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Abstract

In multi-agent reinforcement learning (MARL),
independent learning (IL) often shows remark-
able performance and easily scales with the num-
ber of agents. Yet, using IL can be inefficient
and runs the risk of failing to successfully train,
particularly in scenarios that require agents to
coordinate their actions. Using centralised learn-
ing (CL) enables MARL agents to quickly learn
how to coordinate their behaviour but employing
CL everywhere is often prohibitively expensive
in real-world applications. Besides, using CL in
value-based methods often needs strong represen-
tational constraints (e.g. individual-global-max
condition) that can lead to poor performance if vi-
olated. In this paper, we introduce a novel plug &
play IL framework named Multi-Agent Network
Selection Algorithm (MANSA) which selectively
employs CL only at states that require coordina-
tion. At its core, MANSA has an additional agent
that uses switching controls to quickly learn the
best states to activate CL during training, using
CL only where necessary and vastly reducing the
computational burden of CL. Our theory proves
MANSA preserves cooperative MARL conver-
gence properties, boosts IL performance and can
optimally make use of a fixed budget on the num-
ber CL calls. We show empirically in Level-based
Foraging (LBF) and StarCraft Multi-agent Chal-
lenge (SMAC) that MANSA achieves fast, supe-
rior and more reliable performance while making
40% fewer CL calls in SMAC and using CL at
only 1% CL calls in LBF.
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1. Introduction
Multi-agent reinforcement learning (MARL) has emerged
as a powerful framework that enables autonomous agents to
complete various tasks in areas such as autonomous driving
(Zhou et al., 2021), swarm robotics (Mguni et al., 2018;
2019) and smart grids (Wang et al., 2021; Qiu et al., 2021;
2022). Among MARL methods are a class of algorithms
known as independent learners (IL) e.g. independent Q
learning (Tan, 1993). IL decomposes a MARL problem
with N agents into N decentralised single-agent problems.
In this way, each agent treats other agents as part of the en-
vironment which provides a straightforward way of training
agents in a decentralised manner. Since the agents ignore
other agents, IL can be trained quickly as each agent’s learn-
ing process is contingent on only its local observations and
own actions. This is efficient in scenarios that require only
weak interactions between agents (Kok & Vlassis, 2004).

Despite these apparent benefits, training MARL using IL has
several formidable drawbacks: with no ability to observe the
actions of other agents, random occurrences of successful
coordination among IL agents are improbable, causing IL
methods to sometimes struggle in tasks that require coordi-
nation (Hernandez-Leal et al., 2017). Also, ignoring other
agents’ influence on the system means from the agent’s per-
spective, the environment can appear non-stationary which
precludes convergence guarantees (Yang & Wang, 2020).

On the other hand, MARL learners can be trained in simu-
lated environments in which agents can be provided with
other agents’ observations and other state information. Cen-
tralised training and decentralised execution (CT-DE) (Krae-
mer & Banerjee, 2016; Foerster et al., 2018; McAleer et al.,
2022) is a framework that uses a centralised critic that ex-
ploits global information during training while performing
execution in a decentralised fashion. With this added infor-
mation during training, agents can learn to condition their
policies on other agents’ actions which mitigates the appear-
ance of non-stationarity. The CT-DE framework has become
a central MARL paradigm and is the basis of popular meth-
ods such as QMIX (Rashid et al., 2018), SPOT-AC (Mguni
et al., 2021) and COMA (Foerster et al., 2018). Various
studies have conjectured that CT-DE can speed up training
by fostering cooperative behaviour and stabilising training.
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This is useful when there is a strong coordination component
that produces a need for global observations during training
(Sharma et al., 2021). Nevertheless, CT-DE suffers from an
explosive growth in complexity since the joint action-state
space grows exponentially with the number of agents (Deng
et al., 2023). Consequently, CT-DE methods can require
large numbers of samples to complete training. In regions
in which the agents do not strongly interact, this added com-
plexity can prove to be an unnecessary burden as agents do
not benefit from global information (Kok & Vlassis, 2004).
Fig. 1 shows an example scenario in which the agents are
required to coordinate only at a small subregion.

To mitigate the explosive growth in complexity and enable
CT-DE to scale, various CT-DE algorithms such as QMIX
(Rashid et al., 2018), VDN (Sunehag et al., 2018) decom-
pose the joint value function into factors that depend only on
individual agents. The representational constraints needed
to achieve such decompositions can lead to provably poor
exploration and suboptimality (Mahajan et al., 2019). For
example, QMIX requires a monotonicity constraint that can
produce suboptimal value approximation.

Figure 1. Left. In this Traffic Junction scenario, to avoid collisions
agents (coloured squares) need only coordinate at the intersection.
Before, their actions do not affect others so using IL at these states
is sufficient. Right. Heatmap of MANSA’s CL calls. MANSA
activates CL most at the intersection where coordination is needed.

To tackle these issues, we introduce a general plug & play
MARL framework, MANSA which optimally selects where
in the environment to call on centralised learners to boost IL
during training. MANSA involves a decentralised learning
method, a centralised critic network, and, an adaptive rein-
forcement learning (RL) agent that presides over when CL
or IL is used. Specifically, the additional agent determines
at which states to activate CL while IL is used at all other
states. This is in contrast to current MARL methods that
use solely either CL or IL at all states throughout training.
A key feature of MANSA is the novel combination of RL
and a form of policy known as switching controls (Mguni
et al., 2023; 2022; 2021). Switching controls are policies
that introduce a switch mechanism that affects some control
process in a dynamical system (Mguni, 2018). In our case,
as we show, this enables the adaptive RL agent to quickly
determine where to switch to CL while the off-policy IL and
off-policy CL jointly learn from the gathered experience of
whichever learner interacts with the environment (at any one

time only one of CL or IL interacts with the environment)
and minimise unnecessary CL calls during training. This
allows the benefits of both algorithm classes to be lever-
aged while overcoming some of the issues of any one class.
Moreover, the binary decision space of switching controls
means that the adaptive RL agent can rapidly determine the
states where CL is beneficial while the MARL agents learn.

Since CL calls are expensive, it can be useful to consider
enforcing a fixed budget on the number of CL calls during
training. To this end in Sec. 5, we extend MANSA to enable
it to solve MARL problems while respecting a budgetary
constraint of the number of allowed CL calls during training.

Overall, MANSA has several advantages:

• By switching to CL only at the set of states in which it
is beneficial while leveraging the benefits of IL, MANSA
increases the learning efficiency of CT-DE (see Sec. 6.1).
• MANSA activates CL when (and only when) required
resulting in MANSA boosting IL performance and enabling
IL to tackle tasks which using IL would otherwise lead to
coordination failure (see Sec. 6.2.2).
•MANSA minimises the number of times that CL is called
(and hence the global information is used during training)
while either matching or improving the performance of fully
CL methods (see Sec. 6.2.1). Additionally, MANSA allows
for a fixed budget for calls of CL (see Sec. 6.3).
• MANSA is a plug & play framework which seamlessly
adopts any MARL algorithm (see Sec. 6.2).

To enable MANSA to perform successfully, we tackle sev-
eral challenges. First, including a new adaptive RL agent
that learns while the N MARL agents are training can occa-
sion convergence issues. Second, the adaptive RL agent uses
switching controls which differs from the frameworks of
standard RL. To this end, we prove MANSA preserves the
MARL convergence properties (Theorem 1) and boosts the
performance of IL agents (Prop. 1). We then characterise
the optimal CL activation points with an online condition
enabling it to quickly determine where switching to CL is
beneficial during the agents’ training phase (Prop. 2).

When the problem includes budgetary constraints on the
number of allowed CL calls, as the number of CL calls accu-
mulates there is less freedom to execute more CL activations
further on during training. Therefore to make optimal use
of the allowed number CL calls, it is necessary to learn a
policy that optimally decides whether to activate CL calls
given its remaining budget. We resolve this by using a state
augmentation technique which treats the remaining budget
as a state component (Theorem 2). State augmentation tech-
niques originated in control theory (Daryin & Kurzhanski,
2005) and have recently been adapted to single agent RL
(Sootla et al., 2022; Mguni et al., 2023).
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2. Related Work
A key aim of the CT-DE framework is to ensure the policies
it generates are consistent with the desired system goal. One
framework to fulfil this from a game theoretical perspective
is called Markov Convex game (MCG) (Wang et al., 2020b;
2022). A necessary condition for the MCG is the Individual-
Global-Max (IGM) principle (Son et al., 2019). To realise
the IGM in the CT-DE framework, QMIX (Rashid et al.,
2018) and VDN (Sunehag et al., 2018) propose two suffi-
cient conditions of IGM to factorise the joint action-value
function. Crucially, such decompositions and limited by the
action-value function classes and the systems that do not
adhere to these conditions (Wang et al., 2020a).

Several methods have been proposed to address this struc-
tural limitation. QPLEX (Wang et al., 2020a) uses a dueling
network architecture to factor the joint action-value func-
tion avoiding representational restrictions. Nevertheless,
QPLEX has been shown to fail in simple tasks with non-
monotonic value functions (Rashid et al., 2020). QTRAN
(Son et al., 2019) formulates the MARL problem as a con-
strained optimisation problem with L2 penalties for decen-
tralisation. Nevertheless, QTRAN has been shown to scale
poorly in complex MARL tasks such as SMAC (Peng et al.,
2021). WQMIX (Rashid et al., 2020) considers a weighted
projection which is weighted towards better performing
joint actions. At the core of these techniques are heuris-
tics that do not guarantee IGM consistency. Consequently,
achieving full expressiveness of the IGM function class with
scalability remains an open challenge for MARL.

Actor-critic methods such as COMA (Foerster et al., 2018)
and MADDPG (Lowe et al., 2017) are popular methods
within MARL. These methods involve a centralised critic
but nonetheless do not impose restrictions to represent the
joint-action value function. Nevertheless, these methods
are outperformed by value-based methods such as QMIX
(Rashid et al., 2018) and SHAQ (Wang et al., 2022) on stan-
dard MARL benchmarks e.g. StarCraft Multi-Agent Chal-
lenge (SMAC) (Peng et al., 2021). MAPPO (Yu et al., 2022)
which is a leading actor-critic method with a centralised
value function, extends a popular single-agent RL method,
PPO (Schulman et al., 2017) to MARL. Nevertheless, in
some tasks, MAPPO has been shown to be outperformed
by IL, specifically, PPO (Schulman et al., 2017) with only
modest hyperparameter tuning (de Witt et al., 2020). Con-
sequently, in this paper, we realise our framework within
value-based methods. Nevertheless, MANSA’s plug & play
facility supports the extension to actor-critic methods.

Several papers have explored the issue of exploiting localil-
ity of the agents’ interactions in different ways. Early works
such as (Kok & Vlassis, 2004) tackle the problem in learn-
ing in systems with sparse subregions. Such works make
stringent assumptions that require the global coordination

requirements of the system to be known beforehand. More-
over, other works centered on detecting where in the state
space global or extra information is required to obtain a
good policy. These works take the approach of detecting
the influence of other agents on the reward signal. This
approach is highly limited in our setting where the reward
signal is allowed to be both a priori unknown and noisy.

3. MANSA
A fully cooperative multi-agent system is modelled by a
decentralised-Markov decision process (dec-MDP). A dec-
MDP is an augmented MDP involving two or more agents
{1, . . . , N} =: N with a common goal that each indepen-
dently decide actions to take which they do so simultane-
ously over many time steps. Formally, a dec-MDP is a tuple
M = 〈N ,S, (Ai)i∈N , P,R, γ〉 where S is the finite set
of states, Ai is an action set for agent i ∈ N . At each
time t ∈ 0, 1, . . . , the system is in state st ∈ S and each
agent i ∈ N takes an action ait ∈ Ai. The joint action
at = (a1t , . . . , a

N
t ) ∈ A ≡ ×Ni=1Ai produces an imme-

diate reward r ∼ R(st,at) where R : S × A → P(D)
is the team reward function that all agents jointly seek to
maximise and where D is a compact subset of R and P is
some distribution on R. Lastly, P : S ×A × S → [0, 1]
is the probability function describing the system dynamics.
We consider a partially observable system so that given the
system is in the state st ∈ S , each agent i ∈ N makes only
local observations τt,i = O(st, i) where O : S ×N → Zi
is the observation function and Zi is the set of local obser-
vations for agent i. To decide its action each agent samples
its Markov policy πi,θi : Zi ×Ai → [0, 1] which is parame-
terised by the vector θi ∈ Rd and is contained in Πi. We oc-
casionally drop the parameter θi and write πi and we denote
by Π := ×i∈NΠi. For any agent and for any joint policy
π ∈ Π, the state value and state-action value function are:
v(s|π) = E

[∑∞
t=0 γ

tr
∣∣∣s0 = s,a ∼ π

]
and Q(s,a|π) =

E
[∑∞

t=0 γ
tr
∣∣∣s0 = s,a0 = a;a ∼ π

]
respectively.

We now describe the core details of MANSA, how it learns
to determine when to use a centralised learning process,
and how it improves learning and performance. We then
describe the agents’ objectives and learning processes.

3.1. Framework

To tackle the challenges described, we equip each MARL
agent with access to both a centralised learner, which we
call Central and an independent learner, which we call Inde-
pendent. MANSA includes an additional RL agent, Global,
i.e., the switching controller, that decides on the states to ac-
tivate Central during the agents’ training phase while using
Independent as the learning algorithm everywhere else.
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Fig. 2 shows a schematic representation of MANSA.
Global observes the global state st of the environment
and samples the discrete policy of the switching controller
gt ∼ g : S → {0, 1}. If gt = 0, each of the N agents in
the environment use their respective local observations of
the environment to generate actions at from the policy of
Independent. If gt = 1, at is generated from the policy of
Central using the global state. The agents’ actions at are
executed in the environment and the loop repeats. The trajec-
tories generated by this process are stored in a replay buffer
from which Global, Independent, and Central are trained.
MANSA includes an (additional) feature that imposes the
condition that CL updates can only occur when the Global
agent makes a CL call (i.e. when g = 1). This feature
serves as a useful tool when there is a need to ensure that
communication costs are minimised during training while
at the same time leveraging the benefits of both IL and CL.

Environment

Sample Global
gt ~ g(. | st)

Centralised Learner Independent
Learner

gt = 1 gt = 0

st

st ot

at

rt

Experience
Buffer

Training Data

Train
CL (gt = 1)

or IL (gt = 0)

Train Global

Figure 2. MANSA schematic.

The Global agent is endowed with its own objective which
captures its goal to improve the learning process and max-
imise the performance of the system of theN MARL agents
through its decisions of where to activate Central. To induce
Global to selectively choose when to perform an activation,
each activation incurs a fixed cost for Global which is quan-
tified by a fixed constant c > 0. These costs ensure that
any activation of the CL critic must be beneficial to the per-
formance of the system either at the current or subsequent
states. The objective for Global is:

vG(s|π, g) = Eg∼g

[ ∞∑
t=0

γt (r − c · 1(g(st)))
∣∣∣s0 = s;a ∼ π

]
,

and Global’s action-value function is QG(s,a|π, g) =
Eg∼g [

∑∞
t=0 γ

t(r − c · 1(g(st)))|s0 = s,a0 = a;a ∼ π].

With this objective, Global’s goal is to maximise the system
performance by activating Central at the required set of
states to enable the agents to solve M with the minimal

number of CL activations. Therefore, by learning an optimal
g, Global acquires the optimal policy for activating Central.

Adding the agent Global with an objective distinct from
the N agents results in a non-cooperative Markov game
G = 〈N × {G},S, ((Ai)i∈N ,AG) , P, (R,RG), γ〉 where
G, AG := {0, 1} and RG(s, a, g) := R(s, a)− c · 1(g) de-
note the Global agent, its action set and its reward function
respectively. In MARL, having multiple learners with a pay-
off structure that is neither zero-sum nor a team game can
occasion convergence issues (Shoham & Leyton-Brown,
2008). Moreover, unlike standard MARL frameworks,
MANSA incorporates switching controls used by Global.
Nevertheless in Sec. 4 we prove the convergence of MANSA
under standard assumptions.

Details on Architecture
MANSA’s components. We now describe a concrete reali-
sation of MANSA’s core components which consist of N
MARL agents, a CL RL algorithm as Central, an IL RL al-
gorithm as Decentral and a switching control RL algorithm
as Global. Each (MA)RL component can be replaced by
various other (MA)RL algorithms.

• N MARL agents. Each agent has two value-based poli-
cies. That is, each agent has (1) a policy induced by a value
function that takes as input agent’s global observation which
includes the joint action and global state, and (2) an action
policy induced by a value function that takes as input only
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the agent’s local observation.
• Independent Q-Learning (IQL). In this paper, we use
IQL (Tan, 1993) to train Decentral. IQL is a popular RL
algorithm which is off-policy.
• QMIX. For training Central, we use QMIX (Rashid et al.,
2018), an off-policy MARL value-based method that ac-
commodates only action value functions that adhere to a
monotonicity constraint in the combination of the agents’
individual value functions.
• Switching Control Policy (Mguni et al., 2023). A soft
actor-critic (SAC) (Haarnoja et al., 2018) agent called
Global whose policy’s action set consists of 2 actions: 1) use
the centralised policy (perform CL updates), 2) do not use
the centralised policy (perform IL updates). Global updates
its policy g while each agent learns their individual policy.

The MANSA framework includes a feature that enables it to
restrict the CL updates to only when Global executes a CL
call (i.e. when gt = 1). In this way, communication occurs
between the CL agents solely when Global performs a CL
activation (no information is shared between IL and CL).
This ensures the communication burden between agents is
strictly limited during training.

Note also the switching control mechanism results in a
framework in which the problem facing Global has a
markedly reduced computational complexity as compared
with that facing the Central and Decentral (though the learn-
ers share the same experiences). Crucially, the decision
space for Global is S × {0, 1} i.e at each state it makes a
binary decision. Consequently, the learning process for g
is much quicker than either Central or Decentral’s policy
which must optimise over a decision space which is |S||A|
(choosing an action from its action space at every state) and
|S||A|N respectively. This results in Global rapidly learning
its optimal policy (relative to the base MARL learners).

4. Convergence and Optimality of MANSA
We now show that the MANSA framework, which induces
an N + 1 non-cooperative Markov game, converges to the
solution that both maximises the Global agent’s value func-
tion and the agents’ joint objective. With this, the Global
agent learns to activate CL only at the set of states at which
doing so improves the system performance of the MARL
agents. The result is achieved through several steps: Theo-
rem 1 shows MANSA learns the optimal solution for Global
so that it activates CL only when it is profitable to do so over
the horizon of the problem (recall that each activation incurs
a CL cost) while the agents’ learn to maximise their objec-
tive. Prop. 1 proves the MANSA framework leads to higher
system performance as compared to training the underlying
base MARL method on its own. Finally, we characterise the
optimal CL activation points and show that Global can use a
condition on its action-value function that can be evaluated

online to determine when to activate CL (for the case when
Global uses a Q-learning variant). All our results are built
under Assumptions 1 - 7 (Sec. 15 of the Appendix) which
are standard in RL and stochastic approximation theory.

The following theorem shows that for a fixed set of joint IL
and CL policies, the solution of Global’s problem is a limit
point of a sequence of Bellman operations acting on a value
function (i). It then shows that the system in which both
the IL, CL and Global agents train concurrently within the
MANSA framework converges to the solution (ii).
Theorem 1. i) Let vG : S → R then for any fixed joint
policies πc,π ∈ Π the solution of Global’s problem is
given by

lim
k→∞

T kGvG(·|π, g) = max
ĝ

vG(·|π, ĝ), (1)

where TG is given by TGvG :=

max
{
Mg,πcQG,max

a∈A

[
RG + γ

∑
s′∈S P (s′; ·)vG(s′)

] }
andMg,πcQG(s,a|·) := QG(s,πc(s)|·) − c which mea-
sures the expected return for Global following a switch to
the CL joint policy minus the intervention cost c.
ii) Given a system of convergent MARL learners of M,
MANSA ensures the convergence of the system G when
Global uses a Q-learning variant.

Therefore, Theorem 1 proves the solution to Global’s prob-
lem in which Global optimally selects the set of states to
activate CL can be obtained by computing the limit of a
(RL) dynamic programming procedure (when Global uses a
Q-learning variant). Secondly, it proves the MANSA system
of N + 1 agents jointly converges to the solution of G. It is
easy to see that an immediate consequence of the theorem
is that MANSA learns to make the minimum number of CL
calls required to learn the solution to the agents’ joint prob-
lem since any additional CL calls would render the Global
agent’s policy suboptimal.

Next we show MANSA improves performance outcomes:
Proposition 1. There exists some finite integer N such that
v(s|π̃m) ≥ v(s|πm), ∀s ∈ S for any m ≥ N where
π̃m and πm are the joint policies after the mth learning
iteration with and without Global’s influence respectively.

The result shows that using the MANSA framework leads
to improvements in the underlying MARL algorithm (as
compared to training the MARL algorithm on its own). Note
that a fortiori Prop. 1 implies v(s|π̃) ≥ v(s|π), ∀s ∈ S.

The following result characterises Global’s policy g:
Proposition 2. For any st ∈ S and for all at ∈ A, the
policy g is given by:

g(·|st) = 1R+

(
Mg,πcQG(st,at|·)− max

at∈A
QG(st,at|π, g)

)
,

(2)
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where 1 is the indicator function.

Prop. 2 provides characterisation of where Global should ac-
tivate Central. The condition allows for the characterisation
to be evaluated online during the learning phase.

5. MANSA with a CL Call Budget
So far we have considered the case in which the aim is to
solve the problem M while using the minimum number of
CL calls. We now introduce a variant of MANSA, namely
MANSA-B that aims to solve the problem while respecting
a budgetary constraint of the number of allowed CL calls
during training. We show that by tracking its remaining
budget the MANSA-B framework is able to learn a policy
that makes optimal usage of its CL budget while respecting
the budget constraint almost surely.

The problem in which Global now faces a fixed budget on
the number of CL calls gives rise to the following con-
strained problem setting:

max
g

vG(s|π, g) s. t. n−
∑
k<∞

∑
tk≥0

1(g(·|stk)) ≥ 0,∀s ∈ S,

where n ≥ 0 is a fixed value that represents the budget
for the number CL activations and the index k = 1, . . .
represents the training episode count. As in (Sootla et al.,
2022; Mguni et al., 2023), we introduce a new variable
xt that tracks the remaining number of activations: xt :=
n −

∑
t≥0 1(g(st)) where the variable xt is now treated

as the new state variable which is a component in an aug-
mented state space X := S × N. We introduce the as-
sociated reward functions R̃ : X × A → P(D) and
R̃G : X ×A→ P(D) and the probability transition func-
tion P̃ : X ×A×X → [0, 1] whose state space input is now
replaced by X and the Global value function for the game
G̃ = 〈N ×{G},S, ((Ai)i∈N ,AG) , P̃ , R̃, R̃G, γ〉. We now
prove MANSA-B ensures maximal performance for a given
number of CL calls (CL call budget).

Theorem 2. Consider the budgeted cooperative problem
G̃, then For any ṽ : X → R, the solution of G̃ is given
by lim

k→∞
T̃ kGṽ

π = max
g

ṽπ,g, where Global’s optimal policy

takes the Markovian form g̃(·|x) for any x ≡ (x, s) ∈ X .

Theorem 2 shows MANSA converges under standard as-
sumptions to the solution of Global’s problem (and the dec-
POMDP) when Global faces a CL call budget constraint.

6. Experiments
We performed a series of experiments to test whether
MANSA 1. Enables MARL to solve multi-agent problems
while reducing the number of CL calls 2. Improves the
performance of IL and reduces its failure modes 3. Learns

to optimise its use of CL under a CL call budget. We used
the code accompanying the MARL benchmark study of
Papoudakis et al. (2021) for the baselines. For these experi-
ments, we tested MANSA in Level-based Foraging (LBF)
(Papoudakis et al., 2021) and StarCraft Multi-Agent Chal-
lenge (SMAC) (Samvelyan et al., 2019). These environ-
ments have specific features which in some cases are advan-
tageous to CL, and in some cases to IL as well as a broad
range of attributes as we describe below. We implemented
MANSA on top QMIX (Rashid et al., 2018) (as the CL)
and IQL (Tan, 1993) (as the IL). We used SAC (Haarnoja
et al., 2018) to learn the switching control policy itself. In
all plots, dark lines represent averages over 3 seeds and the
shaded regions represent 95% confidence intervals.

Level-based Foraging (LBF). In LBF an agent controls
units of particular levels and there are apples of particular
levels scattered around the map. Each agent’s goal is to col-
lect as much food as possible. Crucially, the agents can only
collect a food if the cumulative level of the agents adjacent
to the food that are executing the ‘collect’ action is greater
than or equal to the level of the food. As the agent and the
food levels are randomly assigned, some food may be col-
lectable by a single agent, while some food may require the
coordination of all agents. LBF has the option of enforcing
coordination (map names suffixed with ”coop”) by making
the food level such that at least two agents are required to
coordinate to collect any food. LBF tasks are designed to
sometimes require coordination to solve the problem, while
other times needing little interaction between agents.

StarCraft Multi-Agent Challenge (SMAC). The goal in
SMAC is for a team of units under an agent’s control to
defeat a team of units under an opponent’s control. Different
maps in SMAC vary along several dimensions including
heterogeneity of units, number of units, and terrain. These
differences result in agents having to adopt varying degrees
of coordination to solve different maps. For example, in
so many baneling, zealots under the agent’s control face a
larger army of enemy banelings. As banelings can cause
significant ‘splash’ damage, it is critical for units under the
agent’s control to cooperate and space out so as to minimise
damage. Conversely, in corridor, such cooperation may
not be needed. Here, a small army of zealots under the
agent’s control face off against a large army of zerglings.
The optimal strategy is for the zealots to wall-off a choke
point and avoid getting surrounded. While it may seem that
significant coordination is required to solve this map (i.e.,
all zealots converge to the choke point), in fact, it is not
necessary. Due to location of the choke-point, the optimal
actions for a zealot acting independently mirror those of a
coordinated group – IL is as good as CL in this case. Thus,
the design of SMAC sometimes befits IL algorithms and
sometimes CL algorithms.
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6.1. Can MANSA learn to use CL less frequently in
settings where CL is not required?

For this experiment, we first studied MANSA in two normal-
form (matrix) games: a coordination game (specifically the
Assurance Game) and the Non-Monotonic Team Game pre-
sented in Rashid et al. (2018). We modified the reward func-
tion of the Assurance Game with a parameter α ∈ [0, 1], as
shown in Table 1. For α = 0, the reward function degener-
ates to the reward function of the standard Assurance game,
while for α = 1, each agent gets a reward of 10 irrespective
of the other agent’s action, that is, the game is completely
decoupled. Similarly, in the non-monotonic team game, α
parameterises the degree to which the reward structure of
the game is non-monotonic. In this modified game, α = 0
represents a normal form game with a monotonic reward
while α = 1 represents a non-monotonic reward function.

Up Down
Up 5(1 + α), 5(1 + α) 10α, 10α

Down 10α, 10α 10, 10

A B
A 2α, 2α 1,1
B 1,1 8,8

Table 1. Modified reward functions of Assurance Game (top), and
non-monotonic team game (bottom).

Fig. 3 shows plots of α versus the number of calls to CL.
In both games, higher values of α ought to result in less
usage of CL, and as expected, as α increases, calls to the CL
decrease and MANSA shows greater dependence on IL for
training. This suggests MANSA is capable of selectively
using CL with a high degree of granularity. It also provides
strong evidence MANSA exercises thriftiness in its usage
of CL in environments with no strong coordination aspect.

We next investigated MANSA’s ability modulate its use of
CL in LBF Foraging-8x8-2p-2f-coop-v1, a dynamic setting
with many states and agents. To do this, we isolated three
configurations of the LBF task that have strongly, medium
and weakly coupled reward functions i.e. for the agents
to solve the task, each case requires a specific level of co-
ordination by the agents. The weakest case is a setting in
which each food item can be collected by just one agent; in
the medium level, collecting each food item requires two
agents to coordinate while in the strongest level, collecting
each food item needs all agents to coordinate. For each
case we measured the total number of CL calls made by
MANSA over the course of training. As shown in Fig. 4,
as the level of required coordination increases (from weak
to strong), MANSA increases the number of CL calls to
promote learning policies capable of coordination among
the agents during their training phase.

Figure 3. Normal form games. Total number of CL calls by
MANSA in the Assurance Game (top left) and the non-monotonic
team game (top right) and end-of-training returns for MANSA,
QMIX and IQL for various values of α (bottom). As the rewards
in Assurance Game become more decoupled (α → 1) so the re-
quirement for coordination becomes weaker, MANSA reduces
the number of CL calls it makes during training. In the Non-
Monotonic game, as the extent of the monotonicity in the reward
decreases (α→1), MANSA similarly reduces the number of CL
(QMIX) calls. Note, in both cases MANSA makes a small number
of calls to CL as Global initially explores both CL and IL. Despite
MANSA reducing its dependence on CL as α → 1, it achieves
returns that are better or the same as the baselines for all α.

Lastly, to confirm the usefulness of MANSA’s switching
control component, Section 6.5 of the Appendix gives an
ablation study in which we replaced the Global agent with
a random switching controller. compared to simply acti-
vating Central at random (line labelled ”random policy”).
As is shown, removing MANSA’s switching control aspect
leads to significant degredation in overall performance as
compared with MANSA with its adaptive RL agent Global.

6.2. Can MANSA improve the overall performance of
IL and reduce failure modes?

We first examined this claim in LBF; Fig. 5 shows ag-
gregated (normalised) area under the curve AUC perfor-
mance curves of the tested algorithms (for individual plots
see Sec. 12 in the Appendix). MANSA outperforms both
IQL and QMIX by a notable margin in half the maps (4
of 8). Moreover, even in maps where QMIX performs
poorly, e.g., Foraging-10x10-3p-5f-v2, Foraging-10x10-5p-
3f-v2, MANSA is able to use QMIX to significantly outper-
form IQL (compare performance of vanilla QMIX versus
MANSA in plots in Sec. 12). This is due to MANSA cor-
rectly identifying states that benefit from CL (and those
that do not) and there activating CL to achieve significant
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weak medium strong
level

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

CL
_c
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ls

Foraging-8x8-2p-2f-coop-v1

Figure 4. Number of CL calls within LBF maps with varying de-
grees of coupling within the reward functions.

performance gains. The empirical results serve to validate
MANSA’s preservation of MARL convergence properties
and its ability to leverage both CL and IL to deliver higher
performance. In Sec. 9 of the Appendix, we show the re-
sults of an ablation study of the switching cost parameter.
So long as the value of this hyper-parameter is roughly in
the correct order of magnitude, MANSA performs well and
thus is easy to tune.

We next examined the claim in SMAC. Fig. 7 shows the
aggregated normalised AUC results across a range of SMAC
maps (for full set of plots of individual maps see Sec. 12 in
the Appendix). MANSA’s aggregate AUC performance is
superior to both baselines. It also outperforms all baselines
in all maps except 3s5z vs 3s6z. MANSA’s flexibile choice
of MARL method allows it to avoid the failures of IQL
in maps such as 1c3s5z, 3s5z, 2s3z, and MMM2 without
heavily relying on CL (MANSA’s CL call rates are shown
in Table 4 of the Appendix). Similarly, MANSA avoids the
failures of QMIX in 2m vs 1z and corridor.

To validate the claim MANSA can reduce failure rates, we
plotted the failure rates of each algorithm (i.e. on how many
tasks each algorithm failed by the total number of tasks) in
Fig. 8. We define a failure as achieving an end-of-training
win rate of less than 0.8 on SMAC. IL and CL failed in 44%
(4 of 9) and 22% (2 of 9), respectively, of the SMAC maps.

MANSA QMIX IQL
algo
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0.3

0.4

0.5

0.6

0.7
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C

AUC in LBF

Figure 5. Aggregate (normalised) area under the curve (AUC) re-
sults across 10 LBF tasks. MANSA has superior aggregate per-
formance, markedly outperforming the CL method (QMIX) and
either matching or outperforming the IL method (IQL) on all tasks.
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Figure 6. Learning curves in some individual SMAC maps. While
QMIX fails to learn effective policies on all maps, and IQL on two
maps, MANSA achieves high performance across the tasks.
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Figure 7. Aggregate normalised AUC results across 9 SMAC maps.
MANSA has superior performance and is not susceptible to learn-
ing failures unlike the base CL (QMIX) and IL methods (IQL).
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Figure 8. Failure rates (number of failed tasks/total number of
tasks) of each algorithm across all SMAC maps.

6.3. MANSA is a Plug & Play IL Enhancement
Framework.

To validate our claim that MANSA easily adopts MARL
algorithms, we ran experiments with a stronger CL base-
line to test if MANSA is still beneficial when the CL base-
line is stronger than the IL baseline. To test this, we re-
placed QMIX in MANSA with a stronger CL component,
W-QMIX. Fig. 9 shows learning curves where, unlike in
Figure 5, IQL is outperformed by a CL algorithm, W-QMIX.
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For MANSA to achieve reasonable performance here, the
switching controller ought to opt to use CL more frequently
than IL even if this incurs a switching cost. Indeed, we
see that in all maps, MANSA significantly outperforms the
baselines, and from Table 6 (see Sec. 11 in the Appendix)
we see that MANSA uses CL much more in these maps than
the maps indicated in Table 3. Moreover, as with previous
experiments, MANSA seems to have correctly identified
states that benefit from CL (and those that do not) and have
only used CL to achieve significant performance gains.
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Figure 9. Learning curves on LBF with a stronger CL algorithm,
W-QMIX. W-QMIX outperforms IQL on the selected maps, but
MANSA is still able to leverage the advantages of both IL and CL
to outperform the baselines.

6.4. Can MANSA optimise use of CL under a budget?

To validate our claim that MANSA-B optimises CL calls
under a fixed budget, we ran MANSA-B in 4 SMAC maps
with a varying CL call budget. Table 5 in the Appendix
shows the Win rates comparing MANSA-B with various CL
call budgets against MANSA (original). In 2 out of the 4
maps, MANSA achieves win rates of above 98% despite a
cap of 10% on the original CL calls. As the budget increases
to 50%, MANSA achieves above 65% win rates on all maps.

6.5. Importance of Switching Controls

A key component of MANSA is the switching control mech-
anism. This enables the Global agent to select the states
in which activating Central leads to performance improve-
ments. To evaluate the impact of the switching control
component, we compared the performance of MANSA with
a version of MANSA which has the switching control re-
placed with an equal-chances Bernoulli Random Variable
(i.e., at any given state, the Global decides whether or not

to activate Central with equal probability) (note that always
activating Central degenerates to QMIX and similarly, never
activating Central degenerates to IQL). Figure 10 shows the
comparison of the performances of the variants. We exam-
ined the performance of the variants of MANSA in LBF
Foraging-15x15-5p-3f-v2. As can be seen in the plot, incor-
porating the ability to learn an optimal switching control in
MANSA (labelled ”MANSA (OW-QMIX+IQL”) leads to
much better overall performance compared to simply acti-
vating Central at random (line labelled ”random policy”).
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Figure 10. MANSA’s switching control component produces much
better overall performance (”MANSA (OW-QMIX+IQL”) com-
pared to randomly activating Central (”random policy”).

7. Conclusion
In this paper, we presented MANSA, a novel MARL frame-
work for enhancing performance of IL training under a
limited number of CL calls. MANSA combines IL and
CL in a way that enables IL to leverage the benefits of CL
while minimising the complexity burden and limitations of
representational constraints suffered by CL methods. Con-
versely, MANSA mitigates the issues suffered by IL such
as its inability to efficiently solve some coordination tasks
and lack of convergence guarantees. In so doing, MANSA
provides a framework that leverages each algorithm class
and removes the split between IL and CL MARL training
methods. Our theory proves MANSA preserves MARL con-
vergence guarantees and improves MARL outcomes. Our
empirical analyses present a detailed suite of experimental
including LBF and SMAC — in all these domains, MANSA
improves performance, reduces failure modes all the mean-
while minimising its use of CL. In future, we will consider
the natural extension of the framework to encompass switch-
ing between various CL methods to leverage the benefits of
their various factorisations.
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Part I

Appendix

8. Assurance Game Construction
In Sec. 6.1 we introduce a variant of the classic coordination game, the Assurance game. The matrix game presented in Sec.
6.1 is the supposition of the Assurance Game with a non-strategic component resulting in a new game whose entries are the
supposition of the above components. The composition of the new game is calibrated by a parameter α which runs from 0 to
1. At its extreme points 0 and 1, the game degenerates into the Assurance game and the entirely non-strategic game. We
begin by stating the reward function Ri(ai, aj) : Ai ×Aj → R for the agents i, j ∈ {1, 2}.

Ri(ai, aj) = α(Ri(ai) +Rj(aj)) + (1− α)Ri(ai, aj), i, j ∈ {1, 2}, (3)

where Ri : Ai → R and Rj : Aj → R are bounded, real valued functions and Ai and Aj are compact sets.

We assume Ri in (3) can’t be decoupled into a function of the form Ri(ai, aj) = f(ai) + g(aj). From (3), we see
that when α = 0, Ri(ai, aj) = Ri(ai, aj) meaning that the game is strongly coupled and that as α → 1, Ri(ai, aj) →
Ri(ai) +Rj(aj) meaning that the game is decoupled (the agents have no effect on other agents’ rewards).

In what follows, the payoff matrix of Ri(ai, aj) is denoted by A: This represents the coupled part of the reward in (3), i.e.
Ri(ai, aj). We construct a second matrix corresponding to the independent part of the reward in (3) and denote this matrix
by B. Notice in this payoff matrix, the actions of the other agents have no effect on the agent’s own reward (whenever
an agent plays an action its reward is identical regardless of the other agents action). Thus, to construct the matrix game
corresponding to (3), we simply compute the weighted sum entry-wise. Denote this by C. Now we vary the value of α
within the interval [0, 1] and plot the number of CL calls used during training (this is the number of times the Global agent
performs a switch) vs the value of α.

A =
U D

U 5,5 0,0
D 0,0 10,10

B =
U D

U 10,10 10,10
D 10,10 10,10

C =
U D

U 5(1 + α), 5(1 + α) 10α, 10α
D 10α, 10α 10, 10
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9. Ablation studies
9.1. A.1 Switching Cost Parameter
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We ran a simple study to ascertain the sensitivity of MANSA to the switching cost parameter. We picked a random map in
LBF and ran MANSA with a range of values for the switching cost. As shown in the plot, while within a given order of
magnitude (here 10−2), MANSA’s performance is largely robust to the switching cost. However, there is a deterioration in
performance if the switching cost is set too low, and thereby does not penalize usage of CL enough.
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10. MANSA CL Call Analysis
One of our key claims is that MANSA reduces the number of CL calls made during training. In this section, we present the
CL call percentages made by MANSA in both Level-based foraging (LBF) and StarCraft Multi-Agent Challenge (SMAC).
In the case of LBF, MANSA successfully solves the tasks (recall that MANSA outperforms all baselines in all SMAC maps
except 3s5z vs 3s6z and MANSA outperforms both IQL and QMIX by a notable margin in most of the maps (4 of 8) in
LBF, see Section 12 for detailed performance plots).

LBF Map Percentage of CL calls

Foraging-8x8-3p-3f-v2 4.76%
Foraging-10x10-3p-5f-v2 5.23%
Foraging-10x10-5p-3f-v2 1.85%
Foraging-15x15-5p-5f-v2 0.76%

Foraging-5x5-2p-1f-coop-v2 3.46%
Foraging-8x8-2p-2f-coop-v2 16.90%

Foraging-10x10-5p-1f-coop-v2 0.71%
Foraging-10x10-8p-1f-coop-v2 0.16%

Table 3. Percentage of calls to CL in MANSA in LBF.

SMAC Map Percentage of CL calls

1c3s5z 81.67%
2m vs 1z 69.01%

2s3z 79.70%
3m 59.22%

3s5z 82.19%
8m 62.96%

corridor 80.19%
MMM2 80.78%

so many baneling 74.83%

Table 4. Percentage of calls to CL in MANSA in SMAC.

10.1. MANSA-B CL calls under Budgetary Constraints

End-of-training win-rates of MANSA-B under various CL call budget constraints. Here, the percentages shown on the top
row indicate CL calls proportionate to the number of CL calls that was made by MANSA (blue), e.g., 10% means we only
allow MANSA-B total number of CL calls equal to 10% of the calls of MANSA. The performance of QMIX (orange) and
IQL (green) are also shown for reference. In this table we see further evidence of MANSA’s remarkably granular control
over using CL. In general, performance improves with each budget increment of CL calls.
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Original/
QMIX/IQL 10% 20% 50% 75%

3m 98.00 ± 1.00
92.00 ± 1.63
87.00± 0.82

98.00
±1.00

97.67
±1.15

99.33
±0.58

99.00
±1.00

2s3z 97.00 ± 2.00
96.33 ± 0.58
77.67± 5.86

92.33
±5.13

96.00
±3.46

90.00
±5.29

96.33
±0.57

2m
vs 1z

99.00 ± 0.00
68.33±28.75
99.00± 0.82

100.00
±0.00

100.00
±0.00

100.00
±0.00

99.67
±1.00

so
many
banel-
ing

97.00 ± 1.00
86.00 ± 3.61
92.34± 5.03

84.50
±11.84

98.00
±2.51

95.50
±2.64

93.50
±5.13

Table 5. End-of-training win-rates of MANSA-B under various CL call budget constraints.

11. MANSA is a Plug & Play Enhancement Tool

Table 6. Percentage of CL calls in MANSA on the maps shown in Fig. 9.

LBF Map Percentage of CL (W-QMIX) calls

Foraging-15x15-5p-3f-v2 53.15%
Foraging-15x15-5p-5f-v2 87.91%

Foraging-grid-2s-10x10-3p-3f-v2 5.86%

In this experiment, we replaced QMIX in MANSA with a stronger CL component, W-QMIX, to test if MANSA is able to
successfully delivery performance benefits even if the CL baseline is stronger than the IL baseline. As previously discussed
in Section 6.3, IQL is outperformed by a CL algorithm, W-QMIX. and in all maps, MANSA significantly outperforms the
baselines. From Table 6 we also see that MANSA uses CL much more in these maps than the maps indicated in Table 3.
Moreover, as with previous experiments, MANSA seems to have correctly identified states that benefit from CL (and those
that do not) and have only used CL to achieve significant performance gains.
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12. Detailed Performance Plots
12.1. Level-Based Foraging
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Figure 11. Learning curves on individual LBF maps.
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12.2. StarCraft Multi-Agent Challenge
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Figure 12. Learning curves on individual SMAC maps. While QMIX fail to learn effective policies on two maps, and IQL fails on four
maps, MANSA does not exhibit any failure cases. We define failure as achieving a win-rate of less than 80%.
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13. MANSA with CL Update Restriction
MANSA includes a feature that imposes the condition that CL updates can only occur when the Global agent makes a
CL call (i.e. when g = 1). In this section we provide training plots display the results for MANSA with this CL training
restriction (MANSA CLR) against the baselines. As before, MANSA CLR substantially outperforms the baselines on all
tested LBF tasks. Similarly, in SMAC, MANSA CLR outperforms the baselines on the majority tasks and matches their
performance on others.
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Figure 13. End-of-training returns of MANSA with CL update restriction (MANSA CLR) in Level-Based Foraging (LBF).
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Figure 14. End-of-training win-rates of MANSA with implementation with CL update restriction (MANSA CLR) in StarCraft Multi-Agent
Challenge (SMAC).
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13.1. MANSA-Budget with CL Update Restriction

In Section 13. we provided results for MANSA CLR which imposes the restriction that CL updates can only occur when
the Global agent makes a CL call (i.e. when g = 1). In this section, Table 7 displays the results for MANSA-B CLR which
imposes the CL update restriction on the MANSA-B framework (i.e. MANSA which has a budget constraint on the number
of CL calls). As before, MANSA CLR outperforms IQL when given a budget of just 20% CL calls and outperforms QMIX
on 2m vs 1z with just a 10% CL budget. In 2s3z MANSA outperforms QMIX when it has a budget of 75% for its CL calls;
i.e. it outperforms QMIX even though it is forced to make 25% fewer CL calls than QMIX.

Original/QMIX/IQL 10% 20% 50% 75%

2m vs 1z 98.00± 1.00
92.00± 1.63
87.00± 0.82

100.00
±0.00

99.67
±0.57

96.67
±3.05

99.00
±0.00

2s3z 96.67± 1.24
95.67± 1.8
79.67± 6.69

82.00
±1.41

82.33
±5.18

81.67
±1.69

96.33
±0.47

Table 7. End-of-training win-rates of MANSA-B with CL update restriction and various CL call budget constraints against baselines.
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14. Hyperparameter Settings
In the table below we report all hyperparameters used in our experiments. Hyperparameter values in square brackets indicate
ranges of values that were used for performance tuning.

Clip Gradient Norm 1
γE 0.99
λ 0.95

Learning rate 1x10−4

Number of minibatches 4
Number of optimisation epochs 4

Number of parallel actors 16
Optimisation algorithm Adam

Rollout length 128
Sticky action probability 0.25

Use Generalized Advantage Estimation True

Coefficient of extrinsic reward [1, 5]
Coefficient of intrinsic reward [1, 2, 5, 10, 20, 50]

Global discount factor 0.99
Probability of terminating option [0.5, 0.75, 0.8, 0.9, 0.95]

L function output size [2, 4, 8, 16, 32, 64, 128, 256]
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15. Notation & Assumptions
We assume that S is defined on a probability space (Ω,F ,P) and any s ∈ S is measurable with respect to the Borel
σ-algebra associated with Rp. We denote the σ-algebra of events generated by {st}t≥0 by Ft ⊂ F . In what follows, we
denote by (Y, ‖‖) any finite normed vector space and by H the set of all measurable functions. Where it will not cause
confusion (and with a minor abuse of notation) for a given function h we use the shorthand h(π

i,π−i)(s) = h(s, πi, π−i) ≡
Eπi,π−i [h(s, ai, a−i)].

The results of the paper are built under the following assumptions which are standard within RL and stochastic approximation
methods:

Assumption 1 The stochastic process governing the system dynamics is ergodic, that is the process is stationary and every
invariant random variable of {st}t≥0 is equal to a constant with probability 1.

Assumption 2 The agents’ reward function R is in L2.

Assumption 3 For any positive scalar c, there exists a scalar µc such that for all s ∈ S and for any t ∈ N we have:
E [1 + ‖st‖c|s0 = s] ≤ µc(1 + ‖s‖c).

Assumption 4 There exists scalars C1 and c1 such that |R(s, ·)| ≤ C2(1 + ‖s‖c2) for some scalars c2 and C2 we have that:∑∞
t=0 |E [R(st, ·)|s0 = s]− E[R(s0, ·)]| ≤ C1C2(1 + ‖st‖c1c2).

Assumption 5 There exists scalars e and E such that for any s ∈ S we have that: |R(s, ·)| ≤ E(1 + ‖s‖e) .

Assumption 6 For any Global policy g, the total number of interventions is K <∞.

22



MANSA: Learning Fast and Slow in Multi-Agent Systems

16. Proof of Technical Results
We begin the analysis with some preliminary results and definitions required for proving our main results.

Definition 1. A.1 Given a norm ‖ · ‖, an operator T : Y → Y is a contraction if there exists some constant c ∈ [0, 1[ for
which for any J1, J2 ∈ Y the following bound holds: ‖TJ1 − TJ2‖ ≤ c‖J1 − J2‖.
Definition 2. A.2 An operator T : Y → Y is non-expansive if ∀J1, J2 ∈ Y the following bound holds: ‖TJ1 − TJ2‖ ≤
‖J1 − J2‖.
Lemma 1. (Mguni, 2019) For any f : Y → R : Y → R, we have that the following inequality holds:∥∥∥∥max

a∈Y
f(a)−max

a∈Y
g(a)

∥∥∥∥ ≤ max
a∈Y

‖f(a)− g(a)‖ . (4)

Lemma 2. A.4(Tsitsiklis & Van Roy, 1999) The probability transition kernel P is non-expansive so that if ∀J1, J2 ∈ Y the
following holds: ‖PJ1 − PJ2‖ ≤ ‖J1 − J2‖.

Proof of Theorem 1
Proof. The proof of the Theorem proceeds by first proving that for any two fixed set of joint policies πd,πc ∈ Π, the
Global agent’s learning process, which involves switching controls converges. Recall, that the Global agent presides over an
activation that deactivates πd and activates πc.

Prove that the solution to Markov Team games (that is games in which both players maximise identical objectives) in which
one of the players uses switching control is the limit point of a sequence of Bellman operators (acting on some test function)

Therefore, the scheme of the proof is summarised with the following steps:

A) Prove that for any fixed Central and Decentral policies πc and πd, Global’s switching control policy converges to a
solution of Global’s problem.

B) Prove that the MG G has a dual representation as a Markov Team Game whose solution is obtained by computing the
solution of a team Markov game.

C) Prove that all agents solve the same problem.

We begin by recalling the definition of the intervention operatorMg,πc for any s ∈ S and for a given πc:

Mg,πcQG(s,a|·) := QG(s,πc(s)|·)− c (5)

Secondly, recall that the Bellman operator for the game G is given by:

TgvG(sτk) := max

{
Mg,πcQG(sτk ,a),max

a∈A

[
RG(sτk ,a, g) + γ

∑
s′∈S

P (s′;a, sτk)vG(s′)

]}
(6)

To prove (i) it suffices to prove that T is a contraction operator. Thereafter, we use both results to prove the existence of
a fixed point for G as a limit point of a sequence generated by successively applying the Bellman operator to a test value
function. Therefore our next result shows that the following bounds holds:

Lemma 3. The Bellman operator T is a contraction so that the following bound holds: ‖Tψ − Tψ′‖ ≤ γ ‖ψ − ψ′‖.

In the following proofs we use the following notation: Pass′ =:
∑
s′∈S P (s′;a, s) and Pπss′ =:

∑
a∈A π(a|s)Pass′ .

To prove that T is a contraction, we consider the three cases produced by (6), that is to say we prove the following statements:

i)
∣∣∣∣max
a∈A

(
RG(st,a, g) + γPas′stvG(s′)

)
−max
a∈A

(
RG(st,a, g) + γPas′stv

′
G(s′)

)∣∣∣∣ ≤ γ ‖vG − v′G‖
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ii)
∥∥Mg,πcQG −Mg,πcQ′G

∥∥ ≤ γ ‖vG − v′G‖ , .

iii)
∥∥∥∥Mg,πcQG −max

a∈A
[RG(st,a, g) + γPav′G]

∥∥∥∥ ≤ γ ‖vG − v′G‖ .
We begin by proving i).

Indeed, for any a ∈ A and ∀st ∈ S,∀s′ ∈ S we have that

∣∣∣∣max
a∈A

(
RG(st,a, g) + γPπs′stvG(s′)

)
−max
a∈A

(
RG(st,a, g) + γPas′stv

′
G(s′)

)∣∣∣∣
≤ max
a∈A

∣∣γPas′stvG(s′)− γPas′stv
′
G(s′)

∣∣
≤ γ ‖PvG − Pv′G‖
≤ γ ‖vG − v′G‖ ,

using the non-expaniveness of the operator P and Lemma 1.

We now prove ii). Using the definition ofM we have that for any sτ ∈ S

∣∣∣(Mg,πcQG −Mg,πcQ′G)(sτ ,aτ )
∣∣∣

=

∣∣∣∣∣RG(sτ ,π
c, g)− c+ γPπs′sτP

πcvG(sτ )−
(
RG(sτ ,π

c, g)− c+ γPπs′sτP
πcv′G(sτ )

) ∣∣∣∣∣
≤ max
aτ ,g∈A×{0,1}

∣∣∣∣∣RG(sτ ,aτ , g)− c+ γPπs′sτP
avG(sτ )−

(
RG(sτ ,aτ , g)− c+ γPπs′sτP

av′G(sτ )
) ∣∣∣∣∣

= γ max
aτ ,g∈A×{0,1}

∣∣∣∣∣Pπs′sτPavG(sτ )− Pπs′sτP
av′G(sτ )

∣∣∣∣∣
≤ γ ‖PvG − Pv′G‖
≤ γ ‖vG − v′G‖ ,

using the fact that P is non-expansive. The result can then be deduced easily by applying max on both sides.

We now prove iii). We split the proof of the statement into two cases:

Case 1: First, assume that for any sτ ∈ S and ∀a ∈ A the following inequality holds:

Mg,πcQG(sτ ,a)−max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)
< 0. (7)
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We now observe the following:

Mg,πcQG(sτ ,a)−max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)
≤ max

{
max
a∈A

(
RG(sτ ,aτ , g) + γPπs′sτP

avG(s′)
)
,Mg,πcQG(sτ ,a)

}
−max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)
≤

∣∣∣∣∣max

{
max
a∈A

(
RG(sτ ,aτ , g) + γPπs′sτP

avG(s′)
)
,Mg,πcQG(sτ ,a)

}
−max

{
max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)
,Mg,πcQG(sτ ,a)

}
+ max

{
max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)
,Mg,πcQG(sτ ,a)

}
−max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

) ∣∣∣∣∣
≤

∣∣∣∣∣max

{
max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ vG(s′)

)
,Mg,πcQG(sτ ,a)

}

−max

{
max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)
,Mg,πcQG(sτ ,a)

} ∣∣∣∣∣
+

∣∣∣∣∣max

{
max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)
,Mg,πcQG(sτ ,a)

}
−max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

) ∣∣∣∣∣
≤ γmax

a∈A

∣∣Pπs′sτPavG(s′)− Pπs′sτP
av′G(s′)

∣∣+

∣∣∣∣max

{
0,Mg,πcQG(sτ ,a)−max

a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)}∣∣∣∣
≤ γ ‖PvG − Pv′G‖
≤ γ‖vG − v′G‖,

where we have used the fact that for any scalars a, b, c we have that |max{a, b} −max{b, c}| ≤ |a− c| and the non-
expansiveness of P .

Case 2: Let us now consider the case:

Mg,πcQG(sτ ,a)−max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)
≥ 0.

For this case, first recall that c > 0, hence

Mg,πcQG(sτ ,a)−max
a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)
≤Mg,πcQG(sτ ,a)−max

a∈A

(
RG(sτ ,aτ , g) + γPas′sτ v

′
G(s′)

)
+ c

≤
(
RG(sτ ,a, g)− c+ γPπs′sτP

avG(s′)
)
|a∼π

c

−max
a∈A

(
RG(sτ ,aτ , g)− c+ γPas′sτ v

′
G(s′)

)
≤ max
a∈A

(
RG(sτ ,a, g)− c+ γPπs′sτP

avG(s′)
)
−max
a∈A

(
RG(sτ ,aτ , g)− c+ γPas′sτ v

′
G(s′)

)
≤ γmax

a∈A

∣∣Pπs′sτPa (vG(s′)− v′G(s′))
∣∣

≤ γ |vG(s′)− v′G(s′)|
≤ γ ‖vG − v′G‖ ,

using the non-expansiveness of the operator P . Hence we have that∥∥∥∥Mg,πcQG −max
a∈A

[RG(·,a) + γPav′G]

∥∥∥∥ ≤ γ ‖vG − v′G‖ . (8)

Gathering the results of the three cases gives the desired result.

To prove the theorem, we make use of the following result:
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Theorem 3 (Theorem 1, pg 4 in (Jaakkola et al., 1994)). Let Ξt(s) be a random process that takes values in Rn and given
by the following:

Ξt+1(s) = (1− αt(s)) Ξt(s)αt(s)Lt(s), (9)

then Ξt(s) converges to 0 with probability 1 under the following conditions:

i) 0 ≤ αt ≤ 1,
∑
t αt =∞ and

∑
t αt <∞

ii) ‖E[Lt|Ft]‖ ≤ γ‖Ξt‖, with γ < 1;

iii) Var [Lt|Ft] ≤ c(1 + ‖Ξt‖2) for some c > 0.

Proof. To prove the result, we show (i) - (iii) hold. Condition (i) holds by choice of learning rate. It therefore remains to
prove (ii) - (iii). We first prove (ii). For this, we consider our variant of the Q-learning update rule:

Qt+1(st,at) = Qt(st,at)

+ αt(st,at)

[
max

{
Mg,πcQ(sτk ,a), R(sτk ,a, g) + γmax

a′∈A
QGst+1,a

′)

}
−Qt(st,at)

]
.

After subtracting Q?(st,at) from both sides and some manipulation we obtain that:

Ξt+1(st,at)

= (1− αt(st,at))Ξt(st,at)

+ αt(st,at))

[
max

{
Mg,πcQGsτk ,a), RG(sτk ,a, g) + γmax

a′∈A
QG(s′,a′)

}
−Q?(st,at)

]
,

where Ξt(st,at) := Qt(st,at)−Q?(st,at).

Let us now define by

Lt(sτk ,a) := max

{
Mg,πcQGsτk ,a), RG(sτk ,a, g) + γmax

a′∈A
QG(s′,a′)

}
−Q?(st, a).

Then

Ξt+1(st,at) = (1− αt(st,at))Ξt(st,at) + αt(st,at)) [Lt(sτk , a)] . (10)

We now observe that

E [Lt(sτk ,a)|Ft] =
∑
s′∈S

P (s′; a, sτk) max

{
Mg,πcQGsτk ,a), RG(sτk ,a, g) + γmax

a′∈A
QG(s′,a′)

}
−Q?(sτk , a)

= TGQt(s,a)−Q?(s,a). (11)

Now, using the fixed point property that implies Q? = TGQ
?, we find that

E [Lt(sτk ,a)|Ft] = TGQt(s,a)− TGQ?(s,a)

≤ ‖TGQt − TGQ?‖
≤ γ ‖Qt −Q?‖∞ = γ ‖Ξt‖∞ . (12)

using the contraction property of T established in Lemma 3. This proves (ii).

We now prove iii), that is

Var [Lt|Ft] ≤ c(1 + ‖Ξt‖2). (13)

26



MANSA: Learning Fast and Slow in Multi-Agent Systems

Now by (11) we have that

Var [Lt|Ft] = Var

[
max

{
Mg,πcQGsτk ,a), RG(sτk ,a, g) + γmax

a′∈A
QG(s′,a′)

}
−Q?(st, a)

]
= E

[(
max

{
Mg,πcQGsτk ,a), RG(sτk ,a, g) + γmax

a′∈A
QG(s′,a′)

}

−Q?(st, a)− (TGQt(s,a)−Q?(s,a))

)2]

= E

[(
max

{
Mg,πcQGsτk ,a), RG(sτk ,a, g) + γmax

a′∈A
QG(s′,a′)

}
− TGQt(s,a)

)2
]

= Var

[
max

{
Mg,πcQGsτk ,a), RG(sτk ,a, g) + γmax

a′∈A
QG(s′,a′)

}
− TGQt(s,a))2

]
≤ c(1 + ‖Ξt‖2),

for some c > 0 where the last line follows due to the boundedness of Q (which follows from Assumptions 2 and 4). This
concludes the proof of part (i) of the Theorem (i.e. [A]).

Proof of Part B

To prove Part B, we prove the following result1 :

Proposition 3. For any π ∈ Π and for any Global policy g, there exists a function Bπ,g : S × {0, 1} → R such that

v(s|π)− v(s|π′) = B(s|π, g)−B(s|π, g′), ∀s ∈ S (14)
vG(s|π, g)− vG(s|π, g′) = B(s|π, g)−B(s|π, g′′), ∀s ∈ S (15)
vG(s|π, g)− vG(s|π′, g) = B(s|π, g)−B(s|π, g′), ∀s ∈ S (16)

where in particular the function B is given by:

B(s|π, g) = E

[ ∞∑
t=0

γtr

]
, (17)

for any s ∈ S.

Proof. This is manifest from the construction of B and Assumption 6.

Proof of Proposition 1
Proof of Prop. 1. We split the proof into two parts:

i) We first prove that vπ̃(s) ≥ vπ(s), ∀s ∈ S where we use π̃ to denote the N agents’ joint policy induced under the
influence of the Global.

ii) Second, we prove that there exists a finite integer M such that vπ̃m(s) ≥ vπm(s) for any m ≥M .

The proof of part (i) is achieved by proof by contradiction. Denote by vπ,g≡0 the value function for the Controller for
the system without the Global. Indeed, let (π̂, g) be the policy profile at the stable point of the system (Markov perfect
equilibrium) and assume that Global’s interventions lead to a decrease in total system returns. Then by construction
vπ̂,g(s) < vπ,g≡0(s) which is a contradiction since (π̂, g) is a stable point (MPE profile).

1This property is analogous to the condition in Markov potential games (Macua et al., 2018; Mguni et al., 2021)
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We now prove part (ii).

By part (i) we have that vπ̃(s) = lim
m→∞

vπ̃m(s) ≥ vπ(s) = lim
m→∞

vπm(s). Since vπ(s) is maximal in the sequence

vπ1(s), vπ2(s), . . . , vπ(s) we can deduce that vπ(s) ≥ vπn(s) for any n ≤ ∞. Hence for any n there exists a c ≥ 0 such
that lim

m→∞
vπ̃m(s) = vπn(s)− c. Now by construction vπ̃m(s)→ vπ̃(s) as m→∞, therefore the sequence ṽπ1 , ṽπ2 , . . . ,

forms a Cauchy sequence. Therefore, there exists an M such that for any ε > 0, vπ̃n(s) − (vπn(s) − c) < ε ∀n ≥ M .
Since ε is arbitrary we can conclude that vπ̃n(s)− (vπn(s)− c) = 0 ∀n ≥M . Since c ≥ 0, we immediately deduce that
vπ̃n(s) ≥ vπn(s),∀n ≥M which is the required result.

Proof of Proposition 2
Proof. We begin by re-expressing the activation times at which the Global agent activates Central. In particular,an activation
time τk is defined recursively τk = inf{t > τk−1|st ∈ A, τk ∈ Ft} where A = {s ∈ S, g(st) = 1}. The proof is given by
deriving a contradiction. Let us there suppose thatMvG(sτk) ≤ vG(sτk) and that the activation time τ ′1 > τ1 is an optimal
activation time. Construct the g′ and g policy switching times by (τ ′0, τ

′
1, . . . , ) and (τ ′0, τ1, . . .) respectively. Define by

l = inf{t > 0;MvG(st) = vG(st)} and m = sup{t; t < τ ′1}. By construction we have that

vG(s|π, g′)

= E
[
RG(s0,a0, g) + E

[
. . .+ γl−1E

[
R(sτ1−1,aτ1−1, g) + . . .+ γm−l−1E

[
RG(sτ ′1−1,aτ ′1−1, g) + γMπ,g′vG(sτ1 |π, g

′)
]]]]

< E
[
RG(s0,a0, g) + E

[
. . .+ γl−1E

[
RG(sτ1−1,aτ1−1, g) + γMπ,g̃vG(sτ1 |π, g

′)
]]]

We make use of the following observation

E
[
RG(sτ1−1,aτ1−1, g) + γMπ,g̃vG(sτ1 |π, g′)

]
(18)

≤ max

{
Mπ,g̃vG(sτ1 |π, g′), max

aτ1∈A

[
RG(sτ1 ,aτ1 , g) + γ

∑
s′∈S

P (s′; aτ1 , sτ1)vG(s′|π, g)

]}
. (19)

Using this we deduce that

vG(s|π, g′) ≤ E
[
RG(s0,a0, g) + E

[
. . .

+ γ
l−1E

RG(sτ1−1,aτ1−1, g) + γmax

Mπ,g̃
vG(sτ1 |π, g

′
), max
aτ1∈A

RG(sτk ,aτk , g) + γ
∑
s′∈S

P (s
′
; aτ1 , sτ1 )vG(s

′|π, g),


]]

= E
[
RG(s0,a0, g) + E

[
. . . + γ

l−1E
[
RG(sτ1−1,aτ1−1, g) + γ

[
TGvG(sτ1 |π, g̃)

]]]]
= vG(s|π, g̃),

where the first inequality is true by assumption onM. This is a contradiction since π′ is an optimal policy for Player 2.
Using analogous reasoning, we deduce the same result for τ ′k < τk after which deduce the result. Moreover, by invoking the
same reasoning, we can conclude that it must be the case that (τ0, τ1, . . . , τk−1, τk, τk+1, . . . , ) are the optimal switching
times. This completes the proof.

17. Proof of Theorem 2
Proof. The proof of the Theorem is straightforward since by Theorem 1, Global’s problem can be solved using a dynamic
programming principle. The proof immediately by application of Theorem 2 in (Sootla et al., 2022).
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