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Abstract
We study the design of sample-efficient algo-
rithms for reinforcement learning in the presence
of rich, high-dimensional observations, formal-
ized via the Block MDP problem. Existing al-
gorithms suffer from either 1) computational in-
tractability, 2) strong statistical assumptions that
are not necessarily satisfied in practice, or 3) sub-
optimal sample complexity. We address these
issues by providing the first computationally ef-
ficient algorithm that attains rate-optimal sam-
ple complexity with respect to the desired accu-
racy level, with minimal statistical assumptions.
Our algorithm, MusIK, combines systematic ex-
ploration with representation learning based on
multi-step inverse kinematics, a learning objective
in which the aim is to predict the learner’s own ac-
tion from the current observation and observations
in the (potentially distant) future. MusIK is simple
and flexible, and can efficiently take advantage
of general-purpose function approximation. Our
analysis leverages several new techniques tailored
to non-optimistic exploration algorithms, which
we anticipate will find broader use.

1. Introduction
Many of the most promising application domains for rein-
forcement learning entail navigating unknown environments
in the presence of complex, high-dimensional sensory in-
puts. For example, a challenging task in robotic control is
to navigate to a goal state in a new, unmapped environment
using only raw pixels from a camera as feedback (Baker
et al., 2022; Bharadhwaj et al., 2022). Such tasks demand
reinforcement learning agents capable of both 1) deliberate
exploration, and 2) representation learning, as a means to
learn from high-dimensional (“rich”) observations. In this
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context, a major challenge—in theory and practice—is to
develop algorithms that are practical and sample-efficient,
yet require minimal prior knowledge.

We study the design of sample-efficient algorithms for rich-
observation reinforcement learning through a canonical
model known as the Block MDP (Jiang et al., 2017; Du
et al., 2019a). The Block MDP is a setting in which the ob-
served state space X is high-dimensional (e.g., pixels from
a camera), but the dynamics are governed by a small, finite
latent state space (e.g., a robot’s actuator configuration).
The key structural property of the Block MDP model, which
makes the problem tractable statistically, is that the latent
states can be uniquely decoded from observations (avoid-
ing issues of partial observability). However, the mapping
from observations to latent states is not known in advance,
necessitating the use of representation learning in tandem
with exploration. As such, the Block MDP is appealing as a
stylized testbed in which to study design of sample-efficient
algorithms based on representation learning.

Algorithm design for the Block MDP is particularly chal-
lenging because representation learning and exploration are
not only required, but must be interleaved: learning a good
representation is necessary to effectively control the agent
and explore, but it is difficult to learn such a representation
without exploring and gathering diverse feedback. In spite
of extensive research into the design of algorithms with prov-
able guarantees (Jiang et al., 2017; Du et al., 2019a; Misra
et al., 2020; Zhang et al., 2022b; Uehara et al., 2022), all
existing algorithms suffer from one or more of the following
drawbacks:

1. Computational intractability.

2. Strong statistical assumptions that are not necessarily
satisfied in practice.

3. Suboptimal sample complexity.

In more detail, computationally efficient algorithms can be
split into two families. The first achieves rate-optimal sam-
ple complexity with respect to the desired accuracy level
(Misra et al., 2020; Modi et al., 2021), but their guaran-
tees scale inversely proportional to a reachability parameter
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which captures the minimum probability with which any
state can be reached by a policy targeting it; when reach-
ability is violated, these results give no guarantees. More
recent approaches dispense with the reachability assumption
(Zhang et al., 2022b), but do not attain rate-optimal sample
complexity.

Our contributions. We address issues (1), (2), and (3)
by providing the first computationally efficient algorithm
that attains rate-optimal sample complexity1 without
reachability or other strong statistical assumptions (Table 1
in Appendix A). Our algorithm, MusIK (“Multi-step Inverse
Kinematics”), interleaves exploration with representation
learning based on multi-step inverse kinematics (Lamb et al.,
2022; Islam et al., 2022), a learning objective in which the
aim is to predict the learner’s own action from the current
observation and observations in the (potentially distant)
future. MusIK is simple and flexible: it can take advantage
of general-purpose function approximation, and is computa-
tionally efficient whenever a standard supervised regression
objective for the function class of interest can be solved
efficiently. In a validation experiment, we find that it obtains
comparable or superior performance to other provably
efficient methods (Misra et al., 2020; Zhang et al., 2022b).

Organization. Section 2 introduces the Block MDP set-
ting and the online reinforcement learning framework, as
well as necessary notation. In Section 3, we present our
main algorithm, MusIK, formally state its main guarantee
for reward-free exploration, and discuss some of its implica-
tions. In Section 4, we give an overview of the main anal-
ysis ideas behind MusIK, with a more thorough overview
deferred to Appendix E. Lastly, in Section 5 we present
an experimental validation. All proofs are deferred to the
appendix unless otherwise stated.

2. Problem Setting
We consider an episodic finite-horizon reinforcement learn-
ing framework, with H ∈ N denoting the horizon. A Block
MDPM = (X ,S,A, T, q) consists of an observation space
X , latent state space S, action space A, latent space tran-
sition kernel T ∶ S ×A→∆(S), and emission distribution
q ∶ S → ∆(X ) (Du et al., 2019a). For each layer h ∈ [H],
the latent state sh ∈ S evolves in a Markovian fashion based
on the agent’s action ah ∈ A via sh+1 ∼ T (⋅ ∣ sh,ah), with
s1 ∼ T (⋅ ∣ ∅), where T (⋅ ∣ ∅) denotes the initial state dis-
tribution. The latent state is not observed directly. Instead,
we observe observations xh ∈ X generated by the emission

1We use the term “rate-optimal” to refer to optimality of the
rate with respect to the accuracy parameter ε, but not necessarily
with respect to other parameters.

process

xh ∼ q(⋅ ∣ sh).

We assume that the latent space S and action space A are
finite, with S ∶= ∣S ∣ and A ∶= ∣A∣, but the observation space
X may be large (with ∣X ∣ ≫ ∣S ∣) or potentially infinite.
The most important property of the BMDP model, which
facilitates sample-efficient learning, is decodability:

supp q(⋅ ∣ s) ∩ supp q(⋅ ∣ s′) = ∅, ∀s′ ≠ s ∈ S.

Decodability implies that latent states can be uniquely re-
covered from observations. In particular, there exists a
(unknown to the agent) decoder ϕ⋆ ∶ X → S such that
ϕ⋆(xh) = sh a.s. for all h ∈ [H].
To simplify presentation and keep notation compact, we
assume that the BMDPM is layered in the sense that S =
S1 ∪ ⋅ ⋅ ⋅ ∪ SH for Si ∩ Sj = ∅ for all i ≠ j, where Sh ⊆ S is
the subset of states in S that are reachable at layer h ∈ [H].
This comes with no loss of generality (up to dependence on
H), as one can always augment the state space to include
the layer index. We also define Xh ∶= ⋃s∈Sh

supp q(⋅ ∣ s),
for all h ∈ [H], and note that by decodability, we have that
Xi ∩Xj = ∅, for all i ≠ j.

Online reinforcement learning and reward-free explo-
ration. We consider the standard online reinforcement
learning framework in which the underlying BMDP M
is unknown, but the learning agent can interact with it by
repeatedly executing a policy π ∶ X → S (or, a potentially
non-Markovian policy, as we will consider in the sequel) and
observing the resulting trajectory (x1,a1), . . . , (xH ,aH).
We do not assume that a reward function is given. Instead,
we aim to perform the more general problem of reward-free
exploration, which entails learning a collection of policies
that covers the latent state space to the greatest extent pos-
sible (Du et al., 2019a; Misra et al., 2020; Efroni et al.,
2021).

In more detail, we consider the reward-free exploration
task of learning an approximate policy cover, which is a
collection of policies which can reach any latent state with
near-optimal probability. To formalize this notion, for s ∈
Sh, we let dπ(s) ∶= Pπ[sh = s] denote the probability of
reaching state s when executing a policy π, and let ΠM ∶=
{π ∶ ⋃Hh=1Xh → A} be the set of all Markovian policies.

Definition 2.1 (Approximate policy cover). A collection
of policies Ψ is an (α, ε)-policy cover for layer h if for all
s ∈ Sh such that maxπ∈ΠM d

π(s) ≥ ε, we have

max
π∈Ψ

dπ(s) ≥ α ⋅max
π′∈ΠM

dπ
′

(s).

Informally, an (α, ε)-policy cover Ψ has the property that
for every state s ∈ S that can be reached with probability
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at least ε, there exists a policy in Ψ that reaches it with
probability at least α ⋅ ε. For our results, α will be a nu-
meric constant (say, 1/2), and ε will be a parameter to the
algorithm. We show (Appendix B) that given access to such
a policy cover, it is possible to optimize any downstream
reward function to precision O(ε).
When ε = 0, Definition 2.1 recovers the policy cover defi-
nition used in (Misra et al., 2020). The relaxed notion of a
policy cover in Definition 2.1, which allows one to “sacri-
fice” states that are hard to reach with any policy (i.e. those
states s for which maxπ∈ΠM d

π(s) < ε), is natural in our
setting, as we do not assume that all states can be reached
with some minimum probability.

Function approximation. To provide sample-efficient
learning guarantees, we make use of function approximation.
In particular, we do not assume that the true decoder ϕ⋆ ∶
X → S is known to the learner and, as in prior work (Du
et al., 2019a; Misra et al., 2020; Zhang et al., 2022b), assume
access to a decoder class Φ ⊆ (X → S) that contains ϕ⋆.

Assumption 2.1 (Realizability). The decoder class Φ ⊆ {ϕ ∶
X → S} contains the true decoder ϕ⋆.

The class Φ captures the learner’s prior knowledge about
the environment, and may consist of neural networks or
other flexible function approximators. To simplify presen-
tation, we assume that Φ is finite; as our results only in-
voke standard uniform convergence arguments, extension
to infinite classes and other notions of statistical capacity
is straightforward (Misra et al., 2020). We aim to learn
an (α, ε)-policy cover (for constant α) using a number of
episodes/trajectories (“sample complexity”) that scales with
poly(H,S,A, log∣Φ∣) ⋅ 1/ε2. Notably, this guarantee de-
pends on the number of latent states S and the complexity
log∣Φ∣ for the decoder class, but does not explicitly depend
on the size of the observation space X .

2.1. Preliminaries

We proceed to introduce additional notation required to
present our main results. Most important will be the notion
of partial policies, both Markovian and non-Markovian. For
any n,m ∈ N, we denote by [m..n] the integer interval
{m, . . . , n}. We also let [n] ∶= [1 .. n]. Further, for any se-
quence of objects o1, o2, . . . , we define om∶n ∶= (oi)i∈[m..n].

Partial policies. A partial policy is a policy that is defined
only over a contiguous subset of layers [l .. r] ⊆ [H]. We let
Πl∶rM ∶= {π ∶ ⋃rh=lXh → A} be the set of Markovian partial
policies that are defined over layers l to r. For a policy
π ∈ Πl∶rM and layer h ∈ [l .. r], π(xh) denotes the action
taken by the policy at layer h when xh ∈ Xh is the current
observation. We will use the notation ΠM ≡ Π1∶H

M .

We also consider non-Markov (history-dependent) partial
policies. For 1 ≤ l ≤ r ≤H , we let

Πl∶rNM ∶= {π ∶
r

⋃
h=l

(Xl × ⋅ ⋅ ⋅ ×Xh)→ A}

denote the set of non-Markovian partial policies that are
defined over layers l to r. The action of a partial policy
π ∈ Πl∶rNM is only defined for layers h ∈ [l .. r], but may de-
pend on the entire history of observations xl∶h = xl, . . . , xh
beginning from layer l. In particular, for layer h ∈ [l .. r],
π(xl∶h) denotes the policy’s action when xl∶h ∈ Xl ×⋯×Xh
is the history. For any 1 ≤ t ≤ h ≤H , and any pair of partial
policies π ∈ Π1∶t−1

NM , π′ ∈ Πt∶hNM , we let π ○t π′ be the partial
policy in Π1∶h

NM that satisfies (π ○t π′)(x1∶τ) = π(x1∶τ) for all
τ < t and (π ○t π′)(x1∶τ) = π′(xt∶τ) for all τ ∈ [t .. h]. We
define π ○t π′ similarly when π ∈ Π1∶τ

NM for τ ≥ t.

Further notation. Given any policy π and BMDPM, we
denote by PM,π the probability law over {(sh,xh,ah) ∶
h ∈ [H]} under the process induced by executing π inM.
We let EM,π denote the corresponding expectation. For any
h ∈ [H] and s ∈ Sh, we denote by dM,π(s) ∶= PM,π[sh =
s] the occupancy of s under π. We drop theM superscript
when clear from the context. Given a set of partial policies
Ψ ∶= {π(i) ∶ i ∈ [N]}, we denote by unif(Ψ) the random
partial policy obtained by sampling i ∼ unif([N]) and
playing π(i). We overload notation slightly and denote by
πunif the random policy that plays actions in A uniformly
at random at all layers. We use the notation Õ(1) to hide
poly-logarithmic factors in H,S,A, log ∣Φ∣, and ε−1.

3. Algorithm and Main Results
We now present our algorithm, MusIK, and prove that
it efficiently learns a policy cover with rate-optimal
poly(H,S,A, log ∣Φ∣) ⋅ 1/ε2 sample complexity. First, in
Section 3.1, we highlight the challenges faced in achieving
similar guarantees with existing approaches, with an empha-
sis on difficulties removing a statistical assumption known
as reachability. With this out of the way, we introduce the
MusIK algorithm (Section 3.2) and give an overview of its
main performance guarantee and key features (Section 3.3).
Extensions to reward-based reinforcement learning are de-
ferred to Appendix B.

3.1. Challenges and Related Work

For the Block MDP model, the optimal sample complexity
to learn an ε-optimal policy or learn an (α, ε)-approximate
policy cover for constant α scales with 1/ε2.2 Previ-
ous approaches—both for reward-free and reward-based

2An Ω(1/ε2) lower bound on the sample complexity follows
from standard lower bounds for tabular RL (Jin et al., 2020).
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exploration—either achieve this rate, but are not computa-
tionally efficient, or only achieve it under additional statis-
tical assumptions that may not be satisfied in general. To
motivate the need for new algorithm design and analysis
ideas, let us highlight where these challenges arise.

Existing algorithms can be broken into two families, opti-
mistic algorithms, and algorithms that are not optimistic, but
require reachability conditions. Optimistic algorithms use
the principle of optimism in the face of uncertainty to drive
exploration. Implementing optimism in the BMDP setting is
challenging because the latent states are not observed, which
prevents the naive application of state-action exploration
bonuses found in tabular RL (Azar et al., 2017; Jin et al.,
2018). An alternative is to appeal to global optimism, which
computes an optimistic policy by optimizing over a version
space of plausibly-optimal value functions. This approach
enjoys rate-optimal sample complexity (Jiang et al., 2017;
Du et al., 2021; Jin et al., 2021), but cannot be implemented
efficiently in general because it requires searching for value
functions that satisfy non-convex constraints at all layers
h ∈ [H] simultaneously (“globally”) (Dann et al., 2018).

As a tractable replacement for global optimism, a more re-
cent line of algorithms implement optimism using a plug-in
approach which computes layer-wise bonuses with respect
to an estimated decoder. First, Uehara et al. (2022) show
that under the stronger assumption that the learner has ac-
cess to a realizable model class, it is possible to learn a
decoder for which the plug-in approach attains rate-optimal
sample complexity; this observation, while interesting, falls
short of a model-free guarantee that scales only with log∣Φ∣.
More recently, Zhang et al. (2022b) observed that simi-
lar results can be achieved with only decoder realizability
by appealing to a certain min-max representation learning
objective.3 However, this objective involves a form of adver-
sarial training that increases the sample complexity, leading
to a final guarantee that scales with 1/ε4 instead of 1/ε2.

Given the challenges faced by optimistic approaches, an
alternative is to do away with optimism entirely. Algorithms
from this family (Du et al., 2019b; Misra et al., 2020) pro-
ceed in a forward fashion: They first solve a representation
learning objective which enables building a policy cover
for layer 2. Then, using this policy cover, they explore to
collect data that can be used to solve a similar representation
learning objective for layer 3, then use this to build a policy
cover for layer 3, and so on. A-priori, a natural concern
is that the myopic nature of these step-by-step approaches
might lead to approximation errors that compound exponen-
tially as a function of the horizon H . To avoid, this, existing
work (Du et al., 2019b; Misra et al., 2020) makes a minimum
reachability assumption.

3Modi et al. (2021) employ a similar representation learning
objective, but require a minimum reachability assumption.

Definition 3.1 (Minimum reachability). There exists ηmin >
0 such that for all h ∈ [H] and s ∈ Sh, there exists π ∈ ΠM

such that dπ(s) ≥ ηmin.

Reachability is a useful assumption because it ensures that
for every possible state s in the latent space, we can learn
a policy that can reach s with sufficiently high probability
(say, with probability at least ηmin/2), which prevents errors
from cascading as one moves forward from layer h to layer
h + 1. The best algorithm from this family, HOMER, attains
sample complexity that is proportional to 1/ε2, but scales
inversely proportional to the reachability parameter ηmin,
and provides no guarantees when ηmin = 0. Prior to our
work, it was not known whether any algorithm based on the
non-optimistic layer-by-layer approach could succeed at all
in the absence of reachability, let alone achieve rate-optimal
sample complexity. We refer to Table 1 in Appendix A for
a summary.

3.2. The MusIK Algorithm

Algorithm 1 MusIK: Multi-Step Inverse Kinematics
Require: Decoder class Φ. Number of samples n.

1: Set Ψ(1) = ∅.
2: for h = 2 . . . ,H do
3: Let Ψ(h) = IKDP(Ψ(1), . . . ,Ψ(h−1),Φ, n)// Alg. 2
4: Return: Policy covers Ψ(1), . . . ,Ψ(H).

Our main algorithm, MusIK, is presented in Algorithm 1.
MusIK performs reward-free exploration, iteratively build-
ing approximate policy covers Ψ(1), . . . ,Ψ(H) for layers
h = 1, . . . ,H . The algorithm first gathers data from the
initial state distribution, and uses this to learn a policy cover
Ψ(2) for layer 2 (we adopt the convention that Ψ(1) = ∅).
The algorithm then collects data using Ψ(2), and uses this to
build an approximate policy cover Ψ(3) for layer 3, and
so on. Once layer H is reached, the algorithm returns
Ψ(1), . . . ,Ψ(H). The crux of the MusIK algorithm is a sub-
routine, IKDP (Inverse Kinematics for Dynamics Program-
ming, Algorithm 2) which, at each step h, makes use of the
previous policy covers Ψ(1), . . . ,Ψ(h−1) to compute the pol-
icy cover Ψ(h). In what follows, we give a detailed overview
of IKDP.

The IKDP subroutine. For each h ∈ [H], the IKDP subrou-
tine (Algorithm 2) uses the policy covers Ψ(1), . . . ,Ψ(h−1)

to construct the policy cover Ψ(h) for layer h in a back-
wards fashion inspired by dynamic programming: Begin-
ning from layer h − 1, the algorithm builds a collection
of partial policies {π̂(i,h−1)}i∈[S] ∈ Πh−1∶h−1M using data
collected by rolling in with Ψ(h−1); each policy π̂(i,h−1)

is responsible for targeting a single latent state in layer h.
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The algorithm then moves back one layer, and constructs
a collection {π̂(i,h−2)}i∈[S] ∈ Πh−2∶h−1M using data collected
by rolling in with Ψ(h−2) and rolling out using the col-
lection {π̂(i,h−1)}i∈[S]. This process is repeated until the
first layer is reached, and the final collection of policies
Ψ(h) = {π̂(i,1)}i∈[S] is returned. The key invariant main-
tained throughout this process is that for all layers t ∈ [h−1],
for every latent state s ∈ Sh, there exists a partial policy in
the set {π̂(i,t)}i∈[S] that reaches s with near-optimal proba-
bility starting from layer t (in a certain average-case sense).

Multi-step inverse kinematics objective. For each layer
t ∈ [h − 1], given the partial policies {π̂(i,t+1)}i∈[S] from
the previous backward step, IKDP computes the collection
{π̂(i,t)}i∈[S] by appealing to a regression objective (Line 7)
based on multi-step inverse kinematics (Lamb et al., 2022).
To motivate the approach, we recall that a significant chal-
lenge faced in the BMDP setting is that the latent states are
not directly observed. Were not the case, it would be possi-
ble to build a policy cover by directly optimizing “visitation”
reward functions of the form r

(s)
h ∶= I{sh = s} for each

s ∈ Sh (this can be accomplished using standard methods
such as PSDP (Bagnell et al., 2003; Misra et al., 2020)). As
an alternative, one can think of IKDP as constructing proxies
for the state-action value functions (Q-functions) associ-
ated with the (unobserved) reward functions r(s)h for each
s ∈ Sh. These proxies are constructed using the objective in
Line 7, which involves predicting actions from observations
at different layers (multi-step inverse kinematics).

In more detail, for each backward iteration t ∈ [h − 1],
IKDP samples π ∼ Ψ(t), executes π up to layer t, plays
a random action at ∼ πunif, then selects a random index
it ∼ unif([S]) and executes π̂(it,t+1) ∈ Πt+1∶h−1NM from layer
t + 1 onward. The regression objective in Line 7 then uses
this data to estimate the conditional density for the pair
(at, it), conditioned on the observations xt and xh. This
estimate for the conditional density acts as a proxy for theQ-
functions associated with the unobserved visitation reward
functions r(s)h described above. Thanks to the decodability
property of the BMDP model, it can be shown that the
Bayes-optimal solution to the regression objective in Line 7
depends on observations only through latent states. This
allows us to parameterize the objective using the decoder
class Φ, which is key to achieving low sample complexity.

Policy composition. After solving the multi-step inverse
kinematics objective in Line 7, IKDP uses the resulting de-
coder ϕ̂(t) and function f̂ (t) to build the set of partial poli-
cies {π̂(i,t)}i∈[S] from the set {π̂(i,t+1)}i∈[S] produced at
the previous backward step (Lines 8 and 9). Here, the
challenge is that there is no way to know which policy
{π̂(i,t+1)}i∈[S] is responsible for targeting a given state
s ∈ Sh due to non-identifiability. We address this using a

non-Markovian policy construction in Lines 8 and 9, which
we now describe.

Recall that the objective in Line 7 predicts both actions and
indices of roll-out policies. Predicting the indices of roll-out
policies offers a mechanism to associate partial policies at
successive layers. To do so, Line 8 of IKDP defines

(â(i,t)(x), ι̂(i,t)(x)) = argmax
(a,j)

f̂ (t)((a, j) ∣ ϕ̂(t)(x), i),

for x ∈ Xt. One should interpret j = ι̂(i,t)(x) as the most
likely (or most closely associated) roll-out policy π̂(j,t+1)

when the (decoded) latent state at layer h is i ∈ [S] and
x ∈ Xt is the current observation at layer t. Meanwhile, the
action â(i,t)(x) (approximately) maximizes the probability
of reaching i if we roll out with π̂(j,t+1). With this in mind,
the composition rule in Line 9 constructs π̂(i,t) via

π̂(i,t)(xt∶τ) ∶= â(i,t)(xt)

for τ = t and xt ∈ Xt, and

π̂(i,t)(xt∶τ) ∶= π̂(ι̂
(i,t)
(xt),t+1)(xt+1∶τ),

for τ ∈ [t + 1 .. h − 1] and xt∶τ ∈ Xt × ⋅ ⋅ ⋅ × Xτ . That is,
for layers t + 1, . . . , h − 1, this construction follows the
policy π̂(ι̂

(i,t)
(xt),t+1) which—per the discussion above—is

most associated with the decoded state i ∈ [S]. At layer
t, we select at = â(i,t)(xt), maximizing the probability of
reaching the decoded latent state i ∈ [S] when we roll-out
with π̂(ι̂

(i,t)
(xt),t+1). This construction, while intuitive, is

non-Markovian, since for layers t+ 1 and onward the policy
depends on xt through ι̂(i,t)(xt).
We refer to Appendix E for a detailed overview of the anal-
ysis ideas behind IKDP, as well as further intuition.

On inverse kinematics. MusIK can be viewed as general-
izing the notion of one-step inverse kinematics to multiple
steps. One-step inverse kinematics, which aims to predict
the action ah from xh and xh+1, has been explored in a
number of empirical works (Pathak et al., 2017; Badia et al.,
2020; Baker et al., 2022; Bharadhwaj et al., 2022). In theory,
however, it can be shown that this approach can fail to mean-
ingfully recover latent state information (Misra et al., 2020;
Efroni et al., 2021). In particular, it is prone to incorrectly
merging latent states with different dynamics. Multi-step
inverse kinematics generalizes one-step inverse kinematics
by predicting ah from xh and xh′ for all possible choices
for h′ > h. Recent work of Lamb et al. (2022) observed
that—in the infinite-data limit—multi-step inverse kinemat-
ics can rectify the issues with one-step IK, and enjoys other
benefits including robustness to exogenous information. Our
work is the first to provably combine multi-step inverse kine-
matics with systematic exploration to derive finite-sample
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Algorithm 2 IKDP: Inverse Kinematics for Dynamic Pro-
gramming

Require: Approximate covers Ψ(1), . . . ,Ψ(h−1) for layers
1 to h − 1, where Ψ(t) ⊆ Π1∶t−1

NM . Decoder class Φ.
Number of samples n.

1: for t = h − 1, . . . ,1 do
2: D(t) ← ∅.
3: for n times do
4: Sample it ∼ unif([S]) and set π̂ = π̂(it,t+1).
5: Sample (xt,at,xh) ∼ Punif(Ψ(t))○tπunif○t+1π̂ .
6: D(t) ← D(t) ∪ {(it,at,xt,xh)}.

/* Inverse kinematics */

7: Compute the solution (f̂ (t), ϕ̂(t)) of the problem

max
f∈F,ϕ∈Φ

∑
(j,a,x,x′)∈D(t)

log f((a, j) ∣ ϕ(x), ϕ(x′)), (1)

where F ∶= [S]2 →∆(A × [S]).
/* Update partial policy cover */

8: For each i ∈ [S] and x ∈ Xt define

(â(i,t)(x), ι̂(i,t)(x))
= argmax (a,j)f̂

(t)((a, j) ∣ ϕ̂(t)(x), i). (2)

9: For i ∈ [S], τ ∈ [t + 1 .. h − 1], xt∶τ ∈ ⨉τk=tXk,
define π̂(i,t) ∈ Πt∶h−1NM via π̂(i,t)(xt) = â(i,t)(xt)
and π̂(i,t)(xt∶τ) = π̂(ι̂

(i,t)
(xt),t+1)(xt+1∶τ).

10: Return: Layer h cover Ψ(h) = {π̂(i,1)}i∈[S] ⊆ Π1∶h−1
NM .

guarantees.4

Remark 3.1. IKDP also bears some similarity to the PSDP
algorithm (see Bagnell et al. (2003); Misra et al. (2020)
and Algorithm 4), and uses the principle of dynamic pro-
gramming in a similar fashion. Unlike PSDP, IKDP does not
require feedback from an external reward function, and can
be thought of as automatically discovering its own reward
function to drive exploration.

Efficient implementation. MusIK is practical, and is com-
putationally efficient whenever the standard log-loss con-
ditional density estimation problem on Line 7 of IKDP can
be solved efficiently for the decoder class Φ of interest. In
practice, Φ and F ∶= [S]2 → ∆(A × [S]) can both be ap-
proximated with neural networks or other flexible function

4The work of (Efroni et al., 2021) also makes use of multi-step
inverse models, but is limited to deterministic systems. Mhammedi
et al. (2020) also uses a form of multi-step inverse kinematics in the
context of linear control with rich observations, but their approach
is specialized to the linear setting.

classes, and the conditional density estimation problem in
Line 7 can be solved by appealing to stochastic gradient
descent or other off-the-shelf training procedures; this is the
approach taken in our experiments (Section 5).

Let us also remark on the complexity of representing and
executing the partial policies {π̂(i,t) ∶ i ∈ [S], t ∈ [h − 1]}
computed in Line 9 of IKDP. These policies are non-
Markovian, which presents a problem at first glance, since
general non-Markovian policies in a horizon-H MDP with
S states require a table of size SH to represent. Fortunately,
the non-Markovian policies in IKDP are quite structured, and
can be represented and executed with runtime and memory
complexity that is polynomial in H instead of exponen-
tial; see Algorithm 3 in Appendix A for pseudocode. In
particular, the partial policies for layer h can be fully repre-
sented using O(H) memory via the collection of functions
{(f̂ (t), ϕ̂(t)) ∶ t ∈ [h − 1]} learned in Line 7 of Algorithm 2
(assuming that, for t ∈ [h − 1], storing (f̂ (t), ϕ̂(t)) requires
O(1) memory). One can then execute the partial policies
to generate a trajectory using O(HSA) runtime, (assuming
that evaluating ϕ̂(t)(x) costs O(1) units of time).

3.3. Main Result

We now state the main guarantee for MusIK (proven in Ap-
pendix H.2) and discuss some of its implications.

Theorem 3.2 (Main theorem for MusIK). Let ε, δ ∈ (0,1)
be given. Suppose that Assumption 2.1 holds, and that n is
chosen such that

n ≥
cA2S10H2 (S3A logn + log(∣Φ∣H2/δ))

ε2
,

for some absolute constant c > 0 independent of all problem
parameters. Then, with probability at least 1 − δ, the poli-
cies Ψ(1), . . . ,Ψ(H) produced by MusIK (Algorithm 1) are
(1/4, ε)-policy covers for layers 1 to H . The total number
of trajectories used by the algorithm is at most

Õ(1) ⋅
A2S10H4 (AS3 + log(∣Φ∣H2/δ))

ε2
. (3)

Theorem 3.2 is the first sample complexity guarantee for the
BMDP setting that 1) is attained by an efficient algorithm,
2) does not scale with the reachability parameter ηmin, and
3) attains rate-optimal 1/ε2 sample complexity. Previous
efficient BMDP algorithms such as MOFFLE or HOMER have
sample complexity scaling with 1/ε2 ⋅ poly(1/ηmin), where
ηmin ∶=mins∈S supπ∈ΠM

dπ(s) is the reachability parameter,
and do not provide guarantees if ηmin = 0. More recents
results (Zhang et al., 2022b) do not require ηmin > 0, but
have suboptimal dependence on ε. We remark that the
dependence on the problem-dependent parameters S, A,
and H in our result is loose, and improving this with an
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efficient algorithm is an interesting open question; other
efficient algorithms have similarly loose dependence, per
Table 1.

Practicality. As discussed in the prequel, MusIK is com-
putationally efficient whenever the standard conditional den-
sity estimation problem in Line 7 of IKDP can be solved
efficiently for the decoder class Φ of interest, allowing for
the use of off-the-shelf models and estimation algorithms; in
experiments (Section 5), we appeal to deep neural networks
and stochastic gradient descent.

From prior work, the only other computationally-efficient
(and model-free) algorithm that does not require minimum
reachability in BMDPs is BRIEE (Zhang et al., 2022b). The
log-loss conditional density estimation objective in MusIK is
somewhat simpler than the min-max representation learning
objective in BRIEE, with the latter necessitating adversarial
training.

4. Proof Techniques
We find it somewhat surprising that MusIK attains rate-
optimal sample complexity in spite of forgoing optimism.
The proof of Theorem 3.2, which we sketch in Appendix E,
has two main components. For the first component, we
prove that the multi-step inverse kinematics objective learns
a decoder that can be used to drive exploration; this for-
malizes the intuition in Section 3.2. With this established,
proving that MusIK succeeds under minimum reachability
(Definition 3.1) is somewhat straightforward, but proving
that the algorithm 1) succeeds in absence of this assumption,
and 2) achieves optimal sample complexity is more involved.
For this component of the proof, we use a new analysis tool
we refer to as an extended BMDP which, in tandem with
another tool we refer to as the truncated policy class, allows
one to emulate certain consequences of reachability even
when the condition does not hold. These techniques, which
we anticipate will find broader use in the context of non-
optimistic algorithms based on policy covers, appear to be
new even for tabular reinforcement learning.

Due to space limitations, an in-depth overview of the anal-
ysis of MusIK is deferred to Appendix E.

As a teaser, in this section we introduce the most impor-
tant technical tools used in the proof of Theorem 3.2, the
extended BMDP and truncated policy class, which, play
a key role in providing tight guarantees for MusIK (and
more broadly, non-optimistic algorithms) in the absence
of minimum reachability. We recommend reading the full
overview in Appendix E before diving into the full proof of
Theorem 3.2 (Appendix H).

Analysis in Extended BMDP. MusIK proceeds by induc-
tively building a sequence of policy covers Ψ(1), . . . ,Ψ(H).
A key invariant maintained by the algorithm is that for each
layer h, Ψ(1), . . . ,Ψ(h−1) provide good coverage for layers
1, . . . , h − 1, and thus can be used to gather data which will
allow us to efficiently learn Ψ(h). Prior approaches that
build policy covers in a similar fashion (Du et al., 2019b;
Misra et al., 2020) require the minimum reachability as-
sumption (Definition 3.1) to ensure that for each h, Ψ(h)

uniformly covers all states in Sh. In the absence of reachabil-
ity, we inevitably must sacrifice certain hard-to-reach states,
which requires a more refined analysis. In particular, we
must show that the effect of ignoring hard-to-reach states at
earlier layers do not compound as the algorithm progresses.

To provide such an analysis, we make use of an extended
BMDP M. The extended BMDP M augments M by
adding H “terminal” states t1∶H and one additional terminal
action a as follows: I) The latent state space is S ∶= ⋃Hh=1 Sh,
where Sh ∶= Sh ∪{th}; II) the action space isA ∶= A∪{a},
where a is an action that deterministically transitions to th+1
from every state at layer h ∈ [H−1]; and III) For h ∈ [H−1],
taking any action in A at state th transitions to th+1 deter-
ministically. We assume the state th emits itself as an obser-
vation and we write X h ∶= Xh ∪ {th}, for all h ∈ [H]. The
dynamics ofM are otherwise identical toM, and for any
policy π ∈ ΠNM ∶= {π ∶ ⋃Hh=1(X 1 × ⋅ ⋅ ⋅ ×X h)→ A}, we de-

fine P
π ∶= PM,π, E

π ∶= EM,π, and d̄π(s) ∶= PM,π[sh = s],
for all s ∈ Sh and h ∈ [H].

Truncated policy class. On its own, the extended BMDP
is not immediately useful. The most important idea behind
our analysis is to combine it with a restricted sub-class of
policies we refer to as the truncated policy class. Define
ΠM ∶= {π ∶ ⋃Hh=1X h → A}. For ϵ ∈ (0,1), we define
a sequence of policy classes Π0,ϵ, . . . ,ΠH,ϵ, inductively,
starting from Π0,ϵ = ΠM and letting Πt,ϵ be the set for which
π ∈ Πt,ϵ if and only if

∃π′ ∈ Πt−1,ϵ such that ∀h ∈ [H],∀s ∈ Sh,∀x ∈ ϕ−1⋆ (s),

π(x) = { a, if h = t and maxπ̃∈Πt−1,ϵ
d̄π̃(s) < ϵ,

π′(x), otherwise.

Restated informally, the class Πt,ϵ is identical to Πt−1,ϵ, ex-
cept that at layer t, all policies in the class take the terminal
action a in latent states s for which maxπ̃∈Πt−1,ϵ

d̄π̃(s) < ϵ.

We define the truncated policy class as Πϵ ∶= ΠH,ϵ. The
truncated policy class satisfies two fundamental technical
properties. First, by construction, all policies in the class
take the terminal action a when they encounter states that
are not ϵ-reachable by Πϵ. The next lemma formalizes this.
Lemma 4.1. Let ϵ ∈ (0,1) be given, and define Sh,ϵ ∶=
{s ∈ Sh ∶ maxπ∈Πϵ

d̄π(s) ≥ ϵ}. Then for all h ∈ [H] if
s ∈ Sh ∖ Sh,ϵ, then π(x) = a, for all x ∈ ϕ−1⋆ (s) and π ∈ Πϵ.
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Second, in spite of the fact that policies in Πϵ always take
the terminal action on states with low visitation probability,
they can still achieve near-optimal visitation probability for
all states inM (up to additive error).

Lemma 4.2 (Approximation for truncated policies). Let
ϵ ∈ (0,1) be given. For all h ∈ [H] and s ∈ Sh,

max
π∈ΠM

d̄π(s) ≤max
π∈Πϵ

d̄π(s) + Sϵ.

The proofs for these results (and other results in this subsec-
tion) are elementary, and are given in Appendix F. Building
on these properties, our proof of Theorem 3.2 makes use of
two key ideas:

1. Even though the extended BMDPM does not necessar-
ily enjoy minimum reachability (Definition 3.1), if we
restrict ourselves to competing against policies in Πϵ,
Lemma 4.1 will allow us to “emulate” certain properties
enjoyed by ϵ-reachable MDPs. This in turn will imply
that if we only wish to learn a policy cover that has good
coverage relative to Πϵ, Algorithm 1 will succeed.

2. By Lemma 4.2, we lose little by restricting our attention
to the class Πϵ. This will allow us to transfer any guaran-
tees we achieve with respect to the extended BMDPM
and truncated policy class Πϵ back to the original BMDP
M and unrestricted policy class ΠM.

We will make the first point precise in Appendices E.1
and E.2. For now, we formalize the second point via another
technical result, Lemma 4.3. To do so, we introduce the no-
tion of a relative policy cover (generalizing Definition 2.1).

Definition 4.1 (Relative policy cover). Let α, ε ∈ [0,1) be
given. Consider a BMDPM′, and let Π and Ψ be two sets
of policies. We say that Ψ is an (α, ε)-policy cover relative
to Π for layer h inM′, if

max
π∈Ψ

dM
′,π(s) ≥ α ⋅max

π∈Π
dM

′,π(s),

for all s ∈ Sh such that maxπ∈Π d
M
′,π(s) ≥ ε.

Lemma 4.3 (Policy cover transfer). Let ε ∈ (0,1) be given,
and define ϵ ∶= ε/(2S). Let Ψ be a set of policies forM
that never take the terminal action a. If Ψ is a (1/2, ϵ)-
policy cover relative to Πϵ inM for all layers, then Ψ is a
(1/4, ε)-policy cover relative to ΠM in theM for all layers.

Lemma 4.3 implies that for any ε, letting ϵ ∶= ε/2S, if we
can construct a set Ψ that acts as a (1/2, ϵ)-policy cover
relative to Πϵ inM, then Ψ will also be a (1/4, ε)-policy
cover relative to ΠM in the original BMDP M, which is
ultimately what we wish to accomplish. This allows us to
restrict our attention to the former goal in the analysis.

We refer the reader to Appendix E for the overview of the
analysis of Theorem 3.2, which builds on the tools presented
in this section, and to Appendix H for the full proof. We
anticipate that these techniques will find broader use in RL.

5. Experiments
As a validation experiment, we evaluate the performance
of MusIK on the challenging “diabolical combination lock”
(“CombLock”) environment (Misra et al., 2020; Zhang et al.,
2022b), which combines high-dimensional observations
with anti-shaped, sparse rewards, necessitating represen-
tation learning and systematic exploration.

Environment. We adopt the diabolical combination lock
(CombLock) environment from Misra et al. (2020); Zhang
et al. (2022b), which is parameterized by the horizon H
and number of actions A = 10. At each layer h, there
are N = 3 states sh,1, sh,2, sh,3 ∈ Sh, where sh,1, sh,2 are
“good” states and sh,3 is a “bad” terminal state. For each
layer h, there exists a pair of “good” actions uh,1, uh,2 ∈ A
such that taking action uh,j in state sh,j , for j ∈ {1,2},
leads to one of the good states {sh+1,1, sh+1,2} at next layer
with equal probability. All actions ah /∈ {uh,1, uh,2} lead
to the bad state sh+1,3 deterministically. The sequences of
good actions u1∶H,1 and u1∶H,2 are sampled uniformly at
random from the set of actions A when the environment
is initialized and are unknown to the learner. The optimal
reward of 1 can only be achieved at the states sH,1 and
sH,2 (we postpone the details of the reward and observation
processes to Appendix C).

Since the good actions {uh,1, uh,2}h∈[H] are not known
to the agent, deliberate exploration is required to learn a
policy that maximizes the reward function; note it is only
possible achieve reward 1 if the agent selects a good action
for all h ∈ [H]. For example, when the horizon is set
to H = 100, the probability of finding the optimal policy
through naive uniform exploration is 10−100. In addition,
representation learning is required to recover the latent state
sh from the observation xh at each layer, with the best
decoder depending on the layer h.

Evaluation and results. We compare MusIK to HOMER
(Misra et al., 2020) and BRIEE (Zhang et al., 2022b) which,
amongst provably efficient algorithms, have the best known
empirical performance.5 For MusIK, we adopt the decoder
class Φ ∶= {ϕW ∶ x ↦ argmaxi∈[N]Wx ∣ W ∈ RN×d},
which is the same as that used in (Misra et al., 2020). See
Appendix C for implementation details. We do not repro-
duce BRIEE and HOMER, and instead report the results from

5We compare only against other model-free methods, and do
not consider model-based approaches (Uehara et al., 2022; Zhang
et al., 2022a; Ren et al., 2022).
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Figure 1. Number of episodes required to identy the optimal policy,
as a function of the horizon H for the CombLock experiment.

Zhang et al. (2022b).

Figure 1 reports the number of episodes (or, number of sam-
pled trajectories) required for each method to identify the
optimal policy, as a function of the horizon H; we declare
the returned policy π̂ to be optimal if the average reward
over 50 trajectories is 1. For MusIK, we plot the worst-case
number of episodes across 5 different initialization seeds.
For BRIEE and HOMER, we only report the median (instead
of the worst-case) number of trajectories over 5 different
seeds required to find the optimal policy; note that this only
improves the results for the baseline methods compared to
MusIK + PSDP. We find that for small values of H , all meth-
ods have similar performance, but for large horizon, MusIK
outperforms the baselines. In particular, forH = 100, MusIK
is able to find the optimal policy using almost three times
fewer episodes than HOMER and BRIEE. This suggests that
the multi-step inverse kinematics objective in MusIK may in-
deed carry practical (as opposed to just theoretical) benefits
over the alternative representation learning approaches used
in HOMER and BRIEE. Performing a large scale evaluation is
a promising direction for future research.
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Table 1. Comparison of sample complexity required learn an ε-optimal policy. For approaches that require a minimum reachability
assumption ηmin ∶= mins∈Smaxπ∈ΠM d

π(s) denotes the reachability parameter. Φ and Ψ denote the decoder and model classes,
respectively.

Sample complexity Model-free Comp. efficient
Rate-optimal

1/ε2-sample comp.

OLIVE (Jiang et al., 2017) A2H3S3 log ∣Φ∣

ε2
Yes No Yes

MOFFLE (Modi et al., 2021) A13H8S7 log ∣Φ∣

(ε2ηmin∧η
5
min
)

Yes Yes No

HOMER (Misra et al., 2020) AHS6
(S2A3

+log ∣Φ∣)

(ε2∧η3
min
)

Yes Yes No

Rep-UCB (Uehara et al., 2022) A2H5S4 log(∣Φ∣∣Ψ∣)

ε2
No Yes Yes

BRIEE (Zhang et al., 2022b) A14H9S8 log ∣Φ∣

ε4
Yes Yes No

MusIK (this paper) A2H4S10
(AS3

+log ∣Φ∣)

ε2
Yes Yes Yes

Part I

Additional Details and Results
A. Omitted Tables and Pseudocode

Algorithm 3 Execute non-Markov partial policy produced by MusIK.

Require: Indices t, h ∈ [H] and i ∈ [S] (Indexes policy π̂(i,t) ∈ Πt∶h−1NM produced in Line 9 of Algorithm 2). Initial
observation xt ∈ Xt. Functions (f̂ (t), ϕ̂(t)), . . . , (f̂ (h−1), ϕ̂(h−1)) produced in Line 7.

1: Set jt−1 = i.
2: for τ = t, . . . , h − 1 do
3: (aτ , jτ)← argmax

(a,i)

f̂ (τ)((a, i) ∣ ϕ̂(τ)(xτ), jτ−1)

4: Play action aτ at layer τ and observe xτ+1.

5: Return: Partial trajectory (at∶h−1,xt∶h) generated by π̂(i,t) ∈ Πt∶h−1NM (Line 9 of Algorithm 2).

B. Application to Reward-Based RL: Planning with an Approximate Cover
In this section, we show how the policy cover learned by MusIK can be used to optimize any downstream reward function
of interest. For the results that follow, we assume that at each layer h ∈ [H], the learner observes a reward rh ∈ [0,1] in
addition to the observation xh ∈ X , so that trajectories take the form (x1,a1,r1), . . . , (xH ,aH ,rH). We will make the
following standard BMDP assumption (Misra et al., 2020; Zhang et al., 2022b), which asserts that the mean reward function
depends only on the latent state, not the full observation.

Assumption B.1 (Realizability). For all h ∈ [H], there exists r̄h ∶ S ×A → [0,1] such that E[rh ∣ xh = x,ah = a] =
r̄h(ϕ⋆(x), a).

The PSDP algorithm. To optimize rewards, we take a somewhat standard approach and appeal to a variant of the Policy
Search by Dynamic Programming (PSDP) algorithm of Bagnell et al. (2003); Misra et al. (2020). PSDP uses the approximate
policy cover produced by MusIK as part of a dynamic programming scheme, which constructs a near-optimal policy in a
layer-by-layer fashion. In particular, starting from layer H , PSDP first constructs a partial policy π̂(H) ∈ ΠH ∶HM using data
collected with Ψ(H), then moves back a layer and constructs a partial policy π̂(H−1) ∈ ΠH−1∶HM using data collected with
Ψ(H−1) and π̂(H), and so on, until the first layer is reached. The variant of PSDP we present here differs slightly from
the original version in (Bagnell et al., 2003; Misra et al., 2020), with the main difference being that instead of using a
policy optimization sub-routine to compute the policy for each layer, we appeal to least-squares regression (see Line 6 of
Algorithm 4) to estimate a Q-function, and then select the greedy policy this function induces.

13



Representation Learning with Multi-Step Inverse Kinematics

Algorithm 4 PSDP: Policy Search by Dynamic Programming (variant of Bagnell et al. (2003))

Require: Policy cover Ψ(1), . . . ,Ψ(H). Decoder class Φ. Number of samples n.
1: for h =H, . . . ,1 do
2: D(h) ← ∅.
3: for n times do
4: Sample (xh,ah,rh∶H) ∼ unif(Ψ(h)) ○h unif(A) ○h+1 π̂(h+1).
5: Update dataset: D(h) ← D(h) ∪ {(xh,ah,∑Ht=h rt)}.

6: Solve regression:

(f̂ (h), ϕ̂(h))← argmin
f ∶[S]×A→[0,H−h+1],ϕ∈Φ

∑
(x,a,R)∈D

(f(ϕ(x), a) −R)2.

7: Define π̂(h) ∈ Πh∶HM via

π̂(h)(x) =
⎧⎪⎪⎨⎪⎪⎩

argmaxa∈A f̂
(h)(ϕ̂(h)(x), a), x ∈ Xh,

π̂(h)(x), x ∈ Xt, t ∈ [h + 1 ..H].

8: Return: Near-optimal policy π̂(1) ∈ ΠM.

The following result, proven in Appendix I, provides the main sample complexity guarantee for PSDP.6

Theorem B.1. Let α, ε, δ ∈ (0,1) be given. Suppose that Assumptions 2.1 and B.1 hold, and that for all h ∈ [H]:

1. Ψ(h) is a (α, ϵ)-approximate cover for layer h, where ϵ ∶= ε/(2SH2).

2. ∣Ψ(h)∣ ≤ S.

Then, for appropriately chosen n ∈ N, the policy π̂(1) returned by Algorithm 4 satisfies

Eπ̂
(1)

[
H

∑
h=1

rh] ≥max
π∈ΠM

Eπ [
H

∑
h=1

rh] − ε

with probability at least 1 − δ. Furthermore, the total number of sampled trajectories used by the algorithm is bounded by

Õ(1) ⋅ H
5S6(SA + log(∣Φ∣/δ))

α2ε2
.

Sample complexity to find an ε-suboptial policy with MusIK + PSDP. From Theorem B.1, to find an ε-suboptimal policy,
PSDP requires an (α, ϵ)-approximate cover for all layers, where ϵ ∶= ε/(2SH2). Focusing only on dependence on the
accuracy parameter ε, it follows from the results in Section 3.3 that MusIK can generate an (1/4, ϵ)-approximate cover using
Õ(1/ε2) trajectories (see (5)). Thus, the total number of trajectories required to find an ε-suboptimal policy in reward-based
RL using MusIK + PSDP scales with Õ(1/ε2). To the best of our knowledge, this is the first computationally efficient
approach that gives Õ(1/ε2) sample complexity for reward-based reinforcement learning in BMDPs (without reachability).

C. Details for Experiments
In this section, we give the details of the experiments. We provide the full code in the supplementary material.

6This result does not immediately follow from prior work (Misra et al., 2020) because it allows for an (α, ε)-policy cover with ε > 0;
previous work only handles the case where ε = 0.

14



Representation Learning with Multi-Step Inverse Kinematics

Environment. We adopt the CombLock environment from Misra et al. (2020); Zhang et al. (2022b), which is parameterized
by the horizon H and number of actions A = 10. At each layer h ∈ [H], there are N = 3 states sh,1, sh,2, sh,3 ∈ Sh, where
sh,1, sh,2 are “good” states and sh,3 is a “bad” terminal state. For each layer h ∈ [H], there exists a pair of “good” actions
uh,1, uh,2 ∈ A such that taking action uh,j in state sh,j (for j ∈ {1,2}) leads to one of the good states {sh+1,1, sh+1,2} at
next layer with equal probability. All actions ah /∈ {uh,1, uh,2} lead to the bad state sh+1,3 deterministically. The sequences
of good actions u1∶H,1 and u1∶H,2 are sampled uniformly at random from the set of actions A when the environment is
initialized and are unknown to the learner.

For h = H , the agent receives a reward of 1 if action uH,j is taken in state sH,j (for j ∈ {1,2}), and receives reward of 0
otherwise. For h <H , the agent receives an anti-shaped reward of 0.1 for choosing any action ah ≠ uh,j in state sh,j , for
j ∈ {1,2}, and receives a reward of 0 otherwise (in particular, the agent never receives a reward in the bad state sh,3). This
anti-shaped reward encourages the agent to take actions that lead to the bad state sh+1,3, from which it is not possible to
reach the good states {sH,1, sH,2} at layer H and achieve the optimal reward of 1.

The agent does not observe the states {sh} directly, and instead receives observations {xh}. For each h, the observation xh
is a d-dimensional vector, where d ∶= 2⌈log2(H+N+1)⌉, obtained by concatenating the one-hot vector of the latent state sh
and the one hot vector of the layer index h, followed by adding noise sampled from N (0,0.1) in one dimension, padding
with zeros if necessary, and multiplying with a Hadamard matrix. Strictly speaking, the CombLock environment is more
challenging than a Block MDP, since two latent states can emit the same observation due to the addition of the Gaussian
noise in the observation process.

Since the good actions {uh,1, uh,2}h∈[H] are not known to the agent, deliberate exploration is required to learn a policy
that that maximizes the reward function (note it is only possible achieve reward 1 if the agent selects a good action for
all h ∈ [H]). For example, when the horizon is set to H = 100, the probability of finding the optimal policy through
naive uniform exploration is 10−100. In addition, representation learning is required to recover the latent state sh from the
observation xh at each layer, with the best decoder depending on the layer h.

Implementation of MusIK. We use MusIK to learn a policy cover that we then use in PSDP to find a near-optimal policy in
the CombLock environment. In this environment, the optimal policy cover can be learned by composing optimal policy
covers at each layer (though this is not true in general, many problems share this property). We follow an approach taken
with HOMER in (Misra et al., 2020), and take advantage of this composability property to implement a more sample-efficient
version of MusIK, where during the call to the IKDP subroutine at layer h, we only learn f̂ (h−1), ϕ̂(h−1) (i.e. the IKDP for-loop
stops at t = h − 1); this is exactly what was done in (Misra et al., 2020). This version of MusIK, which we name MusIK.comp,
is displayed in Algorithm 5 (we write the full algorithm without a reference to an external (IKDP) subroutine).

We use Φ ∶= {ϕW ∶ x↦ argmaxi∈[N][Wx]i ∣W ∈ RN×d} for the decoder class, where we recall that N is the number of
latent states per layer in the CombLock environment—this is exactly the same decoder class as the one used by (Misra et al.,
2020) for HOMER. Given the observation process in the CombLock environment, there exists a matrixW⋆ ∈ RN×d such that the
true decoder ϕ⋆ is given by ϕW⋆ . To learnW⋆, we use the set of differentiable maps Φ′ ∶= {x↦ softmax(Wx) ∣W ∈ RN×d}
during training (this is reflected in the objective in the next display). Further, we make a slight (empirically-motivated)
modification to the conditional density estimation problem in Line 7 of IKDP, where we instead solve

f̂ (h−1), ψ̂(h−1) ← argmax
f ∶X×[N]→∆(A),ψ∈Φ′

∑
(ah,xh−1,xh)∈D

(h−1)

log(
N

∑
i=1

f(ah−1 ∣ xh−1, i) ⋅ [ψ(xh)]i) . (4)

Compared to the original objective of IKDP in Line 7 of Algorithm 2, we no longer need to predict the index ih−1 of the
future roll-out policies (since the for-loop of IKDP now stops at t = h− 1, there are no future roll-outs). Another difference is
that we do not use a decoder at layer h − 1; we use f(a ∣ x, j) instead of f(a ∣ ϕ(x), j) (this helps with the training). For
each j ∈ [N], we instantiate f(⋅ ∣ ⋅, j) with a two-layer neural network with tanh activation, input dimension d and output
dimension A, where the output is pushed through a softmax so that f(⋅ ∣ x, j) is a distribution over actions for any x ∈ X .
We use Adam for the optimization problem in (6). We specify the choices of hyperparameters in the sequel.

With ψ̂(h−1) as in (6), the learned decoder is given by ϕ̂(h−1)(x) ∶= argmaxi∈[N][ψ̂(h−1)(x)]i. Further, for f̂ (h−1) as in (6),
the hth layer policy cover Ψ(h) = {π̂(j,h)}j∈[N] constructed by MusIK.comp is essentially given by:

π̂(j,h) = π̂ ○h−1 â(j,h−1), where π̂ ∈ argmax
π∈Ψ(h−1)

Pπ○h−1πunif [ϕ̂(h−1)(xh) = j] , (5)
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and â(j,h−1)(x) ∶= argmaxa∈A f̂
(h−1)(a ∣ x, j). That is, the policy π̂(j,h) is the composition of the best partial pol-

icy π̂ among the partial policies in Ψ(h−1) (the policy cover at the previous layer) and the best action at layer h − 1
to maximize to probability of reaching the ‘abstract state’ j ∈ [N]. Technically, computing π̂ requires estimating
Pπ○h−1πunif [ϕ̂(h−1)(xh) = j], for all π ∈ Ψ(h−1). For this, we reuse the datasetD(h−1) from (8) and solve another conditional
density estimation problem—see (9) in Algorithm 57.

PSDP implementation. The only modification we make to the PSDP algorithm is that we use f(a ∣ x) instead of f(a ∣ ϕ(x))
in the objective (6) (i.e. we do not use a decoder). We instantiate f(⋅ ∣ ⋅)with a two-layer neural network with input dimension
d, hidden dimension of 400, and output dimension of 1. We use the tanh activation function at all layers.

Hyper-parameters. For each j ∈ [N], we instantiate f(⋅ ∣ ⋅, j) in (8) with a two-layer neural network with tanh activation,
input dimension d, hidden dimension of size Nhidden, and output dimension A, where the output is run through the softmax
activation function (with temperature 1) so that f(⋅ ∣ x, j) is a distribution over actions for any x ∈ X . We also instantiate
g(⋅ ∣ ⋅) in (9) with a two-layer neural network with tanh activation. input dimension N , hidden dimension of size 400, and
output dimension N , where the output is pushed through a softmax (with temperature 1) so that g(⋅ ∣ j) is a distribution over
[N] for any j ∈ [N]. For the choice of hidden size Nhidden, we searched over the grid {100,200,400}. The results reported
in Figure 1 are for Nhidden = 400.

We optimize the parameters of (f, θ) [resp. g] in (8) [resp. (9)] using Adam with the default parameters in PyTorch. We use a
batch size of min(n,Nbatch), where n is as in Algorithm 5, and perform Nupdate gradient updates. For the batch size Nbatch

and number of updates Nupdates, we searched over the girds {512,1024,2048,4096,8196} and {64,128,256}, respectively.
The results reported in Figure 1 are for Nbatch = 8196 and Nupdates = 128.

Baselines. As baselines, we use HOMER (Misra et al., 2020) and BRIEE (Zhang et al., 2022b). Amongst provably efficient
algorithms, these methods are known to have the best empirical performance (Zhang et al., 2022b) on the CombLock
environment. The HOMER algorithm has the same structure as MusIK: it first learns a policy cover, then uses the cover within
PSDP to learn a near-optimal policy. The BRIEE algorithm does not explicitly learn a policy cover, but rather interleaves
exploration and exploitation using optimism. We do not reproduce BRIEE and HOMER, and instead report the results from
Zhang et al. (2022b).

7Technically, the solution of the conditional estimation problem in (9) does not yield an estimator of Pπ○h−1πunif [ϕ̂(h−1)(xh) = j] per
se. But it gives us a proxy for a function whose argmax π̂ in (7).
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Algorithm 5 MusIK.comp: Variant of MusIK for composable policy covers (version of MusIK used in the experiments).
Require:

• Dimension of the observation space d.

• Number of latent states per layer N .

• Number of samples n.

1: Set Ψ(1) = {πunif, . . . , πunif} with ∣Ψ(1)∣ = N .
2: for h = 2, . . . ,H do
3: D(h) ← ∅.
4: Let ι(h−1) ∶ Ψ(h−1) → [N] be any one-to-one mapping.

/* Collect data by rolling in with policy cover */

5: for n times do
6: Sample π̂ ∼ unif(Ψ(h−1)).
7: Sample (xh−1,ah−1,xh) ∼ π̂ ○h−1 πunif.
8: D(h−1) ← D(h−1) ∪ {(ι(h−1)(π̂),ah−1,xh−1,xh)}.

/* Inverse kinematics */

9: For Φ′ ∶= {x↦ softmax(Wx) ∣W ∈ RN×d}, solve

f̂ (h−1), ψ̂(h−1) ← argmax
f ∶X×[N]→∆(A),ψ∈Φ′

∑
(−,a,x,x′)∈D(h−1)

log
⎛
⎝ ∑j∈[N]

f(a ∣ x, j) ⋅ [ψ(x′)]j
⎞
⎠
. (6)

/* Inverse Kinematics to learn associations between policies at subsequent layers */

10: Solve

ĝ(h−1) ← argmax
g∶[N]→∆([N])

∑
(i,−,−,x′)∈D(h−1)

log g
⎛
⎝
i
RRRRRRRRRRR
argmax
j∈[N]

[ψ̂(h−1)(x′)]j
⎞
⎠
. (7)

/* Update partial policy cover */

11: For each j ∈ [S], define

â(j,h−1)(x) = argmax
a∈A

f̂ (h−1)(a ∣ x, j), x ∈ Xt.

ι̂(j,h−1)(x) = argmax
i∈[N]

ĝ(h−1)(i ∣ j).

12: For each j ∈ [S], define π̂(j,h) ∈ Π1∶h−1
M via

π̂(j,h)(xτ) ∶=
⎧⎪⎪⎨⎪⎪⎩

â(j,h−1)(xτ), τ = h − 1,
π̂(ι̂

(j,h−1),h−1)(xτ), τ ∈ [h − 2],
xτ ∈ Xτ .

13: Define Ψ(h) = {π̂(j,h) ∶ j ∈ [N]} /* Policy cover for layer h. */

14: Return: Policy covers Ψ(1), . . . ,Ψ(H).
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Part II

Analysis
D. Organization
Part II of the appendix contains the proof of our main result, Theorem 3.2, as well as other proofs. This section is organized
as follows.

• First, in Appendix E, we give an informal overview of the analysis of Theorem 3.2, using the tools introduced in
Section 4 as a starting point. In particular:

– Appendix E.1 introduces and analyzes a simplified version of MusIK intended for tabular reinforcement learning
as a warm-up exercise.

– Appendix E.2 builds on this development to showcase the main ideas behind the proof of Theorem 3.2.

• Appendix F provides proofs for the structural results introduced in Section 4.

• Appendix G contains proofs for the tabular warm-up exercise in Appendix E

• Appendix H contains the proof of our main result, Theorem 3.2. For background on the key ideas, we recommend
reading the overview in Appendix E.

• Appendix I contains proofs for the extensions to reward-based RL in Appendix B.

E. Overview of Analysis
In this section, we give an overview of the analysis of our main result, Theorem 3.2, with the full proof deferred to
Appendix H. First, in Appendix E.1 we show how to analyze a simplified version of MusIK for the tabular setting in which
the state sh is directly observed. Then, in Appendix E.2, we build on these developments to give a proof sketch for the full
Block MDP setting.

E.1. Warm-Up: Multi-Step Inverse Kinematics for Tabular MDPs

Algorithm 6 MusIK.Tab: Multi-Step Inverse Kinematics (tabular variant)
Require: Number of samples n.

1: Set Ψ(1) = ∅.
2: for h = 2 . . . ,H do
3: Let Ψ(h) = IKDP.Tab(Ψ(1), . . . ,Ψ(h−1), n). // Algorithm 7.

4: Return: Policy covers Ψ(1), . . . ,Ψ(H).

In this section, we use the extended BMDP, truncated policy class, and relevant structural results introduced in prequel to
analyze a simplified version of MusIK for the tabular setting in which the state sh is directly observed (a special case of
the BMDP in which X = S and xh = sh almost surely). The tabular setting preserves the most important challenges in
removing reachability, and will serve as a useful warm-up exercise for the full BMDP setting. Our analysis will also give a
taste for how the multi-step inverse kinematics objective in IKDP (Line 7) allows one to approximately implement dynamic
programming.

MusIK and IKDP for tabular MDPs. Algorithm 6 (MusIK.Tab) and Algorithm 7 (IKDP.Tab) are simplified variants of
MusIK and IKDP tailored to the tabular setting. MusIK.Tab is identical to MusIK, except that the subroutine IKDP is replaced
by IKDP.Tab. IKDP.Tab has the same structure as IKDP, but does not require access to a decoder class Φ, since the states
are observed directly. The algorithm takes advantage of a slightly simplified multi-step inverse kinematics objective (Line 7
of Algorithm 7) which involves directly predicting actions based on the latent states. Recall that for iteration t ∈ [h − 1],

18



Representation Learning with Multi-Step Inverse Kinematics

the full version of IKDP uses observations to predict pairs (at, it), where at is the action played at layer t and it ∈ [S] is
the (random) index of the partial policy executed after layer t. IKDP.Tab does not require randomizing over the index it,
and instead solves a separate regression problem for each state i ∈ [S] (representing the state being targeted at layer h),
predicting only the action at; we will highlight the need for the randomization over indices it when we return to the BMDP
setting in the sequel (Appendix E.2).

The following theorem, an analogue of Theorem 3.2 for tabular MDPs, provides the main guarantee for MusIK.Tab.

Theorem E.1 (Main theorem for MusIK.Tab). Let ε, δ ∈ (0,1) be given, and let n ≥ 1 be chosen such that

n ≥
cA2S6H2 (S2A logn + log(SH2/δ))

ε2
, (8)

for some absolute constant c > 0 independent of all problem parameters. Then, with probability at least 1− δ, the collections
Ψ(1), . . . ,Ψ(H) produced by MusIK.Tab are (1/4, ε)-policy covers for layers 1 through H .

Analysis by induction. To prove Theorem E.1, we proceed by induction over the layers h = 1, . . . ,H . Leveraging the
extended MDP and truncated policy class, we will show that for each layer h ∈ [H], if the collections Ψ(1), . . . ,Ψ(h−1)

produced by IKDP.Tab have the property that

Ψ(1), . . . ,Ψ(h−1) are (1/2, ϵ)-policy covers relative to Πϵ inM for layers 1 through h − 1, (9)

then with high probability, the collection Ψh produced by IKDP.Tab(Ψ1∶h−1, n) will be a (1/2, ϵ)-policy cover relative to
Πϵ inM for layer h. Formally, we will prove the following result.

Theorem E.2 (Main theorem for IKDP.Tab). Let ϵ, δ ∈ (0,1) and h ∈ [H] be given and define εstat(n, δ′) ∶=√
n−1(S2A logn + log(1/δ′)). Assume that:

1. IKDP.Tab is invoked with Ψ(1), . . . ,Ψ(h−1) satisfying Eq. (11).

2. The policies in Ψ(1), . . . ,Ψ(h−1) never take the terminal action a.

3. The parameter n is chosen such that 8AS2HC ⋅ εstat(n, δ
SH2 ) ≤ ϵ for some absolute constant C > 0 independent of

all problem parameters.

Then, with probability at least 1 − δ
H

, the collection Ψ(h) produced by IKDP.Tab(Ψ(1), . . . ,Ψ(h−1), n) is an (1/2, ϵ)-policy
cover relative to Πϵ inM for layer h. In addition, Ψ(h) ⊆ Π1∶h−1

M .

With this result in hand, the proof of Theorem E.1 follows swiftly.

Proof of Theorem E.1. Let δ, ε ∈ (0,1) be given and let ϵ ∶= ε/(2S). Let εstat(⋅, ⋅) and C be as in Theorem E.2; here
C is an absolute constant independent of all problem parameters. Let Eh denote the event that IKDP.Tab succeeds as in
Theorem E.2 for layer h ∈ [H] with parameters δ and ϵ, and define E ∶= ⋂h∈[H] Eh. Observe that by Theorem E.2 and
the union bound, we have P[E] ≥ 1 − δ. For n large enough such that 8AS2HC ⋅ εstat(n, δ

SH2 ) ≤ ϵ (which is implied by
the condition on n in the theorem’s statement for c = 25C), Theorem E.2 implies that under E , the output Ψ(1), . . . ,Ψ(H)

of MusIK are (1/2, ϵ)-policy covers relative to Πϵ in M for layers 1 to H , respectively. We conclude by appealing to
Lemma 4.3, which now implies that Ψ(1), . . . ,Ψ(H) are (1/4, ε)-policy covers relative to ΠM inM.

We now compute the total number of trajectories used by the algorithm. Recall that when invoked with parameter n ∈ N,
MusIK.Tab invokes H − 1 instances of IKDP.Tab, each with parameter n. Each instance of IKDP.Tab uses n trajectories for
each layer t ∈ [h − 1] and i ∈ [S] (see Lines 1 and 3 of Algorithm 7), so the total number of trajectories used by MusIK.Tab
is at most

Õ(1) ⋅
A2S7H4 (S2A + log(∣Φ∣SH2/δ))

ε2
.
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Algorithm 7 IKDP.Tab ∶ Inverse Kinematics for Dynamic Programming (tabular variant)
Require:

• Approximate covers Ψ(1), . . . ,Ψ(h−1) for layers 1 to h − 1, where Ψ(t) ⊆ Π1∶t−1
M .

• Number of samples n.

1: for t = h − 1, . . . ,1 do
2: D(t) ← ∅.

/* Collect data by rolling in with policy cover and rolling out with partial policy */

3: for i ∈ [S] do
4: for n times do
5: Sample (st,at,sh) ∼ unif(Ψ(t)) ○t πunif ○t+1 π̂(i,t+1).
6: D(t) ← D(t) ∪ {(at,st,sh)}.

/* Inverse kinematics */

7:

f̂ (i,t) ∈ argmaxf ∶[S]2→∆A
∑

(a,s,s′)∈D(t)

log f(a ∣ s, s′). (10)

/* Update partial policy cover */

8: Define â(i,t)(s) ∈ argmaxa∈A f̂
(i,t)(a ∣ s, i).

9: Define π̂(i,t) ∈ Πt∶h−1M via

π̂(i,t)(s) ∶=
⎧⎪⎪⎨⎪⎪⎩

â(i,t)(s), s ∈ St,
π̂(i,τ)(s), s ∈ Sτ , τ ∈ [t + 1 .. h − 1].

(11)

10: Return: Policy cover Ψ(h) = {π̂(i,1) ∶ i ∈ [S]} ⊆ Π1∶h−1
M for layer h.

E.1.1. PROOF SKETCH FOR THEOREM E.2

We now sketch the proof of Theorem E.2. The most important feature of the proof is that the guarantee on which we induct,
Eq. (11), is stated with respect to the extended MDP and truncated policy class. We work in the extended MDP throughout
the proof, and only pass back to the original MDPM and full policy class ΠM in the proof of Theorem E.1 (see above) once
the induction is completed.

Let h ∈ [H] and ϵ > 0 be fixed, and assume that Eq. (11) holds (that is, Ψ(1), . . . ,Ψ(h−1) are (1/2, ϵ)-policy covers relative
to Πϵ inM for layers 1 through h− 1). We will prove that the collection Ψ(h) produced by IKDP.Tab(Ψ(1), . . . ,Ψ(h−1), n)
is an (1/2, ϵ)-policy cover relative to Πϵ inM for layer h. We first argue that proving Theorem E.2 reduces to showing the
following lemma. To state the result, recall that Sh,ϵ ∶= {s ∈ Sh ∶maxπ∈Πϵ

d̄π(s) ≥ ϵ} is the set of states that are ϵ-reachable
by Πϵ inM.

Lemma E.1. Assuming points 1. and 2. in Theorem E.2 hold, and if n is chosen large enough such that 8AS2HC ⋅
εstat(n, δ

SH2 ) ≤ ϵ for some absolute constant C > 0 independent of all problem parameters, then for all t ∈ [h − 1], with
probability at least 1 − δ/H2, the learned partial policies {π̂(i,t)}

i∈[S]
in IKDP.Tab have the property that for all i ∈ Sh,ϵ,

d̄π
(i)
⋆
○t+1π̂

(i,t+1)

(i) − d̄π
(i)
⋆
○tπ̂

(i,t)

(i) ≤ ϵ

2H
, where π

(i)
⋆ ∈ argmax

π∈Πϵ

d̄π(i). (12)

For each i ∈ Sh,ϵ, π(i)⋆ in Eq. (14) denotes the policy in the truncated class Πϵ that maximizes the probability of visiting i at
layer h. Informally, Eq. (14) states that if we execute π(i)⋆ up to layer t − 1 (inclusive), then switch to the learned partial
policy π̂(i,t) for the remaining steps (i.e. execute π(i)⋆ ○t π̂(i,t)), then the probability of reaching state i in layer h is close to
what is achieved by running π(i)⋆ ○t+1 π̂(i,t). In other words, π̂(i,t) is near-optimal in an average-case sense. We now show
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that Theorem E.2 follows from Lemma E.1.

Proof of Theorem E.2. For t ∈ [h − 1], let Et denote the success event of Lemma E.1. Let us condition on the event
E ∶= ⋂t∈[h−1] Et. Fix i ∈ Sh,ϵ. Summing the left-hand side of Eq. (14) over t = 1, . . . , h − 1 for i = i and telescoping, we have
that

d̄π̂
(i,1)

(i) ≥max
π∈Πϵ

d̄π(i) − ϵ
2
≥ 1

2
max
π∈Πϵ

d̄π(i), (13)

where the last inequality follows by the fact that maxπ∈Πϵ
d̄π(i) ≥ ϵ (since i ∈ Sh,ϵ). Since this conclusion holds uniformly

for all i ∈ Sh,ϵ, we have that under the event E , the output Ψ(h) ∶= {π̂(i,1) ∶ i ∈ [S]} of Algorithm 7 is a (1/2, ϵ)-policy cover
relative to Πϵ for layer h. Finally, by a union bound, we have P[E] ≥ 1 − P[Ec] ≥ 1 −∑t∈[h−1]∑i∈[S] P[(E

(i)
t )c] ≥ 1 − δ/H ,

which completes the proof.

Remark E.1. It is also possible to derive Eq. (15) from Lemma E.1 using the performance difference lemma (Kakade,
2003) with a specific state-action value function; this perspective will be useful when we generalize our analysis from
the tabular to the BMDP setting. To see how the performance difference lemma can be applied to obtain Eq. (15), fix i ∈ [S]
and consider the state-action value function (Q-function) at layer t with respect to the partial policy π̂(i,t) ∈ Πt∶h−1M for
the MDPM with rewards r(i)τ (s) = 1{s = i} ⋅ 1{τ = h}, for τ ∈ [h]; that is,

Qπ̂
(i,t)

t (s, a; i) = r(i)t (s) +E
π̂(i,t) [

h

∑
τ=t+1

r(i)τ (sτ) ∣ st = s,at = a] . (14)

Thanks to the choice of reward functions, we have

Qπ̂
(i,t)

t (s, a; i) = Pπ̂
(i,t+1)

[sh = i ∣ st = s,at = a], (15)
and thus

d̄π̂
(i,1)

(i) − d̄π
(i)
⋆ (i) = E [Qπ̂

(i,t)

1 (s1, π̂(i,t)(s1); i) −Qπ
(i)
⋆

1 (s1, π(i)⋆ (s1); i)] . (16)

Thus, by the performance difference lemma, the right-hand side of (18) can be bounded by

h−1

∑
t=1

E
π
(i)
⋆ [Qπ̂

(i,t)

t (st, π(i)⋆ (st); i) −Qπ̂
(i,t)

t (st, π̂(i,t)(st); i)] . (17)

Thanks to Eq. (17), the quantity in (19) is simply ∑h−1t=1 (d̄π
(i)
⋆
○t+1π̂

(i,t+1)(i) − d̄π
(i)
⋆
○tπ̂

(i,t)(i)), which can directly be bounded
using Lemma E.1 to arrive at the conclusion in Eq. (15).

It remains to prove Lemma E.1. To prove the result, we first use the multi-step inverse kinematics objective to establish a
certain “local” optimality guarantee. We combine this with the assumption that Ψ(1), . . . ,Ψ(h−1) are policy covers, along
with certain structural properties of the extended MDPM, to conclude the result.

A local optimality guarantee from multi-step inverse kinematics. Fix 1 ≤ t < h and a state i ∈ Sh,ϵ, and let {π̂(i,t+1) ∶
i ∈ [S]} be the partial policies constructed by IKDP.Tab at layer t + 1. As the first step toward constructing the policy
π̂(i,t), IKDP.Tab computes an estimator f̂ (i,t) ∶ [S]2 → ∆(A) by solving the multi-step inverse kinematics objective in
Line 7. This entails predicting the probability of the action at conditioned on the states st and sh, under the process
(st,at,sh) ∼ Punif(Ψ(t))○tπunif○t+1π̂

(i,t+1)

.8 The following result gives a generalization guarantee for f̂ (i,t) under this process.

Lemma E.2 (Conditional density estimation guarantee). Fix t ∈ [h − 1]. Let n ≥ 1 and δ ∈ (0,1) be given, and define
εstat(n, δ) ∶= n−1/2 ⋅

√
S2A logn + log(1/δ). Assume that the policies in Ψ(t) never take the terminal action a. Then, there

exists an absolute constant C > 0 (independent of t, h, and other problem parameters) such that for all i ∈ [S] the solution
f̂ (i,t) to the conditional density estimation problem in Line 7 of Algorithm 7 has that with probability at least 1 − δ,

E
unif(Ψ(t))○tπunif○t+1π̂

(i,t+1)

[∑
a∈A

(f̂ (i,t)(a ∣ st,sh) − P (i,t)bayes(a ∣ st,sh))
2
] ≤ C2 ⋅ ε2stat(n, δ), (18)

8Note that πunif denotes the policy that samples at uniformly from A, not A.
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where

P
(i,t)
bayes(a ∣ s, s

′) ∶= P
π̂(i,t+1)[sh = s′ ∣ st = s,at = a]

Z(i,t)(s, s′) , for Z(i,t)(s, s′) ∶= ∑
a′∈A

P
π̂(i,t+1)[sh = s′ ∣ st = s,at = a′]. (19)

Lemma E.2 is a consequence of a standard generalization bound for conditional density estimation. The Bayes-
optimal regression function P

(i,t)
bayes represents the true conditional probability for at under the process (st,at,sh) ∼

Punif(Ψ(t))○tπunif○t+1π̂
(i,t+1)

. This quantity is useful as a proxy for another quantity we refer to as forward kinematics:

P
(t)
FK (i ∣ s, a) ∶= P

π̂(i,t+1)[sh = i ∣ st = s,at = a]. (20)

The utility of forward kinematics is somewhat more immediate: It represents the probability that we reach state i at layer h
if we start from st = s, take action at = a, and then roll out with π̂(i,t+1); equivalently P (t)FK (i ∣ s, a) is the Q-function for
the reward function I{sh = i}—see Eq. (17). Hence, by the principle of dynamic programming, it is natural to choose

π̂(i,t)(s) = argmax
a∈A

P
(t)
FK (i ∣ s, a). (21)

IKDP.Tab does not directly compute the forward kinematics, and hence cannot directly define π̂(i,t) based on Eq. (23).
Instead, we compute

π̂(i,t)(s) = argmax
a∈A

P
(i,t)
bayes(a ∣ s, i). (22)

To see that this is equivalent, observe that P (i,t)bayes(a ∣ s, i) is a ratio of two quantities: The numerator is exactly P (t)FK (i ∣ s, a),
and the denominator is a “constant” whose value does not depend on a. With some manipulation, we can use this fact
to relate suboptimality with respect to P (t)FK to the regression error in Eq. (20), leading to the following “local” optimality
guarantee for π̂(i,t) (see Appendix G.2 for a proof).

Lemma E.3 (Local optimality guarantee). Consider the setting of Theorem E.2 and let t ∈ [h − 1]. Then, there is an event
Et of probability at least 1 − δ/H2 under which the learned partial policies {π̂(i,t)}

i∈[S]
and {π̂(i,t+1)}i∈[S] in IKDP.Tab

have the property that for all i ∈ Sh,

∑
π∈Ψ(t)

d̄π(st) (max
a∈A

P
(t)
FK (i ∣ st, a) − P

(t)
FK (i ∣ st, π̂(i,t)(st))) ≤ 2SACεstat(n, δ/(SH2)), ∀st ∈ St, (23)

where εstat(⋅, ⋅) and C > 0 are as in Lemma E.2; here C > 0 is an absolute constant independent of problem parameters.

Remark E.2. For the tabular setting where sh is observed, it is also possible to estimate the function P (t)FK (i ∣ s, a) directly.
However, in the BDMP setting, estimating forward kinematics is not possible because states are not observed. We will see
that in spite of this, the multi-step inverse kinematics objective used in IKDP still serves as a useful proxy for the forward
kinematics.

We now use Lemma E.3 to prove Lemma E.1.

Proof of Lemma E.1. To prove Lemma E.1, we translate the local suboptimality guarantee in Eq. (25) to the global
guarantee in Eq. (14). Fix i ∈ Sh,ϵ and let us abbreviate ε′stat ≡ C ⋅ εstat(n, δ/(SH2)), where εstat(⋅, ⋅) and C > 0 are as in
Lemma E.2. Condition on the event Et of Lemma E.3. We begin by writing the left-hand side of Eq. (14) in a form that is
closer to the left-hand side of Eq. (25):

d̄π
(i)
⋆
○t+1π̂

(i,t+1)

(i) − d̄π
(i)
⋆
○tπ̂

(i,t)

(i) = ∑
s∈St∪{tt}

d̄π
(i)
⋆ (s) ⋅ (P (t)FK (i ∣ s, π

(i)
⋆ (s)) − P (t)FK (i ∣ s, π̂(i,t)(s))) , (24)

where we use the convention that π̂(i,t)(tt) = a; this equality follows by the definition of P (t)FK in Eq. (22). Now, we bound
the right-hand side of Eq. (26) in terms of the left-hand side of Eq. (25) by using that Ψ(t) is a relative policy cover. In
particular, since Ψ(t) is an (1/2, ϵ)-policy cover relative to Πϵ at layer t, and since π(i)⋆ ∈ Πϵ, we have that for all st ∈ St,ϵ,

d̄π
(i)
⋆ (st) (P (t)FK (i ∣ st, π

(i)
⋆ (st)) − P (t)FK (i ∣ st, π̂(i,t)(st)))
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≤ d̄π
(i)
⋆ (st)(max

a∈A
P
(t)
FK (i ∣ st, a) − P

(t)
FK (i ∣ st, π̂(i,t)(st))) ,

= d̄π
(i)
⋆ (st) (max

a∈A
P
(t)
FK (i ∣ st, a) − P

(t)
FK (i ∣ st, π̂(i,t)(st))) , (25)

≤ 2 ∑
π∈Ψ(t)

d̄π(st) (max
a∈A

P
(t)
FK (i ∣ st, a) − P

(t)
FK (i ∣ st, π̂(i,t)(st))) ,

≤ 4SAε′stat, (26)

where Eq. (27) follows from the fact P (t)FK (i ∣ st,a) = 0 (since a is the action leading to the terminal state tt+1 from any state
at layer t), so that maxa∈A P

(t)
FK (i ∣ st, a) = maxa∈A P

(t)
FK (i ∣ st, a); Eq. (28) follows from Eq. (25) in Lemma E.3. On the

other hand, by Lemma 4.1, we have that for all st ∈ St ∖ St,ϵ, π(i)⋆ (st) = a. Therefore,

∀st ∈St ∖St,ϵ, P
(t)
FK (i ∣ st, π

(i)
⋆ (st)) = P (t)FK (i ∣ st,a) = 0. (27)

Using this together with the fact that P (t)FK (i ∣ st, π̂(i,t)(st)) ≥ 0 and Eq. (28) implies that

∀st ∈St, d̄π
(i)
⋆ (st) (P (t)FK (i ∣ st, π

(i)
⋆ (st)) − P (t)FK (i ∣ st, π̂(i,t)(st))) ≤ 4SAε′stat. (28)

Now, by choosing n large enough such that 8HS2ACεstat(n, δ
SH2 ) ≤ ϵ (as in the lemma’s statement), we have

8HS2Aε′stat ≤ ϵ by definition of ε′stat. Using this and summing (30) over st ∈ St in (30) we have that

∑
s∈St∪{tt}

d̄π
(i)
⋆ (s) ⋅ (P (t)FK (i ∣ s, π

(i)
⋆ (s)) − P (t)FK (i ∣ s, π̂(i,t)(s))) ≤

ϵ

2H
, (29)

where we have used that P (t)FK (i ∣ tt, ⋅) = 0.

E.2. From Tabular MDPs to Block MDPs

We now give an overview of the proof of Theorem 3.2. The proof builds on the techniques in Appendix E.1 and follows
the same structure, but requires non-trivial changes to accommodate the general BMDP setting. We highlight the most
important similarities and differences below, with the full proof deferred to Appendix H.

Recall that on the algorithmic side, the main change in moving from the tabular setting to the general BMDP setting is that
the latent states sh are unobserved. To address this, the multi-step inverse kinematics objective in IKDP (Line 7) differs from
the simplified version in IKDP.Tab by incorporating estimation of a decoder ϕ̂(t) ∈ Φ at each step t ∈ [h− 1]. Here, a critical
property of the multi-step inverse kinematics objective is that the Bayes-optimal regression function (the BMDP analogue
of Eq. (21)) only depends on the observations xt and xh through ϕ⋆(xt) and ϕ⋆(xh), which ensures that the conditional
density estimation problem in Line 7 is always well-specified.

The need for non-Markovian policies. IKDP also differs from IKDP.Tab in how we construct the partial policy collection
{π̂(i,t)}i∈[S] for layer t ∈ [h − 1] from the collection {π̂(i,t+1)}i∈[S] learned at layer t + 1. The construction in Line 9 of
IKDP, as discussed in Section 3.2, leads to policies that are non-Markovian (that is, history-dependent). This complicates the
analysis because we cannot appeal to the performance difference lemma in the same fashion Appendix E.1 (see Remark E.1),
where it was used to relate the local suboptimality for each policy to global suboptimality. Before giving an overview for
how we overcome this challenge, we first give a more detailed explanation as to why IKDP builds non-Markovian policies.

Fix h ∈ [H]. Recall that in the tabular setting, for each backward step t ∈ [h − 1], each partial policy π̂(i,t) constructed
in IKDP.Tab is designed to target the state i ∈ Sh. In the BMDP setting, the states sh are unobserved, and it is no longer
the case that the partial policy π̂(i,t) ∈ Πt∶h−1NM constructed in IKDP targets the state i ∈ Sh. Indeed, while we will show that
each partial policy π̂(i,t) (approximately) targets some state in Sh, the algorithm has no way of knowing which one.9 An
additional challenge, which motivates the composition rule in Line 9 of IKDP, is that for each i ∈ [S], the suffix policy
π̂(i,t+1) and the one-step policy â(i,t) learned in Line 8 may target different latent states, so it does not suffice to simply

9Unless additional assumptions are added, the latent representation may only be learned up to an unknown permutation.

23



Representation Learning with Multi-Step Inverse Kinematics

construct π̂(i,t) by composing them. This motivates the second key difference between the multi-step inverse kinematics
objectives used in IKDP versus IKDP.Tab. The objective in IKDP predicts both actions and indices of roll-out policies (instead
of just actions, as in the tabular case) in order to learn to associate partial policies at successive layers. In particular, recall
that Line 8 of IKDP defines

(â(i,t)(x), ι̂(i,t)(x)) = argmax
(a,j)

f̂ (t)((a, j) ∣ ϕ̂(t)(x), i), x ∈ Xt.

As described in Section 3.2, one should interpret j = ι̂(i,t)(x) as the most likely (or most closely associated) roll-out policy
π̂(j,t+1) given that the (decoded) latent state at layer h is i ∈ [S] and x ∈ Xt is the current observation at layer t. With this in
mind, the composition rule in Line 9 constructs π̂(i,t) via

π̂(i,t)(xt∶τ) ∶= {
â(i,t)(xt), τ = t, xt ∈ Xt,
π̂(ι̂

(i,t)
(xt),t+1)(xt+1∶τ), τ ∈ [t + 1 .. h − 1], xt∶τ ∈ Xt × ⋅ ⋅ ⋅ ×Xτ .

For layers t + 1, . . . , h − 1, this construction follows the policy π̂(ι̂
(i,t)
(xt),t+1) which—per the discussion above—is most

associated with the decoded state i ∈ [S]. At layer t, we select at = â(i,t)(xt), which maximizes the probability of reaching
the decoded latent state i ∈ [S] when we roll-out with π̂(ι̂

(i,t)
(xt),t+1). The construction, while intuitive, is non-Markovian,

since for layers t + 1 and onward the policy depends on xt through ι̂(i,t)(xt).

Analysis by induction. The proof of Theorem 3.2 follows the same high-level structure as Theorem E.1 (MusIK.Tab), and
we use the same induction strategy: For each layer h ∈ [H], we assume that Ψ(1), . . . ,Ψ(h−1) are approximate policy covers
relative to Πϵ forM, then show that the collection Ψ(h) produced by IKDP(Ψ(1), . . . ,Ψ(h−1),Φ, n) is an approximate cover
with high probability whenever this holds. As with the tabular setting, a key component in our proof is to work with the
extended BMDP and truncated policy class throughout the induction, and only pass back to the original BMDP at the end.

The following result (proven in Appendix H.2) is our main theorem concerning the performance of IKDP, and serves as the
BMDP analogue of Theorem E.2.

Theorem E.3 (Main Theorem for IKDP). Let ϵ, δ ∈ (0,1) and h ∈ [H] be given, and define εstat(n, δ) ∶=
n−1/2

√
S3A logn + log(∣Φ∣/δ). Assume that:

1. IKDP is invoked with Ψ(1), . . . ,Ψ(h−1) satisfying Eq. (11).

2. The policies in Ψ(1), . . . ,Ψ(h−1) never take the terminal action a.

3. The parameter n is chosen such that 8AS4HCεstat(n, δ
H2 ) ≤ ϵ, for some absolute constant C > 0 independent of h

and other problem parameters.

Then, with probability at least 1 − δ
H

, the collection Ψ(h) produced by IKDP(Ψ(1), . . . ,Ψ(h−1),Φ, n) is an (1/2, ϵ)-policy
cover relative to Πϵ inM for layer h. In addition, Ψ(h) ⊆ Π1∶h−1

NM .

We close the section by highlighting some key differences between the proof of this result and its tabular counterpart
(Theorem E.2).

An alternative to Lemma E.1. Recall that in the tabular setting, the proof of Theorem E.2 relied on Lemma E.1 and
the performance difference lemma (see Remark E.1). In the BMDP setting, Lemma E.1 does not necessarily hold since,
unlike in the tabular setting, successive partial policies π̂(i,t) ∈ Πt∶h−1NM and π̂(i,t+1) ∈ Πt+1∶h−1NM may target different states at
layer h despite sharing the same index i ∈ [S]. For this reason, we use a modified version of Lemma E.1, together with a
generalized version of the performance difference lemma.

Lemma E.4 (BMDP counterpart to Lemma E.1). There is an absolute constant C > 0 such that for all t ∈ [h − 1], with
probability at least 1 − δ/H2, the learned partial policies {π̂(i,t)}

i∈[S]
and {π̂(i,t+1)}

i∈[S]
in IKDP have the property that

for all sh ∈ Sh,ϵ, there exists i ∈ [S] such that

0 ≤ ∑
π∈Ψ(t)

d̄π(st)Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; sh) − V π̂
(,t)

t (xt; sh)] ≤ 2S3ACεstat(n, δ
H2 ), ∀st ∈ St, (30)
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where Qπ̂
(j,t+1)

t (xt, a; sh) ∶= P
π̂(j,t)[sh = sh ∣ xt = xt,at = a], V π̂

(i,t)

t (xt; sh) ∶= Qπ̂
(i,t+1)

t (xt, π̂(i,t)(xt); sh), and
εstat(n, δ′) ∶= n−1/2

√
S3A logn + log(∣Φ∣/δ′).

This result is proven in Appendix H.3.3. To see the similarity between Lemma E.4 and Lemma E.1, note that the main
quantity that the latter bounds (i.e. the quantity on the right-hand side of Eq. (14)) can also be written as a difference between
Q; see Remark E.1. Once Lemma E.4 is established, it can be shown to imply Theorem E.3 using a generalized variant of
the performance difference lemma (Lemma H.5).

Establishing Eq. (32) using multi-step inverse kinematics. To show that Eq. (32) holds, we use the structure of the
multi-step inverse kinematics objective in Line 7 of IKDP, as well as the non-Markov policy construction outlined in the
prequel. In particular, we show that the multi-step inverse kinematics objective acts as a proxy for the forward kinematics
given by

Pπ̂
(i,t+1)

[sh = ϕ⋆(xh) ∣ st = ϕ⋆(xt),at = a],

for i ∈ [S], xt ∈ Xt and xh ∈ Xh. We use this to show that up to statistical error, the partial policies {π̂(i,t)}i∈[S] constructed
from {π̂(i,t+1)}i∈[S] i) identify (using observations at layer t) the best action at layer t, and ii) identify the best partial policy
from {π̂(j,t+1)}j∈[S] to switch to from layer t + 1 onwards.

Beyond the multi-step inverse kinematics objective and non-Markov policy construction, the proof of Theorem E.3 uses
the extended BMDP in a similar fashion to the tabular setting. We make use of the fact that for each layer t ∈ [h − 1], the
policies in Πϵ always play the terminal action a on observations emitted from states in St,ϵ, and the generalized performance
difference lemma (Lemma H.5) is specifically designed to take advantage of this. This allows us to “write off” these states
(analogous to Eq. (29) in the proof of Lemma E.1), and use the policy cover property for Ψ(1), . . . ,Ψ(h−1) to control the
error for states in St,ϵ; see Appendix H.3.4 for details. However, there is some added complexity stemming from the
non-Markovian nature of {π̂(i,t)}i∈[S].

F. Proofs for Structural Results for Extended BMDP
In this section, we prove the main structural results concerning the extended BMDP and truncated policy class introduced
in ??. We first recall the definition of the truncated policy class. For ϵ ∈ (0,1), let Π0,ϵ, . . . ,ΠH,ϵ be the policies defined
recursively as follows: Π0,ϵ = ΠM and for all t ∈ [H], π ∈ Πt,ϵ if and only if there exists π′ ∈ Πt−1,ϵ such that for all h ∈ [H],
s ∈ Sh, and x ∈ ϕ−1⋆ (s),

π(x) ∶= { a, if h = t and maxπ̃∈Πt−1,ϵ
d̄π̃(s) < ϵ,

π′(x), otherwise.
(31)

Finally, we let Πϵ ∶= ΠH,ϵ.
The proofs in this section make use of the following lemma.

Lemma F.1. For all h ∈ [H], it holds that

∀s ∈ Sh, max
π∈Πh−1,ϵ

d̄π(s) =max
π∈Πϵ

d̄π(s). (32)

Proof of Lemma F.1. We will show that for all t ∈ [h ..H],

∀s ∈ Sh, max
π∈Πt−1,ϵ

d̄(s) = max
π∈Πt,ϵ

d̄(s). (33)

This implies Eq. (34) by summing both sides of Eq. (35) over t = h, . . . ,H , telescoping, and using that Πϵ = ΠH,ϵ. To prove
the result, let t ∈ [h ..H], s ∈ Sh, and π̃ ∈ argmaxπ′∈Πt−1,ϵ

d̄π
′(s). Further, let π ∈ Πt,ϵ be as in Eq. (33) with π′ = π̃. In this

case, by Eq. (33), we have π̃(x) = π(x), for all x ∈ ϕ−1(s′), s′ ∈ Sτ , and τ ≤ [t − 1]. Using this and the fact that s ∈ Sh and
t ≥ h, we have

max
π̆∈Πt−1,ϵ

d̄π̆(s) = d̄π̃(s) = d̄π(s) ≤ max
π̆∈Πt,ϵ

d̄π̆(s).
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We now show the inequality in the other direction. Let t ∈ [h ..H], s ∈ Sh, and π̃ ∈ argmaxπ̆∈Πt,ϵ
d̄π̆(s). Further, let

π′ ∈ Πt−1,ϵ be as in Eq. (33) for π = π̃. In this case, by Eq. (33), we have π̃(x) = π′(x), for all x ∈ ϕ−1(s′), s′ ∈ Sτ , and
τ ∈ [t − 1]. Using this and the fact that s ∈ Sh and t ≥ h, we have

max
π̆∈Πt,ϵ

d̄π̆(s) = d̄π̃(s) = d̄π
′

(s) ≤ max
π̆∈Πt−1,ϵ

d̄π̆(s).

This shows Eq. (35) and completes the proof.

F.1. Proof of Lemma 4.1

Proof of Lemma 4.1. Fix h ∈ [H]. We proceed by induction on t to show that

∀t ∈ [h ..H],∀π ∈ Πt,ϵ,∃π′ ∈ Πh,ϵ ∶ ∀s ∈ Sh,∀x ∈ ϕ−1⋆ (s), π(x) = π′(x). (34)

For t = h, Eq. (36) holds trivially. Now, we suppose that Eq. (36) holds for t ∈ [h ..H − 1], and show that it holds for t + 1.

By definition of Π
(t+1)

ϵ (Eq. (33)), there exists π̃ ∈ Πt,ϵ such that

∀τ ∈ [t],∀s ∈ Sτ ,∀x ∈ ϕ−1⋆ (s), π(x) = π̃(x). (35)

Now, by the induction hypothesis, there exists π′ ∈ Πh,ϵ such that π̃(x) = π′(x), for all x ∈ ϕ−1⋆ (s) and s ∈ Sh. Combining
this with Eq. (37) and the fact that t ≥ h implies that Eq. (36) holds for t + 1, which concludes the induction.

Now, by instantiating Eq. (36) with t =H and recalling that Πϵ = Π(H)ϵ (by definition), we get that

∀π ∈ Πϵ,∃π′ ∈ Πh,ϵ ∶ ∀s ∈ Sh,∀x ∈ ϕ−1(s), π(x) = π′(x). (36)

By Lemma F.1, this implies that for any s ∈ Sh ∖ Sh,ϵ, max
π∈Π

(h−1)

ϵ

d̄π(s) ≤ ϵ. It follows that for all π′ ∈ Π(h)ϵ and

x ∈ ϕ−1⋆ (s), we have π′(x) = a, by definition of Πh,ϵ; see Eq. (33). This together with Eq. (38) implies that π(x) = a for all
x ∈ ϕ−1⋆ (s) and π ∈ Πϵ, as desired.

F.2. Proof of Lemma 4.2 (Approximation for Truncated Policy Class)

Proof of Lemma 4.2. We will show that for all t ∈ [H], h ∈ [H], and s ∈ Sh,

max
π∈Πt−1,ϵ

d̄π(s) ≤ max
π∈Πt,ϵ

d̄π(s) + ∣St∣ϵ. (37)

With this established, summing Eq. (39) over t, telescoping, and using that ∑t∈[H] ∣St∣ = S implies the desired result.

Let t ∈ [H], h ∈ [H] and s ∈ Sh. Further, let π̃ ∈ argmaxπ∈Πt−1,ϵ
d̄π(s) and let π ∈ Πt,ϵ be as in Eq. (33) for π′ = π̃. First,

suppose that h ≤ t. Then, d̄π(s) = d̄π̃(s) since π∣Xτ ≡ π̃∣Xτ for all τ < t, and so by our choice of π̃ and that π ∈ Πt,ϵ, we
have

max
π̆∈Πt−1,ϵ

d̄π̆(s) = d̄π̃(s) = d̄π(s) ≤ max
π̆∈Πt,ϵ

d̄π̆(s).

Now suppose that h > t. We will use that I) π∣Xτ = π̃∣Xτ , for all τ ≠ t; and II) π(x) = π̃(x), for all x ∈ ϕ−1⋆ (s′) and s′ ∈ St,ϵ,
by definition of St,ϵ and π, and Lemma F.1. We note that I) implies that d̄π̃(s′) = d̄π(s′), for all s′ ∈ St, and the combination

of I) and II) implies that P
π[sh = s ∣ st = s′] = P

π̃[sh = s ∣ st = s′], for all s′ ∈ St,ϵ. Using these facts, we have

d̄π̃(s) = ∑
s′∈St

P
π̃[sh = s ∣ st = s′] ⋅ d̄π̃(s′),

= ∑
s′∈St,ϵ

P
π̃[sh = s ∣ st = s′] ⋅ d̄π̃(s′) + ∑

s′∈St∖St,ϵ

P
π̃[sh = s ∣ st = s′] ⋅ d̄π̃(s′),
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= ∑
s′∈St,ϵ

P
π[sh = s ∣ st = s′] ⋅ d̄π(s′) + ∑

s′∈St∖St,ϵ

P
π̃[sh = s ∣ st = s′] ⋅ d̄π̃(s′),

≤ d̄π(s) + ∑
s′∈St∖St,ϵ

P
π̃[sh = s ∣ st = s′] ⋅ d̄π̃(s′),

≤ d̄π(s) + ∣St∣ϵ, (38)

where the last inequality follows because d̄π̃(s′) ≤ ϵ for all s′ ∈ St ∖ St,ϵ, which follows from the definition of St,ϵ,
Lemma F.1, and π̃ ∈ Πt−1,ϵ. Combining Eq. (40) with the fact that π̃ ∈ argmaxπ∈Πt−1,ϵ

d̄π(s) and π ∈ Πt,ϵ, we have that

max
π̆∈Πt−1,ϵ

d̄π̆(s) = d̄π̃(s) ≤ d̄π(s) + ∣St∣ϵ ≤ max
π̆∈Πt,ϵ

d̄π̆(s) + ∣St∣ϵ.

F.3. Proof of Lemma 4.3

Proof of Lemma 4.3. Let ΠM be as in Lemma 4.2, and note that since ΠM ⊆ ΠM, we have for any s ∈ S,

max
π∈ΠM

dπ(s) ≤max
π∈ΠM

d̄π(s) ≤max
π∈Πϵ

d̄π(s) + Sϵ. (39)

where the last inequality follows by Lemma 4.2. Now, fix s ∈ S such that maxπ∈ΠM d
π(s) ≥ ε. Using Eq. (41) and that

ϵ = ε/(2S), we have maxπ∈Πϵ
d̄π(s) ≥ ε/2 ≥ ϵ. Thus, since Ψ is a (1/2, ϵ)-policy cover relative to Πϵ inM for all layers,

there exists π(s) ∈ Ψ such that

1

2
max
π∈Πϵ

d̄π(s) ≤ d̄π
(s)

(s) = dπ
(s)

(s),

where the equality follows from the assumption that policies in Ψ never take the terminal action a. Combining this inequality
with Eq. (41), we have that

max
π∈ΠM

dπ(s) ≤ 2dπ
(s)

(s) + Sϵ.

Since Sϵ = ε
2
≤ 1

2
maxπ∈ΠM d

π(s), rearranging gives

1

4
max
π∈ΠM

dπ(s) ≤ dπ
(s)

(s),

which concludes the proof.

Remark F.1. The proof of Lemma 4.3 actually gives a result slightly stronger than what is stated in the lemma. Namely,
it suffices for Ψ to be a (1/2, ε/2)-policy cover relative to Πϵ inM (as opposed to a (1/2, ϵ)-policy cover). We state the
weaker result because our analysis of Algorithm 2 does not take advantage of the stronger result.

G. Proofs for Tabular MDPs
G.1. Proof of Lemma E.2 (MLE Guarantee for Tabular MDPs)

To prove a guarantee for the minimizer f̂ (j,t) for the conditional density estimation problem in Line 7 of Algorithm 7, we
first derive the expression of the Bayes-optimal solution of this problem.

Lemma G.1. Let h ∈ [H], t ∈ [h − 1], i ∈ [S], and consider the Bayes-optimal solution P (i,t)bayes of the problem in Line 7 of
Algorithm 7; that is,

P
(i,t)
bayes ∈ argmax

P ∶St×Sh→∆(A×[S])

Eunif(Ψ(t))○tπunif○t+1π̂
(i,t+1)

[logP (at ∣ st,sh)] . (40)
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Then, for any a ∈ A, s ∈ St, and s′ ∈ Sh, P (i,t)bayes satisfies

P
(i,t)
bayes(a ∣ s, s

′) ∶= P
π̂(i,t+1)[sh = s′ ∣ st = s,at = a]

∑a′∈A P
π̂(i,t+1)[sh = s′ ∣ st = s,at = a′]

.

Proof of Lemma G.1. Fix a ∈ A and (s, s′) ∈ St × Sh. The solution P (i,t)bayes of the problem in Eq. (42) satisfies

P
(i,t)
bayes(a ∣ s, s

′) = Pπunif○t+1π̂
(i,t+1)

[at = a ∣ st = s,sh = s′],

= Pπ̂
(i,t+1)[sh = s′ ∣ st = s,at = a] ⋅ Pπunif○t+1π̂

(i,t+1)[at = a ∣ st = s]
∑a′∈A Pπ̂(i,t+1)[sh = s′ ∣ st = x,at = a′] ⋅ Pπunif○t+1π̂(i,t+1)[at = a′ ∣ st = s]

, (41)

where the last equality follows by Bayes Theorem; in particular the fact that

µ[A ∣ B,C] = µ[B ∣ A,C] ⋅ µ[A ∣ C]
µ[B ∣ C]

applied with A = {at = a}, B = {sh = s′}, C = {st = s}, and µ ≡ Pπunif○π̂
(i,t+1)

. Now, by combining Eq. (43) with the fact
that at is independent of st, we get that

P
(i,t)
bayes(a ∣ s, s

′) = Pπ̂
(i,t+1)[sh = s′ ∣ st = s,at = a] ⋅ Pπunif○t+1π̂

(i,t+1)[at = a]
∑a′∈A Pπ̂(i,t+1)[sh = s′ ∣ st = s,at = a′] ⋅ Pπunif○t+1π̂(i,t+1)[at = a′]

,

= Pπ̂
(i,t+1)[sh = s′ ∣ st = s,at = a]

∑a′∈A Pπ̂(i,t+1)[sh = s′ ∣ st = s,at = a′]
, (42)

where Eq. (44) follows because at ∼ πunif. Now, since the partial policy π̂(i,t+1) never takes the terminal action, we have

Pπ̂
(i,t+1)[sh = s′ ∣ st = s,at = a] = P

π̂(i,t+1)[sh = s′ ∣ st = s,at = a] (the left-hand side has P while the right-hand side has
P) for all a ∈ A and i ∈ [S]. This, together with Eq. (44) implies

P
(i,t)
bayes(a ∣ s, s

′) = P
π̂(i,t+1)[sh = s′ ∣ st = s,at = a]

∑a′∈A P
π̂(i,t+1)[sh = s′ ∣ st = s,at = a′]

.

Proof of Lemma E.2. Fix t ∈ [h − 1] and i ∈ [S]. By Lemma G.1, P (i,t)bayes ∈ {f ∶ [S2]→∆A} is the Bayes-optimal solution
of the conditional density estimation problem in Line 7 of Algorithm 7. And so, by a standard guarantee for log-loss
conditional density estimation (see, e.g., Chen et al. (2022, Proposition E.2)),10 there exists an absolute constant C ′ > 0
(independent of t, h, and other problem parameters) such that with probability at least 1 − δ,

Eunif(Ψ(t))○tπunif○t+1π̂
(i,t+1)

[∑
a∈A

(f̂ (i,t)(a ∣ st,sh)) − P (i,t)bayes(a ∣ st,sh))
2
] ≤ ε̃2stat(n, δ), (43)

where ε̃2stat(n, δ) ∶= C ′ logNF(1/n) +C ′ log(1/δ) and NF(ε) denotes the ε-covering number of the set F ∶= {f ∶ [S]2 →
∆A} in ℓ∞-distance. It is easy to verify that NF(1/n) ≤ nAS

2

, and so by setting C2 ∶= C ′ we have

ε̃2stat(n, δ) ≤ C2 ⋅ ε2stat(n, δ). (44)

Now, since a is never taken by the partial policies (π̂(j)τ ∶h−1)j∈[S], τ ∈ [h − 1], in Algorithm 2 or by the policies in
Ψ(2), . . . ,Ψ(h−1) (by assumption), the guarantee in Eq. (45) also holds inM. Combining this with Eq. (46) completes the
proof.
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G.2. Proof of Lemma E.3 (Local Optimality Guarantee)

Proof of Lemma E.3. Let ε′stat ∶= C ⋅ εstat(n, δ/(SH2)), where εstat(n, δ) and C > 0 are as in Lemma E.2. We will show
that for any t ∈ [h − 1] in Algorithm 7, there exists an event Et of probability at least 1 − δ/H2 under which the learned
partial policies {π̂(i,t)}i∈[S] and {π̂(i,t+1)}i∈[S] are such that for any i ∈ Sh, we have

∑
π∈Ψ(t)

d̄π(st) (max
a∈A

Qπ̂
(i,t+1)

t (st, a; i) −Qπ̂
(,t+1)

t (st, π̂(i,t)(st); i)) ≤ 2SAε′stat, ∀st ∈ St. (45)

where Qπ̂
(i,t+1)

t (⋅; i) is the Q-function at layer t with respect to the partial policy π̂(i,t+1) for the BMDPM with rewards
r
(i)
τ (s) = 1{s = i} ⋅ 1{τ = h}, for τ ∈ [h] (see Eq. (16)). This implies the desired result of the lemma, since P (t)FK (i ∣ s, a) =
Qπ̂

(i,t+1)

t (s, a; i); see Eq. (17) and Eq. (22). We write (47) in terms of Q-functions (instead of P (t)FK ) to highlight similarities
with the analysis of MusIK in the more general BMDP setting.

Fix t ∈ [h − 1] and i ∈ Sh. Further, let S+t be the subset of states defined by

S+t ∶=
⎧⎪⎪⎨⎪⎪⎩
s ∈ St ∶ ∑

π∈Ψ(t)

d̄π(s) ∑
a∈A

P (i,t)(i ∣ s, a) > 0
⎫⎪⎪⎬⎪⎪⎭
,

where P (i,t)(s′ ∣ s, a) ∶= Pπ̂
(i,t+1)

[sh = s′ ∣ st = s,at = a]. (46)

By Lemma E.2 and Jensen’s inequality, there is an event E(i)t of probability at least 1 − δ/(SH2) under which the solution
f̂ (i,t) of the conditional density estimation problem in Line 7 of Algorithm 7 satisfies,

Est∼unif(Ψ(t)),a′∼πunif

⎡⎢⎢⎢⎣
∑

sh∈Sh

P (i,t)(sh ∣ st,a′)max
a∈A
∣err(i,t)(a,st, sh)∣

⎤⎥⎥⎥⎦
≤ ε′stat, (47)

where err(i,t)(a, st, sh) ∶= f̂ (i,t)(a ∣ st, sh) − P (i,t)bayes(a ∣ st, sh) and

P
(i,t)
bayes(a ∣ s, s

′) ∶= P (i,t)(s′ ∣ s, a)
∑a′∈A P (i,t)(s′ ∣ s, a′)

. (48)

In what follows, we condition on Et ∶= ⋂j∈[S] E(j)t . Now, fix j ∈ S+t . From Eq. (49), we have that

SAε′stat ≥ ∑
π∈Ψ(t)

∑
a′∈A

∑
sh∈Sh

d̄π(j)P (i,t)(sh ∣ j, a′)max
a∈A
∣err(i,t)(a, j, sh)∣ ,

≥ ∑
π∈Ψ(t)

∑
a′∈A

d̄π(j)P (i,t)(i ∣ j, a′)max
a∈A
∣err(i,t)(a, j, i)∣ ,

= ∑
π∈Ψ(t)

∑
a′∈A

d̄π(j)P (i,t)(i ∣ j, a′)max
a∈A
∣f̂ (i,t)(a ∣ j, i) − P (i,t)bayes(a ∣ j, i)∣ .

By rearranging and using the fact that ∑π∈Ψ(t) ∑a′∈A d̄π(j)P (i,t)(i ∣ j, a′) > 0 (since j ∈ S+t ), we get

max
a∈A
∣f̂ (i,t)(a ∣ j, i) − P (i,t)bayes(a ∣ j, i)∣ ≤

SAε′stat
∑π∈Ψ(t) d̄π(j) ⋅∑a′∈A P (i,t)(i ∣ j, a′)

. (49)

Now, let â(i,t)(s) ∈ argmaxa∈A f̂
(i,t)(a ∣ s, i) and note that â(i,t)(s) = π̂(i,t)(s), where π̂(i,t) is as in Algorithm 7. With

this, Eq. (51) and the fact that ∣∥y∥∞ − ∥z∥∞∣ ≤ ∥y − z∥∞, for all y, z ∈ RA, we have that

max
a∈A

P
(i,t)
bayes(a ∣ j, i) ≤ f̂

(i,t)(â(i,t)(j) ∣ j, i) + SAε′stat
∑π∈Ψ(t) d̄π(j) ⋅∑a′∈A P (i,t)(i ∣ j, a′)

,

≤ P (i,t)(â(i,t)(j) ∣ j, i) + 2SAε′stat
∑π∈Ψ(t) d̄π(j) ⋅∑a′∈A P (i,t)(i ∣ j, a′)

. (by Eq. (51) again) (50)
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With this in hand, we have that

max
a∈A

Qπ̂
(i,t+1)

t (j, a; i) =max
a∈A

P
π̂(i,t+1)[sh = i ∣ st = j,at = a],

=max
a∈A

P (i,t)(i ∣ j, a), (by definition—see Eq. (48))

=max
a∈A

P
(,t)
bayes(a ∣ j, i) ∑

a′∈A

P (i,t)(i ∣ j, a′), (by def. of P (i,t)bayes in Eq. (50))

≤ P (i,t)(â(i,t)(j) ∣ j, i) ∑
a′∈A

P (i,t)(i ∣ j, a′) + 2SAε′stat
∑π∈Ψ(t) d̄π(j)

, (by Eq. (52))

= Pπ̂
(i,t+1)

[sh = i ∣ st = j,at = â(i,t)(j)] +
2SAε′stat
∑π∈Ψ(t) d̄π(j)

, (by Eq. (50))

= Qπ̂
(i,t+1)

t (j, π̂(i,t)(j); i) + 2SAε′stat
∑π∈Ψ(t) d̄π(j)

,

where the last equality follows by definition of π̂(i,t) in Algorithm 7.

The argument above implies that

∑
π∈Ψ(t)

d̄π(st) (max
a∈A

Qπ̂
(,t+1)

t (st, a; ) −Qπ̂
(,t+1)

t (st, π̂(,t)(st); )) ≤ 2SAε′stat, ∀st ∈ S+t . (51)

On the other hand, for any st ∉ S+t , we have

∑
π∈Ψ(t)

d̄π(st)max
a∈A

Qπ̂
(,t+1)

t (st, a; ) ≤ ∑
π∈Ψ(t)

d̄π(st) ⋅ ∑
a′∈A

P (i,t)(i ∣ st, a′) = 0,

by definition of S+t . This, combined with the fact that Qπ̂
(i,t+1)

t (⋅, ⋅; i) ≥ 0 implies that Eq. (53) also holds for st ∈ St ∖ S+t .
Thus, we have that

∑
π∈Ψ(t)

d̄π(st) (max
a∈A

Qπ̂
(,t+1)

t (st, a; ) −Qπ̂
(,t+1)

t (st, π̂(,t)(st); )) ≤ 2SAε′stat, ∀st ∈ St.

H. Proofs for Block MDPs
H.1. MLE Guarantee for Block MDPs

We now state and prove a guarantee for the minimizer (f̂ (t), ϕ̂(t)) of the conditional density estimation problem in Line 7 of
Algorithm 2 under realizability. We first derive the expression of the Bayes-optimal solution of this problem (we express this
solution as a function of probability measures in the extended BMDP, which will be convenient in the proof of Theorem 3.2).

Lemma H.1. Let h ∈ [H] and t ∈ [h − 1] be given, and define

P
(t)
bayes((a, j) ∣ s, s

′) ∶= P
π̂(j,t+1)[sh = s′ ∣ st = s,at = a]

∑a′∈A,i∈[S] P
π̂(i,t+1)[sh = s′ ∣ st = s,at = a′]

, (52)

with π̂(j,t+1) as in Algorithm 2. Consider the solution to the unconstrained maximum problem

P̃
(t)
bayes ∈ argmax

P̃ ∶Xt×Xh→∆(A×[S])

Eit∼unif([S])E
unif(Ψ(t))○tπunif○t+1π̂

(it,t+1) [log P̃ (t)((at, it) ∣ xt,xh)] . (53)

Then, for any a ∈ A, j ∈ [S], x ∈ Xt, and x′ ∈ Xh, letting s = ϕ⋆(x) and s′ = ϕ⋆(x′), P̃ (t)bayes satisfies

P̃
(t)
bayes((a, j) ∣ x,x

′) = P (t)bayes((a, j) ∣ s, s
′).
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In addition, (P (t)bayes, ϕ⋆) is the Bayes-optimal solution to the maximum likelihood problem in Line 7 of Algorithm 2; that is,

(P (t)bayes, ϕ⋆) ∈ argmax
f ∶[S]2→∆(A×[S]),ϕ∈Φ

Eit∼unif([S])E
unif(Ψ(t))○tπunif○t+1π̂

(it,t+1) [log f((at, it) ∣ ϕ(xt), ϕ(xh))] .

Proof of Lemma H.1. Fix a ∈ A, j ∈ [S], and (x,x′) ∈ Xt ×Xh. Further, let it ∼ unif([S]) and Q denote the law over
(at, it,xt,xh) induced by first sampling jt ∼ unif([S]) then executing unif(Ψ(t)) ○t πunif ○t+1 π̂(it,t+1). With this, the
solution P̃ (t)bayes of the problem in Eq. (55) satisfies

P̃
(t)
bayes((a, j) ∣ x,x

′) = Q[at = a, it = j ∣ xt = x,xh = x′],

= Q[xh = x′ ∣ xt = x,at = a, it = j] ⋅Q[at = a, it = j ∣ xt = x]
∑a′∈A∑i∈[S]Q[xh = x′ ∣ xt = x,at = a′, it = i] ⋅Q[at = a′, it = i ∣ xt = x]

, (54)

where the last equality follows by Bayes Theorem; in particular

µ[A ∣ B,C] = µ[B ∣ A,C] ⋅ µ[A ∣ C]
µ[B ∣ C] ,

applied with A = {at = a, it = j}, B = {xh = x′}, C = {xt = x}, and µ ≡ Q. Now, by combining Eq. (56) with the fact that
Q[xh = x′ ∣ xt = x,at = a, it = j] = Pπ̂

(j,t+1)[xh = x′ ∣ xt = x,at = a] (note that the right-hand side is well-defined since
π̂(j,t+1) ∈ Πt+1∶h−1NM ), and using that (at, it) is independent of xt, we get that

P̃
(t)
bayes((a, j) ∣ x,x

′) = Pπ̂
(j,t+1)[xh = x′ ∣ xt = x,at = a] ⋅Q[at = a, it = j]

∑a′∈A∑i∈[S] Pπ̂(i,t+1)[xh = x′ ∣ xt = x,at = a′] ⋅Q[at = a′, it = i]
,

= Pπ̂
(j,t+1)[xh = x′ ∣ xt = x,at = a]

∑a′∈A∑i∈[S] Pπ̂(i,t+1)[xh = x′ ∣ xt = x,at = a′]
, (55)

where Eq. (57) follows by the fact that Q[at = a′, it = i′] = Q[at = a′′, it = i′′], for i′, i′′ ∈ [S], a′, a′′ ∈ A.

Now, since the partial policies π̂(i,t+1), i ∈ [S], never take the terminal action, we have Pπ̂
(i,t+1)[xh = x′ ∣ xt = x,at = a] =

P
π̂(i,t+1)[xh = x′ ∣ xt = x,at = a] (the left-hand side has P while the right-hand side has P), for all i ∈ [S]. This, together

with Eq. (57) implies

P̃
(t)
bayes((a, j) ∣ x,x

′) = P
π̂(j,t+1)[xh = x′ ∣ xt = x,at = a]

∑a′∈A,i∈[S] P
π̂(i,t+1)[xh = x′ ∣ xt = x,at = a′]

. (56)

Note that since the outputs of the (potentially non-Markovian) partial policies {π̂(i,t+1), i ∈ [S]} ⊆ Πt+1∶h−1NM depend only on
xt+1∶h−1, and not on x1∶t, we have

P
π̂(j,t+1)[xh = x′ ∣ xt = x,at = a]

= ∑
x′′∈Xt+1

P
π̂(j,t+1)[xh = x′ ∣ xt+1 = x′′,xt = x,at = a] ⋅ P

π̂(j,t+1)[xt+1 = x′′ ∣ xt = x,at = a],

= ∑
x′′∈Xt+1

P
π̂(j,t+1)[xh = x′ ∣ xt+1 = x′′,xt = x,at = a] ⋅ P[xt+1 = x′′ ∣ st = ϕ⋆(x),at = a],

= ∑
x′′∈Xt+1

P
π̂(j,t+1)[xh = x′ ∣ xt+1 = x′′] ⋅ P[xt+1 = x′′ ∣ st = ϕ⋆(x),at = a], (since π̂(j,t+1) ∈ Πt+1∶h−1NM )

= Pπ̂
(j,t+1)

[xh = x′ ∣ st = ϕ⋆(x),at = a],

= q(x′ ∣ ϕ⋆(x′)) ⋅ P
π̂(j,t+1)[sh = ϕ⋆(x′) ∣ st = ϕ⋆(x),at = a].
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This, together with Eq. (58) implies that P̃ (t)bayes(⋅ ∣ x,x′) ≡ P
(t)
bayes(⋅ ∣ ϕ⋆(x), ϕ⋆(x′)) (after canceling the terms involving

q(x′ ∣ ϕ⋆(x′))), where P (t)bayes is as in Eq. (54). Now that we have established Eq. (54), we show the second claim of the
lemma. The population version of the problem in Line 7 of Algorithm 2 becomes equivalent to the following optimization
problem:

max
f ∶[S]2→∆(A×[S]),ϕ∈Φ

Eit∼unif([S])E
unif(Ψ(t))○tπunif○t+1π̂

(it,t+1) [log f((at, it) ∣ ϕ(xt), ϕ(xh))] . (57)

Note that the value of this problem is always at least that of Eq. (55). On the other hand, by Eq. (54), the value of the objective
in Eq. (59) with the pair (f, ϕ) = (P (t)bayes, ϕ⋆) matches the optimal value of the problem in Eq. (55), and so (P (t)bayes, ϕ⋆) is
indeed a solution of Eq. (59).

Lemma H.2 (MLE guarantee). Let n ≥ 1 and δ ∈ (0,1), and define εstat(n, δ) ∶= n−1/2
√
S3A logn + log(∣Φ∣/δ). Further,

let 1 ≤ t < h ≤H and suppose that Φ satisfies Assumption 2.1 and that the policies in Ψ(t) never take the terminal action
a. Then, there exists an absolute constant C > 0 (independent of t, h, and other problem parameters) such that the MLE
(f̂ (t), ϕ̂(t)) of the conditional density estimation problem in Line 7 of Algorithm 2 satisfies with probability at least 1 − δ,

Eit∼unif([S])E
unif(Ψ(t))○tπunif○t+1π̂

(it,t+1)
⎡⎢⎢⎢⎢⎣
∑

a∈A,j∈[S]

(f̂ (t)((a, j) ∣ ϕ̂(t)(xt), ϕ̂(t)(xh)) − P (t)bayes((a, j) ∣ st,sh))
2
⎤⎥⎥⎥⎥⎦

≤ C2 ⋅ ε2stat(n, δ).

where P (t)bayes is as in Lemma H.1.

Proof of Lemma H.2. Fix t ∈ [h− 1]. By Lemma H.1, (P (t)bayes, ϕ⋆) is the Bayes-optimal solution of the conditional density
estimation problem in Line 7 of Algorithm 2. And so, by Assumption 2.1 and a standard MLE guarantee for log-loss
conditional density estimation (see e.g. Chen et al. (2022, Proposition E.2)),10 there exists an absolute constant C ′ > 0
(independent of t, h, and other problem parameters) such that with probability at least 1 − δ,

Eit∼unif([S])E
unif(Ψ(t))○tπunif○t+1π̂

(it,t+1)
⎡⎢⎢⎢⎢⎣
∑

a∈A,j∈[S]

(f̂ (t)((a, j) ∣ ϕ̂(t)(xt), ϕ̂(t)(xh)) − P (t)bayes((a, j) ∣ st,sh))
2
⎤⎥⎥⎥⎥⎦

≤ ε̃2stat(n, δ), (58)

where ε̃2stat(n, δ) ∶= C ′ logNF(1/n)+C ′ log(∣Φ∣/δ) andNF(ε) denotes the ε-covering number of the set F ∶= {f ∶ [S]2 →
∆([S] ×A)} in ℓ∞-distance. It is easy to verify that NF(1/n) ≤ nAS

3

, and so by setting C2 ∶= C ′, we have

ε̃2stat(n, δ) ≤ C2 ⋅ ε2stat(n, δ). (59)

Now, since a is never taken by the partial policies (π̂(i,τ))i∈[S],τ∈[h−1], in Algorithm 2 or by the policies in Ψ(2), . . . ,Ψ(h−1)

(by assumption), the guarantee in Eq. (60) also holds inM. Combining this with Eq. (61) completes the proof.

H.2. Proof of Theorem 3.2 (Main Guarantee for MusIK)

Proof of Theorem 3.2. Let ϵ ∶= ε/(2S). Let εstat(⋅, ⋅) and C be as in Theorem E.3 (note that C is an absolute
constant independent of all problem parameters). Let Eh be the success event of Theorem E.3 for h ∈ [H] and ϵ, and define
E ∶= ⋂h∈[H] Eh. Note that by the union bound we have P[E] ≥ 1−δ. For n large enough such that 8AS4HCεstat(n, δ

H2 ) ≤ ϵ
(which is implied by the condition on n in the theorem’s statement for c = 25C), Theorem E.3 implies that under E , the
output Ψ(1), . . . ,Ψ(H) of MusIK are (1/2, ϵ)-policy covers relative to Πϵ inM for layers 1 to H , respectively. Thus, by
Lemma 4.3, the desired result holds under E .

The parameter n in Theorem 3.2 represents the input to MusIK used to generate an approximate (1/4, ε)-policy cover relative
to ΠM inM at all layers. MusIK passes n to all of IKDP invocations (see Line 3 of Algorithm 1). Since, for any layer h ∈ [H],

10Technically, (Chen et al., 2022, Proposition E.2) bounds the Hellinger distance, which immediately implies a bound on MSE.
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the corresponding IKDP instance in MusIK requires n trajectories for each layer t ∈ [h − 1] (see Line 1 of Algorithm 2), the
total number of trajectories needed by MusIK in the setting of Theorem 3.2 is

# of trajectories = Õ(1) ⋅
A2S10H4 (AS3 + log(∣Φ∣H2/δ))

ε2
.

H.3. Proof of Theorem E.3 (Main Guarantee for IKDP)

Before proving Theorem E.3, we first define the Q- and V -functions corresponding to certain ‘fictitious’ rewards we
introduce for the analysis. These functions will be instrumental in our proofs. We then present a generalized performance
difference lemma that holds for the non-Markovian partial policies of MusIK (since the policies are non-Markovian the
standard performance difference lemma does not give us something useful for the proof of Theorem E.3). In Appendix H.3.3,
we bound the errors appearing on the RHS of our generalized performance difference lemma. Finally, we present the proof
of Theorem E.3 in Appendix H.3.4

H.3.1. THE Q- AND V -FUNCTIONS

For t, h ∈ [H], a ∈ A, and s′ ∈ Sh, define rt(⋅; s′) ∶ Xt → {0,1} as

rt(x; s′) = 1{ϕ⋆(x) = s′}. (60)

This can be interpreted as a reward function that takes value 1 whenever the latent state is s′. For t ∈ [H] and any two partial
policies π(t) ∈ Πt∶h−1NM and π(t+1) ∈ Πt+1∶h−1NM , we define the corresponding tth layer Q- and V -functions inM as

Qπ
(t+1)

t (x, a; s′) ∶= rt(x; s′) +E
π(t+1) [

h

∑
τ=t+1

rτ(xτ ; s′) ∣ xt = x,at = a] , (61)

and V π
(t)

t (x; s′) ∶= rt(x; s′) +E
π(t) [

h

∑
τ=t+1

rτ(xτ ; s′) ∣ xt = x,at = π(t)(x)] . (62)

These match the standard definitions of the Q- and V - functions for Markovian policies, albeit with action-independent
rewards. Note that we only define Qπ

(t+1)

τ and V π
(t)

τ for τ = t, as the policies involved are non-Markovian, and are undefined
on layers τ < t.

Useful properties of the Q- and V -functions. Given the definition of the rewards in (62), the Q-function in (63) can be
expressed in terms of certain conditional probabilities for visiting latent states, which will be useful throughout the proof.
Lemma H.3. For any s′ ∈ Sh, x ∈ Xt, a ∈ A, and π(t+1) ∈ Πt+1,h−1NM , we have

Qπ
(t+1)

t (x, a; s′) = Pπ
(t+1)

[sh = s′ ∣ st = ϕ⋆(x),at = a]. (63)

For IKDP’s partial policies {π̂(i,τ) ∶ i ∈ [S]} ⊆ Πτ ∶h−1NM , for τ ∈ [h − 1], the corresponding V -functions satisfy an identity
similar to (65).
Lemma H.4. For any i ∈ [S], s′ ∈ Sh, x ∈ Xt, and a ∈ A, we have

V π̂
(i,t)

t (x; s′) = Pπ̂
(ι̂(x),t+1)

[sh = s′ ∣ st = ϕ⋆(x),at = â(x)],

where (â(x), ι̂(x)) ∈ argmax(a′,i′) f̂
(t)((a′, i′) ∣ ϕ̂(t)(x), i) and (f̂ (t), ϕ̂(t)) are defined as in Line 7 of Algorithm 2.

Note that unlike the Q-function in Lemma H.3, it is not the case that the V -function in Lemma H.4 depends on x ∈ Xt only
through ϕ⋆(x).
Proof of Lemma H.3. By definition of the reward functions, we have that rt(⋅, s′) ≡ 0, for all t < h, and

h

∑
τ=t+1

rτ(xτ ; s′) = rh(xh; s′) = I{ϕ⋆(xh) = s′}.
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Therefore,

Qπ
(t+1)

t (x, a; s′) = rt(x; s′) +E
π(t+1) [

h

∑
τ=t+1

rτ(xτ ; s′) ∣ xt = x,at = a] ,

= 0 +Eπ
(t+1)

[rh(xh; s′) ∣ xt = x,at = a] ,

= Pπ
(t+1)

[sh = s′ ∣ st = ϕ⋆(x),at = a],

where the last equality follows from the fact that, while π(t+1) ∈ Πt+1∶h−1NM is non-Markovian, it only depends on the
observations at layers t + 1 to h − 1.

Proof of Lemma H.4. By definition of the reward functions, we have that rt(⋅, s′) ≡ 0, for all t < h, and

h

∑
τ=t+1

rτ(xτ ; s′) = rh(xh; s′) = I{ϕ⋆(xh) = s′}. (64)

Therefore,

V π̂
(i,t)

t (x; s′) = rt(x; s′) +E
π̂(i,t) [

h

∑
τ=t+1

rτ(xτ ; s′) ∣ xt = x,at = π̂(i,t)(x)] ,

= 0 +Eπ̂
(i,t)

[rh(xh; s′) ∣ xt = x,at = π̂(i,t)(x)] , (by (66))

= Eπ̂
(i,t)
○t+1π̂

(ι̂(x),t+1)

[rh(xh; s′) ∣ xt = x,at = â(x)] , (65)

= Eπ̂
(ι̂(x),t+1)

[rh(xh; s′) ∣ xt = x,at = â(x)] , (since π̂(j,t+1) ∈ Πt+1,h−1NM ,∀j)

= Pπ̂
(ι̂(x),t+1)

[sh = s′ ∣ st = ϕ⋆(x),at = â(x)], (by (62) and π̂(j,t+1) ∈ Πt+1,h−1NM ,∀j)

where (67) follows by the definition of π̂(i,t) in Line 7 of Algorithm 2.

H.3.2. GENERALIZED PERFORMANCE DIFFERENCE LEMMA FOR MusIK’S NON-MARKOVIAN POLICIES

We now present a generalized performance difference lemma that holds for the non-Markovian partial policies used
in MusIK/IKDP. In what follows, we use the convention that for any π ∈ Πl∶rNM and τ ∈ [l .. r], π(xl∶τ) = a, for any
xl∶τ ∈ X l × ⋅ ⋅ ⋅ ×X τ such that xτ = tτ (or equivalently ϕ⋆(xτ) = tτ ).11

Lemma H.5. Fix h ∈ [H], and let us adopt the convention that π̂(i,h) ≡ πunif,∀i ∈ [S]. The partial policies π̂(i,t) produced
by IKDP for i ∈ [S], t ∈ [h − 1] satisfy for any s ∈ Sh,

min
i∈[S]

E[V π
(s)
⋆

1 (x1; s) − V π̂
(i,1)

1 (x1; s)] ≤
h−1

∑
t=1

min
i∈[S]

max
j∈[S]

E
π
(s)
⋆ [I{st ∈ St,ϵ}(Qπ̂

(j,t+1)

t (xt, π(s)⋆ (xt); s) − V π̂
(i,t)

t (xt; s))],

where π(s)⋆ ∈ argmaxπ∈Πϵ
d̄π(s) and Qπ̂

(j,t+1)

t (⋅; s) (resp. V π̂
(i,t)

t (⋅; s)) is defined as in (63) (resp. (64)) with π(t+1) =
π̂(j,t+1) (resp. π(t) = π̂(i,t)).

Proof of Lemma H.5. Let s ∈ Sh be fixed. We proceed by backwards induction to show that for all τ ∈ [h − 1], the learned
partial policies π̂(1,τ), . . . , π̂(S,τ) ∈ Πτ ∶h−1NM have the property that

min
i∈[S]

E
π
(s)
⋆ [V π

(s)
⋆

τ (xτ ; s) − V π̂
(i,τ)

τ (xτ ; s)] ≤ Στ , (66)

where Στ ∶= ∑h−1t=τ mini∈[S]maxj∈[S]E
π
(s)
⋆ [Qπ̂(j,t+1)t (xt, π(s)⋆ (xt); s) − V π̂

(i,t)

t (xt; s)].

11We recall that we have assumed the state th emits itself as an observation.
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Base case. The base case (i.e. τ = h − 1) reduces to showing that for any s ∈ Sh,

E
π
(s)
⋆ [V π

(s)
⋆

h−1 (xh−1; s)] ≤max
j∈[S]

E
π
(s)
⋆ [Qπ̂

(j,h)

h−1 (xh−1, π
(s)
⋆ (xh−1); s)].

This holds with equality regardless of how {π̂(i,h)}i∈[S] are chosen, since the reward function for layer h is independent of
the actions taken at that layer.

Inductive step. Now, let t ∈ [h − 2] and suppose that Eq. (68) holds for τ = t + 1, and we show that it holds for τ = t. Fix
s ∈ Sh,ϵ and let π⋆ ≡ π(s)⋆ to simplify notation. Further, fix i ∈ [S] and let j be the minimizer of the left-hand side of Eq. (68)
for τ = t + 1. By Lemma 4.1, we know that π⋆(xt) = a for all xt ∈ supp q(⋅ ∣ st) and st ∈ St ∖ St,ϵ. Therefore, since the
V -function at layer t + 1 is zero on the terminal state tt+1 (see definition of the V -function in (64)), we have

E
π⋆ [V π̂

(j,t+1)

t+1 (xt+1; s)] = ∑
st∈St,ϵ

d̄π⋆(st)E
π⋆ [V π̂

(j,t+1)

t+1 (xt+1; s)∣st = st] ,

= − ∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [rt(xt; s)]

+ ∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [Qπ̂
(j,t+1)

t (xt, π⋆(xt); s)] ,

= ∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [Qπ̂
(j,t+1)

t (xt, π⋆(xt); s)] , (67)

where the last equality follows by the fact that t < h and that the reward rt(⋅; s) ≡ 0 in this case. Combining Eq. (69) with
Eq. (68), we have

∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [Qπ̂
(j,t+1)

t (xt, π⋆(xt); s) − V π̂
(i,t)

t (xt; s)]

≥ Eπ⋆ [V π̂
(j,t+1)

t+1 (xt+1; s)] − ∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [V π̂
(i,t)

t (xt; s)] , (by Eq. (69))

≥ Eπ⋆[V π⋆t+1(xt+1; s)] − ∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [V π̂
(i,t)

t (xt; s)] −Σt+1, (by induction)

= ∑
st∈St,ϵ

d̄π⋆(st)E
π⋆ [V π⋆t+1(xt+1; s)∣st = st] − ∑

st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [V π̂
(i,t)

t (xt; s)] −Σt+1,

= ∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [V
π⋆
t (xt; s) − V π̂

(i,t)

t (xt; s)] −Σt+1, (68)

where in the last step we used that the rewards are zero except at layer h and that π⋆(xt) = a for xt ∈ supp q(⋅ ∣ st) with
st ∈ St ∖ St,ϵ (by Lemma 4.1). For such an xt, we also have that V π⋆t (xt; s) = 0, and so since V π̂

(i,t)

t (⋅; s) is non-negative,
Eq. (70) implies that

E
π⋆ [V π⋆t (xt; s) − V π̂

(i,t)

t (xt; s)]

≤ ∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [V
π⋆
t (xt; s) − V π̂

(i,t)

t (xt; s)] ,

≤ Σt+1 + ∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [Qπ̂
(j,t+1)

t (xt, π⋆(xt); s) − V π̂
(i,t)

t (xt; s)] ,

≤ Σt+1 +max
j∈[S]

∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [Qπ̂
(j,t+1)

t (xt, π⋆(xt); s) − V π̂
(i,t)

t (xt; s)] . (69)

Recall that i was chosen arbitrarily in [S], and so taking the min over i ∈ [S] on both sides of (71) implies the desired
result.
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H.3.3. LOCAL ERROR GUARANTEE

The following lemma, which is a restatement of Lemma E.4, gives us a way of bounding the error terms appearing on the
right-hand side of the inequality in Lemma H.5.

Lemma H.6 (Restatement of Lemma E.4). Let ϵ, δ ∈ (0,1), h ∈ [H], and suppose Φ satisfies Assumption 2.1. If the policies
in Ψ(2) ∪ ⋅ ⋅ ⋅ ∪Ψ(h−1) never take the terminal action a, then for any t ∈ [h − 1], there is an event Et of probability at least
1 − δ

H2 under which the partial policies {π̂(j,τ)}
j∈[S],τ∈[h−1]

, constructed during the call to IKDP(Ψ(1), . . . ,Ψ(h−1),Φ, n)
are such that for any sh ∈ Sh there exists i ∈ [S] that satisfies

0 ≤ ∑
π∈Ψ(t)

d̄π(st)Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; sh) − V π̂
(,t)

t (xt; sh)] ≤ 2S3ACεstat(n, δ
H2 ), ∀st ∈ St, (70)

where εstat(⋅, ⋅) and C > 0 are as in Lemma H.2; here C > 0 is an absolute constant independent of problem parameters.

Proof of Lemma H.6. To simplify notation throughout the proof, let

P (t)(sh ∣ st, a) ∶=
1

S
∑
j∈[S]

P
π̂(j,t+1)[sh = sh ∣ st = st,at = a]. (71)

By Lemma H.2 and Jensen’s inequality, we have that with probability at least 1 − δ/H2, the solution (f̂ (t), ϕ̂(t)) of the
conditional density estimation problem in Line 7 of Algorithm 2 satisfies,

Est∼unif(Ψ(t)),xt∼q(⋅∣st),a′∼πunif

⎡⎢⎢⎢⎢⎣
∑

sh∈Sh,xh

P (t)(sh ∣ st,a′)q(xh ∣ sh) max
a∈A,j∈[S]

∣err(t)(a, j,xt, xh)∣
⎤⎥⎥⎥⎥⎦
≤ ε′stat, (72)

where ε′stat ∶= C ⋅ εstat(n, δ
H2 ), C is an absolute constant independent of t, h, and other problem parameters,

err(t)(a, j, xt, xh) ∶= f̂ (t)((a, j) ∣ ϕ̂(t)(xt), ϕ̂(t)(xh)) − P (t)bayes((a, j) ∣ ϕ⋆(xt), ϕ⋆(xh)),

and finally

P
(t)
bayes((a, j) ∣ st, sh) ∶=

P
π̂(j,t+1)[sh = sh ∣ st = st,at = a]

∑a′∈A,i∈[S] P
π̂(i,t+1)[sh = sh ∣ st = st,at = a′]

. (73)

We denote this event by Et. Note that to rewrite the result of Lemma H.2 as (74), we use that the policies π̂(j,t+1), j ∈ [S],
while non-Markovian, only depend on xt+1, . . . ,xh−1. Moving forward, we condition on Et.
Fix s′ ∈ Sh and let i ∈ argmaxi∈[S]∑xh

I{ϕ̂(t)(xh) = i}q(xh ∣ s′), and note that

∑
xh

I{ϕ̂(t)(xh) = i}q(xh ∣ s′) ≥
1

S
. (74)

Further, let S+t be the subset of states defined by

S+t ∶=
⎧⎪⎪⎨⎪⎪⎩
s̃ ∈ St ∶ ∑

π∈Ψ(t)

d̄π(s̃) ∑
a∈A

P (t)(s′ ∣ s̃, a) > 0
⎫⎪⎪⎬⎪⎪⎭
.

Now, fix s ∈ S+t . From Eq. (74), we have that

∑
π∈Ψ(t),xt,xh,a′∈A

d̄π(s)q(xt ∣ s)P (t)(s′ ∣ s, a′)q(xh ∣ s′) max
a∈A,j∈[S]

∣err(t)(a, j, xt, xh)∣

≤ ∑
π∈Ψ(t),xt,xh,a′∈A,st∈St,sh∈Sh

d̄π(st)q(xt ∣ st)P (t)(sh ∣ st, a′)q(xh ∣ sh) max
a∈A,j∈[S]

∣err(t)(a, j, xt, xh)∣ ,

≤ SAε′stat. (75)
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Applying Eq. (76) within Eq. (77) implies that

SAε′stat

≥ ∑
π∈Ψ(t),xt,a

′
∈A,

xh∶ϕ̂
(t)
(xh)=i

d̄π(s)q(xt ∣ s)P (t)(s′ ∣ s, a′)q(xh ∣ s′) max
a∈A,j∈[S]

∣f̂ (t)((a, j) ∣ ϕ̂(t)(xt), i) − P (t)bayes((a, j) ∣ s, s
′)∣ ,

≥ 1

S
∑

π∈Ψ(t),xt,a′∈A

d̄π(s)q(xt ∣ s)P (t)(s′ ∣ s, a′) max
a∈A,j∈[S]

∣f̂ (t)((a, j) ∣ ϕ̂(t)(xt), i) − P (t)bayes((a, j) ∣ s, s
′)∣ .

By rearranging and using that ∑π∈Ψ(t) d̄π(s)∑a′∈A P (t)(s′ ∣ s, a′) > 0 (since s ∈ S+t ), we get

Ext∼q(⋅∣s) [ max
a∈A,j∈[S]

∣f̂ (t)((a, j) ∣ ϕ̂(t)(xt), i) − P (t)bayes((a, j) ∣ s, s
′)∣] ≤ S2Aε′stat

∑π∈Ψ(t) d̄π(s)∑a′∈A P (t)(s′ ∣ s, a′)
. (76)

Now, let â(i,t)(xt), ι̂(i,t)(xt) ∈ argmaxa∈A,j∈[S] f̂
(t)((a, j) ∣ ϕ̂(t)(xt), i) and note that â(i,t)(xt) = π̂(i,t)(xt), where

π̂(i,t)(xt) is defined as in Algorithm 2. With this, Eq. (78), and the fact that ∣∥y∥∞ − ∥z∥∞∣ ≤ ∥y − z∥∞, for all y, z ∈ RA×S
we have

max
a∈A,j∈[S]

P
(t)
bayes((a, j) ∣ s, s

′)

≤ Ext∼q(⋅∣s) [ max
a∈A,j∈[S]

f̂ (t)((a, j) ∣ ϕ̂(t)(xt), i)] +
S2Aε′stat

∑π∈Ψ(t),a′∈A d̄π(s)P (t)(s′ ∣ s, a′)
,

= Ext∼q(⋅∣s) [f̂ (t)((â(i,t)(xt), ι̂(i,t)(xt)) ∣ ϕ̂(t)(xt), i)] +
S2Aε′stat

∑π∈Ψ(t),a′∈A d̄π(s)P (t)(s′ ∣ s, a′)
,

≤ Ext∼q(⋅∣s) [P
(t)
bayes((â

(i,t)(xt), ι̂(i,t)(xt)) ∣ s, s′)] +
2S2Aε′stat

∑π∈Ψ(t) d̄π(s)∑a′∈A P (t)(s′ ∣ s, a′)
. (77)

Now, observe that from the definition of P (t)bayes in Eq. (75), we have that for all st ∈ St, a ∈ A, j ∈ [S], and xt ∈ supp q(⋅ ∣ st),

Qπ̂
(j,t+1)

t (xt, a; s′) = P
π̂(j,t+1)[sh = s′ ∣ st = st,at = a] = P (t)bayes((a, j) ∣ st, s

′) ∑
a′∈A

S ⋅ P (t)(s′ ∣ st, a′), (78)

where we have used that ∑i∈[S],a′∈A P
π̂(i,t+1)[sh = s′ ∣ st = st,at = a′] = S ⋅ ∑a′∈A P (t)(s′ ∣ st, a′) by definition of P (t) in

(73). Combining this with Eq. (79), we have

Ext∼q(⋅∣s) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; s′)]

≤ Ext∼q(⋅∣s)[P
(t)
bayes((â

(i,t)(xt), ι̂(i,t)(xt)) ∣ s, s′)] ⋅ ∑
a′∈A

S ⋅ P (t)(s′ ∣ s, a′) + 2S3Aε′stat
∑π∈Ψ(t) d̄π(s)

, (by (80) & (79))

= Ext∼q(⋅∣s)[P
π̂(ι̂(xt),t+1)

[sh = s′ ∣ st = s,at = â(i,t)(xt)]] +
2S3Aε′stat
∑π∈Ψ(t) d̄π(s)

, (where ι̂(x) ∶= ι̂(i,t)(x))

= Ext∼q(⋅∣s) [V π̂
(i,t)

t (xt; s′)] +
2S3Aε′stat
∑π∈Ψ(t) d̄π(s)

,

where the first equality uses Eq. (80) once more and the second equality follows from Lemma H.4 and the definition of
π̂(i,t) in Algorithm 2. Summarizing, we have shown that

∑
π∈Ψ(t)

d̄π(st)Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; ′) − V π̂
(,t)

t (xt; ′)] ≤ 2S3Aε′stat, ∀st ∈ S+t . (79)

We now show that the LHS of (81) is larger than 0. We have that for all st ∈ St,

max
a∈A,j∈[S]

P
(t)
bayes((a, j) ∣ st, s

′) ≥ Ext∼q(⋅∣st) [P
(t)
bayes((â

(i,t)(xt), ι̂(i,t)(xt)) ∣ st, s′)] .
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Combining this with Eq. (80) implies that for all st ∈ St

Ext∼q(⋅∣st) [V π̂
(i,t)

t (xt; s′)] ≤ Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; s′)] . (80)

Therefore, we have

0 ≤ ∑
π∈Ψ(t)

d̄π(st)Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; ′) − V π̂
(,t)

t (xt; ′)] ≤ 2S3Aε′stat, ∀st ∈ S+t . (81)

On the other hand, for any st ∉ S+t , we have ∑π∈Ψ(t),a′∈A d̄π(st)P (t)(s′ ∣ st, a′) = 0 (by definition of S+t ), and so by (80)
and (82), we have

∑
π∈Ψ(t)

d̄π(st)Ext∼q(⋅∣st) [V π̂
(i,t)

t (xt; s′)] ≤ ∑
π∈Ψ(t)

d̄π(st)Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; s′)] ,

≤ S ∑
π∈Ψ(t),a′∈A

d̄π(st)P (t)(s′ ∣ st, a′), (by (80))

= 0.

This implies that Eq. (83) also holds for st ∈ St ∖ S+t , giving the desired result.

H.3.4. PROOF OF THEOREM E.3

Proof of Theorem E.3. In light of Lemma H.5, it suffices to show that, for any t ∈ [h− 1], there is an event Et which occurs
with probability at least 1 − δ/H2, under which for any s ∈ [S],

σt ∶= min
i∈[S]

max
j∈[S]

Eπ
(s)
⋆ [I{st ∈ St,ϵ}(Qπ̂

(j,t+1)

t (xt, π(s)⋆ (xt); s) − V π̂
(i,t)

t (xt; s))] ≤
ϵ

2H
, (82)

where π(s)⋆ ∈ argmaxπ∈Πϵ
d̄π(s) and V πτ (⋅; s) is the V -function at layer τ ∈ [h − 1] with respect to the partial policy π

for the BMDP M with rewards rt(x; s) = 1{ϕ⋆(x) = s}, t ∈ [h]—see Definition in (64). By summing Eq. (84) over
t = 1, . . . , h − 1, and using Lemma H.5 together with a union bound, we will be able to prove the desired result.

Fix t ∈ [h− 1] and let Et be the event of Lemma H.6. Recall that P[Et] ≥ 1− δ/H2. In what follows, we condition on Et and
prove (84). Fix s ∈ Sh,t and let π⋆ ≡ π(s)⋆ . Further, let i be as in Lemma H.6 with sh = s. Since Ψ(t) is an (1/2, ϵ)-policy
cover relative to Πϵ at layer t and π⋆ ∈ Πϵ, we have that

d̄π⋆(st) ≤max
π̃∈Πϵ

d̄π̃(st) ≤ 2 ∑
π∈Ψ(t)

d̄π(st), ∀st ∈ St,ϵ. (83)

The last inequality and the definition of St,ϵ implies that for all st ∈ St,ϵ,∑π∈Ψ(t) d̄π(st) > 0. This, together with Lemma H.6
(in particular, the left-hand side inequality in (72)) implies that

Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; s) − V π̂
(i,t)

t (xt; s)] ≥ 0. (84)

Thus, for any st ∈ St,ϵ, we have

d̄π⋆(st)Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; s) − V π̂
(i,t)

t (xt; s)] ,

= d̄π⋆(st)Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; s) − V π̂
(i,t)

t (xt; s)] , (justified below) (85)

≤ 2 ∑
π∈Ψ(t)

d̄π(st)Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; s) − V π̂
(i,t)

t (xt; s)] , (by (86) and (85))

38



Representation Learning with Multi-Step Inverse Kinematics

≤ 4S3ACεstat(n, δ/H2), (86)

for some absolute constant C > 0; the last inequality follows by Lemma H.6 (in particular, the right-hand side in inequality
in Eq. (72)). Now, Eq. (87) follows from the fact that

max
a∈A

Qπ̂
(j,t+1)

t (xt, a; s) =max
a∈A

Qπ̂
(j,t+1)

t (xt, a; s), ∀j ∈ [S],

since Qπ̂
(j,t+1)

t (xt,a; s) = 0. On the other hand, by definition of σt in (84), we have

σt ≤ ∑
st∈St,ϵ

d̄π⋆(st)max
j∈[S]

Ext∼q(⋅∣st) [Qπ̂
(j,t+1)

t (xt, π⋆(xt); s) − V π̂
(i,t)

t (xt; s)] ,

≤ ∑
st∈St,ϵ

d̄π⋆(st)Ext∼q(⋅∣st) [ max
a∈A,j∈[S]

Qπ̂
(j,t+1)

t (xt, a; s) − V π̂
(i,t)

t (xt; s)] ,

≤ 4S4ACεstat(n,
δ

H2
). (by (88)) (87)

Now, by choosing n large enough such that 8AS4HCεstat(n, δ
H2 ) ≤ ϵ (as in the theorem’s statement), we get

σt ≤
ϵ

2H
. (88)

Thus, under the event E ′ ∶= E1 ∪ ⋅ ⋅ ⋅ ∪ Eh−1 (note that P[E ′] ≥ 1 − δ/H by a union bound), we have by Lemma H.5 and
Eq. (90) that

min
i∈[S]

E
π⋆ [V π⋆1 (x1; s) − V π̂

(i,1)

1 (x1; s)] ≤
h−1

∑
t=1

σt ≤
ϵ

2
. (89)

Note that E
π⋆ [V π⋆1 (x1; s)] =maxπ∈Πϵ

d̄π(s) and E
π⋆[V π̂(i,1)1 (x1; s)] = d̄π̂

(i,1)(s), by definition of π⋆ and the V -function.
Thus, (91) implies that

max
i∈[S]

d̄π̂
(i,1)

(s) ≥max
π∈Πϵ

d̄π(s) − ϵ
2
≥ 1

2
max
π∈Πϵ

d̄π(s),

where the last inequality follows from the fact that maxπ∈Πϵ
d̄π(s) ≥ ϵ, since s ∈ Sh,ϵ. This means that

Ψ(h) = {π̂(i,1) ∶ i ∈ [S]} is a (1/2, ϵ)-policy cover relative to Πϵ for layer h inM, which completes the proof.

I. Proofs for Reward-Based RL
Lemma I.1. Let n ≥ 1 and δ ∈ (0,1), and define εstat(n, δ) ∶= n−1/2

√
SA logn + log(∣Φ∣/δ). Further, suppose that

Assumption 2.1 and Assumption B.1 hold. Then, there exists an absolute constant C > 0 such that for all h ∈H the solution
(f̂ (h), ϕ̂(h)) of the least-squares problem in Line 6 of Algorithm 4 satisfies with probability at least 1 − δ,

Eunif(Ψ(h)) [max
a∈A
(f̂ (h)(ϕ̂(h)(xh), a) −Qπ̂

(h+1)

h (xh, a))
2

] ≤ C2 ⋅ ε2stat(n, δ).

Proof of Lemma I.1. Fix h ∈ [h − 1] and let f̃ (h)bayes be as in Lemma I.2. By Lemma I.2, (f̃ (h)bayes, ϕ⋆) is the Bayes-optimal
solution of the least-square problem in Line 6 of Algorithm 4. And so, by Assumption 2.1 and a standard guarantee for
least-square regression (see e.g. (Van de Geer and van de Geer, 2000)), there exists an absolute constant C ′ > 0 (independent
of h and any other problem parameter) such that with probability at least 1 − δ,

Eunif(Ψ(h)) [max
a∈A
(f̂ (h)(ϕ̂(h)(xh), a) − f̃ (h)bayes(ϕ⋆(xh), a))

2
] ≤ ε̃2stat(n, δ),
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where ε̃2stat(n, δ) ∶= C ′ logNF(1/n) + C ′ log(∣Φ∣/δ) and NF(1/n) denotes the 1
n

-covering number of the set F ∶= {f ∶
[S] ×A→ R≥0} in ℓ∞ distance. It is easy to verify that NF(1/n) ≤ nAS , and so by setting C2 ∶= C ′, we have

ε̃2stat(n, δ) ≤ C2 ⋅ ε2stat(n, δ).

Now, by the expression of f̃ (h)bayes in Eq. (93) and Assumption B.1, we have that f̃ (h)bayes(ϕ⋆(x), a) = Qπ̂
(h+1)

h (x, a), which
completes the proof.

Lemma I.2. Let h ∈ [H] and consider of the unconstrained problem

f
(h)
bayes ∈ argmin

f ∶Xh×A→R≥0
Eunif(Ψ(h))○hπunif○h+1π̂

(h+1)
⎡⎢⎢⎢⎢⎣
(f(xh,ah) −

H

∑
τ=h

rτ)
2⎤⎥⎥⎥⎥⎦
, (90)

where (rh) are the reward random variables and π̂(h+1) ∈ Πh+1∶HM is as in Algorithm 4. Then, under Assumption B.1 for
any a ∈ A, x ∈ Xh, and s = ϕ⋆(x), f (h)bayes satisfies

f
(h)
bayes(x, a) = f̃

(h)
bayes(s, a) ∶= r̄h(s, a) +E

π̂(h+1) [
H

∑
τ=h+1

rτ(xτ , π̂(τ)(xτ))∣sh = s,ah = a] . (91)

Further, (f̃ (h)bayes, ϕ⋆) is the Bayes-optimal solution of the problem in Line 6 of Algorithm 4; that is,

(f̃ (h)bayes, ϕ⋆) ∈ argmin
f̃ ∶[S]×A→R≥0,ϕ∈Φ

Eunif(Ψ(h))○hπunif○h+1π̂
(h+1)
⎡⎢⎢⎢⎢⎣
(f̃(ϕ(xh),ah) −

H

∑
τ=h

rτ)
2⎤⎥⎥⎥⎥⎦
.

Proof of Lemma I.2. Fix a ∈ A and x ∈ Xh, and let s = ϕ⋆(x). The least-squares solution f (h)bayes of the problem in Eq. (92)
is given by

f
(h)
bayes(x, a) = E

π̂(h+1) [
H

∑
τ=h

rτ ∣xh = x,ah = a] ,

= E[rh ∣ xh = x,ah = a] +Eπ̂
(h+1)

[
H

∑
τ=h+1

rτ ∣xh = x,ah = a] ,

= r̄h(s, a) +Eπ̂
(h+1)

[
H

∑
τ=h+1

rτ ∣xh = x,ah = a] , (by Assumption B.1)

= r̄h(s, a) +Eπ̂
(h+1)

[
H

∑
τ=h+1

rτ ∣sh = s,ah = a] ,

= f̃ (h)bayes(s, a), (92)

where Eq. (94) follows by the Block MDP assumption. Now that we have established Eq. (93), we show the second claim
of the lemma. The unconstrained population version of the problem in Line 6 of Algorithm 4 becomes equivalent to the
following problem:

min
f̃ ∶[S]×A→R≥0,ϕ∈Φ

Eunif(Ψ(h))○hπunif○h+1π̂
(h+1)
⎡⎢⎢⎢⎢⎣
(f̃(ϕ(xh),ah) −

H

∑
τ=h

rτ)
2⎤⎥⎥⎥⎥⎦
. (93)

Note that the value of this problem is always at least that of Eq. (92). On the other hand, by Eq. (93), the value of
the objective in Eq. (95) with the pair (f̃, ϕ) = (f̃ (h)bayes, ϕ⋆) matches the optimal value of the problem Eq. (92), and so

(f̃ (h)bayes, ϕ⋆) is indeed a solution of Eq. (95).

We now restate and prove a slightly more detailed version of Theorem B.1.
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Theorem I.1 (Restatement of Theorem B.1). Let α, ε, δ ∈ (0,1) be given. Further, let εstat(⋅, ⋅) and C > 0 be as in
Lemma I.1 (C is an absolute constant independent of problem parameters) and suppose that Assumptions 2.1 and B.1 hold,
and that for all h ∈ [H]:

1. Ψ(h) is a (α, ϵ)-approximate cover for layer h, where ϵ ∶= ε/(2SH2).

2. ∣Ψ(h)∣ ≤ S.

Then, as long as n is chosen such that 4S2HCεstat(n, δ/H)/α, we have that with probability at least 1 − δ, the policy π̂(1)

outputed by Algorithm 4 satisfies

Eπ̂
(1)

[
H

∑
h=1

rh] ≥max
π∈ΠM

Eπ [
H

∑
h=1

rh] − ε.

In particular, the total number of sampled trajectories required by the algorithm is

Õ(1) ⋅ H
3S4(SA + log(∣Φ∣/δ))

α2ε2
.

Proof of Theorem I.1. We proceed by induction to show that for any h ∈ [H], there is an event Eh of probability at least
1 − δ/H under which the learned partial policy π̂(h) is such that

Eπ⋆ [Qπ̂
(h+1)

h (xh, π⋆(xh)) −Qπ̂
(h+1)

h (xh, π̂(h)(xh))] ≤
ε

H
, (94)

where π⋆ ∈ argmaxπ∈ΠM
Eπ[∑Hh=1 rh] is the optimal policy and

Qπh(x, a) ∶= Eπ [
H

∑
τ=h

rτ ∣ xh = x,ah = a] ,

is the Q-function corresponding to the rewards (rh) and the policy π. Once we establish Eq. (96) for all h ∈ [H], we will
apply the performance difference lemma to obtain the desired result.

Fix h ∈ [H]. By Lemma I.2, there is an event Eh of probability at least 1− δ/H under which the solution (f̂ (h), ϕ̂(h)) of the
least-squares regression problem on Line 6 of Algorithm 4 satisfies,

Esh∼unif(Ψ(h))Exh∼q(⋅∣sh) [max
a∈A
∣f̂ (h)(ϕ̂(h)(xh), a) −Qπ̂

(h+1)

h (xh, a)∣] ≤ C ⋅ εstat(n, δH ), (95)

for some absolute constant C independent of h and other problem parameters. Let S̃h,ϵ ⊆ Sh be the subset of states s such
that maxπ∈ΠM d

π(s) < ϵ. Moving forward, we let ε′stat ∶= C ⋅ εstat(n, δH ) and fix s ∈ S̃h,ϵ. From Eq. (97) and that ∣Ψ(h)∣ ≤ S,
we have

∑
π∈Ψ(h)

dπ(s)Exh∼q(⋅∣s) [max
a∈A
∣f̂ (h)(ϕ̂(h)(xh), a) −Qπ̂

(h+1)

h (xh, a)∣] ≤ Sε′stat.

Now, let π̂(h)(xh) ∈ argmaxa∈A f̂
(h)(ϕ̂(h)(xh), a). With this and the fact that ∣∥y∥∞ − ∥z∥∞∣ ≤ ∥y− z∥∞, for all y, z ∈ RA,

we have

∑
π∈Ψ(h)

dπ(s)Exh∼q(⋅∣s) [max
a∈A

Qπ̂
(h+1)

h (xh, a)] ≤ ∑
π∈Ψ(h)

dπ(s)Exh∼q(⋅∣s) [f̂
(h)(ϕ̂(h)(xh), π̂(h)(xh))] + Sε′stat,

≤ ∑
π∈Ψ(h)

dπ(s)Exh∼q(⋅∣s) [Q
π̂(h+1)

h (xh, π̂(h)(xh))] + 2Sε′stat.

Thus, since Ψ(h) is a (α, ϵ)-approximate policy cover and s ∈ S̃h,ϵ, we have that

2Sε′stat ≥ ∑
π∈Ψ(h)

dπ(s)Exh∼q(⋅∣s) [max
a∈A

Qπ̂
(h+1)

h (xh, a) −Qπ̂
(h+1)

h (xh, π̂(h)(xh))] ,
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≥ αdπ⋆(s)Exh∼q(⋅∣s) [max
a∈A

Qπ̂
(h+1)

h (xh, a) −Qπ̂
(h+1)

h (xh, π̂(h)(xh))] .

We have just shown that

dπ⋆(sh)Exh∼q(⋅∣sh) [max
a∈A

Qπ̂
(h+1)

h (xh, a) −Qπ̂
(h+1)

h (xh, π̂(h)(xh))] ≤ 2Sε′stat/α, ∀sh ∈ S̃h,ϵ. (96)

On the other hand, for any sh ∉ S̃h,ϵ, we have dπ⋆(sh) < ϵ. Using this and the fact that Qπ̂
(h+1)(x, a) ∈ [0,H], we have

dπ⋆(sh)Exh∼q(⋅∣sh) [max
a∈A

Qπ̂
(h+1)

h (xh, a)] ≤Hϵ, ∀sh ∉ S̃h,ϵ.

Combining this with Eq. (98) and that the Q-function is non-negative (by Assumption B.1), we have

Eπ⋆ [Qπ̂
(h+1)

h (xh, π⋆(xh)) −Qπ̂
(h+1)

h (xh, π̂(h)(xh))]

≤ Eπ⋆ [max
a∈A

Qπ̂
(h+1)

h (xh, a) −Qπ̂
(h+1)

h (xh, π̂(h)(xh))] ,

= Eπ⋆ [max
a∈A

Qπ̂
(h+1)

h (xh, a) −Qπ̂
(h+1)

h (xh, π̂(h)(xh))] ,

≤ dπ⋆(sh)Exh∼q(⋅∣sh) [max
a∈A

Qπ̂
(h+1)

h (xh, a) −Qπ̂
(h+1)

h (xh, π̂(h)(xh))] ,

≤ 2S2ε′stat/α +HSϵ,
≤ 2S2ε′stat/α + ε/(2H), (97)

where the last inequality follows by the fact that ϵ = ε/(2H2S). Now, by choosing n large enough such that
4S2HCεstat(n, δ/H)/α ≤ ε (as in the theorem’s statement), we have that ε′stat ≤ εα/(4HS2) (by definition of ε′stat) and
so Eq. (99) implies

Eπ⋆ [Qπ̂
(h+1)

h (xh, π⋆(xh)) −Qπ̂
(h+1)

h (xh, π̂(h)(xh))] ≤
ε

H
. (98)

Recall that this inequality holds under the event Eh. On the other hand, by the performance difference lemma (Kakade,
2003) and the definition of π⋆, the V -function V π1 (x) ∶= Eπ[∑Hh=1 rh ∣ x1 = x] satisfies

E[V π̂
(1)

1 (x1)] −max
π∈ΠM

E[V π1 (x1)] = E[V π̂
(1)

1 (x1)] −E[V π⋆1 (x1)],

= Eπ⋆ [Qπ̂
(h+1)

h (xh, π⋆(xh)) −Qπ̂
(h+1)

h (xh, π̂(h)(xh))] .

Thus by Eq. (100), we have that under the event E ∶= ⋃Hh=1 Eh,

E[V π̂
(1)

1 (x1)] −max
π∈ΠM

E[V π1 (x1)] ≤ ε.

The desired suboptimality result follow by the fact that P[E] ≥ 1 − δ.

Sample complexity of PSDP. In order to satisfy the condition 4S2HCεstat(n, δ/H)/α ≤ ε in the theorem statement
(where C is some absolute constant), n needs to be larger than N = Õ(1) ⋅ (H2S4(SA + log(∣Φ∣/δ))/(αε)2), where Õ
hides log-factors in 1/ε,A,S, H , and log ∣Φ∣. Since n represents the number of sampled trajectories per layer in PSDP, the
total number of sampled trajectories in the latter is simply NPSDP =HN .
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