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Abstract
Inverse reinforcement learning (IRL) denotes a
powerful family of algorithms for recovering a
reward function justifying the behavior demon-
strated by an expert agent. A well-known limita-
tion of IRL is the ambiguity in the choice of the
reward function, due to the existence of multiple
rewards that explain the observed behavior. This
limitation has been recently circumvented by for-
mulating IRL as the problem of estimating the
feasible reward set, i.e., the region of the rewards
compatible with the expert’s behavior. In this pa-
per, we make a step towards closing the theory
gap of IRL in the case of finite-horizon problems
with a generative model. We start by formally
introducing the problem of estimating the feasible
reward set, the corresponding PAC requirement,
and discussing the properties of particular classes
of rewards. Then, we provide the first minimax
lower bound on the sample complexity for the
problem of estimating the feasible reward set of
order Ω

´

H3SA
ε2

`

log
`

1
δ

˘

` S
˘

¯

, being S and A
the number of states and actions respectively, H
the horizon, ε the desired accuracy, and δ the con-
fidence. We analyze the sample complexity of a
uniform sampling strategy (US-IRL), proving a
matching upper bound up to logarithmic factors.
Finally, we outline several open questions in IRL
and propose future research directions.

1. Introduction
Inverse reinforcement learning (IRL) aims at efficiently
learning a desired behavior by observing an expert agent
and inferring their intent encoded in a reward function (refer
to Osa et al. (2018); Arora & Doshi (2021); Adams et al.
(2022) for recent surveys on IRL). This abstract setting,
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which diverges from standard reinforcement learning (RL,
Sutton & Barto, 2018), as the reward function has to be
learned, arises in a large variety of real-world tasks. In
particular, in a human-in-the-loop (Wu et al., 2022) sce-
nario, when the expert is represented by a human solving a
task, an explicit specification of the reward function repre-
senting the human’s goal is often unavailable. Experience
suggests that humans are uncomfortable when asked to de-
scribe their intent and, thus, the underlying reward; while
they are much more comfortable providing demonstrations
of what is believed to be the right behavior. Indeed, human
behavior is usually the product of many, possibly conflict-
ing, objectives.1 Succeeding in retrieving a representation
of the expert’s reward has notable implications (Sharifzadeh
et al., 2016; Yu et al., 2019; Imani & Braga-Neto, 2019; Wu
et al., 2020; Likmeta et al., 2021). First, we obtain explicit
information for understanding the motivations behind the
expert’s choices (interpretability). Second, the reward can
be employed in RL to train artificial agents, under shifts in
the features of the underlying system (transferability).

Since the beginning, the community recognized that the IRL
problem is, per se, ill-posed, as multiple reward functions
are compatible with the expert’s behavior (Ng & Russell,
2000). This ambiguity was heterogeneously addressed by
the algorithmic proposals that have followed over the years,
which realized in several selection criteria, including maxi-
mum margin (Ratliff et al., 2006), maximum entropy (Zeng
et al., 2022), minimum Hessian eigenvalue (Metelli et al.,
2017; 2020), and a balance between compatibility and learn-
ing efficiency (Damiani et al., 2022). Some of these ap-
proaches come with theoretical guarantees on the sample
complexity, although according to different performance
indices (e.g., Abbeel & Ng, 2004; Syed & Schapire, 2007;
Pirotta & Restelli, 2016).

A promising line of research that aspires to overcome the
ambiguity issue has been recently investigated in (Metelli
et al., 2021; Lindner et al., 2022). These works focus on
estimating all the reward functions compatible with the ex-
pert’s demonstrated behavior, namely the feasible rewards.
Remarkably, this viewpoint which focuses on the feasible
reward set, rather than on one reward obtained with a spe-

1In RL, the Sutton’s hypothesis (Sutton & Barto, 2018) conjec-
tures that a scalar reward is an adequate notion of goal.
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cific selection criterion, as previous works did, circumvents
the ambiguity problem, postponing the reward selection and
pointing to the expert’s intent. Although these works pro-
vide sample complexity guarantees in different settings, a
rigorous understanding of the inherent complexity of the
IRL problem is currently lacking.

Contributions In this paper, we aim at taking a step to-
ward the theoretical understanding of the IRL problem. As
in (Metelli et al., 2021; Lindner et al., 2022), we consider
the problem of estimating the feasible reward set. We focus
on a generative model setting, where the agent can query
the environment and the expert in any state, and consider
finite-horizon decision problems. The contributions of the
paper can be summarized as follows.

• We propose a novel framework to evaluate the accuracy in
recovering the feasible reward set, based on the Hausdorff
metric (Rockafellar & Wets, 2009). This tool general-
izes existing performance indices. Furthermore, we show
that the feasible reward set enjoys a desirable Lipschitz
continuity property w.r.t. the IRL problem (Section 3).

• We devise a PAC (Probability Approximately Correct)
framework for estimating the feasible reward set, provid-
ing the definition of pε, δq-PAC IRL algorithm. Then, we
investigate the relationships between several performance
indices based on the Hausdorff metric (Section 4).

• We conceive, based on the provided PAC requirements
introduced, a novel sample complexity lower bound of or-
der Ω

´

H3SA
ε2

`

log
`

1
δ

˘

` S
˘

¯

. This represents the most
significant contribution and, to the best of our knowledge,
it is the first lower bound that values the importance of
the relevant features of the IRL problem. From a tech-
nical perspective, the lower bound construction merges
new proof ideas with reworks of existing techniques (Sec-
tion 5).

• We analyze a uniform sampling exploration strategy
(UniformSampling-IRL, US-IRL) showing that, in the
generative model setting, it matches the lower bound up
to logarithmic factors (Section 6).

The complete proofs of the results presented in the main
paper are reported in Appendix B.

2. Preliminaries
In this section, we provide the background that will be
employed in the subsequent sections.

Mathematical Background Let a, b P N with a ď b, we
denote with Ja, bK :“ ta, . . . , bu and with JaK :“ J1, aK.
Let X be a set, we denote with ∆X the set of probability
measures over X . Let Y be a set, we denote with ∆X

Y the
set of functions with signature Y Ñ ∆X . Let pX , dq be
a (pre)metric space, where X is a set and d : X ˆ X Ñ

r0,`8s is a (pre)metric.2 Let Y,Y 1 Ď X be non-empty
sets, we define the Hausdorff (pre)metric (Rockafellar &
Wets, 2009) Hd : 2X ˆ 2X Ñ r0,`8s between Y and Y 1
induced by the (pre)metric d as follows:

HdpY,Y 1q:“max

"

sup
yPY

inf
y1PY 1

dpy,y1q, sup
y1PY 1

inf
yPY

dpy,y1q

*

. (1)

Markov Decision Processes without Reward A time-
inhomogeneous finite-horizon Markov decision process
without reward (MDP\R) is defined as a 4-tuple M “

pS,A, p,Hq where S is a finite state space (S “ |S|), A
is a finite action space (A “ |A|), p “ pphqhPJHK is the
transition model where for every stage h P JHK we have
ph P ∆S

SˆA, and H P N is the horizon. An MDP\R is
time-homogeneous if, for every stage h P JH ´ 1K, we
have ph “ ph`1 a.s.; in such a case, we denote the transi-
tion model with the symbol p only. A time-inhomogeneous
reward function is defined as r “ prhqhPJHK, where for
every stage h P JHK we have rh : S ˆ A Ñ r´1, 1s.3 A
Markov decision process (MDP, Puterman, 1994) is obtained
by pairing an MDP\R M with a reward function r. The
agent’s behavior is modeled with a time-inhomogeneous
policy π “ pπhqhPJHK where for every stage h P JHK,
we have πh P ∆A

S . Let f P RS and g P RSˆA, we
denote with phfps, aq “

ř

s1PS phps
1|s, aqfps1q and with

πhgpsq “
ř

aPA πhpa|sqgps, aq the expectation operators
w.r.t. the transition model and the policy, respectively.

Value Functions and Optimality Given an MDP\R M, a
policy π, and a reward function r, the Q-functionQπp¨; rq “
pQπhp¨; rqqhPJHK induced by r represents the expected sum
of rewards collected starting from ps, a, hq P S ˆAˆ JHK
and following policy π thereafter:

Qπhps, a; rq :“ E
pM,πq

«

H
ÿ

l“h

rlpsl, alq|sh “ s, ah “ a

ff

,

where EpM,πq denotes the expectation w.r.t. M and π, i.e.,
ah „ πhp¨|shq and sh`1 „ php¨|sh, ahq for every stage
h P Jh,HK. The Q-function fulfills the Bellman equa-
tions (Puterman, 1994) for every ps, a, hq P S ˆAˆ JHK:

Qπhps, a; rq “ rhps, aq ` phV
π
h`1ps, a; rq,

V πh ps; rq “ πhQ
π
hps; rq and V πH`1ps; rq “ 0,

where V πp¨; rq “ pV πh p¨; rqqhPJHK is the V-function. The
advantage function Aπhps, a; rq “ Qπhps, a; rq ´ V πh ps; rq
represents the relative gain of playing action a P A rather
than following policy π in the state-stage pair ps, hq. A

2A premetric d satisfies the axioms: dpx, x1q ě 0 and
dpx, xq “ 0 for all x, x1 P X . Any metric is clearly a premetric.

3For the sake of simplicity and w.l.o.g., we restrict to reward
functions bounded by 1 in absolute value.
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policy π˚ is optimal if it has non-positive advantage ev-
erywhere, i.e., Aπ

˚

h ps, a; rq ď 0 for every ps, a, hq P
S ˆAˆ JHK. The Q- and V-functions of an optimal policy
are denoted with Q˚hps, a; rq and V ˚h ps; rq.

Inverse Reinforcement Learning An inverse reinforce-
ment learning problem (IRL, Ng & Russell, 2000) is defined
as a pair pM, πEq, where M is an MDP\R and πE is an
expert’s policy. Informally, solving an IRL problem consists
in finding a reward function prhqhPJHK making πE optimal
for the MDP\R M paired with reward function r. Any re-
ward function fulfilling this condition is called feasible and
the set of all such reward functions is called feasible reward
set (Metelli et al., 2021; Lindner et al., 2022), defined as:

RpM,πEq :“
!

prhqhPJHK

∣∣∣@hPJHK : rh :SˆAÑr´1,1s

^@ps,a,hqPSˆAˆJHK :Aπ
E

h ps,a;rqď0
)

.
(2)

We will omit the subscript pM, πEq whenever clear from
the context.

Empirical MDP and Empirical Expert’s Policy Let
D“tpsl,al,hl,s

1
l,a

E
l qulPJtK be a dataset of tPN tuples,

where for every lPJtK, we have s1l„phlp¨|sl,alq and aEl „
πEhlp¨|slq. We introduce the counts for every ps,a,hqPSˆ
AˆJHK: nthps,a,s

1q:“
řt
l“11tpsl,al,hl,s

1
lq“ps,a,h,s

1qu,
nthps,aq:“

ř

s1PSn
t
hps,a,s

1q, nthpsq:“
ř

aPAn
t
hps,aq, and

nt,Eh ps,aq:“
řt
l“11tpsl,a

E
l q“ps,aqu. These quantities al-

low defining the empirical transition model ppt“pppthqhPJHK

and empirical expert’s policy pπt,E“pπt,Eh qhPJHK as follows:

ppthps
1|s, aq :“

#

nthps,a,s
1
q

nthps,aq
if nthps, aq ą 0

1
S otherwise

,

pπE,th pa|sq :“

#

nE,th ps,aq

nthpsq
if nthpsq ą 0

1
A otherwise

.

(3)

In the time-homogeneous case, we simply merge the sam-
ples collected at different stages h P JHK. We denote
with pxMt, pπE,tq the empirical IRL problem, where xMt “

pS,A, ppt, Hq the empirical MDP\R induced by ppt. Finally,
we denote with pRt :“ R

p xMt,pπE,tq
the feasible reward set in-

duced pxMt, pπE,tq. We will omit the superscript t, whenever
clear from the context and write pR.

3. Lipschitz Framework for IRL
In this section, we analyze the regularity properties of the
feasible reward set in terms of the Lipschitz continuity w.r.t.
the IRL problem. To make the idea more concrete, suppose
that R is the feasible reward set obtained from the IRL prob-
lem pM, πEq and that pR is obtained with a different IRL
problem pxM, pπEq, which we can think to as an empirical

version of pM, πEq, with an estimated transition model pp
replacing the true model p. Intuitively, to have any learning
guarantee, “similar” IRL problems (p « pp and πE « pπE)
should lead to “similar” feasible reward sets (R « pR).4

To formally define a Lipschitz framework, we need to select
a (pre)metric for evaluating dissimilarities between feasi-
ble reward sets and IRL problems. While we defer the
presentation of the (pre)metric for the IRL problems to Sec-
tion 3.1, where it will emerge naturally, for the feasible re-
ward sets, we employ the Hausdorff (pre)metric HdpR, pRq
(Equation 1), induced by a (pre)metric dpr, prq used to eval-
uate the dissimilarity between individual reward functions
r P R and pr P pR. With this choice, two feasible reward
sets are “similar” if every reward r P R is “similar” to some
reward pr P pR in terms of the (pre)metric d. In the next sec-
tions, we employ as d the metric induced by the L8-norm
between the reward functions r P R and pr P pR:5

dGpr, prq :“ max
ps,a,hqPSˆAˆJHK

|rhps, aq ´ prhps, aq| , (4)

where G stands for “generative”. In Section 3.1, we prove
that the Lipschitz continuity is fulfilled when no restrictions
on the reward function are enforced (besides boundedness in
r´1, 1s). Then, in Section 3.2, we show that, when further
restrictions on the viable rewards are required (e.g., state-
only reward), such a regularity property no longer holds.

3.1. Lipschitz Continuous Feasible Reward Sets

In order to prove the Lipschitz continuity property, we use
the explicit form of the feasible reward sets introduced
in (Metelli et al., 2021) and extended by (Lindner et al.,
2022) for the finite-horizon case, that we report below.

Lemma 3.1 (Lemma 4 of Lindner et al. (2022)). A re-
ward function r “ prhqhPJHK is feasible for the IRL
problem pM, πEq if and only if there exist two functions
pAh, VhqhPJHK where for every h P JHK we have Ah :
S ˆAÑ Rě0, Vh : S Ñ R, and VH`1 “ 0, such that for
every ps, a, hq P S ˆAˆ JHK it holds that:

rhps,aq“´Ahps,aq1tπEh pa|sq“0u`Vhpsq´phVh`1ps,aq.

Furthermore, if |rhps, aq| ď 1, if follows that |Vhpsq| ď
H ´ h` 1 and Ahps, aq ď H ´ h` 1.

A form of regularity of the feasible reward set was already
studied in Theorem 3.1 of Metelli et al. (2021) and in Theo-
rem 5 of Lindner et al. (2022), providing an error propaga-
tion analysis. These results are based on showing the exis-
tence of a particular reward rr feasible for the IRL problem
pxM, pπEq, whose distance from the original reward function

4If not, any arbitrary accurate estimate ppp, pπEq of pp, πEq, may
induce feasible sets pR and R with finite non-zero dissimilarity.

5We discuss other choices of d in Section 4.
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r P R is bounded by a dissimilarity term between pM, πEq

and pxM, pπEq. Unfortunately, such a reward rr is not guaran-
teed to be bounded in r´1, 1s even when the original reward
r is (and, thus, it might be rr R pR according to Equation 2).6

In Lemma B.1, with a modified construction, we show the
existence of another particular feasible reward pr bounded
in r´1, 1s (and, thus, pr P pR). From this, the Lipschitz
continuity of the feasible reward sets follows.

Theorem 3.2 (Lipschitz Continuity). Let R and pR be the
feasible reward sets of the IRL problems pM, πEq and
pxM, pπEq, as in Equation (2). Then, it holds that:7

HdGpR, pRq ď 2ρGppM, πEq, pxM, pπEqq

1` ρGppM, πEq, pxM, pπEqq
, (5)

where ρGp¨, ¨q is a (pre)metric between IRL problems, de-
fined as:

ρGppM,πEq,pxM,pπEqq:“ max
ps,a,hqPSˆAˆJHK

pH´h`1q

ˆ

´
ˇ

ˇ

ˇ
1tπEh pa|sq“0u´1tpπEh pa|sq“0u

ˇ

ˇ

ˇ
`}php¨|s,aq´pphp¨|s,aq}1

¯

.

Some observations are in order. First, the function ρG is
indeed a (pre)metric since it is non-negative and takes value
0 when the IRL problems coincide. Second, as supported by
intuition, ρG is composed of two terms related to the estima-
tion of the expert’s policy and of the transition model. While
for the transition model, the dissimilarity is formalized by
the L1-norm distance }php¨|s, aq ´ pphp¨|s, aq}1, for the pol-
icy, the resulting term deserves some comments. Indeed, the
dissimilarity |1tπEh pa|sq“0u ´ 1tpπEh pa|sq“0u| highlights that
what matters is whether an action a P A is played by the
expert and not the corresponding probability πEh pa|sq. In-
deed, the expert’s policy plays an action (with any non-zero
probability) only if it is an optimal action.

3.2. Non-Lipschitz Continuous Restricted Feasible
Reward Sets

In this section, we illustrate three cases restricted feasible
reward sets that turn out not to fulfill the thesis of Theo-
rem 3.2. These examples, representing strict subsets of the
feasible reward functions of Equation (2), are obtained by
enforcing common conditions: state-only reward function
rhpsq (Example 3.1), time-homogeneous reward function
rps, aq (Example 3.2), and β-margin reward function (Ex-
ample 3.3). We present counter-examples in which in front
of ε-close transition models, the induced feasible sets are
far apart by a constant independent of ε. For space reasons,
we report the complete derivation in Appendix C.

6We illustrate in Fact B.1 an example of this phenomenon.
7This implies the standard Lipschitz continuity, by simply

bounding 2ρGppM,πEq,p xM,pπEqq

1`ρGppM,πEq,p xM,pπEqq
ď 2ρG

ppM, πEq, pxM, pπEqq.

s0

s´

s`

a1

a2

1{2

1{2

1

1

(a)

s0 s1

a1

a2

1{2

1{2

1

(b)

Figure 1. The MDP\R employed in the examples of Section 3.2.
denotes a transition executed for multiple actions.

Example 3.1 (State-only reward rhpsq). State-only reward
functions have been widely considered in many IRL ap-
proaches (e.g., Ng & Russell, 2000; Abbeel & Ng, 2004;
Syed & Schapire, 2007; Komanduru & Honorio, 2019). We
formalize the state-only feasible reward set as follows:

Rstate “ RX t@ps, a, a1, hq : rhps, aq “ rhps, a
1qu.

Consider the MDP\R of Figure 1a with H“2, πEh ps0q“

pπEh ps0q“a1 with hPt1,2u. Set p1ps`|s0,a1q“1{2`ε{4
and pp1ps`|s0,a1q“1{2´ε{4 and, thus, }p1p¨|s0,a1q´

pp1p¨|s0,a1q}1“ε. Let us set r2ps`q“1 and r2ps´q“´1,
which makes πE optimal under p. We observe that pR is
defined by pr2ps´qďpr2ps`q. Recalling that the rewards are
bounded in r´1,1s, we have HdGpRstate, pRstateqě1.

Example 3.2 (Time-homogeneous reward rps, aq). Time-
homogeneous reward functions have been employed in sev-
eral RL (e.g., Dann & Brunskill, 2015) and IRL settings (e.g.,
Lindner et al., 2022). We formalize the time-homogeneous
feasible reward set as follows:

Rhom “ RX t@ps, a, h, h1q : rhps, aq “ rh1ps, aqu.

Consider the MDP\R of Figure 1b with H“2, πE1 ps0q“

pπE1 ps0q“a1 and πE2 ps0q“pπE2 ps0q“a2. For hPt1,2u, we
set phps0|s0,a1q“1{2`ε{4 and pphps0|s0,a1q“1{2´ε{4,
thus, }php¨|s0,a1q´ pphp¨|s0,a1q}1“ε. We set rps0,a1q“1,
rps0,a2q“1´ε{6, and rps1,a1q“rps1,a2q“1{2 making
πE optimal. We can prove that HdGpRhom, pRhomqě1{4.

Example 3.3 (β-margin reward). A β-margin reward en-
forces a suboptimality gap of at least β ą 0 (Ng & Russell,
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2000; Komanduru & Honorio, 2019). We formalize it in
the finite-horizon case with a sequence β “ pβhqhPJHK,
possibly different for every stage:

Rβ-mar“RXt@ps,a,hq :Aπ
E

h ps,a;rqPt0uYp´8,´βhsu.

Consider the MDP\R in Figure 1a with πEh ps0q “

pπEh ps0q “ a1 for h P t1, 2u. We set p1ps`|s0, a1q “ 1{2`ε
and pp1ps`|s0, a1q “ 1{2 ´ ε. We set for MDP\R M
the reward function as r1ps0, aq “ 0 and rhps`, aq “
´rhps´, aq “ 1 for a P ta1, a2u and h P J2, HK. In ps0, 1q
the suboptimality gap is β1 “ 2` 2εpH ´ 1q. By selecting
H ě 1` 1{ε, the feasible set pRβ-mar is empty.

These examples show that some common restrictions of
the feasible reward set are not Lipschitz continuous w.r.t.
the transition model and, more in general, w.r.t. the IRL
problem. If the Lipschitz condition is violated, we argue
that recovering the restricted feasible reward set efficiently
by estimating the transition model is not possible. This is
because as shown in the examples, arbitrary close transition
models lead to restricted feasible reward sets with a finite
non-zero distance. This suggests that the Lipschitz frame-
work captures a structural property of the problem, being
tightly connected to the possibility of learning the feasible
reward set under certain restrictions.8 The generalization of
these examples to more abstract conditions for guaranteeing
the Lipschitz continuity of the restricting feasible reward set
is beyond the scope of the paper.

4. PAC Framework for IRL with a Generative
Model

In this section, we discuss the PAC (Probably Approxi-
mately Correct) requirements for estimating the feasible
reward set with access to a generative model of the environ-
ment. We first provide the notion of a learning algorithm
estimating the feasible reward set with a generative model
(Section 4.1). Then, we formally present the PAC require-
ment for the Hausdorff (pre)metric Hd (Section 4.2). Finally,
we discuss the relationships between the PAC requirements
with different choices of (pre)metric d (Section 4.3).

4.1. Learning Algorithms with a Generative Model

A learning algorithm for estimating the feasible reward set is
a pair A “ pµ, τq, where µ “ pµtqtPN is a sampling strategy
defined for every time step t P N as µt P ∆

SˆAˆJHK
Dt´1

with
Dt “ pSˆAˆJHKˆSˆAqt and τ is a stopping time w.r.t.

8We remark that this phenomenon can be interpreted as a lim-
itation of the formulation of the IRL problem as recovering the
feasible reward set by estimating the transition model and does
not imply that, for instance, state-only rewards are not learnable in
general.

a suitably defined filtration. At every step t P N, the learn-
ing algorithm query the environment in a triple pst, at, htq,
selected based on the sampling strategy µtp¨|Dt´1q, where
Dt´1 “ ppsl, al, hl, s

1
l, a

E
l qq

t´1
l“1 P Dt´1 is the dataset of

past samples. Then, the algorithm observes the next state
s1t „ phtp¨|st, atq and expert’s action aEt „ πEhtp¨|stq and
updates the dataset Dt “ Dt´1‘pst, at, ht, s

1
t, a

E
t q. Based

on the collected data Dτ , the algorithm computes the empir-
ical IRL problem pxMτ , pπE,τ q, based on Equation (3) and
the empirical feasible reward set pRτ .

4.2. PAC Requirement

We now introduce a general notion of a PAC requirement for
estimating the feasible reward set of an IRL problem. To this
end, we consider the Hausdorff (pre)metric introduced in
Section 3 defined in terms of the reward (pre)metric dpr, prq.
We denote with d-IRL the problem of estimating the feasible
reward set under the Hausdorff (pre)metric Hd.
Definition 4.1 (PAC Algorithm for d-IRL). Let ε P p0, 2q
and δ P p0, 1q. An algorithm A “ pµ, τq is pε, δq-PAC for
d-IRL if:

P
pM,πEq,A

´

HdpR, pRτ q ď ε
¯

ě 1´ δ,

where PpM,πEq,A denotes the probability measure induced
by executing the algorithm A in the IRL problem pM, πEq

and pRτ is the feasible reward set induced by the empirical
IRL problem pxMτ , pπE,τ q estimated with the dataset Dτ .
The sample complexity is defined as τ :“ |Dτ |.

In the next section, we show the relationship between PAC
requirements defined for notable choices of d.

4.3. Different Choices of d

So far, we have evaluated the dissimilarity between the fea-
sible reward sets by means of the Hausdorff induced by
dG, i.e., the L8-norm of between individual reward func-
tions. In the literature, other (pre)metrics d have been pro-
posed (e.g., Metelli et al., 2021; Lindner et al., 2022).

dG
Q˚ -IRL Since the recovered reward functions are often

used for performing forward RL, an index of interest is the
dissimilarity between optimal Q-functions obtained with the
reward r P R and pr P pR in the original MDP\R:

dG
Q˚pr, prq :“ max

ps,a,hqPSˆAˆJHK
|Q˚hps, a; rq ´Q˚hps, a; prq| .

dG
V ˚ -IRL We are often interested in not just being accurate

in estimating the optimal Q-function, but rather in the perfor-
mance of an optimal policy pπ˚, learned with the recovered
reward pr P pR, evaluated under the true reward r P R:

dG
V ˚pr,prq :“ sup

pπ˚PΠ˚pprq

max
ps,hqPSˆJHK

ˇ

ˇ

ˇ
V ˚h ps;rq´V

pπ˚

h ps;rq
ˇ

ˇ

ˇ
,
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where Π˚pprq:“tπ :@ps,a,hqPSˆAˆJHK:Aπhps,a;prqď0u
is the set of optimal policies under the recovered reward pr.

The following result formalizes the relationships between
the presented d-IRL problems.

Theorem 4.1 (Relationships between d-IRL problems). Let
us introduce the graphical convention for c ą 0:

x-IRL y-IRLc

meaning that any pε, δq-PAC x-IRL algorithm is pcε, δq-PAC
y-IRL. Then, the following statements hold:

dG-IRL dG
Q˚ -IRL dG

V ˚ -IRL .

2H

H 2H

Theorem 4.1 shows that any pε, δq-PAC guarantee on dG,
implies pε1, δq-PAC guarantees on both dG

Q˚ and dG
V ˚ , where

ε1 “ ΘpHεq is linear in the horizon H . This justifies why
focusing on dG-IRL, as in the following section where sam-
ple complexity lower bounds are derived. The lower bound
analysis for dG

Q˚ -IRL and dG
V ˚ -IRL is left to future works.

5. Lower Bounds
In this section, we establish sample complexity lower
bounds for the dG-IRL problem based on the PAC require-
ment of Definition 4.1 in the generative model setting. We
start presenting the general result (Section 5.1) and, then,
we comment on its form and, subsequently, provide a sketch
of the construction of the hard instances for obtaining the
lower bound (Section 5.2). For the sake of presentation, we
assume that the expert’s policy πE is known; the extension
to the case of unknown πE is reported in Appendix D.

5.1. Main Result

In this section, we report the main result of the lower bound
of the sample complexity of learning the feasible reward set.

Theorem 5.1 (Lower Bound for dG-IRL). Let A “ pµ, τq
be an pε, δq-PAC algorithm for dG-IRL. Then, there exists
an IRL problem pM, πEq such that, if ε ď 1{64, δ ď 1{32,
S ě 9, A ě 2, and H ě 12, the expected sample complex-
ity is lower bounded by:

• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ s ě Ω

ˆ

H3SA

ε2

ˆ

log

ˆ

1

δ

˙

` S

˙˙

;

• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ s ě Ω

ˆ

H2SA

ε2

ˆ

log

ˆ

1

δ

˙

` S

˙˙

,

where EpM,πEq,A denotes the expectation w.r.t. the proba-
bility measure PpM,πEq,A.

Some observations are in order. First, the derived lower
bound displays a linear dependence on the number of actions
A and dependence on the horizon H raised to a power 2
or 3, which depends on whether the underlying transition
model is time-homogeneous, as common even for forward
RL (e.g., Dann & Brunskill, 2015; Domingues et al., 2021).
Second, we identify two different regimes visible inside
the parenthesis related to the dependence on the number of
states S and the confidence δ. Specifically, for small values
of δ (i.e., δ « 0), the dominating part is log

`

1
δ

˘

, leading to

a sample complexity of order Ω
´

H3SA
ε2 log

`

1
δ

˘

¯

. Instead,
for large δ (i.e., δ « 1{32), the most relevant part is the
one corresponding to S, leading to sample complexity of
order Ω

´

H3S2A
ε2

¯

(both for the time-inhomogeneous case).
An analogous two-regime behavior has been previously
observed in the reward-free exploration setting (Jin et al.,
2020; Kaufmann et al., 2021; Ménard et al., 2021).

5.2. Sketch of the Proof

In this section, we provide a sketch of the construction of the
lower bounds of Theorem 5.1. The idea consists in deriving
two separate bounds depending on the regime of δ, which
are based on two building blocks reported in Figure 2. These
instances are used to build lower bounds for a single state
s˚ and the extension to multiple states and stages follows
standard constructions (e.g., Domingues et al., 2021).

Small-δ regime Figure 2a reports the instances employed
in this regime. The expert’s policy is πEpsq “ a0. From
state s˚, all actions bring the system to the absorbing states
s` and s´ with equal probability, except for action a˚ ‰ a0

that increases by ε1 ą 0 the probability of reaching state s`.
The learner, in order to recover a correct feasible reward set,
has to identify which is the action behaving like a˚ (among
the A available ones) to force action a0 to be optimal. Con-
sidering ΘpAq instances, in which action a˚ changes, an
application of Bretagnolle-Huber inequality (Lattimore &
Szepesvári, 2020, Theorem 14.2) allows deriving a sample
complexity lower bounded by Ω

´

AH2

ε2 log
`

1
δ

˘

¯

.

Large-δ regime Figure 2b depicts the instances used in
this regime. The expert’s policy is again πEpsq “ a0. The
system, instead, is made of S “ ΘpSq next states reachable
with equal probability by playing action a0. All other ac-
tions aj ‰ a0 alter the probability distribution of the next
state. Specifically, by playing the action aj ‰ a0, the proba-
bility of reaching the next state s1k is given by p1`ε1vpjqk q{S,

where vpjq P t´1, 1uS is a vector such that
řS
k“1 v

pjq
k “ 0.

By varying vj in a suitable set, defined by means of novel
packing argument based on Hamming coding (Lemma E.6),

6
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s˚

s´

s`

a˚

‰ a˚

1{2´ε1

1{2

1{2`ε1

1{2

1

1

(a) MDP\R used for the small-δ regime.

s˚

sS

...

s1

s2

a0

aj ‰ a0

1{2

1{2

1{2

p1`ε1vSq{S

p1`ε1v1q{S

p1`ε1v2q{S

1

1

1

(b) MDP\R used for the large-δ regime.

Figure 2. The MDP\R employed in the constructions of the lower bounds of Section 5. The expert’s policy is πEpsq “ a0.
denotes a transition executed for multiple actions.

we obtain Θp2Sq instances each one separated by a finite
dissimilarity, depending on ε1. We obtain the lower bound
by means of an application of the Fano’s inequality (Gerchi-
novitz et al., 2020, Proposition 4) which results in order
Ω
´

pp1´δq´log 2qS2AH2

ε2

¯

.

Extension to Multiple States and Stages At the begin-
ning, the system randomly chooses a problem between Fig-
ure 2a and Figure 2b. Then, it transitions to the state in
which the system may randomly remain for H ă H stages
after which it transitions with uniform probability to any of
the ΘpSq states. Our approach allows employing a single
construction for both the time-inhomogeneous and time-
homogeneous settings, depending on the value ofH . Specif-
ically, we select H “ ΘpHq for the time-inhomogeneous
case and H “ Op1q for the time-homogeneous case. In
any state s˚ and stage h˚, the agent can face the problems
shown in Figure 2. By varying s˚ and h˚ among its possible
HS (resp. S) values, we get the bounds in Theorem 5.1.

Remark 5.1 (Generative vs Forward models). This con-
struction suffices for obtaining a bound for the generative
model, but it can be easily extended to work with the for-
ward model of the environment (in which the agent interacts
via trajectories only) by means of a standard tree-based
construction (Jin et al., 2020; Domingues et al., 2021). In
such a case, the resulting PAC guarantee would no longer
be expressed via the L8-norm distance dG between reward,
but worst-case over the visitation distributions induced by
the policies: dFpr, prq :“ supπ EM,πr|rhps, aq ´ prhps, aq|s.

6. Algorithm
In this section, we analyze the sample complexity of a uni-
form sampling strategy (UniformSampling-IRL, US-IRL)
for the dG-IRL problem (Algorithm 1). We start presenting
the sample complexity analysis (Section 6.1) and, then, we
provide a sketch of the proof (Section 6.2).

Input: significance δ P p0, 1q, ε target accuracy
tÐ 0, ε0 Ð `8

while εt ą ε do
tÐ t` SAH
Collect one sample from each ps, a, hq P S ˆAˆ JHK
Update ppt according with (3)
Update εt “ maxps,a,hqPSˆAˆJHK Cthps, aq (resp. rCthps, aq)

end while

Algorithm 1. UniformSampling-IRL (US-IRL) for time-
inhomogeneous (resp. time-homogeneous) transition models.

6.1. Main Result

The US-IRL algorithm was presented in (Metelli et al.,
2021; Lindner et al., 2022) but analyzed for different IRL
formulations (see Section 7). We revise it since it matches
our sample complexity lower bounds, provided that more
sophisticated concentration tools w.r.t. those employed
in (Metelli et al., 2021; Lindner et al., 2022). For the
sake of presentation, we assume that the expert’s policy
πE is known; the extension to unknown πE is reported
in Appendix D. At each iteration, the algorithm collects a
sample from every ps, a, hq P S ˆAˆ JHK and, for time-
inhomogeneous models, computes the confidence function:

Cthps, aq :“ 2
?

2pH ´ h` 1q

d

2β
`

nthps, aq, δ
˘

nthps, aq
, (6)

where β
`

n, δ
˘

:“ logpSAH{δq`pS´1q log
`

ep1`n{pS´

1q
˘

.9 The algorithm stops as soon as all confidence functions
fall below the threshold ε. The following theorem provides

9In the time-homogeneous case, the algorithm merges the sam-
ples collected at different h P JHK for the estimation of the transi-
tion model and replaces the confidence function with:

rCthps, aq :“ 2
?
2pH ´ h` 1q

d

2rβ
`

ntps, aq, δ
˘

ntps, aq
, (7)
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the sample complexity of US-IRL.

Theorem 6.1 (Sample Complexity of US-IRL). Let ε ą 0
and δ P p0, 1q, US-IRL is pε, δq-PAC for dG-IRL and with
probability at least 1´ δ it stops after τ samples with:

• if the transition model p is time-inhomogeneous:

τ ď
8H3SA

ε2

ˆ

log

ˆ

SAH

δ

˙

` pS ´ 1qC

˙

,

where C “ 1 ` logp1 ` p64H4q{pε4pS ´ 1qq ˆ
`

logppSAHq{δq `
?
epS ´ 1`

?
S ´ 1qq2

˘

;
• if the transition model p is time-homogeneous:

τ ď
8H2SA

ε2

ˆ

log

ˆ

SA

δ

˙

` pS ´ 1q rC

˙

,

where rC “ 1 ` logp1 ` p64H4q{pε4pS ´ 1qq ˆ
`

logppSAq{δq `
?
epS ´ 1`

?
S ´ 1qq2

˘

.

Thus, time-inhomogeneous (resp. time-homogeneous)
transition models, US-IRL suffers a sample com-
plexity bound of order rO

´

H3SA
ε2

`

log
`

1
δ

˘

` S
˘

¯

(resp.

rO
´

H2SA
ε2

`

log
`

1
δ

˘

` S
˘

¯

) matching the lower bounds of
Theorem 5.1 up to logarithmic factors for both regimes of δ.

6.2. Sketch of the Proof

The idea of the proof is to exploit Theorem 3.2 to reduce the
Hausdorff distance to the L1-norm between the transition
model }ppthp¨|s, aq´php¨|s, aq}1. It is worth noting this term
replaces |pppth´phqVh| appearing in previous works (Metelli
et al., 2021; Lindner et al., 2022) that was comfortably
bounded using Höeffding’s inequality. In our case, the
L1-norm is unavoidable due to the Hausdorff distance that
implies a worst-case choice of the reward function and,
thus, of Vh. This term has to be carefully bounded using
the stronger KL-divergence concentration result of (Jonsson
et al., 2020, Proposition 1) to get theOplogp1{δq`Sq rate.10

7. Related Works
In this section, we discuss the related works about sample
complexity analysis and lower bounds for IRL. Additional
related works are reported in Appendix A.

Sample Complexity for Estimating the Feasible Reward
Set The notion of feasible reward set R was introduced
in (Ng & Russell, 2000) in an implicit form in the infinite-
horizon discounted case as a linear feasibility problem and,
subsequently, adapted to the finite-horizon case in (Lindner

where rβ
`

n, δ
˘

:“ logpSA{δq ` pS ´ 1q log
`

ep1 ` n{pS ´ 1q
˘

and ntps, aq “
řH
h“1 n

t
hps, aq.

10A more naı̈ve application of the L1-concentration of (Weiss-
man et al., 2003) would lead to the worse OpS logp1{δqq rate.

et al., 2022). Furthermore, in (Metelli et al., 2021; Lind-
ner et al., 2022) an explicit form of the reward functions
belonging to the feasible region R was provided. In these
works, the problem of estimating the feasible reward set
is studied for the first time considering a “reference” pair
of rewards pr, qrq P Rˆ pR against which to compare the
rewards inside the recovered sets, leading to the (pre)metric:

rHdpR,R, r, qrq :“ max

"

inf
prP pR

dpr, prq, inf
rPR

dpr, qrq

*

. (8)

Compared to the Hausdorff (pre)metric (Equation 1), in
Equation (8) there is no maximization over the choice of
pr, qrq, leading to a simpler problem.11 In (Metelli et al.,
2021), a uniform sampling approach (similar to Algo-
rithm 1) is proved to achieve a sample complexity of order
rO
´

γ2SA
p1´γq4ε2

¯

for the index of Equation (8) with d “ dG
Q˚

in the discounted setting with generative model. For the for-
ward model case, the AceIRL algorithm (Lindner et al.,
2022) suffers a sample complexity of order rO

´

H5SA
ε2

¯

for the index of Equation (8) with d “ dF
V ˚ , in the finite-

horizon case.12 Unfortunately, the reward recovered by
AceIRL reward function is not guaranteed to be bounded by
a predetermined constant (e.g., r´1, 1s). Modified versions
of these algorithms allow embedding problem-dependent
features under a specific choice of a reward within the set.

Sample Complexity Lower Bounds in IRL To the best
of our knowledge, the only work that proposes a sample
complexity lower bound for IRL is (Komanduru & Honorio,
2021). The authors consider a finite state and action MDP\R
and the IRL algorithm of (Ng & Russell, 2000) for β-strict
separable IRL problems (i.e., with suboptimality gap at least
β) with state-only rewards in the discounted setting. When
only two actions are available (A “ 2) and the samples are
collected starting in each state with equal probability, by
means of a geometric construction and Fano’s inequality, the
authors derive an ΩpS logSq lower bound on the number of
trajectories needed to identify a reward function. Note that
this analysis limits to the identification of a reward function
within a finite set, rather than evaluating the accuracy of
recovering the feasible reward set.

8. Conclusions and Open Questions
In this paper, we provided contributions to the understand-
ing of the complexity of the IRL problem. We conceived
a lower bound of order Ω

´

H3SA
ε2

`

log
`

1
δ

˘

` S
˘

¯

on the
number samples collected with a generative model in the
finite-horizon setting. This result is of relevant interest since

11In this sense, a PAC guarantee according to Definition 4.1,
implies a PAC guarantee defined w.r.t. (pre)metric of Equation (8).

12As discussed in Remark 5.1, in the forward model case, the
dissimilarity is in expectation w.r.t. the worst-case policy.
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it sets, for the first time, the complexity of the IRL problem,
defined as the problem of estimating the feasible reward set.
Furthermore, we showed that a uniform sampling strategy
matches the lower bound up to logarithmic factors. Never-
theless, the IRL problem is far from being closed. In the
following, we outline a road map of open questions, hoping
to inspire researchers to work in this appealing area.

Forward Model The most straightforward extension of our
findings is moving to the forward model setting, in which
the agent can interact with the environment through trajec-
tories only. As we already noted, our lower bounds can be
comfortably extended to this setting. However, in this case,
the PAC requirement has to be relaxed since controlling
the L8-norm between rewards is no longer a viable option
(e.g., for the possible presence of almost unreachable states).
Which distance notion should be used for this setting? Will
the Lipschitz regularity of Section 3 still hold?

Problem-Dependent Analysis Our analysis is worst-case
in the class of IRL problems. Would it be possible to ob-
tain a problem-dependent complexity results? Previous
problem-dependent analyses provided results tightly con-
nected to the properties of the specific reward selection pro-
cedure (Metelli et al., 2021; Lindner et al., 2022). Clearly, a
currently open question, in all settings in which reward is
missing, including reward-free exploration (Jin et al., 2020)
and IRL, is how to define a problem-dependent quantity in
replacement of the suboptimality gaps.

Reward Selection Our PAC guarantees concern with the
complete feasible reward set. However, algorithmic solu-
tions to IRL implement a specific criterion for selecting a
reward (e.g., maximum entropy, maximum margin). How
the PAC guarantee based on the Hausdorff distance relates
to guarantees on a single reward selected with a specific
criterion within R?
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Appendix
A. Additional Related Works
In this appendix, we report additional related works concerning sample complexity analysis for specific IRL algorithms and
reward-free exploration.

Sample Complexity of IRL Algorithms Differently from forward RL, the theoretical understanding of the IRL problem
is largely less established and the sample complexity analysis proposed in the literature often limit to specific algorithms. In
the class of feature expectation approaches, the seminal work (Abbeel & Ng, 2004) propose IRL algorithms guaranteed to
output an ε-optimal policy (made of a mixture of Markov policies) after rO

´

k
ε2p1´γq2 log

`

1
δ

˘

¯

trajectories (ideally of infinite
length). The result holds in a discounted setting (being γ the discount factor) under the assumption that the true reward
function rpsq “ wTφpsq is state-only and linear in some known features φ of dimensionality k. In (Syed & Schapire, 2007),
a game-theoretic approach to IRL, named MWAL, is proposed improving (Abbeel & Ng, 2004) in terms of computational
complexity and allowing the absence of an expert, preserving similar theoretical guarantees in the same setting. Modular
IRL (Vroman, 2014), that integrates supervised learning capabilities in the IRL algorithm, is guaranteed to produce an
ε-optimal policy after rO

´

SA
p1´γq2ε2 log

`

1
δ

˘

¯

trajectories. This class of algorithms, however, requires, as an inner step, to
compute the optimal policy pπ for every candidate reward function pr. This step (and the corresponding sample complexity)
is somehow hidden in the analysis since they either assume the knowledge of the transition model and apply dynamic
programming (e.g., Vroman, 2014) or the access to a black-box RL algorithm (e.g., Abbeel & Ng, 2004). In the class of
maximum entropy approaches (Ziebart et al., 2008), the Maximum Likelihood IRL (Zeng et al., 2022) converges to a
stationary solution with rOpε´2q trajectories for non-linear reward parametrization (with bounded gradient and Lipschitz
smooth), when the underlying Markov chain is ergodic. Furthermore, the authors prove that, when the reward is linear in
some features, the recovered solution corresponds to Maximum Entropy IRL (Ziebart et al., 2008). Concerning the
gradient-based approaches, (Pirotta & Restelli, 2016) and (Ramponi et al., 2020) prove finite-sample convergence guarantee
to the expert’s weight under linear parametrization as a function of the accuracy of the gradient estimation. Surprisingly, a
theoretical analysis of the IRL progenitor algorithm of (Ng & Russell, 2000) has been proposed only recently in (Komanduru
& Honorio, 2019). A β-strict separability setting is enforced in which the rewards are assumed to lead to a suboptimality
gap of at least β ą 0 when playing any non-optimal action. For finite MDPs, known expert’s policy, under the demanding
assumption that each state is reachable in one step with a minimum probability α ą 0, and focusing on state-only reward, the
authors prove that the algorithm outputs a β-strict separable feasible reward in at most rO

´

1`γ2Ξ2

αβ2p1´γq4 log
`

1
δ

˘

¯

trajectories,
where Ξ ď S is the number of possible successor states. Recently, an approach with theoretical guarantees has been
proposed for continuous states (Dexter et al., 2021).

Reward-Free Exploration Reward-free exploration (RFE, Jin et al., 2020; Kaufmann et al., 2021; Ménard et al., 2021)
is a setting for pure exploration in MDPs composed of two phases: exploration and planning. In the exploration phase,
the agent learns an estimated transition model pp without any reward feedback. In the planning phase, the agent is faced
with a reward function r and has to output an estimated optimal policy pπ˚, using pp since no further interaction with the
environment is admitted. In this sense, RFE shares this two-phase procedure with our IRL problem, but, instead of the
planning phase, we face the computation of the feasible reward set.13 In RFE exploration, the sample complexity is computed
against the performance of the learned policy pπ˚ under the reward r, i.e., V ˚p¨; rq ´ V pπ˚p¨; rq, whose lower bound of
the sample complexity has order Ω

´

H2SA
ε2

`

H log
`

1
δ

˘

` S
˘

¯

(Jin et al., 2020; Kaufmann et al., 2021). The best known
algorithm, RF-Express, proposed in (Ménard et al., 2021) archives an almost-matching sample complexity of order
Ω
´

H3SA
ε2

`

log
`

1
δ

˘

` S
˘

¯

. The relevant connection with what we present in this paper is the fact that the derivation of the
lower bounds shares similarity especially in the construction of the instances. Nevertheless, in the time-inhomogeneous
case, we achieve a higher lower bound of order Ω

´

H3SA
ε2

`

log
`

1
δ

˘

` S
˘

¯

. The connection between IRL and RFE should
be investigated in future works, as also mentioned in (Lindner et al., 2022).

13As shown in previous works, the computation of the feasible reward set can be formulated with a linear feasibility problem (Ng &
Russell, 2000).
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B. Proofs
In this appendix, we report the proofs we omitted in the main paper.

B.1. Proofs of Section 3

Lemma B.1. Let r be feasible for the IRL problem pM, πEq bounded in r´1, 1s (i.e., r P R) and defined according to
Lemma 3.1 as rhps, aq “ ´Ahps, aq1tπEh pa|sq“0u ` Vhpsq ´ phVh`1ps, aq. Let pxM, pπEq be an IRL problem and define for
every ps, a, hq P S ˆAˆ JHK:

εhps, aq :“ ´Ahps, aq
´

1tπEh pa|sq“0u ´ 1tpπEh pa|sq“0u

¯

` ppph ´ pphqVh`1q ps, aq.

Then, the reward function pr defined according to Lemma 3.1 as prhps, aq “ ´ pAhps, aq1tpπEh pa|sq“0u`
pVhpsq ´ pph pVh`1ps, aq

for every ps, a, hq P S ˆAˆ JHK with:

pAhps, aq “
Ahps, aq

1` ε
, pVhpsq “

Vhpsq

1` ε
, pVH`1psq “ 0.

where ε :“ maxps,a,hqPSˆAˆJHK |εhps, aq|, is feasible for the IRL problem pxM, pπEq and bounded in r´1, 1s (i.e., pr P pR).

Proof. Given the reward function rhps, aq “ ´Ahps, aq1tπEh pa|sq“0u ` Vhpsq ´ phVh`1ps, aq, we define the reward
function:

rrhps, aq “ ´Ahps, aq1tpπEh pa|sq“0u ` Vhpsq ´ pphVh`1ps, aq,

that, thanks to Lemma 3.1, makes policy pπE optimal. However, it is not guaranteed that rr P pR since it can take values larger
than 1. Thus, we define the reward:

prhps, aq “
rrhps, aq

1` ε
“ ´

Ahps, aq

1` ε
1tpπEh pa|sq“0u `

Vh
1` ε

psq ´ pph
Vh`1

1` ε
ps, aq,

which simply scales rrh and preserves the optimality of pπE . We now prove that prhps, aq is bounded in r´1, 1s. To do so, we
prove that rrhps, aq is bounded in r´p1` εq, p1` εqs:

|rrhps, aq| ď |rhps, aq| ` |rrhps, aq ´ rhps, aq|

“ 1`
ˇ

ˇ

ˇ
´Ahps, aq1tpπEh pa|sq“0u ` pphVh`1psq ´

´

´Ahps, aq1tπEh pa|sq“0u ` phVh`1psq
¯
ˇ

ˇ

ˇ

“ 1` |εhps, aq| ď 1` ε.

Theorem 3.2 (Lipschitz Continuity). Let R and pR be the feasible reward sets of the IRL problems pM, πEq and pxM, pπEq,
as in Equation (2). Then, it holds that:14

HdGpR, pRq ď 2ρGppM, πEq, pxM, pπEqq

1` ρGppM, πEq, pxM, pπEqq
, (5)

where ρGp¨, ¨q is a (pre)metric between IRL problems, defined as:

ρGppM,πEq,pxM,pπEqq:“ max
ps,a,hqPSˆAˆJHK

pH´h`1q

ˆ

´
ˇ

ˇ

ˇ
1tπEh pa|sq“0u´1tpπEh pa|sq“0u

ˇ

ˇ

ˇ
`}php¨|s,aq´pphp¨|s,aq}1

¯

.

14This implies the standard Lipschitz continuity, by simply bounding 2ρGppM,πEq,p xM,pπEqq

1`ρGppM,πEq,p xM,pπEqq
ď 2ρG

ppM, πEq, pxM, pπEqq.
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Proof. Let pr as defined in the proof of Lemma B.1. Then, we have:

|rhps, aq ´ prhps, aq| “

ˇ

ˇ

ˇ

ˇ

rhps, aq ´
rrhps, aq

1` ε

ˇ

ˇ

ˇ

ˇ

ď
1

1` ε
p|rhps, aq ´ rrhps, aq| ` ε |rhps, aq|q

ď
2ε

1` ε
.

By recalling that 2ε
1`ε is a non-decreasing function of ε, we bound it by replacing ε with an upper bound:

ε “ max
ps,a,hqPSˆAˆJHK

|εhps, aq|

ď max
ps,a,hqPSˆAˆJHK

pH ´ h` 1q
”
ˇ

ˇ

ˇ
1tπEh pa|sq“0u ´ 1tpπEh pa|sq“0u

ˇ

ˇ

ˇ
` }php¨|s, aq ´ pphp¨|s, aq}1

ı

“: ρGppM, πEq, pxM, pπEqq,

where we used Hölder’s inequality recalling that |Vh`1psq| ď H ´ h and |Ahps, aq| ď H ´ h ` 1. Clearly,
ρGppM, πEq, pxM, pπEqq is a (pre)metric.

Fact B.1. There exist two MDP\R M and xM with transition models p and pp respectively, an expert’s policy πE and a
reward function rhps, aq “ ´Ahps, aq1tπEpa|sq“0u ` Vhpsq ´ phVh`1psq feasible for the IRL problem pM, πEq bounded
in r´1, 1s (i.e., r P R) such that the reward function prhps, aq “ ´Ahps, aq1tπEpa|sq“0u`Vhpsq´ pphVh`1ps, aq is feasible
for the IRL problem pxM, πEq not bounded in r´1, 1s.

Proof. We consider the MDP\R in Figure 3 with optimal policy and reward function defined for every h P JHK and H “ 10
as:

πEh ps1q “ a1, π
E
h ps2q “ a2,

rhps1, a1q “ rhps2, a1q “ 0, rhps1, a2q “ ´1, rhps2, a2q “ 1.

Simple calculations lead to the V-function and advantage function values:

V π
E

h ps1q “ 0, V π
E

h ps2q “ H ´ h` 1,

Aπ
E

h ps1, a1q “ 0, Aπ
E

h ps1, a2q “ ´1` pH ´ hq{10, Aπ
E

h ps2, a1q “ ´1´ pH ´ hq{10, Aπ
E

h ps2, a2q “ 0.

We consider as alternative transition model pp “ 1´ p. After tedious calculations we obtain the alternative reward function:

prhps1, a1q “ ´pH ´ hq, prhps1, a2q “ 1´ pH ´ hq, prhps2, a1q “ H ´ h` 2, prhps2, a2q “ H ´ h` 1.

It is simple to observe that for some ps, a, hq we have |prhps, aq| ą 1.

s1 s2a1 a2

a2

a1

9{10

1{10

1{10

9{10

Figure 3. The MDP\R employed in Fact B.1.
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B.2. Proofs of Section 4

Theorem 4.1 (Relationships between d-IRL problems). Let us introduce the graphical convention for c ą 0:

x-IRL y-IRLc

meaning that any pε, δq-PAC x-IRL algorithm is pcε, δq-PAC y-IRL. Then, the following statements hold:

dG-IRL dG
Q˚ -IRL dG

V ˚ -IRL .

2H

H 2H

Proof. Let A be an pε, δq-PAC dG-IRL algorithm. This means that with probability at least 1´ δ, we have that for any IRL
problem HdGpR, pRτ q ď ε. We introduce the following visitation distributions, defined for every s, s1 P S, h, l P JHK with
l ě h, and a, a1 P A:

ηπs,a,h,lps
1, a1q “ P

M,π

`

sl “ s1, al “ a1|sh “ s, ah “ a
˘

, ηπs,h,lps
1, a1q “

ÿ

aPA
πhpa|sqη

π
s,a,h,lps

1, a1q.

dG-IRL Ñ dG
Q˚ -IRL Let us consider the optimal Q-function difference and let π˚ an optimal policy under the reward

function r, we have:

Q˚hps, a; rq ´Q˚hps, a; prq ď Qπ
˚

h ps, a; rq ´Qπ
˚

h ps, a; prq

“

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,a,h,lps
1, a1qprlps

1, a1q ´ prlps
1, a1qq

ď max
ps,a,h1qPSˆAˆJHK

|rh1ps, aq ´ prh1ps, aq|
H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,a,h,lps
1, a1q

loooooooooooooomoooooooooooooon

“1

“ pH ´ h` 1q max
ps,a,h1qPSˆAˆJHK

|rh1ps, aq ´ prh1ps, aq|

ď H max
ps,a,h1qPSˆAˆJHK

|rh1ps, aq ´ prh1ps, aq|.

As a consequence, we have:

HdG
Q˚
pR, pRτ q ď HHdGpR, pRτ q.

dG-IRLÑ dG
V ˚ -IRL Let us consider the value functions and let π˚ (resp. pπ˚) be an optimal policy under reward function

r (resp. pr), we have:

V ˚h ps; rq ´ V
pπ˚

h ps; rq “ V π
˚

h ps; rq ´ V pπ˚

h ps; rq ˘ V pπ˚

h ps; prq

ď V π
˚

h ps; rq ´ V π
˚

h ps; prq ` V pπ˚

h ps; prq ´ V pπ˚

h ps; rq

“

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,h,lps
1, a1qprlps

1, a1q ´ prlps
1, a1qq

`

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηpπ
˚

s,h,lps
1, a1qpprlps

1, a1q ´ rlps
1, a1qq

ď max
ps,a,h1qPSˆAˆJHK

|rh1ps, aq ´ prh1ps, aq|

15



Towards Theoretical Understanding of Inverse Reinforcement Learning

ˆ

¨

˝

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηπ
˚

s,h,lps
1, a1q `

H
ÿ

l“h

ÿ

ps1,a1qPSˆA

ηpπ
˚

s,h,lps
1, a1q

˛

‚

“ 2pH ´ h` 1q max
ps,a,h1qPSˆAˆJHK

|rh1ps, aq ´ prh1ps, aq|

ď 2H max
ps,a,h1qPSˆAˆJHK

|rh1ps, aq ´ prh1ps, aq|.

Thus, it follows that:

HdG
V˚
pR, pRτ q ď 2HHdGpR, pRτ q.

dG
Q˚ -IRL Ñ dG

V ˚ -IRL To prove this result, we need to introduce further tools. Specifically, we introduce the Bellman
optimal operator and the Bellman expectation operator, defined for a reward function r, policy π, ps, hq P S ˆ JHK and
function fh : S Ñ R defined for h P JHK with fH`1 “ 0:

T˚r,hfhpsq “ max
aPA

trhps, aq ` phfh`1ps, aqu , Tπr,hfhpsq “ πh prhps, aq ` phfh`1ps, aqq .

We recall the fixed-point properties: Tπr,hV
π
h “ V πh and T˚r,hV

˚
h “ V ˚h . Let π˚ (resp. pπ˚) be an optimal policy under reward

r (resp. pr). Let us consider the following derivation:

V ˚h ps; rq ´ V
pπ˚

h ps; rq “ T˚r,hV
˚
h ps; rq ´ T

pπ˚

r,hV
pπ˚

h ps; rq ˘ Tπ
˚

r,hV
˚
h ps; prq ˘ T

π˚

pr,hV
˚
h ps; prq ˘ T

˚
pr,hV

˚
h ps; prq ˘ T

pπ˚

r,hV
pπ˚

h ps; prq

“ Tπ
˚

r,hV
˚
h ps; rq ´ T

π˚

r,hV
˚
h ps; prq ` T

π˚

r,hV
˚
h ps, prq ´ T

π˚

pr,hV
˚
h ps; prq ` T

π˚

pr,hV
˚
h ps; prq ´ T

˚
pr,hV

˚
h ps; prq

looooooooooooooooomooooooooooooooooon

ď0

` T pπ˚

pr,hV
˚
h ps; prq ´ T

pπ˚

r,hV
˚
h ps; prq ` T

pπ˚

r,hV
˚
h ps; prq ´ T

pπ˚

r,hV
pπ˚

h ps; rq

ď π˚hphpV
˚
h`1p¨; rq ´ V

˚
h`1p¨; prqqpsq ` π

˚
hprh ´ prhqpsq

` pπ˚hpprh ´ rhqpsq ` pπ˚hphpV
˚
h`1p¨; prq ´ V

pπ˚

h`1p¨; rqqpsq

“ pπ˚h ´ pπ˚hqpQ
˚
hp¨; rq ´Q

˚
hp¨; prqqpsq ` pπ˚hphpV

˚
h`1p¨; rq ´ V

pπ˚

h`1p¨; rqqpsq.

Let us apply the L8-norm over the state space and the triangular inequality, we have:

›

›

›
V ˚h p¨; rq ´ V

pπ˚

h p¨; rq
›

›

›

8
ď }pπ˚h ´ pπ˚hqpQ

˚
hp¨; rq ´Q

˚
hp¨; prqqp¨q}8 `

›

›

›
pπ˚hphpV

˚
h`1p¨; rq ´ V

pπ˚

h`1p¨; rqqp¨q
›

›

›

8

ď 2 }Q˚hp¨; rq ´Q
˚
hp¨; prqqp¨q}8 `

›

›

›
V ˚h`1p¨; rq ´ V

pπ˚

h`1p¨; rq
›

›

›

8
.

By unfolding the recursion over h, we obtain:

›

›

›
V ˚h p¨; rq ´ V

pπ˚

h p¨; rq
›

›

›

8
ď 2

H
ÿ

l“h

}Q˚l p¨; rq ´Q
˚
l p¨; prqqp¨q}8 .

Thus, we have:

max
ps,hqPSˆJHK

ˇ

ˇ

ˇ
V ˚h ps; rq ´ V

pπ˚

h ps; rq
ˇ

ˇ

ˇ
ď 2H max

ps,a,hqPSˆAˆJHK
|Q˚hps, a; rq ´Q˚hps, a; prq| .

Since the derivation is carried out for arbitrary pπ˚, it follows that:

HdG
V˚
pR, pRτ q ď 2HHdG

Q˚
pR, pRτ q.
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B.3. Proofs of Section 5

Theorem 5.1 (Lower Bound for dG-IRL). Let A “ pµ, τq be an pε, δq-PAC algorithm for dG-IRL. Then, there exists an IRL
problem pM, πEq such that, if ε ď 1{64, δ ď 1{32, S ě 9, A ě 2, and H ě 12, the expected sample complexity is lower
bounded by:

• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ s ě Ω

ˆ

H3SA

ε2

ˆ

log

ˆ

1

δ

˙

` S

˙˙

;

• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ s ě Ω

ˆ

H2SA

ε2

ˆ

log

ˆ

1

δ

˙

` S

˙˙

,

where EpM,πEq,A denotes the expectation w.r.t. the probability measure PpM,πEq,A.

Proof. We put together the results of Theorem B.2 and Theorem B.3, by recalling that maxta, bu ě a`b
2 , or, equivalently,

assuming to observe instances like the ones of Theorem B.2 w.p. 1{2 as well as those of Theorem B.3.

Theorem B.2. Let A “ pµ, τq be an pε, δq-PAC algorithm for dG-IRL. Then, there exists an IRL problem pM, πEq such
that, if ε ď 1{2, δ ă 1{16, S ě 9, A ě 2, and H ě 12, the expected sample complexity is lower bounded by:

• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ s ě Ω

ˆ

H3SA

ε2
log

ˆ

1

δ

˙˙

;

• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ s ě Ω

ˆ

H2SA

ε2
log

ˆ

1

δ

˙˙

.

Proof. Step 1: Instances Construction The construction of the hard MDP\R instances follows similar steps as the ones
presented in the constructions of lower bounds for policy learning (Domingues et al., 2021) and the hard instances are
reported in Figure 4 in a semi-formal way. The state space is given by S “ tsstart, sroot, s´, s`, s1, . . . , sSu and the action
space is given by A “ ta0, a1, . . . , aAu. The transition model is described below and the horizon is H ě 3. We introduce
the constant H P JHK, whose value will be chosen later. Let us observe, for now, that if H “ 1, the transition model is
time-homogeneous.

The agent begins in state sstart, where every action has the same effect. Specifically, if the stage h ă H , then there is
probability 1{2 to remain in sstart and a probability 1{2 to transition to sroot. Instead, if h ě H , the state transitions to sroot
deterministically. From state sroot, every action has the same effect and the state transitions with equal probability 1{S
to a state si with i P JSK. In all states si, apart from a specific one, i.e., state s˚, all actions have the same effect, i.e.,
transitioning to states s´ and s` with equal probability 1{2. State s˚ behaves as the other ones if the stage h ‰ h˚, where
h˚ P JHK is a predefined stage. If, instead, h “ h˚, all actions aj ‰ a˚ behave like in the other states, while for action a˚,
we have a 1{2` ε1 probability of reaching s` (and consequently probability 1{2´ ε1 of reaching s´), with ε1 P r0, 1{4s.
Notice that, having fixed H , the possible values of h˚ are t3, . . . , 2 ` Hu. States s` and s´ are absorbing states. The
expert’s policy always plays action a0.

Let us consider the base instance M0 in which there is no state behaving like s˚. Additionally, by varying the triple
` :“ ps˚, a˚, h˚q P ts1, . . . , sSu ˆ ta1, . . . , aAu ˆ J3, H ` 2K “: I, we can construct the class of instances denoted by
M “ tM` : ` P t0u Y Iu.

Step 2: Feasible Set Computation Let us consider an instance M` P M, we now seek to provide a lower bound to the
Hausdorff distance HdG pRM0 ,RM`

q. To this end, we focus on the triple ` “ ps˚, a˚, h˚q and we enforce the convenience
of action a0 over action a˚. For the base MDP\R M0, let r0 P RM0 , we have:

r0
h˚ps˚, a0q `

1

2

H
ÿ

l“h˚`1

`

r0
l ps´q ` r

0
l ps`q

˘

ě r0
h˚ps˚, a˚q `

1

2

H
ÿ

l“h`1

`

r0
l ps´q ` r

0
l ps`q

˘
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sstart

sroot

. . . . . .s˚s1 sS

s`s´

h ă H w.p. 1
2

w.p. 1
2 or h ě H

w.p. 1
S

w.p. 1
S

w.p. 1
S

w.p. 1
2

w.p. 1
2w.p. 1

2

w.p. 1
2

h “ h˚ w.p. 1
2 ` ε

1h “ h˚ w.p. 1
2 ´ ε

1

w.p. 1
2w.p. 1

2

Figure 4. Semi-formal representation of the the hard instances MDP\R used in the proof of Theorem B.2.

ùñ r0
h˚ps˚, a0q ě r0

h˚ps˚, a˚q,

For the alternative MDP\R M`, let r` P RM`
, we have:

r`h˚ps˚, a0q `
1

2

H
ÿ

l“h˚`1

`

r`l ps´q ` r
`
l ps`q

˘

ě r`h˚ps˚, a˚q `
H
ÿ

l“h˚`1

ˆˆ

1

2
´ ε1

˙

r`l ps´q `

ˆ

1

2
` ε1

˙

r`l ps`q

˙

ùñ r`h˚ps˚, a0q ě r`h˚ps˚, a˚q ´ ε
1

H
ÿ

l“h˚`1

`

r`l ps´q ´ r
`
l ps`q

˘

.

In order to lower bound the Hausdorff distance HdG pRM0
,RM`

q, we proceed as follows:

HdG pRM0 ,RM`
q “ max

#

sup
r0PRM0

inf
r`PRM`

dGpr0, r`q, sup
r`PRM`

inf
r0PRM0

dGpr`, r0q

+

ě sup
r`PRM`

inf
r0PRM0

dGpr`, r0q

ě inf
r0PRM0

dGpr`, r0q,

for a specific choice of the reward function r` for M` defined as:

r`l ps´q “ ´r
`
l ps`q “ 1, r`h˚ps˚, a˚q “ 1, r`h˚ps˚, a0q “ 1´ 2ε1pH ´ h˚q,
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where we enforce ε1 ď minh˚PJ3,H`2K 1{pH ´ h˚q “ 1{pH ´ 3q ď 1{4 (which is guaranteed for H ě 7) to ensure
r`h˚ps˚, a0q ě ´1. Then, for notational convenience, for the MDP\R M0, we set y :“ r0

h˚
ps˚, a0q and x :“ r0

h˚
ps˚, a˚q:

HdG pRM0
,RM`

q ě min
x,yPr´1,1s

yěx

max
 

|x´ 1| ,
ˇ

ˇy ´ 1` 2ε1pH ´ h˚q
ˇ

ˇ

(

“ ε1pH ´ h˚q.

We enforce the following constraint on this quantity:

@h˚ P J3, H ` 2K : pH ´ h˚qε
1 ě 2ε ùñ ε1 ě max

h˚PJ3,H`2K

2ε

pH ´ h˚q
“

2ε

pH ´H ´ 2q
. (9)

Notice that ε1 ď 1{4 whenever H ě H ` 10. This latter condition, together with ε1 ď 1{pH ´ 3q, implies ε ď H´H´2
2pH´3q that

is satisfied for ε ď 1{2.

Step 3: Lower bounding Probability Let us consider an pε, δq-correct algorithm A that outputs the estimated feasible set
pR. Thus, for every ı P I, we can lower bound the error probability:

δ ě sup
all M MDP\R and expert policies π

P
pM,πq,A

´

HdG

´

RM, pR
¯

ě ε
¯

ě sup
MPM

P
pM,πq,A

´

HdG

´

RM, pR
¯

ě ε
¯

ě max
`Pt0,ıu

P
pM`,πq,A

´

HdG

´

RM`
, pR

¯

ě ε
¯

.

For every ı P I , let us define the identification function (whose dependence on the estimated feasible reward set pR is omitted
to avoid a too heavy notation):

Ψı :“ arg min
`Pt0,ıu

HdG

´

RM`
, pR

¯

.

Let  P t0, ıu. If Ψı “ , then, HdGpRMΨı
,RMq “ 0. Otherwise, if Ψı ‰ , we have:

HdG

`

RMΨı
,RM

˘

ď HdG

´

RMΨı
, pR

¯

`HdG

´

pR,RM

¯

ď 2HdG

´

pR,RM

¯

,

where the first inequality follows from triangular inequality and the second one from the definition of identification function
Ψı. From Equation (9), we have that HdG

`

RMΨı
,RM

˘

ě 2ε. Thus, it follows that HdG

´

pR,RM

¯

ě ε. This implies the
following inclusion of events for  P t0, ıu:

!

HdG

´

pR,RM

¯

ě ε
)

Ě tΨı ‰ u .

Thus, we can proceed by lower bounding the probability:

max
`Pt0,ıu

P
pM`,πq,A

´

HdG

´

RM`
, pR

¯

ě ε
¯

ě max
`Pt0,ıu

P
pM`,πq,A

pΨı ‰ `q

ě
1

2

„

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı ‰ ıq



“
1

2

„

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı “ 0q



,

where the second inequality follows from the observation that maxta, bu ě 1
2 pa ` bq and the equality from observing

that Ψı P t0, ıu. The intuition behind this derivation is that we lower bound the probability of making a mistake ě ε
with the probability of failing in identifying the true underlying problem. We can now apply the Bretagnolle-Huber
inequality (Lattimore & Szepesvári, 2020, Theorem 14.2) (also reported in Theorem E.1 for completeness) with P “
PpM0,πq,A, Q “ PpM0,πqA, and A “ tΨı ‰ 0u:

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı “ 0q ě
1

2
exp

ˆ

´DKL

ˆ

P
pM0,πq,A

, P
pMı,πq,A

˙˙

.
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Step 4: KL-divergence Computation Let M P M, we denote with PpM,πq,A the joint probability distribution of all
events realized by the execution of the algorithm in the MDP\R (the presence of π is irrelevant as we assume it known):

P
pM,πq,A

“

τ
ź

t“1

ρtpst, at, ht|Ht´1qphtps
1
t|st, atq.

where ρt is the sampling distribution induced by the algorithm A and Ht´1 “ ps1, a1, h1, s
1
1, . . . , st´1, at´1, ht´1, s

1
t´1q is

the history. Let ı P I and denote with p0 and pı the transition models associated with M0 and Mı. Let us now move to the
KL-divergence:

DKL
`

PpM0,πq,A,PpMı,πq,A

˘

“ E
pM0,πq,A

«

τ
ÿ

t“1

log
p0
ht
ps1t|st, atq

pıhtps
1
t|st, atq

ff

“ E
pM0,πq,A

«

τ
ÿ

t“1

DKL
`

p0
htp¨|st, atq, p

ı
htp¨|st, atq

˘

ff

ď E
pM0,πq,A

”

Nτ
h˚ps˚, a˚q

ı

DKL

´

p0
h˚p¨|s˚, a˚q, p

ı
h˚p¨|s˚, a˚q

¯

ď 8pε1q2 E
pM0,πq,A

”

Nτ
h˚ps˚, a˚q

ı

.

having observed that the transition models differ in ı “ ps˚, a˚, h˚q and defined Nτ
h˚
ps˚, a˚q “

řτ
t“1 1tpst, at, htq “

ps˚, a˚, h˚qu and the last passage is obtained by Lemma E.4 with D “ 2 (and ε “ 2ε1). Putting all together, we have:

δ ě
1

4
exp

ˆ

´8 E
pM0,πq,A

”

Nτ
h˚ps˚, a˚q

ı

pε1q2
˙

ùñ E
pM0,πq,A

”

Nτ
h˚ps˚, a˚q

ı

ě
log 1

4δ

8pε1q2
“
pH ´H ´ 2q2 log 1

4δ

32ε2
.

Thus, since we have lower bounded the sample complexity considering the pair of MDPs tM0,Mıu, we can proceed at
summing over ps˚, a˚, h˚q P I to obtain:

E
pM0,πq,A

rτ s ě
ÿ

ps˚,a˚,h˚qPI

E
pM0,πq,A

”

Nτ
h˚ps˚, a˚q

ı

“
ÿ

ps˚,a˚,h˚qPI

pH ´H ´ 2q2 log 1
4δ

32ε2

“
SAHpH ´H ´ 2q2

32ε2
log

1

4δ
.

The number of states is given by S “ |S| “ S` 4, the number of actions is given by A “ |A| “ A` 1. Let us first consider
the time-homogeneous case, i.e., H “ 1:

E
pM0,πq,A

rτ s ě
pS ´ 4qpA´ 1qpH ´ 3q2

32ε2
log

1

4δ
.

For δ ă 1{16, S ě 9, A ě 2, H ě 10, we obtain:

E
pM0,πq,A

rτ s ě Ω

ˆ

SAH2

ε2
log

1

δ

˙

.

For the time-inhomogeneous case, instead, we select H “ H{2, to get:

E
pM0,πq,A

rτ s ě
pS ´ 4qpA´ 1qpH{2qpH ´H{2´ 2q2

ε2
log

1

4δ
.

For δ ă 1{16, S ě 9, A ě 2, H ě 12, we obtain:

E
pM0,πq,A

rτ s ě Ω

ˆ

SAH3

ε2
log

1

δ

˙

.
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Theorem B.3. Let A “ pµ, τq be an pε, δq-PAC algorithm for dG-IRL. Then, there exists an IRL problem pM, πEq such
that, if ε ď 1{64, δ ď 1{2, S ě 16, A ě 2, H ě 131, the expected sample complexity is lower bounded by:

• if the transition model p is time-inhomogeneous:

E
pM,πEq,A

rτ s ě
1

5120

S2AH3

ε2
;

• if the transition model p is time-homogeneous:

E
pM,πEq,A

rτ s ě
1

2560

S2AH2

ε2
.

Proof. Step 1: Instances Construction The construction of the hard MDP\R instances for this second bound follows steps
similar to those of reward free exploration (Jin et al., 2020) and the instances are reported in Figure 5 in a semi-formal way.
The state space is given by S “ tsstart, sroot, s1, . . . , sS , s

1
1, . . . , s

1

S
u and the action space is given by A “ ta0, a1, . . . , aAu.

We assume S to be divisible by 16. The transition model is described below and the horizon is H ě 3.

The agent begins in state sstart, where every action has the same effect. Specifically, if the stage h ă H (H P JHK,
whose value will be chosen later), then there is probability 1{2 to remain in sstart and a probability 1{2 to transition to
sroot. Instead, if h ě H , the state transitions to sroot deterministically. From state sroot, every action has the same effect
and the state transitions with equal probability 1{S to a state si with i P JSK. In every state si and every stage h, action
a0 allows reaching states s11, . . . , s

1

S
with equal probability 1{S. Instead, by playing the other actions aj with j ě 1 at

stage h, the probability distribution of the next state is given by phps1k|si, ajq “ p1 ` ε1v
psi,aj ,hq
k q{S where the vector

vpsi,aj ,hq “ pv
psi,aj ,hq
1 , . . . , v

psi,aj ,hq

S
q P V , where V :“ tt´1, 1uS :

řS
j“1 vj “ 0u and ε1 P r0, 1{2s. Notice that, having

fixed H , the possible values of h are t3, . . . , 2`Hu. States s11, . . . , s
1

S
are absorbing states. The expert’s policy always

plays action a0.

Let us introduce the set I :“ ts1, . . . , sSu ˆ ta1, . . . , aAu ˆ J3, H ` 2K. Let v “ pvıqıPI P VI which is the set of vectors
having as components the elements vı determining the probability distribution of the next state starting from the triple ı P I .
We denote with Mv the MDP\R induced by v. We can construct the class of instances denoted by M “ tMv : v P VIu.
Moreover, we denote with M

v
ı
Ðw

the instance in which we replace the ı component of v, i.e., vı, with w P V and M
v
ı
Ð0

the instance in which we replace the ı component of v, i.e., vı, with the zero vector.

Step 2: Feasible Set Computation Thanks to Lemma E.6, we know that there exists a subset V Ă V of cardinality at least
|V| ě 2S{5 such that for every v, w P V with v ‰ w we have

řS
j“1 |vj ´ wj | ě S{16. Thus, we consider the set VI

Ă VI .

The instances will be defined in terms of a vector v P VI
and we will use v, w P V with v ‰ w to build the alternative

instances. Let ı P I, the induced instances are denoted by M
v
ı
Ðv
,M

v
ı
Ðw

PM.

To lower bound the Hausdorff distance, we focus on the triple ı “ ps˚, a˚, h˚q and we enforce the convenience of action a0

over action a˚. For both MDP\R M
v
ı
Ðv

and M
v
ı
Ðw

, let rv P RM
v
ı
Ðv

and rw P RM
v
ı
Ðw

, we have:

rvh˚ps˚, a0q `
1

S

H
ÿ

l“h˚`1

S
ÿ

j“1

rvl ps
1
jq ě rvh˚ps˚, a˚q `

H
ÿ

l“h˚`1

S
ÿ

j“1

1` ε1vj

S
rvl ps

1
jq

ùñ rvh˚ps˚, a0q ě rvh˚ps˚, a˚q `
ε1

S

S
ÿ

j“1

vj

H
ÿ

l“h˚`1

rvl ps
1
jq.

rwh˚ps˚, a0q `
1

S

H
ÿ

l“h˚`1

S
ÿ

j“1

rwl ps
1
jq ě rwh˚ps˚, a˚q `

H
ÿ

l“h˚`1

S
ÿ

j“1

1` ε1wj

S
rwl ps

1
jq

ùñ rwh˚ps˚, a0q ě rwh˚ps˚, a˚q `
ε1

S

S
ÿ

j“1

wj

H
ÿ

l“h˚`1

rwl ps
1
jq. (10)
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sstart
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2 or h ě H

w.p. 1
S

w.p. 1
S

aj w.p. 1`ε1v
ps
S
,aj,hq

1

S

aj w.p. 1`ε1v
ps
S
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2

S
aj w.p.

1`ε1v
ps
S
,aj,hq

S

S
aj w.p. 1`ε1v
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1

S
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2

S

aj w.p.
1`ε1v

ps1,aj,hq

S

S

Figure 5. Semi-formal representation of the the hard instances MDP\R used in the proof of Theorem B.3.

In order to lower bound the Hausdorff distance HdG

`

M
v
ı
Ðv
,M

v
ı
Ðw

˘

, we proceed as in the proof of Theorem B.2 and we
set for M

v
ı
Ðv

:

rvl ps
1
jq “ ´vj , r

v
h˚ps˚, a˚q “ 1, rvh˚ps˚, a0q “ 1´ ε1pH ´ h˚q,

where we enforce ε1 ď minh˚PJ3,H`2K 1{pH ´ h˚q “ 1{pH ´ 3q ď 1{4 for H ě 7. We now want to find the closest
reward function rw for the instance M

v
ı
Ðw

, recalling that there are at least S{16 components of the vectors v and w that
are different. Clearly, we can set rwl ps

1
jq “ rvl ps

1
jq “ ´vj for all j P JSK in which vj “ wj since this will not increase

the Hausdorff distance and will make the constraint in Equation (10) less restrictive. For symmetry reasons, we can limit
our reasoning to the case in which vj “ ´1 and wj “ 1 for the terms j in which they are different. This way, we have
rvl ps

1
jq “ 1 and the constraint becomes:

rwh˚ps˚, a0q
looooomooooon

“:y

ě rwh˚ps˚, a˚q
looooomooooon

“:x

´
Nv,w

S
ε1pH ´ h˚q

`

ˆ

1´
Nv,w

S

˙

ε1pH ´ h˚q
1

SpH ´ h˚q
´

1´
Nv,w
S

¯

S
ÿ

j:vj‰wj

H
ÿ

l“h˚`1

rwl ps
1
jq

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“:z

,

where Nv,w “
řS
j“1 1tvj “ wju. Notice that z P r´1, 1s. Let α “ Nv,w

S
, the Hausdorff distance can be lower bounded by:

HdG

`

M
v
ı
Ðv
,M

v
ı
Ðw

˘

ě min
x,y,zPr´1,1s

yěx´αε1pH´h˚q`p1´αqε
1
pH´h˚qz

max
 

|x´ 1|, |y ´ p1´ ε1pH ´ h˚qq|, |z ´ 1|
(
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ě min
x,yPr´1,1s

yěx´αε1pH´h˚q

max
 

|x´ 1|, |y ´ p1´ ε1pH ´ h˚qq|
(

“
1

2
p1´ αqε1pH ´ h˚q ě

ε1

32
pH ´ h˚q,

where the first inequality derives from considering the aggregate term z instead of the individual rewards rwl ps
1
jq (observing

that in the base instance M
v
ı
Ðv

the corresponding z term takes value 1), the second inequality follows from the fact that to
have a Hausdorff distance smaller than 1, we must take z ą 0 at least and, consequently, we ignore the term |z ´ 1| in the
maximum and we take z “ 0 as the less restrictive case in the constraint involving x and y (being p1´ αqε1pH ´ h˚q ě 0),
and the third inequality is obtained by recalling that 1´ α ě 1

16 for the packing argument.

We enforce the following constraint on this quantity:

@h˚ P J3, H ` 2K :
ε1

32
pH ´ h˚q ě 2ε ùñ ε1 ě max

h˚PJ3,H`2K

64ε

H ´ h˚
“

64ε

H ´H ´ 2
. (11)

Notice that ε1 ď 1{2 whenever H ě H ` 130. This latter condition, together with ε1 ď 1{pH ´ 3q, implies ε ď H´H´2
64pH´3q

that is satisfied for ε ď 1{64.

Step 3: Lower bounding Probability Let us consider an pε, δq-correct algorithm A that outputs the estimated feasible set
pR. Thus, consider ı P I and v P VI

, we can lower bound the error probability:

δ ě sup
all M MDP\R and expert policies π

P
pM,πq,A

´

HdG

´

RM, pR
¯

ě ε
¯

ě sup
MPM

P
pM,πq,A

´

HdG

´

RM, pR
¯

ě ε
¯

ě max
wPV

P
pM

v
ı
Ðw

,πq,A

´

HdG

´

RM
v
ı
Ðw
, pR

¯

ě ε
¯

.

For every ı P I and v P VI
, let us define the identification function (whose dependence on the estimated feasible reward set

pR is omitted to avoid a too heavy notation):

Ψı,v :“ arg min
wPV

HdG

´

RM
v
ı
Ðw
, pR

¯

.

Let w P V . If Ψı,v “ w, then, HdGpRM
v
ı
ÐΨı,v

,RM
v
ı
Ðw
q “ 0. Otherwise, if Ψı,v ‰ w, we have:

HdGpRM
v
ı
ÐΨı,v

,RM
v
ı
Ðw
q ď HdGpRM

v
ı
ÐΨı,v

, pRq `HdGp pR,RM
v
ı
Ðw
q ď 2HdGp pR,RM

v
ı
Ðw
q,

where the first inequality follows from triangular inequality and the second one from the definition of identification function
Ψı,v . From Equation (11), we have that HdGpRM

v
ı
ÐΨı,v

,RM
v
ı
Ðw
q ě 2ε. Thus, it follows that HdGp pR,RM

v
ı
Ðw
q ě ε. This

implies the following inclusion of events for w P V:
!

HdGp pR,RM
v
ı
Ðw
q ě ε

)

Ě tΨı,v ‰ wu .

Thus, we can proceed by lower bounding the probability:

max
wPV

P
pM

v
ı
Ðw

,πq,A

´

HdG

´

RM
v
ı
Ðw
, pR

¯

ě ε
¯

ě max
wPV

P
pM

v
ı
Ðw

,πq,A
pΨı,v ‰ wq

ě
1

|V|

ÿ

wPV

P
pM

v
ı
Ðw

,πq,A
pΨı,v ‰ wq ,

where the second inequality follows from bounding the maximum of probability with the average. We can now apply the
Fano’s inequality (Theorem E.2) with reference probability P0 “ PpM

v
ı
Ð0
,πq,A, Pw “ PpM

v
ı
Ðw

,πq,A, and Aw “ tΨı,v ‰
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wu:

1

|V|

ÿ

wPV

P
pM

v
ı
Ðw

,πq,A
pΨı,v ‰ wq ě 1´

1

log |V|

¨

˝

1

|V|

ÿ

wPV

DKL

˜

P
pM

v
ı
Ðw

,πq,A
, P
pM

v
ı
Ð0
,πq,A

¸

´ log 2

˛

‚. (12)

Step 4: KL-divergence Computation Let M be an instance, we denote with PpM,πq,A the joint probability distribution
of all events realized by the execution of the algorithm in the MDP\R (the presence of π is irrelevant as we assume it
known):

P
pM,πq,A

“

τ
ź

t“1

ρtpst, at, ht|Ht´1qphtps
1
t|st, atq.

where ρt is the sampling distribution induced by the algorithm A and Ht´1 “ ps1, a1, h1, s
1
1, . . . , st´1, at´1, ht´1, s

1
t´1q is

the history up to time t´ 1. Let ı P I and v P V and denote with pv
ı
Ð0 and pv

ı
Ðw the transition models associated with

M
v
ı
Ð0

and M
v
ı
Ðw

. Let us now move to the KL-divergence and denoting ı “ ps˚, a˚, h˚q: Thus, we have:

DKL

˜

P
pM

v
ı
Ðw

,πq,A
, P
pM

v
ı
Ð0
,πq,A

¸

“ E
pM

v
ı
Ðw

,πq,A

«

τ
ÿ

t“1

DKL

´

pv
ı
Ðw
ht p¨|st, atq, p

v
ı
Ð0
ht p¨|st, atq

¯

ff

ď E
pM

v
ı
Ðw

,πq,A

”

Nτ
h˚ps˚, a˚q

ı

DKL

´

pv
ı
Ðw
h˚ p¨|s˚, a˚q, p

v
ı
Ð0
h˚ p¨|s˚, a˚q

¯

ď 2pε1q2 E
pM

v
ı
Ðw

,πq,A

”

Nτ
h˚ps˚, a˚q

ı

,

having observed that the transition models differ in ı “ ps˚, a˚, h˚q and defined Nτ
h˚
ps˚, a˚q “

řτ
t“1 1tpst, at, htq “

ps˚, a˚, h˚qu and the last passage is obtained by Lemma E.4 with D “ S. Plugging into Equation (12), we obtain:

δ ě
1

|V|

ÿ

wPV

P
pM

v
ı
Ðw

,πq,A
pΨı,v ‰ wq ùñ

1

|V|

ÿ

wPV

E
pM

v
ı
Ðw

,πq,A

”

Nτ
h˚ps˚, a˚q

ı

ě
p1´ δq log |V| ´ log 2

2pε1q2
.

Since the derivation is carried out for every ı P I and v P VI
, we can perform the summation over ı and the average over v:

ÿ

ıPI

1

|V||I|
ÿ

vPVI

1

|V|

ÿ

wPV

E
pM

v
ı
Ðw

,πq,A

”

Nτ
h˚ps˚, a˚q

ı

“
1

|V||I|
ÿ

vPVI

ÿ

ıPI
E

pMv,πq,A

”

Nτ
h˚ps˚, a˚q

ı

ě SAH
p1´ δq log |V| ´ log 2

2pε1q2
.

Notice that we get a guarantee on a mean under the uniform distribution of the instances of the sample complexity. Thus,
there must exist one vhard P V such that:

E
pMvhard,πq,A

rτ s ě
ÿ

ıPI
E

pMvhard,πq,A

”

Nτ
h˚ps˚, a˚q

ı

ě SAH
p1´ δq log |V| ´ log 2

2pε1q2
.

Then, we select δ ď 1{2, recall that |V| ě 2S{5, we get:

E
pMvhard,πq,A

rτ s ě SAH
S{10´ log 2

2pε1q2
“ SAH

pH ´H ´ 2q2pS{10´ log 2q

8192ε2

The number of states is given by S “ |S| “ 2S ` 2, the number of actions is given by A “ |A| “ A ` 1. Let us first
consider the time-homogeneous case, i.e., H “ 1, for S ě 16, A ě 2, H ě 130, we have:

E
pMvhard,πq,A

rτ s ě Ω

ˆ

S2AH2

ε2

˙

.
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For the time inhomogeneous case, we select H “ H{2, to get, under the same conditions:

E
pMvhard,πq,A

rτ s ě Ω

ˆ

S2AH3

ε2

˙

.

B.4. Proofs of Section 6

Theorem 6.1 (Sample Complexity of US-IRL). Let ε ą 0 and δ P p0, 1q, US-IRL is pε, δq-PAC for dG-IRL and with
probability at least 1´ δ it stops after τ samples with:

• if the transition model p is time-inhomogeneous:

τ ď
8H3SA

ε2

ˆ

log

ˆ

SAH

δ

˙

` pS ´ 1qC

˙

,

where C “ 1` logp1` p64H4q{pε4pS ´ 1qq ˆ
`

logppSAHq{δq `
?
epS ´ 1`

?
S ´ 1qq2

˘

;
• if the transition model p is time-homogeneous:

τ ď
8H2SA

ε2

ˆ

log

ˆ

SA

δ

˙

` pS ´ 1q rC

˙

,

where rC “ 1` logp1` p64H4q{pε4pS ´ 1qq ˆ
`

logppSAq{δq `
?
epS ´ 1`

?
S ´ 1qq2

˘

.

Proof. We start with the case in which the transition model is time-inhomogeneous. In this case, we introduce the following
good event:

E :“

#

@t P N, @ps, a, hq P S ˆAˆ JHK : DKL

´

ppthp¨|s, aq, php¨|s, aq
¯

ď
β
`

nthps, aq, δ
˘

nthps, aq

+

,

where ph is the true transition model and ppth is its estimate via Equation (3) at time t. Thanks to Lemma B.4, we have that
PpM,πEq,ApEq ě 1´ δ. Thus, under the good event E , we apply Theorem 3.2:

HdGpR, pRτ q ď
2ρGppM, πEq, pxMt, pπE,tqq

1` ρGppM, πEq, pxMt, pπE,tqq

ď 2ρGppM, πEq, pxMt, pπE,tqq

ď 2 max
ps,a,hqPSˆAˆJHK

pH ´ h` 1q
´
ˇ

ˇ

ˇ
1tπEh pa|sq“0u ´ 1

tpπE,th pa|sq“0u

ˇ

ˇ

ˇ
`
›

›php¨|s, aq ´ ppthp¨|s, aq
›

›

1

¯

ď 2 max
ps,a,hqPSˆAˆJHK

pH ´ h` 1q
›

›php¨|s, aq ´ ppthp¨|s, aq
›

›

1

ď 2
?

2 max
ps,a,hqPSˆAˆJHK

pH ´ h` 1q

c

DKL

´

ppthp¨|s, aq, php¨|s, aq
¯

“ max
ps,a,hqPSˆAˆJHK

Cthps, aq,

where we exploited the fact that the expert’s policy is known in the last but one passage and used Pinsker’s inequality
in the last passage. When US-IRL stops we have that maxps,a,hqPSˆAˆJHK Cthps, aq ď ε and, consequently, for all
ps, a, hq P S ˆAˆ JHK we have:

max
ps,a,hqPSˆAˆJHK

Cthps, aq “ max
ps,a,hqPSˆAˆJHK

2
?

2pH ´ h` 1q

d

β
`

nthps, aq, δ
˘

nthps, aq
ď ε.

Thus, the algorithm stops at the smallest t such that:

ùñ nthps, aq ě
8pH ´ h` 1q2β

`

nthps, aq, δ
˘

ε2
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“
8pH ´ h` 1q2

ε2
`

logpSAH{δq ` pS ´ 1q logpep1` nthps, aq{pS ´ 1qq
˘

.

Thus, by applying Lemma 15 of (Kaufmann et al., 2021), we obtain:

nτhps, aq ď
8pH ´ h` 1q2

ε2

ˆ

log

ˆ

SAH

δ

˙

` pS ´ 1q

ˆ

˜

1` log

˜

1`
64pH ´ h` 1q4

ε4pS ´ 1q

ˆ

log

ˆ

SAH

δ

˙

`
?
epS ´ 1`

?
S ´ 1q

˙2
¸¸¸

.

By recalling that τ “ SAHnτhps, aq, and bounding H ´ h` 1 ď H , we obtain:

τ ď
8H3SA

ε2

ˆ

log

ˆ

SAH

δ

˙

` pS ´ 1q

ˆ

˜

1` log

˜

1`
64H4

ε4pS ´ 1q

ˆ

log

ˆ

SAH

δ

˙

`
?
epS ´ 1`

?
S ´ 1q

˙2
¸¸¸

.

If the transition model is time-homogeneous, we suppress the subscript h and the algorithm US-IRL will merge together all
the samples collected at different stages h. Let us define ntps, aq “

řH
h“1 n

t
hps, aq and ntps, a, s1q “

řH
h“1 n

t
hps, a, s

1q.
Now the transition model will be estimated straightforwardly as follows:

pptps1|s, aq :“

#

ntps,a,s1q
ntps,aq if ntps, aq ą 0

1
S otherwise

.

Let us consider now the following good event:

rE :“

#

@t P N, @ps, aq P S ˆA : DKL

´

pptp¨|s, aq, pp¨|s, aq
¯

ď
rβ
`

ntps, aq, δ
˘

ntps, aq

+

.

Thanks to Lemma B.4, we have that PpM,πEq,Ap
rEq ě 1´ δ. Thus, in such a case, thanks to Theorem 3.2, we have:

HdGpR, pRτ q ď 2
?

2 max
ps,a,hqPSˆAˆJHK

pH ´ h` 1q

c

DKL

´

pptp¨|s, aq, pp¨|s, aq
¯

“ max
ps,a,hqPSˆAˆJHK

rCthps, aq.

The algorithm, therefore, stops as soon as:

max
ps,a,hqPSˆAˆJHK

rCthps, aq “ max
ps,a,hqPSˆAˆJHK

2
?

2pH ´ h` 1q

d

rβ
`

ntps, aq, δ
˘

ntps, aq

“ max
ps,aqPSˆA

2
?

2H

d

rβ
`

ntps, aq, δ
˘

ntps, aq
ď ε.

This allows us to compute the maximum value of nτ ps, aq:

nτ ps, aq ď ď
8H2

ε2

ˆ

log

ˆ

SA

δ

˙

` pS ´ 1q

ˆ

˜

1` log

˜

1`
64H4

ε4pS ´ 1q

ˆ

log

ˆ

SA

δ

˙

`
?
epS ´ 1`

?
S ´ 1q

˙2
¸¸¸

.

Recalling that τ “ SAnτ ps, aq, we obtain:

τ ď
8H2SA

ε2

ˆ

log

ˆ

SA

δ

˙

` pS ´ 1q

ˆ

˜

1` log

˜

1`
64H4

ε4pS ´ 1q

ˆ

log

ˆ

SA

δ

˙

`
?
epS ´ 1`

?
S ´ 1q

˙2
¸¸¸

.
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Lemma B.4. The following statements hold:

• for β
`

n, δ
˘

“ logpSAH{δq ` pS ´ 1q log
`

ep1` n{pS ´ 1q
˘

, we have that PpEq ě 1´ δ;

• for rβ
`

n, δ
˘

“ logpSA{δq ` pS ´ 1q log
`

ep1` n{pS ´ 1q
˘

, we have that PprEq ě 1´ δ.

Proof. Let us start with the first statement. Similarly to Lemma 10 of (Kaufmann et al., 2021), we apply first a union bound
and, then, technical Proposition 1 of (Jonsson et al., 2020) (also reported as Lemma E.3 for completeness) to concentrate the
KL-divergence:

PpEcq “P

˜

Dt P N, Dps, a, hq P S ˆAˆ JHK : DKL

´

ppthp¨|s, aq, php¨|s, aq
¯

ě
β
`

nthps, aq, δ
˘

nthps, aq

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

P

˜

Dt P N : DKL

´

ppthp¨|s, aq, php¨|s, aq
¯

ě
β
`

nthps, aq, δ
˘

nthps, aq

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

δ

SAH
“ δ.

The proof of the second statement is analogous having simply observed that the union bound has to be performed over
S ˆA only.

C. Examples of Section 3.2
In this appendix, we provide a detailed derivations of the examples presented in Section 3.2.

Example 3.1 (State-only reward rhpsq). State-only reward functions have been widely considered in many IRL ap-
proaches (e.g., Ng & Russell, 2000; Abbeel & Ng, 2004; Syed & Schapire, 2007; Komanduru & Honorio, 2019). We
formalize the state-only feasible reward set as follows:

Rstate “ RX t@ps, a, a1, hq : rhps, aq “ rhps, a
1qu.

Consider the MDP\R of Figure 1a with H“2, πEh ps0q“pπEh ps0q“a1 with hPt1,2u. Set p1ps`|s0,a1q“1{2`ε{4 and
pp1ps`|s0,a1q“1{2´ε{4 and, thus, }p1p¨|s0,a1q´ pp1p¨|s0,a1q}1“ε. Let us set r2ps`q“1 and r2ps´q“´1, which makes
πE optimal under p. We observe that pR is defined by pr2ps´qďpr2ps`q. Recalling that the rewards are bounded in r´1,1s,
we have HdGpRstate, pRstateqě1.

Proof. For the MDP\R M, in order to make πE1 ps0q “ a1 optimal, we have to enforce:

r1ps0q `
2` ε

4
r2ps`q `

2´ ε

4
r2ps´q ě r1ps0q `

1

2
r2ps`q `

1

2
r2ps´q

ùñ r2ps`q ě r2ps´q.

Similarly, to make pπE1 ps0q “ a1, we have for xM:

pr1ps0q `
2´ ε

4
pr2ps`q `

2` ε

4
pr2ps´q ě pr1ps0q `

1

2
pr2ps`q `

1

2
pr2ps´q

ùñ pr2ps`q ď pr2ps´q.

Thus, if we set r2ps´q “ 1 and r2ps`q “ ´1, we have:

HdGpRstate, pRstateq ě min
pr2ps´q,pr2ps`qPr´1,1s

pr2ps`qďpr2ps´q

max t|1´ pr2ps´q|, | ´ 1´ pr2ps`q|u “ 1,

by setting pr2ps´q “ pr2ps`q “ 0.
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Example 3.2 (Time-homogeneous reward rps, aq). Time-homogeneous reward functions have been employed in several
RL (e.g., Dann & Brunskill, 2015) and IRL settings (e.g., Lindner et al., 2022). We formalize the time-homogeneous feasible
reward set as follows:

Rhom “ RX t@ps, a, h, h1q : rhps, aq “ rh1ps, aqu.

Consider the MDP\R of Figure 1b with H“2, πE1 ps0q“pπE1 ps0q“a1 and πE2 ps0q“pπE2 ps0q“a2. For hPt1,2u, we
set phps0|s0,a1q“1{2`ε{4 and pphps0|s0,a1q“1{2´ε{4, thus, }php¨|s0,a1q´ pphp¨|s0,a1q}1“ε. We set rps0,a1q“1,
rps0,a2q“1´ε{6, and rps1,a1q“rps1,a2q“1{2 making πE optimal. We can prove that HdGpRhom, pRhomqě1{4.

Proof. Consider the MDP\R M and we set rps0, a1q “ 1, rps0, a2q “ 1´ ε{12, and rps1, aq “ 1{2 for a P ta1, a2u. We
immediately observe that πE is optimal since for h “ 2, rps0, a1q ě rps0, a2q and for h “ 1:

rps0, a2q `
2` ε

4
rps0, a1q `

2´ ε

4
rps1, aq ě rps0, a1q `

1

2
rps0, a1q `

1

2
rps1, aq

ðñ rps0, a2q `

´ ε

4
´ 1

¯

rps0, a1q ´
ε

4
rps1, aq ě 0

ðñ 1´
ε

12
`
ε

4
´ 1´

ε

8
ě 0.

Consider now the alternative MDP\R xM, we have to enforce the following two conditions:

prps0, a1q ě prps0, a2q, (13)

prps0, a2q `
2´ ε

4
prps0, a1q `

2` ε

4
prps1, aq ě prps0, a1q `

1

2
prps0, a1q `

1

2
prps1, aq

ðñ prps0, a2q ´

´ ε

4
` 1

¯

prps0, a1q `
ε

4
prps1, aq ě 0. (14)

The way of enforcing Equation (13) that is less constraining for Equation (14) is setting prps0, a1q “ prps0, a2q, to get:

´
ε

4
prps0, a1q `

ε

4
prps1, aq ě 0 ðñ prps1, aq ě prps0, a1q.

This implies:

HdGpRhom, pRhomq ě min
prps1,aq,prps0,a1qPr´1,1s

prps1,aqěprps0,a1q

max

"

|1´ prps0, a1q| ,

ˇ

ˇ

ˇ

ˇ

1

2
´ prps1, aq

ˇ

ˇ

ˇ

ˇ

*

ě
1

4
,

by setting prps0, a1q “ prps1, aq “ 1{4.

Example 3.3 (β-margin reward). A β-margin reward enforces a suboptimality gap of at least β ą 0 (Ng & Russell, 2000;
Komanduru & Honorio, 2019). We formalize it in the finite-horizon case with a sequence β “ pβhqhPJHK, possibly different
for every stage:

Rβ-mar“RXt@ps,a,hq :Aπ
E

h ps,a;rqPt0uYp´8,´βhsu.

Consider the MDP\R in Figure 1a with πEh ps0q “ pπEh ps0q “ a1 for h P t1, 2u. We set p1ps`|s0, a1q “ 1{2 ` ε and
pp1ps`|s0, a1q “ 1{2 ´ ε. We set for MDP\R M the reward function as r1ps0, aq “ 0 and rhps`, aq “ ´rhps´, aq “ 1
for a P ta1, a2u and h P J2, HK. In ps0, 1q the suboptimality gap is β1 “ 2` 2εpH ´ 1q. By selecting H ě 1` 1{ε, the
feasible set pRβ-mar is empty.

Proof. Concerning the MDP\R M, we observe that by setting r1ps0, a1q “ 1, r1ps0, a2q “ ´1, and rhps`, aq “
´rhps´, aq “ 1 for a P ta1, a2u and h P J2, HK, the policy πE is optimal. In particular, in state-stage pair ps0, 1q the
suboptimality gap is given by β1 “ 2` 2εpH ´ 1q. To enforce the optimality of pπE “ πE in the MDP\R xM, we have:

pr1ps0, a1q `

H
ÿ

h“2

1

2
prhps`, a1q `

1

2
prhps´, a1q ě pr1ps0, a2q `

H
ÿ

h“2

1

2
prhps`, a1q `

1

2
prhps´, a1q ` β1

ðñ pr1ps0, a1q ´ pr1ps0, a2q ě β1.

Thus, if β1 ě 2, we have that the feasible set pRβ-sep is empty. Thus, we select H ě 1` 1{ε to have β1 ě 4.
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D. Unknown Expert’s Policy πE

In this appendix, we extend the lower bounds and the algorithm for the case in which the expert’s policy is unknown. Clearly,
if the expert’s policy is deterministic, under the generative model setting, its estimation is trivial as it suffices to query
every state and stage (resp. state) exactly once for time-inhomogeneous (resp. time-homogeneous) policies, leading to
EpM,πEq,A rτ s “ HS (resp. EpM,πEq,A rτ s “ S). Thus, we consider a more general setting in which the expert’s policy
can be stochastic (still being optimal). Specifically, we consider the following assumption.
Assumption D.1. There exists a known constant πmin P p0, 1s such that every action played by the expert’s policy πE is
played with at least probability πmin:

@ps, a, hq P S ˆAˆ JHK : πEh pa|sq P t0u Y rπmin, 1s.

Intuitively, Assumption D.1 formalizes a form of identifiability for the policy. As already mentioned in Section 3, what
matters for learning the feasible reward set is whether an action is played by the agent (not the corresponding probability).
Assumption D.1 enforces that every optimal action must be played with a minimum (known) non-null probability πmin. We
shall show that if this assumption is violated, the problem becomes non-learnable.

D.1. Lower Bound

The following result provides a lower bound for learning the feasible reward set according to the PAC requirement of
Definition 4.1 when the expert’s policy is unknown, but the transition model is known. Clearly, one can combine this result
with the ones of Section 5 to address the setting in which both the expert’s policy and the transition model are unknown.
Theorem D.1. Let A “ pµ, τq be an pε, δq-PAC algorithm for dG-IRL. Then, there exists an IRL problem pM, πEq where
πE fulfills Assumption D.1 such that, if ε ď 1{2, δ ă 1{16, S ě 7, A ě 2, and H ě 3, the number of samples τ is lower
bounded in expectation by:

• if the expert’s policy πE is time-inhomogeneous:

E
pM,πEq,A

rτ s ě
SH

8 log 1
1´πmin

log

ˆ

1

δ

˙

.

• if the expert’s policy πE is time-homogeneous:

E
pM,πEq,A

rτ s ě
S

4 log 1
1´πmin

log

ˆ

1

δ

˙

;

Before presenting the proof, let us comment the result. We observe that when Assumption D.1 is violated, i.e., πmin Ñ 0,
the sample complexity lower bound degenerates to infinity, proving that the problem becomes non-learnable.

Proof. Step 1: Instances Construction The hard MDP\R instances are depicted in Figure 6 in a semi-formal way. The
state space is given by S “ tsstart, sroot, s1, . . . , sS , ssinku and the action space is given by A “ ta0, a1, . . . , aAu. The
transition model is described below and the horizon is H ě 3. We introduce the constant H P JHK, whose value will be
chosen later. Let us observe, for now, that if H “ 1, the transition model is time-homogeneous.

The agent begins in state sstart, where every action has the same effect. Specifically, if the stage h ă H , then there is
probability 1{2 to remain in sstart and a probability 1{2 to transition to sroot. Instead, if h ě H , the state transitions to
sroot deterministically. From state sroot, every action has the same effect and the state transitions with equal probability
1{S to a state si with i P JSK. In all states si, apart from a specific one, i.e., state s˚, the expert’s policy plays action a0

deterministically, i.e., πEh pa0|siq “ 1 and the state transitions deterministically to ssink. In state s˚ the expert’s policy plays
a0 as the other ones if the stage h ‰ h˚, where h˚ P JHK is a predefined stage. If, instead, h “ h˚, the expert’s action plays
a0 w.p. 1´ πmin and a specific action a˚ w.p. πmin P r0, 1{2s. Then, the transition is deterministic to state ssink. Notice
that, having fixed H , the possible values of h˚ are t3, . . . , 2`Hu. State ssink is an absorbing state.

Let us consider the base instance π0 in which the expert’s policy always plays action a0 deterministically.15 Additionally,
by varying the pair ` :“ ps˚, h˚q P ts1, . . . , sSu ˆ J3, H ` 2K “: J , we can construct the class of instances denoted by
M “ tπ` : ` P t0u Y J u.

15In this construction, the MDP\R does not change across the instances, but what changes is the expert’s policy. Thus, we parametrize
the instances through the policy rather than the MDP\R.
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sstart

sroot

. . . . . .s˚s1 sS

ssink

h ă H w.p. 1
2

w.p. 1
S

or h ě H

w.p. 1
S

w.p. 1
S

regardless the action w.p. 1
S

play a0 w.p. 1play a0 w.p. 1

h “ h˚ play a˚ w.p. πminh “ h˚ play w.p. 1´ πmin

Figure 6. Semi-formal representation of the the hard instances MDP\R used in the proof of Theorem D.1.

Step 2: Feasible Set Computation Let us consider an instance π` P M, we now seek to provide a lower bound to the
Hausdorff distance HdG pRπ0

,Rπ`q. To this end, we focus on the pair ` “ ps˚, h˚q and we enforce the convenience of both
actions a0 and a˚ over the other actions. Since both actions are played with non-zero probability by the expert’s policy, their
value function must be the same. Let us denote with r` P Rπ` , we must have for all aj R ta0, a˚u:

r`h˚ps˚, a0q `

H
ÿ

l“h˚`1

r`l pssinkq ě r`h˚ps˚, ajq `
H
ÿ

l“h˚`1

r`l pssinkq

ùñ r`h˚ps˚, a0q ě r`h˚ps˚, ajq,

r`h˚ps˚, a0q `

H
ÿ

l“h˚`1

r`l pssinkq “ r`h˚ps˚, a˚q `
H
ÿ

l“h˚`1

r`l pssinkq

ùñ r`h˚ps˚, a0q “ r`h˚ps˚, a˚q.

Consider now the base instance π0 and denote with r0 P Rπ0
. Here we have to enforce the convenience of action a0 over all

the others, including a˚:

r0
h˚ps˚, a0q `

H
ÿ

l“h˚`1

r`l pssinkq ě r0
h˚ps˚, ajq `

H
ÿ

l“h˚`1

r`l pssinkq

ùñ r0
h˚ps˚, a0q ě r0

h˚ps˚, ajq,
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r0
h˚ps˚, a0q `

H
ÿ

l“h˚`1

r0
l pssinkq ě r0

h˚ps˚, a˚q `
H
ÿ

l“h˚`1

r0
l pssinkq

ùñ r0
h˚ps˚, a0q ě r0

h˚ps˚, a˚q.

In order to lower bound the Hausdorff distance, we perform a valid assignment of the rewards for the base instance:

r0
h˚ps˚, a0q “ 1, r0

h˚ps˚, a˚q “ ´1, r0
h˚ps˚, ajq “ ´1.

Thus, the Hausdorff distance can be bounded as follows, having renamed, for convenience x “ r`h˚ps˚, a0q and y “
r`h˚ps˚, a˚q:

HdGpRπ0
,Rπ`q ě min

x,yPr´1,1s
x“y

maxt|x´ 1|, |y ` 1|u “ 1.

Step 3: Lower bounding Probability Let us consider an pε, δq-correct algorithm A that outputs the estimated feasible set
pR. Thus, for every ı P J , we can lower bound the error probability:

δ ě sup
all M MDP\R and expert policies π

P
pM,πq,A

ˆ

HdG

´

Rπ, pR
¯

ě
1

2

˙

ě sup
πPM

P
pM,πq,A

ˆ

HdG

´

Rπ, pR
¯

ě
1

2

˙

ě max
`Pt0,ıu

P
pM,π`q,A

ˆ

HdG

´

Rπ` ,
pR
¯

ě
1

2

˙

.

For every ı P J , let us define the identification function (whose dependence on the estimated feasible reward set pR is
omitted to avoid a too heavy notation):

Ψı :“ arg min
`Pt0,ıu

HdG

´

Rπ` ,
pR
¯

.

Let  P t0, ıu. If Ψı “ , then, HdGpRπΨı
,Rπq “ 0. Otherwise, if Ψı ‰ , we have:

HdG

`

RπΨı
,Rπ

˘

ď HdG

´

RπΨı
, pR

¯

`HdG

´

pR,Rπ

¯

ď 2HdG

´

pR,Rπ

¯

,

where the first inequality follows from triangular inequality and the second one from the definition of identification function
Ψı. From Equation (11), we have that HdG

`

RπΨı
,Rπ

˘

ě 1. Thus, it follows that HdG

´

pR,Rπ

¯

ě 1
2 . This implies the

following inclusion of events for  P t0, ıu:
"

HdG

´

pR,Rπ

¯

ě
1

2

*

Ě tΨı ‰ u .

Thus, we can proceed by lower bounding the probability:

max
`Pt0,ıu

P
pM`,πq,A

ˆ

HdG

´

Rπ` ,
pR
¯

ě
1

2

˙

ě max
`Pt0,ıu

P
pM`,πq,A

pΨı ‰ `q

ě
1

2

„

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı ‰ ıq



“
1

2

„

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı “ 0q



,

where the second inequality follows from the observation that maxta, bu ě 1
2 pa` bq and the equality from observing that

Ψı P t0, ıu. We can now apply the Bretagnolle-Huber inequality (Lattimore & Szepesvári, 2020, Theorem 14.2) (also
reported in Theorem E.1 for completeness) with P “ PpM0,πq,A, Q “ PpM0,πq,A, and A “ tΨı ‰ 0u:

P
pM0,πq,A

pΨı ‰ 0q ` P
pMı,πq,A

pΨı “ 0q ě
1

2
exp

ˆ

´DKL

ˆ

P
pM0,πq,A

, P
pMı,πq,A

˙˙

.
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Step 4: KL-divergence Computation Let M P M, we denote with PpM,πq,A the joint probability distribution of all
events realized by the execution of the algorithm in the MDP\R (the presence of p is irrelevant as it does not change across
the different instances):

P
pM,πq,A

“

τ
ź

t“1

ρtpst, at, ht|Ht´1qphtps
1
t|st, atqπ

E
htpa

E
t |stq,

where ρt is the sampling distribution induced by the algorithm A and Ht´1 “

ps1, a1, h1, s
1
1, a

E
1 , . . . , st´1, at´1, ht´1, s

1
t´1, a

E
t´1q is the history. Let ı P I. Let us now move to the KL-divergence

between the instances π0 and πı for some ı “ ps˚, h˚q P J :

DKL
`

PpM0,πq,A,PpMı,πq,A

˘

“ E
pM0,πq,A

«

τ
ÿ

t“1

DKL
`

π0
htp¨|stq, π

ı
htp¨|stq

˘

ff

ď E
pM0,πq,A

”

Nτ
h˚ps˚q

ı

DKL

´

π0
h˚p¨|s˚q, π

ı
h˚p¨|s˚q

¯

ď log
1

1´ πmin
E

pM0,πq,A

”

Nτ
h˚ps˚, a˚q

ı

,

having observed that the transition models differ in ı “ ps˚, h˚q and defined Nτ
h˚
ps˚q “

řτ
t“1 1tpst, htq “ ps˚, h˚qu and

the last passage is obtained by explicitly computing the KL-divergence:

DKL

´

π0
h˚p¨|s˚q, π

ı
h˚p¨|s˚q

¯

“
ÿ

aPA
π0
h˚pa|s˚q log

˜

π0
h˚
pa|s˚q

πıh˚pa|s˚q

¸

“ π0
h˚pa0|s˚q log

˜

π0
h˚
pa0|s˚q

πıh˚pa0|s˚q

¸

“ log
1

1´ πmin
.

Putting all together, we have:

δ ě
1

4
exp

ˆ

´ log
1

1´ πmin
E

pM0,πq,A

”

Nτ
h˚ps˚q

ı

˙

ùñ E
pM0,πq,A

”

Nτ
h˚ps˚q

ı

ě
log 1

4δ

log 1
1´πmin

.

Thus, summing over ps˚, a˚q P J , we have:

E
pM0,πq,A

rτ s ě
ÿ

ps˚,a˚qPJ

E
pM0,πq,A

”

Nτ
h˚ps˚, a˚q

ı

“
ÿ

ps˚,a˚,h˚qPI

pH ´H ´ 2q2 log 1
4δ

2ε2

“ SH
log 1

4δ

log 1
1´πmin

.

The number of states is given by S “ |S| “ S ` 3. Let us first consider the time-homogeneous case, i.e., H “ 1:

E
pM0,πq,A

rτ s ě pS ´ 3q
log 1

4δ

log 1
1´πmin

.

For δ ă 1{16, S ě 7, A ě 2, H ě 2, we obtain:

E
pM0,πq,A

rτ s ě
S

4 log 1
1´πmin

log
1

δ
.

For the time-inhomogeneous case, instead, we select H “ H{2, to get:

E
pM0,πq,A

rτ s ě
pS ´ 3qpH{2q

ε2
log 1

4δ

log 1
1´πmin

.

For δ ă 1{16, S ě 7, A ě 2, H ě 2, we obtain:

E
pM0,πq,A

rτ s ě
SH

8 log 1
1´πmin

log
1

δ
.
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Input: significance δ P p0, 1q, ε target accuracy
tÐ 0, ε0 Ð `8

while εt ą ε do
tÐ t` SAH
Collect one sample from each ps, a, hq P S ˆAˆ JHK
Update ppt and pπE,t according to (3)

Update εt “ maxps,a,hqPSˆAˆJHK C
t
hps, aq (resp. rC

t

hps, aq)
end while

Algorithm 2. UniformSampling-IRL (US-IRL) for time-inhomogeneous (resp. time-homogeneous) transition models and expert’s
policies.

D.2. Algorithm

In this appendix, we extend US-IRL to the expert’s policy estimation under Assumption D.1. The pseudocode is reported in
Algorithm 2. The interaction protocol follows the same principles of Algorithm 1, with the only difference that the confidence
function, now, must account for the policy estimation, leading to the following function for every ps, a, hq P SˆAˆ JHK:16

C
t

hps, aq :“ 2pH ´ h` 1q

¨

˝1tnthpsqěmaxt1,ξpnthpsq,δ{2quu
`

d

2β
`

nthps, aq, δ{2
˘

nthps, aq

˛

‚. (16)

where:

ξpn, δq :“
logp2SAHn2{δq

logp1{p1´ πminqq
.

It is worth noting that we have distributed the confidence δ equally between the problem estimating the policy and that of
estimating the transition model. The following theorem provides the sample complexity of US-IRL.
Theorem D.2 (Sample Complexity of US-IRL). Let ε ą 0 and δ P p0, 1q, under Assumption D.1, US-IRL is pε, δq-PAC
for dG-IRL and with probability at least 1´ δ it stops after τ samples with:

• if the transition model p and the expert’s policy πE are time-inhomogeneous:

τ ď
8H3SA

ε2

ˆ

log

ˆ

2SAH

δ

˙

` pS ´ 1qC1

˙

` SH `
SH

logp1{p1´ πminqq

ˆ

log

ˆ

4SAH

δ

˙

` C2

˙

,

where C1 “ 1 ` logp1 ` p64H4q{pε4pS ´ 1qq ˆ
`

logpp2SAHq{δq `
?
epS ´ 1 `

?
S ´ 1qq2

˘

and C2 “

4 log
´

logp4SAH{δq`2
logp1{p1´πminqq

¯

.

• if the transition model p and the expert’s policy πE are time-homogeneous:

τ ď
8H2SA

ε2

ˆ

log

ˆ

2SA

δ

˙

` pS ´ 1qrC1

˙

` SH `
S

logp1{p1´ πminqq

ˆ

log

ˆ

4SA

δ

˙

`
rC2

˙

,

where rC1 “ 1 ` logp1 ` p64H4q{pε4pS ´ 1qq ˆ
`

logpp2SAq{δq `
?
epS ´ 1 `

?
S ´ 1qq2

˘

and rC2 “

4 log
´

logp4SA{δq`2
logp1{p1´πminqq

¯

.

16As for the transition model, one can adapt the confidence function for the case of stationary policy in straightforward way:

rC
t

hps, aq :“ 2pH ´ h` 1q

¨

˝1tnthpsqěmaxt1,rξpntpsq,δ{2quu `

d

2rβ
`

ntps, aq, δ{2
˘

ntps, aq

˛

‚, (15)

where:

rξpn, δq :“
logp2SAn2

{δq

logp1{p1´ πminqq
.

In principle, one can also consider the case of a time-homogeneous transition model and time-inhomogeneous expert’s policy. We omit it
because it adds nothing to the characteristics of the problem and of the algorithms.
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Before moving to the proof, let us observe that the result matches the rate of the lower bound of Theorem D.1 up to
logarithmic terms.

Proof. We make use of the notation of the proof of Theorem 6.1. We start with the case in which the transition model is
time-inhomogeneous. In addition to the good event E related to the transition model, we introduce the following one:

Eπ :“
!

@t P N, @ps, a, hq P S ˆAˆ JHK :
ˇ

ˇ

ˇ
1πEh pa|sq“0 ´ 1

pπE,th pa|sq“0

ˇ

ˇ

ˇ
ď 1tnthpsqěmaxt1,ξpnthpsq,δ{2quu

)

,

where πEh is the true expert’s policy and pπE,t is its estimate via Equation (3) at time t. Thanks to Lemma B.4 and
Lemma D.3, we have that PpE X Eπq ě 1 ´ δ. Thus, under the good event E X Eπ, we apply Theorem 3.2 to obtain
HdGpR, pRτ q ď maxps,a,hqPSˆAˆJHK C

t

hps, aq. A sufficient condition to make this term ď ε is to request the following
ones:

max
ps,a,hqPSˆAˆJHK

2pH ´ h` 1q1tnthpsqěmaxt1,ξpnthpsq,δ{2quu
“ 0,

max
ps,a,hqPSˆAˆJHK

2
?

2pH ´ h` 1q

d

β
`

nthps, aq, δ{2
˘

nthps, aq
ď ε.

For the first one, we first enforce the condition:

nthpsq ě ξpnthpsq, δ{2q “
logp4SAHpnthpsqq

2{δq

logp1{p1´ πminqq
“

logp4SAH{δq

logp1{p1´ πminqq
`

2 log nthpsq

logp1{p1´ πminqq
.

Using Lemma 15 of (Kaufmann et al., 2021) and enforcing nthpsq ě 1, we obtain:

nτhpsq ď 1`
1

logp1{p1´ πminqq

ˆ

logp4SAH{δq ` 4 log

ˆ

logp4SAH{δq ` 2

logp1{p1´ πminqq

˙˙

.

Combining this result with that of Theorem 6.1 for what concerns the transition model, we obtain:

τ ď
8H3SA

ε2

ˆ

log

ˆ

2SAH

δ

˙

` pS ´ 1q

ˆ

˜

1` log

˜

1`
64H4

ε4pS ´ 1q

ˆ

log

ˆ

2SAH

δ

˙

`
?
epS ´ 1`

?
S ´ 1q

˙2
¸¸¸

` SH `
SH

logp1{p1´ πminqq

ˆ

logp4SAH{δq ` 4 log

ˆ

logp4SAH{δq ` 2

logp1{p1´ πminqq

˙˙

.

Analogous derivations can be carried out for the case of time-homogenous policy using the good event:

rEπ :“
!

@t P N, @ps, aq P S ˆA :
ˇ

ˇ1πEpa|sq“0 ´ 1
pπE,tpa|sq“0

ˇ

ˇ ď 1
tntpsqěmaxt1,rξpntpsq,δ{2quu

)

,

where rξpn, δq :“ logp2SAn2
{δq

logp1{p1´πminqq
. We omit the tedious but straightforward derivation.

Lemma D.3. Under Assumption D.1, the following statements hold:

• for ξpn, δq :“ logp2SAHn2
{δq

logp1{p1´πminqq
, we have that PpEπq ě 1´ δ;

• for rξpn, δq :“ logp2SAn2
{δq

logp1{p1´πminqq
, we have that PprEπq ě 1´ δ.

Proof. Let us start with the first statement. We apply first a union bound and, then, Lemma E.5 to perform the concentration:

PpEcπq “ P

˜

Dt P N, Dps, a, hq P S ˆAˆ JHK :
ˇ

ˇ

ˇ
1πEh pa|sq“0 ´ 1

pπE,th pa|sq“0

ˇ

ˇ

ˇ
ď 1tnthpsqąmaxt1,ξpnthpsq,δquu

¸

34



Towards Theoretical Understanding of Inverse Reinforcement Learning

“ P

˜

Dn P N, Dps, a, hq P S ˆAˆ JHK :
ˇ

ˇ

ˇ
1πEh pa|sq“0 ´ 1

pπ
E,rns
h pa|sq“0

ˇ

ˇ

ˇ
ą 1tněmaxt1,ξpn,δquu

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

ÿ

ně0

P

˜

ˇ

ˇ

ˇ
1πEh pa|sq“0 ´ 1

pπ
E,rns
h pa|sq“0

ˇ

ˇ

ˇ
ď 1tnąmaxt1,ξpn,δquu

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

ÿ

ně1

P

˜

ˇ

ˇ

ˇ
1πEh pa|sq“0 ´ 1

pπ
E,rns
h pa|sq“0

ˇ

ˇ

ˇ
ď 1tnąmaxt1,ξpn,δquu

¸

ď
ÿ

hPJHK

ÿ

ps,aqPSˆA

δ

2SAHn2
“
π2

6

δ

2
ď δ,

where on the first passage we enforced the condition on the time instants in which the policy estimate changes (i.e., when
ps, hq is visited) and we denoted such an estimate as pπE,rnsh . Then, after a union bound, we apply Lemma E.5. The proof of
the second statement is analogous having simply observed that the union bound has to be performed over S ˆA only.

E. Technical Lemmas
Theorem E.1. (Bretagnolle-Huber inequality (Lattimore & Szepesvári, 2020, Theorem 14.2)) Let P and Q be probability
measures on the same measurable space pΩ,Fq, and let A P F be an arbitrary event. Then,

PpAq `QpAcq ě
1

2
exp p´DKLpP,Qqq ,

where Ac “ ΩzA is the complement of A.

Theorem E.2. (Fano inequality (Gerchinovitz et al., 2020, Proposition 4)) Let P0,P1, . . . ,PM be probability measures on
the same measurable space pΩ,Fq, and let A1, . . . ,AM P F be a partition of Ω. Then,

1

M

M
ÿ

i“1

PipAc
i q ě 1´

1
M

řM
i“1DKLpPi,P0q ` log 2

logM
,

where Ac “ ΩzA is the complement of A.

Lemma E.3. (Jonsson et al., 2020, Proposition 1) Let P “ pp1, . . . , pDq be a categorical probability measure on the
support JDK. LetPn “ ppp1, . . . , ppDq be the maximum likelihood estimate of P obtained with n ě 1 independent samples.
Then, for every δ P p0, 1q it holds that:

P pDn ě 1 : nDKL pPn,Pq ą logp1{δq ` pD ´ 1q log pep1` n{pD ´ 1qqqq ď δ.

Lemma E.4. Let ε P r0, 1{2s and v P t´ε, εuD such that
řD
i“1 vi “ 0. Consider the two categorical distributions

Q “
`

1
D ,

1
D , . . . ,

1
D

˘

and P “
`

1`v1

D , 1`v2

D , . . . , 1`vD
D

˘

. Then, it holds that:

DKLpP,Qq ď 2ε2 and DKLpQ,Pq ď 2ε2.

Proof. First of all we recall that since
řD
i“1 vi “ 0, we have |ti P JDK : vi “ εu| “ |ti P JDK : vi “ ´εu| “ D{2. Let us

compute the KL-divergence DKLpP,Qq:

DKLpP,Qq “
D
ÿ

i“1

1` vi
D

log
1`vi
D
1
D

“
ÿ

iPJDK:vi“ε

1` ε

D
logp1` εq `

ÿ

iPJDK:vi“´ε

1´ ε

D
logp1´ εq

“
1` ε

2
logp1` εq `

1´ ε

2
logp1´ εq

35



Towards Theoretical Understanding of Inverse Reinforcement Learning

“
1

2
logp1´ ε2q

loooooomoooooon

ď0

`
ε

2
logp1` εq ´

ε

2
logp1´ εq

“
ε

2
log

ˆ

1`
2ε

1´ ε

˙

ď
ε2

1´ ε
ď 2ε2,

where we used the inequality logp1 ` xq ď x and exploited that ε ď 1
2 . Let us now move to the second KL-divergence

DKLpQ,Pq:

DKLpQ,Pq “
D
ÿ

i“1

1

D
log

1
D

1`vi
D

“
ÿ

iPJDK:vi“ε

1

D
log

1

1` ε
`

ÿ

iPJDK:vi“´ε

1

D
log

1

1´ ε

“ ´
1

2
logp1´ ε2q

ď
1

2

ˆ

1

1´ ε2
´ 1

˙

“
ε2

2p1´ ε2q
ď

2

3
ε2 ď 2ε2,

where we used the inequality ´ logp1´ xq ď 1
1´x ´ 1 for 0 ă x ă 1 and observed that ε ď 1

2 .

Lemma E.5. Let P “ pp1, . . . , pDq be a categorical probability measure on the support JDK. Let Pn “ ppp1, . . . , ppDq be
the maximum likelihood estimate of P obtained with n ě 1 independent samples. Then, if pi P t0u Y rpmin, 1s for some
pmin P p0, 1s. Then, for every i P JDK individually, for every δ P p0, 1q, it holds that:

ˇ

ˇ1tpi“0u ´ 1tppi“0u

ˇ

ˇ ď 1$
&

%

němax

$

&

%

1,
logp 1

δ q

log

ˆ

1
1´pmin

˙

,

.

-

,

.

-

.

Proof. Let i P JDK such that pi ą 0 and, thus, 1tpi“0u “ 0. By assumption, it must be that pi ě pmin. To make a mistake,
we must have that 1tppi“0u “ 1, and, thus, ppi “ 0. Thus, we compute the probability that no sample i is observed among the
n ones:

P

¨

˝

č

jPJnK

Xj ‰ i

˛

‚“
ź

jPJnK

P pXj ‰ iq “ P pX1 ‰ iq
n
“ p1´ piq

n ď p1´ pminq
n,

where we exploited the fact that the random variables Xj are i.i.d.. If n “ 0 the latter expression is 1. If, instead, n ě 1, by
setting the last expression equal to δ, we get:

p1´ pminq
n ď δ ùñ n ě

log
`

1
δ

˘

log
´

1
1´pmin

¯ .

The result follows.

Lemma E.6. Let V “ tv P t´1, 1uD :
řD
j“1 vj “ 0u. Then, the D

16 -packing number of V w.r.t. the metric dpv, v1q “
řD
j“1 |vj ´ v

1
j | is lower bounded by 2

D
5 .

Proof. Let us denote the packing number with Mpε;V, dq and the covering number with Npε;V, dq. It is well known that
Npε;V, dq ďMpε;V, dq (Györfi et al., 2002). Thus, a lower bound to the covering number is a lower bound to the packing
number. Let us consider the (pseudo)metric d1pv, v1q “

řD{2
j“1 |vj ´ v1j | that considers the first half of the components

only. Clearly, we have that d1pv, v1q ď dpv, v1q. Therefore, any ε-cover w.r.t. dpv, v1q is an ε-cover w.r.t. d1pv, v1q and,
consequently, Npε;V, d1q ď Npε;V, dq. Since the (pseudo)metric d1 considers only the first half of the components,
constructing an ε-cover of V w.r.t. d1 is equivalent to constructing an ε-cover of V 1 w.r.t. d1, where V 1 “ t´1, 1uD{2. V 1
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considers the first half of the components of vectors of V , that can be freely chosen, disregarding the summation constraint.17

Thus, Npε;V, d1q “ Npε;V 1, d1q. Notice that d1 is now a proper metric on V 1 “ t´1, 1uD{2. Now, we reduce the problem
to constructing cover on the Hamming space H “ t0, 1uD{2. Indeed, we can always map an pε{2q-cover for the Hamming
space H to an ε-cover for the space V 1. Specifically, let Hε{2 an pε{2q-cover for the Hamming space, we construct the
ε-cover of V 1, denoted by V 1ε, by applying the following transformation (v1 P V 1ε):

v1j “

#

´1 if hj “ 0

1 if hj “ 1
@j P JD{2K, @h P Hε{2,

or, in more convenient way, v1 “ 2h´ 1. Let v1 P V 1:

min
v1PV 1ε

d1pv1, v1q “ min
v1PV 1ε

D{2
ÿ

j“1

|v1j ´ v
1
j | “ 2 min

hPHε{2

D{2
ÿ

j“1

|hj ´ hj | ď ε.

The covering number of a Hamming space has been lower bounded in (Cohen & Frankl, 1985) for ε P JD{2K as:

log2Npε;H, d1q ě
D

2
´ log2

ε
ÿ

k“0

ˆ

D{2

k

˙

.

We take ε “ D{16, and we use the known bound
řk
i“0

`

n
i

˘

ď
`

en
k

˘k
(Ravsky, 2018):

D{16
ÿ

k“0

ˆ

D{2

k

˙

ď p8eqD{16.

From, which, we get:

log2Npε;H, d1q ě
D

2
´ log2

ε
ÿ

k“0

ˆ

D{2

k

˙

ě
D

2
´
D

16
log2p8eq ě

D

5
.

17From an algebraic perspective, V 1 can be considered the quotient set obtained from V by means of the equivalence relation
v „ v1 ðñ vj “ vj1 for all j P JD{2K.
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