing so. In this task, a single and early
action (i.e picking up the key) impacts the reward it receives
at the end of the episode. This signal is hard to detect as the
episode return is largely driven by the agent’s performance
at picking up apples in the second room.

High-variance Key-to-door (HVKTD) keeps the overall
structure of the Key-To-Door task proposed by Mesnard
et al. (2020), however the reward for each apple is randomly
sampled from the distribution of Uniform{−8, 8.2}. In this
setting, even an agent that is skilled at picking up apples
observes a large variance in its episode returns which makes
the learning signal for picking up the key and opening the
door weak and noisy. A perfectly trained agent will be able
to get a total return of 2, half of this return coming from
picking up the apples and half coming from opening the
door.

Results. As shown in Figure 3, the PG algorithm is unable
to learn to pick up the key and open the door. Distributional
RL itself allows some learning progress to be made, and
leveraging these quantiles to do credit assignment results
in a strong improvement as shown by the QCA results. Fi-
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nally, using hindsight information to inform the quantile
level enables HQCA to match CCA performances which
was specifically designed for this environment. Note first
that the variance between seeds for HQCA is much smaller
than the one for CCA. Furthermore, HQCA is capable of
matching the performance of CCA with relatively little hy-
perparameter tuning. In our experience, we found QCA and
HQCA are more robust and less finicky to tune than CCA.
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Figure 3. Results for High-Variance Key-To-Door.

6.2. Random Key-To-Door

We now consider a second variation of Key-To-Door. In-
stead of having immediate rewards from picking up apples
during the distraction phase, Random Key-To-Door (RKTD)
provides random rewards to the agent sampled from the dis-
tribution N(0, 1) for each time step in this phase. The agent
always receives noisy rewards in this phase as the noise
level is now independent of the agent’s behavior.

Results. RKTD is a very challenging task both for policy
gradient and CCA as they are not able to not learn to open
the door even after 3e6 environment steps Figure 4 (only
1.5e6 shown here). On the contrary, DRL, QCA and HQCA
solve the environment rapidly and reliably. The quantile
loss used in DRL, QCA, and HQCA greatly helps perfor-
mance. Once again, leveraging these quantiles to do credit
assignment improves data efficiency in particular when us-
ing hindsight, and we find that QCA and HQCA perform
robustly, leading to efficient learning in highly noisy environ-
ments. One explanation why QCA and HQCA outperform
CCA is that QCA approaches only need to reconstruct the
quantile function of a Gaussian while CCA needs to learn
to reconstruct the return.

6.3. Combinatorial RL with Post-Decision Noise
Feedback

Finally, we consider a task where, in a first “query room”,
the agent is faced with two colored squares. When the agent
picks up a colored square, it immediately receives the re-
ward R = r + σ where σ ∼ Uniform[0, 5] and r = 1 if the

0.00 0.25 0.50 0.75 1.00 1.25 1.50
environment steps 1e8

0.0

0.2

0.4

0.6

0.8

1.0

do
or

 p
ro

b PG
CCA
QCA
HQCA
DRL

Figure 4. Results for Random Key-To-Door.

agent has picked the “good” object and r = 0 otherwise.
The agent is then teleported to a second room, the “answer
room”, where it can observe another colored square whose
color is deterministically mapped to the noise level σ that
has been sampled for the computation of R.
The task consists in a succession of these two rooms, with
randomly sampled pairs of colored squares for the “query”
room and a new noise level sampled each time. Note that
the sampling makes sure that the agent is always faced with
one good and one bad colored square. Finally, the color
mapping of “good” and “bad” objects is kept fixed through
training. Performances are reported as the number of rooms
where the agent has picked the “good” colored object. Note
that a small exploration bonus is given to the agent when it
picks up any colored square to make the exploration prob-
lem simpler. A visual description of the task can be seen in
Figure 5.
This task can be abstracted as a contextual bandit prob-
lem where with a large number of contexts (i.e the pairs of
colored squares) and two actions (i.e left or right), though
the agent is of course not a priori aware of this structure.
However, the reward has a specific form. It is the sum of a
deterministic part corresponding to the action taken and a
stochastic part independent of the action. The dependency
between the good action and the context is unstructured (no
regularity). After the agent has taken its action, the stochas-
tic part of the reward is revealed in a visual way. Classical
methods such as plain policy gradient are not expected to
perform well here because they cannot efficiently learn the
reward structure, as it lacks access to hindsight information.
It will have to use many samples to distinguish the deter-
ministic from the stochastic part for each state and action.
However, as HQCA (and CCA) has access to hindsight in-
formation, it should be able to leverage this to learn the
reward structure of the task rapidly. Indeed, when given the
stochastic part of the reward, inferring the correct action is
trivial.
Results. As shown in Figure 6, HQCA and CCA both solve
the task thanks to their use of hindsight information. They
get close to the optimal score (which is 9) because a very
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Figure 5. Description of the “Combinatorial RL with post-decision
noise feedback” task.

short timing to visit all the rooms before the environment
times out. On the contrary, PG and DRL find a local optimal
which consists of simply picking up any square, regardless
of their color, to get the small exploration bonus for all
query rooms. As they pick the “good” object with 50%
chance, they get a score of 4.5 out of 9 query rooms that can
be visited in an episode. Finally, QCA seems to perform
slightly better than PG and DRL but still does not solve the
tasks reliably as it also lacks access to hindsight information
to inform its “level”.
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Figure 6. Results for the “Combinatorial RL with post-decision
noise feedback” task.

7. Related Work
There are two tracks of motivations for our paper based on
the previous work. On the one hand, there is past research
that sheds light on proposing a better baseline through incor-
porating more information from the future to decrease the
variance. Counterfactual Credit Assignment (CCA) Mes-
nard et al. (2020) leverages hindsight information to implic-
itly perform counterfactual evaluation-an estimate of the
return for actions other than the ones which were chosen.
The counterfactual reasoning will enable the agent to rea-

son about what would have happened had different actions
been taken with everything else remaining the same. In this
way, it can form unbiased and lower variance estimates of
the policy gradient by building future-conditional baselines.
However, in order to make the baseline independent with
actions to prevent biases, CCA has to introduce additional
action-removal loss to force the information from actions
can be disentangled from baseline. As a result, the algorithm
will be unintentionally unstable and will lack interpretability.
On the contrary, QCA does not include extra losses during
training and will be easily interpreted with the estimation of
quantiles.

On the other hand, our work also follows the research that
focuses on distributional reinforcement learning in which
the distribution over returns is modeled explicitly instead of
estimating the mean, which is to examine methods of learn-
ing the return distribution instead of value function. Unlike
traditional value-based reinforcement learning algorithms
like DQN (Mnih et al., 2015) average over randomness to
estimate the value, distributional reinforcement learning
methods model this distribution over returns explicitly in-
stead of only estimating the mean. This can lead to more
insights and knowledge for the agent with a much faster and
more stable learning. In Categorical DQN (C51; Bellemare
et al., 2017), the possible returns are limited to a discrete
set of fixed values (51), and the probability of each value is
learned through interacting with environments. Based on it,
QR-DQN computes the return quantiles on fixed , uniform
quantile fractions using quantile regression and minimizes
the quantile Huber loss between the Bellman updated dis-
tribution and current return distribution. However, the past
research on distributional RL focuses more on represen-
tation learning. QCA instead follows the track of policy
gradient and innovatively uses the quantiles directly as base-
line, which will lower the variance in a straightforward way.

8. Conclusion
In this paper we introduced an approach based on quantile
estimation to improve credit assignment in RL by disentan-
gling “luck” from “skill”. QCA builds an estimate of the
quantile function of the return and HQCA additionally esti-
mates the quantile level (interpreted as the level of “luck”)
from a full trajectory. These methods produce a “luck-
dependent” baseline for policy gradient methods, which
does not introduce bias and potentially significantly reduce
the variance of the PG estimate (compared to a standard
value estimate baseline). Experimentally, QCA and HQCA
significantly outperform prior state-of-the-art methods on a
range of difficult credit assignment problems.

Future research will investigate the performance of the algo-
rithms and how to scale them in more complex environments
which are closer to real-world problems.
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APPENDICES

A. Proofs
Proposition A.1. The QCA baseline results in unbiased policy gradient estimators when using exact return quantile
functions Qπ , as shown in A. That is, with ZXt,At

= Qπ(Xt, At, τ̂t), we have

∇θV
π(x0) = E

[∑
t

γt∇θ log πθ(At|Xt)

(ZXt,At
−Qπ(Xt, π, τ̂t))

]
.

Proof. In analogy with the proof of unbiasedness for the policy gradient estimator with a state-based baseline (see e.g.
Sutton & Barto, 2018), it is sufficient to prove that for each t ≥ 0, the baseline Qπ(Xt, π, τ̂t) is conditionally independent
of the action At given Xt, so that

E
[∑

t

γt∇θ log πθ(At|Xt)(ZXt,At
−Qπ(Xt, π, τ̂t))

]
= E

[∑
t

γt∇θ log πθ(At|Xt)ZXt,At

]
−

∑
t

γtE
[
∇θ log πθ(At|Xt)Q

π(Xt, π, τ̂t))
]

= ∇V π(x0)−
∑
t

γtEXt

[
EAt,τ̂t [∇θ log πθ(At|Xt)Q

π(Xt, π, τ̂t))|Xt]
]

= ∇V π(x0)−
∑
t

γtEXt

[
EAt [∇θ log πθ(At|Xt) | Xt]Eτ̂t [Q

π(Xt, π, τ̂t))|Xt]
]

= ∇V π(x0) ,

where the second term evaluates to 0 since

EAt
[∇θ log πθ(At|Xt)] =

∑
at

π(at | Xt)∇ log π(at | Xt) = ∇
∑
at

π(at | Xt) = 0 .

To see the required conditional independence property, note that conditional on Xt and At, τ̂t ∼ Uniform([0, 1]) by
construction, which does not depend on At and hence Qπ(Xt, π, τ̂t) is conditionally independent of At given Xt.

Proposition A.2. The QCA baseline provides an advantage estimate which has no greater variance than that associated with
the value baseline when using exact quantile functions Qπ. More precisely, considering a random return Zx,A generated
from a state-action pair (x,A), with A ∼ π(·|x), and writing Zx,A = Qπ(x,A, τ̂) we have

Var (Zx,A −Qπ(x, π, τ̂)) = Var (Zx,A − V π(x))−

Eτ ′∼U([0,1])

[
(Qπ(x, π, τ ′)− V π(x))

2
]
.

Proof. Since both Z−Qπ(x, π, τ̂) and Z−V π(x) are unbiased estimators of the advantage Aπ(x, a), it suffices to compare
their second moments. We calculate directly:

E[(Z − V π(x)2] = E[(Z −Qπ(x, π, τ̂) +Qπ(x, π, τ̂)− V π(x))2]

= E[(Z −Qπ(x, π, τ̂))2 + 2(Z −Qπ(x, π, τ̂))(Qπ(x, π, τ̂)− V π(x)) + (Qπ(x, π, τ̂)− V π(x))2]

= E[(Z −Qπ(x, π, τ̂))2] + E[(Qπ(x, π, τ̂)− V π(x))2] ,

as required, with the final equality following since

E[(Z −Qπ(x, π, τ̂))(Qπ(x, π, τ̂)− V π(x))] = E[EA[Z −Qπ(x, π, τ̂)](Qπ(x, π, τ̂)− V π(x))]

= E[(Qπ(x, π, τ̂)−Qπ(x, π, τ̂))(Qπ(x, π, τ̂)− V π(x))]

= 0 .
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B. Additional analysis
In this section, we provide additional analysis of the value-quantile baseline described in the main paper. First, we show that,
as with the QCA baseline, using an exact VQCA baseline results in an unbiased policy gradient estimator.

Proposition B.1. The VQCA baseline results in unbiased policy gradient estimators when using exact return CDFs. That is,
with Zt = V π(Xt, τ̂t), we have

∇θV
π(x0) = E

[∑
t

γt∇θ log πθ(At|Xt)(Zt − V π(Xt, τ̂t))

]
.

Proof. We may follow the same approach as the proof of Proposition 3.1; it is sufficient to show that
E[∇θ log πθ(At|Xt)V

π(Xt, τ̂t)] = 0. As in the proof of Proposition 3.1, this follows since E[∇θ log πθ(At|Xt)] = 0, and
the fact that by construction, ∇θ log πθ(At|Xt) and τt are conditionally independent given Xt.

Next, we demonstrate that there are scenarios in which using a VQCA baseline can result in higher variance estimators
than would be obtained with a standard expected-value baseline. For this reason, we do not recommend VQCA as a policy
gradient baseline, instead preferring QCA, with the variance improvement guarantee established in Proposition 3.2.
Example B.2. Consider a single-state environment with two actions, a and b, which are equally likely under the policy π.
Suppose that the return when taking action a is distributed as Unif([−z − ε,−z + ε]), and the return when taking action b is
distributed as Unif([z − ε, z + ε]), for 0 < ε ≪ z. The expected-value baseline in this case is 0, and so the variance of the
return minus this estimator is

E[Z2] = z2 +O(εz + ε2) .

In contrast, the VQCA baseline, at level τ , is

V (τ) =

{
−z + 4(τ − 1/4)ε 0 < τ < 1/2

z + 4(τ − 3/4)ε 0 < τ < 1/2 .

The resulting variance of the return minus this estimator is therefore

E[(Z − V (τ))2] = 2z2 +O(ε) ,

and hence the variance is greater than with the expected-value baseline.

C. Architectural and algorithmic improvements over quantile networks
Below we introduce a number of architectural improvements over the vanilla quantile network used in prior work on
distributional RL (Dabney et al., 2018). The vanilla quantile network Qψ(x, a, τi) produces m quantile predictions for
τi =

2i−1
2m with 1 ≤ i ≤ m. Furthermore, in practice, we use a Huber loss variant of the quantile regression loss to learn

quantile predictions (Dabney et al., 2018).

Monotonicity of quantile parameterizations. From the definition of quantile functions, we know that they increase
monotonically as a function of the quantile levels Q(x, a, τi) ≤ Q(x, a, τj) for i < j. To leverage this property in the
network design, we construct quantile predictions Qψ(x, a, τi) as a sum of non-negative increments. To utilize this attribute,
we carry out the parameterization Qψ(x, a, τi) =

∑i
j=1 Qψ(x, a, j) where Qψ(x, a, j) is parameterized to be non-negative

via the softplus activation for the output layer log(1+exp(x)). We can understand Qψ(x, a, 1) as the first quantile prediction
and Qψ(x, a, j), j ≥ 2 as the difference between two consecutive quantile predictions. This is a useful inductive bias and
helps learn quantiles. Existing alternative architectures aiming exploit this structure include those of Zhou et al. (2020) and
Luo et al. (2021).

Dueling architecture. Dueling network (Wang et al., 2016) proposes to have two streams to separately estimate state-value
and the advantages for each action. Empirically, this has proved particularly useful in accelerating learning accurate
Q-functions for value-based learning and distributional RL (Hessel et al., 2018). While prior work has adapted the dueling
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architecture for C51 (Bellemare et al., 2017), an alternative distributional RL agent that learns CDF approximation instead
of quantile approximation to the return, we propose a novel adaptation for the quantile network. Concretely, we carry out
the parameterization

Qψ(x, a, τ) = V (x) +Aψ(x, a, τ),

where V (x) (which we call forward baseline below) is regressed (using a ℓ2-loss) toward the Monte-Carlo return Zx,A,
where A ∼ π(·|x), and Aψ(x, a, τ) are actually the output of our quantile-network (which thus learns the quantile function
of the return minus the estimated value function).

D. Implementation details
D.1. High-Variance Key-to-Door

D.1.1. ENVIRONMENT DETAILS

Observations returned by the Key-to-Door family of environments for each of the three phases can be visualized in Fig. 7.
Agents have 10 apples in the second phase to pick.

Figure 7. High-Variance Key-To-Door environments visual. The agent is represented by the beige pixel, key by brown, apples by green,
and the final door by blue. The agent has a partial field of view, highlighted in white

D.1.2. ARCHITECTURE

The agent architecture is as follows:

• The observations are first fed to 2-layer CNN with (16, 32) output channels, kernel shapes of (3, 3) and strides of (1, 1).
The output of the CNN is flattened and fed to a linear layer of size 128.

• The agent state is computed by a forward LSTM with a state size of 128. The input to the LSTM is the output of the
previous linear layer, concatenated with the reward at the previous timestep.

• The hindsight feature Φ is computed by a backward LSTM with a state size of 128. The input provided is the
concatenation of the output of the forward LSTM and the reward at the previous timestep.

• The policy is computed as the output of a 2-layer MLP of 256 units each where the output of the forward LSTM is
provided as input. This MLP is shared with the policy. The policy is then linearly decoded from its outputs.

• The forward baseline is computed linearly decoded from the MLP shared with the policy.

• The quantile network is computed as the output of a 3-layer MLP of 128 units each where the output of the forward
LSTM is provided as input.

• The τ −network is the output of a 4-layer MLP of 128 units each where the concatenation of the output of the forward
LSTM and the hindsight feature Φ is provided as input.
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• For CCA, the baseline is computed as the sum of the forward baseline and a hindsight residual baseline; the hindsight
residual baseline is the output of a 3-layer MLP of 128 units each where the concatenation of the output of the forward
LSTM and the hindsight feature Φ is provided as input. It is trained to learn the residual between the return and the
forward baseline.

• For CCA, the hindsight classifier hω is computed as the sum of the log of the policy outputs and the output of an
MLP, with four hidden layers with 256 units each where the concatenation of the output of the forward LSTM and the
hindsight feature Φ is provided as input.

• All weights are jointly trained with RMSprop (Hinton et al., 2012) with epsilon 1e8, momentum 0 and decay 0.99.

For High-Variance Key-To-Door, the optimal hyperparameters found for each algorithm can be found in Table 1.

The agents are trained on full-episode trajectories, using a discount factor of 0.9999.

PG CCA DRL QCA HQCA
Learning rate 5e-4 5e-4 5e-4 5e-4 5e-4
Policy cost 1 1 1 1 1
Entropy cost 1e-2 1e-2 1e-2 1e-2 1e-2
Forward baseline cost 1e-1 1e-2 1e-1 1e-1 1e-1
Number of discrete quantiles 5 5 10
Huber loss param 1. 1. 1.
Quantile regression cost 1e-1 1e-1 1e-1
Hindsight quantile prediction cost 1e-2
Hindsight residual baseline cost Mesnard et al. (2020) 1e-2
Hindsight classifier cost Mesnard et al. (2020) 5e-3
Action independence cost Mesnard et al. (2020) 1e2

Table 1. List of hyperparameters used for all experiments.

D.2. Random Key-to-Door

D.2.1. ENVIRONMENT DETAILS

Observations returned by the Random Key-To-Door family of environments for each of the three phases can be visualized in
Fig. 8. Agents get immediate random rewards during the second phase, distracting them from opening the door.

Figure 8. Random Key-To-Door environments visual. The agent is represented by the beige pixel, key by brown, and the final door by
blue. The agent has a partial field of view, highlighted in white

For each task, a random, but fixed through training, set of 5 out of 10 colored squares are leading to a positive reward.
Furthermore, a small reward of 0.5 is provided to the agent when it picks up any colored square. Each episode are 130 steps
long and it takes at least 9 steps for the agent to reach one colored square in the query rooms from its initial position and 6 in
the answer rooms.
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D.2.2. ARCHITECTURE

We use the same architecture setup as reported in Appendix D.1.2. The agents are also trained on full-episode trajectories,
using a discount factor of 0.9999. For Random Key-to-Door, the optimal hyperparameters found for each algorithm are the
same as in Table 1.
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