On the Convergence of Gradient Flow on Multi-layer Linear Models

Hancheng Min 1 René Vidal 2,3 Enrique Mallada 1

Abstract
In this paper, we analyze the convergence of gradient flow on a multi-layer linear model with a loss function of the form \(f(W_1W_2\ldots W_L) \). We show that when \(f \) satisfies the gradient dominance property, proper weight initialization leads to exponential convergence of the gradient flow to a global minimum of the loss. Moreover, the convergence rate depends on two trajectory-specific quantities that are controlled by the weight initialization: the imbalance matrices, which measure the difference between the weights of adjacent layers, and the least singular value of the weight product \(W = W_1W_2\ldots W_L \). Our analysis exploits the fact that the gradient of the overparameterized loss can be written as the composition of the non-overparameterized gradient with a time-varying (weight-dependent) linear operator whose smallest eigenvalue controls the convergence rate. The key challenge we address is to derive a uniform lower bound for this time-varying eigenvalue that lead to improved rates for several multi-layer network models studied in the literature.

1. Introduction
The mysterious ability of gradient-based optimization algorithms to solve the non-convex neural network training problem is one of the many unexplained puzzles behind the success of deep learning in various applications (Krizhevsky et al., 2012; Hinton et al., 2012; Silver et al., 2016). A vast body of work has tried to theoretically understand this phenomenon by analyzing either the loss landscape or the training dynamics of the network parameters from a specific initialization.

The landscape-based analysis is motivated by the empirical observation that deep neural networks used in practice often have a benign landscape (Li et al., 2018a), which can facilitate convergence. Existing theoretical analysis (Lee et al., 2016; Sun et al., 2015; Jin et al., 2017) shows that gradient descent converges when the loss function satisfies the following properties: 1) all of its local minima are global minima; and 2) every saddle point has a Hessian with at least one strict negative eigenvalue. Prior work suggests that the matrix factorization model (Ge et al., 2017), shallow networks (Kawaguchi, 2016), and certain positively homogeneous networks (Haefele & Vidal, 2015; 2017) have such a landscape property, but unfortunately condition 2) does not hold for networks with multiple hidden layers (Kawaguchi, 2016). Moreover, the landscape-based analysis generally fails to provide a good characterization of the convergence rate, except for a local rate around the equilibrium (Lee et al., 2016; Ge et al., 2017). In fact, during early stages of training, gradient descent could take exponential time to escape some saddle points if not initialized properly (Du et al., 2017).

The trajectory-based analyses study the training dynamics of the weights given a specific initialization. For example, the case of small initialization has been studied for various models (Arora et al., 2019a; Gidel et al., 2019; Li et al., 2018b; Stöger & Soltanolkotabi, 2021; Li et al., 2021b; Boursier et al., 2022; Razin et al., 2022). Under this type of initialization, the trained model is implicitly biased towards low-rank (Arora et al., 2019a; Gidel et al., 2019; Li et al., 2018b; Stöger & Soltanolkotabi, 2021; Li et al., 2021b; Boursier et al., 2022), and sparse (Li et al., 2021a) models. While the analysis for small initialization gives rich insights on the generalization of neural networks, the number of iterations required for gradient descent to find a good model often increases as the initialization scale decreases. Such dependence proves to be logarithmic on the scale for symmetric matrix factorization model (Li et al., 2018b; Stöger & Soltanolkotabi, 2021; Li et al., 2021b), but for deep networks, existing analysis at best shows a polynomial dependency (Li et al., 2021a). Therefore, the analysis for small initialization, while insightful in understanding the implicit bias of neural network training, is not suitable for understanding the training efficiency in practice since small initialization is rarely implemented due to its slow
convergence. Another line of work studies the initialization in the kernel regime, where a randomly initialized sufficiently wide neural network can be well approximated by its linearization at initialization (Jacot et al., 2018; Chizat et al., 2019; Arora et al., 2019b). In this regime, gradient descent enjoys a linear rate of convergence toward the global minimum (Du et al., 2019; Allen-Zhu et al., 2019; Du & Hu, 2019). However, the width requirement in the analysis is often unrealistic, and empirical evidence has shown that practical neural networks generally do not operate in the kernel regime (Chizat et al., 2019).

The study of non-small, non-kernel-regime initialization has been mostly centered around linear models. For matrix factorization models, spectral initialization (Saxe et al., 2014; Gidel et al., 2019; Tarmoun et al., 2021) allows for decoupling the training dynamics into several scalar dynamics. For non-spectral initialization, the notion of weight imbalance, a quantity that depends on the differences between the weight matrices of adjacent layers, is crucial in most analyses. When the initialization is balanced, i.e., when the imbalance matrices are zero, the convergence relies on the initial end-to-end linear model being close to its optimum (Arora et al., 2018a,b). The effect of weight imbalance on the convergence has been only studied in the case when all imbalance matrices are positive semi-definite (Yun et al., 2020), which is often unrealistic in practice. Therefore, a convergence analysis that applies to deep linear networks under general initialization is still missing. Lastly, most of the aforementioned analyses study the l_2 loss for regression tasks, and it remains unknown whether they generalize to other types of losses commonly used in classification tasks.

Our contribution: This paper aims to provide a general framework for analyzing the convergence of gradient flow on multi-layer linear models. We consider a loss function of the form $L = f(W_1W_2 \cdots W_L)$, where f satisfies the gradient dominance property. Our analysis relies on a novel characterization of the gradient of the overparameterized loss as the composition of the non-overparameterized gradient with a time-varying (weight-dependent) linear operator whose smallest eigenvalue controls the convergence rate. The convergence analysis reduces to finding a uniform lower bound on the least eigenvalue of this time-varying linear operator over the entire training trajectory. However, finding such a uniform lower bound for general networks is extremely difficult even in the case of linear networks because the linear operator depends nontrivially on the weight matrix trajectories. As a consequence, in this work we focus on two- and three-layer neural networks as well as some classes of deep networks for which bounds are possible to obtain despite the complex dependency of the operator on the weight matrix trajectories. More specifically:

- Our analysis shows that the convergence rate depends on two trajectory-specific quantities: 1) the imbalance matrices, which measure the difference between the weights of adjacent layers, and 2) a lower bound on the least singular values of weight product $W = W_1W_2 \cdots W_L$. The former is time-invariant under gradient flow, thus determined at initialization, while the latter can be controlled by initializing the product sufficiently close to its optimum.

- We provide a rate bound that applies to three-layer networks under general initialization. For deep networks, we study a broader class of initialization that covers most initialization schemes used in prior work (Saxe et al., 2014; Tarmoun et al., 2021; Arora et al., 2018a,b; Min et al., 2021; Yun et al., 2020) for both multi-layer linear networks and diagonal linear networks while providing an improved rate bound.

- Our results directly apply to loss functions commonly used in regression tasks, and extend to loss functions used in classification tasks with an alternative assumption on f, under which we show $O(1/t)$ convergence of the loss.

Notations: For an $n \times m$ matrix A, we let A^T denote the matrix transpose of A, $\sigma_i(A)$ denote its i-th singular value in decreasing order and we conveniently write $\sigma_{\min}(A) = \min\{\sigma_i(A) : i \leq \min\{n,m\}\}$ and let $\sigma_x(A) = 0$ if $k > \min\{n,m\}$. We also let $\|A\|_2 = \sigma_1(A)$ and $\|A\|_F = \sqrt{\text{tr}(A^TA)}$. For a square matrix of size n, we let $\text{tr}(A)$ denote its trace and we let $\text{diag}\{a_i\}_{i=1}^n$ be a diagonal matrix with a_i specifying its i-th diagonal entry. For a Hermitian matrix A of size n, we let $\lambda_i(A)$ denote its i-th eigenvalue and we write $A \succeq 0$ ($A \preceq 0$) when A is positive semi-definite (negative semi-definite). For two square matrices A, B of the same size, we let $\langle A, B \rangle_F = \text{tr}(A^TB)$. We use I_n to denote the identity matrix of order n and $O(n)$ to denote the set of $n \times n$ orthogonal matrices. Lastly, we use $[.]^+ := \max\{., 0\}$.

2. Overview of the Analysis

This paper considers finding a matrix W that solves

$$\min_{W \in \mathbb{R}^{n \times m}} f(W),$$

with the following assumption on f.

Assumption 1. f is differentiable and satisfies\(^1\):

$A1$: f satisfies the Polyak-Łojasiewicz (PL) condition, i.e. $\|\nabla f(W)\|_F^2 \geq \gamma (f(W) - f^*)$ for all W. This condition is also known as gradient dominance.

$A2$: f is K-smooth and μ-strongly convex.

\(^1\)Note that $A2$ assumes μ-strong convexity, which implies $A1$ with $\gamma = 2\mu$. However, we list $A1$ and $A2$ separately since they have different roles in our analysis.
While classic work (Polyak, 1987) has shown that the gradient descent update on W with proper step size ensures a linear rate of convergence of $f(W)$ towards its optimal value f^*, the recent surge of research on the convergence and implicit bias of gradient-based methods for deep neural networks has led to a great amount of work on the over-parametrized problem:

$$
\min_{\{W_i\}_{i=1}^L} \mathcal{L}(\{W_i\}_{i=1}^L) = f(W_1 W_2 \cdots W_L),
$$

where $L \geq 2$, $W_i \in \mathbb{R}^{n_i \times n_{i+1}}$, $i = 1, \cdots, L$, with $n_0 = n$, $n_L = m$ and $\min\{n_1, \cdots, n_{L-1}\} \geq \min\{n, m\}$. This assumption on $\min\{n_1, \cdots, n_{L-1}\}$ is necessary to ensure that the optimal value of (2) is also f^*, and in this case, the product $\prod_{i=1}^L W_i$ can represent an overparametrized linear network/model (Arora et al., 2018b; Tarmoun et al., 2021).

2.1. Convergence via Gradient Dominance

For problem (2), consider the gradient flow dynamics on the loss function $\mathcal{L}(\{W_i\}_{i=1}^L)$:

$$
\dot{W}_i = -\frac{\partial}{\partial W_i} \mathcal{L}(\{W_i\}_{i=1}^L), \quad l = 1, \cdots, L. \tag{3}
$$

The gradient flow dynamics can be viewed as gradient descent with “infinitesimal” step size and convergence results for gradient flow can be used to understand the corresponding gradient descent algorithm with sufficiently small step size (Elkabetz & Cohen, 2021). We have the following result regarding the time-derivative of \mathcal{L} under gradient flow.

Lemma 1. Under continuous dynamics in (3), we have

$$
\dot{\mathcal{L}} = -\|\nabla \mathcal{L}(\{W_i\}_{i=1}^L)\|^2_F = -\left(T_{\{W_i\}_{i=1}^L} \nabla f(W), \nabla f(W) \right)_F, \tag{4}
$$

where $W = \prod_{i=1}^L W_i$, and $T_{\{W_i\}_{i=1}^L} = \sum_{l=1}^L T_l$ is a sum of L positive semi-definite linear operators on $\mathbb{R}^{n \times m}$:

$$
T_l E = \left(\prod_{i=0}^{l-1} W_i \right) \left(\prod_{i=1}^{L-l} W_i \right)^T \left(\prod_{i=l+1}^{L} W_i \right)^T \left(\prod_{i=l+1}^{L} W_i \right) .
$$

Such an expression of $\|\nabla \mathcal{L}\|^2_F$ has been studied in Arora et al. (2018b), and we include a proof in Appendix D for completeness. Our convergence analysis is as follows.

For this overparametrized problem, the minimum \mathcal{L}^* of (2) is f^*. Then from Lemma 1 and Assumption A1, we have

$$
\dot{\mathcal{L}} = -\left(T_{\{W_i\}_{i=1}^L} \nabla f(W), \nabla f(W) \right)_F \\
\leq -\lambda_{\min}(T_{\{W_i\}_{i=1}^L}) \|\nabla f(W)\|^2_F \tag{5}
$$

\begin{align}
&\leq -\lambda_{\min}(T_{\{W_i\}_{i=1}^L}) \gamma(f(W) - f^*) \tag{A1} \\
&= -\lambda_{\min}(T_{\{W_i\}_{i=1}^L}) \gamma(\mathcal{L} - \mathcal{L}^*). \tag{6}
\end{align}

If we find an $\alpha > 0$ such that $\lambda_{\min}(T_{\{W_i(t)\}_{i=1}^L}) \geq \alpha$, $\forall t$, then the following inequality holds on the entire training trajectory $\frac{d}{dt} (\mathcal{L} - \mathcal{L}^*) \leq -\alpha \gamma (\mathcal{L} - \mathcal{L}^*)$. Therefore, by using Grönwall’s inequality (Grönwall, 1919), we can show that the loss function \mathcal{L} converges exponential to its minimum:

$$
\mathcal{L}(t) - \mathcal{L}^* \leq \exp(-\alpha \gamma t) (\mathcal{L}(0) - \mathcal{L}^*), \forall t \geq 0. \tag{7}
$$

Therefore, to show exponential convergence of the loss, we need to lower bound $\lambda_{\min}(T_{\{W_i(t)\}_{i=1}^L})$.

Key challenge: Most existing work on the convergence of gradient flow/descent on linear networks implicitly provides a lower bound on $\lambda_{\min}(T_{\{W_i(t)\}_{i=1}^L})$ throughout the training trajectory, under particular assumptions on the initialization and network structure. For extremely wide networks under NTK initialization (Du & Hu, 2019), the weights do not deviate too much from their initialization, from which one has $T_{\{W_i(t)\}_{i=1}^L} \simeq T_{\{W_i(0)\}_{i=1}^L}$, then the analysis reduces to finding eigenvalue bound for a fixed operator, rather than a time-varying one. Outside the kernel regime, one requires a uniform lower bound on $\lambda_{\min}(T_{\{W_i(t)\}_{i=1}^L})$ that accounts for the evolution of the weights. What has been facilitating the analysis are special initialization schemes that induce persistent structural properties on the weights, from which the operator can be simplified. For example, under balanced initialization (Arora et al., 2018a), the linear operator would only depend on the product of the weights, instead of individual ones. To show convergence for general initialization without any structural property on the weights, one not only requires some analysis of the evolution of weights but, most importantly, also a careful eigenvalue analysis on $T_{\{W_i(t)\}_{i=1}^L}$. However, the operator $T_{\{W_i(t)\}_{i=1}^L}$ is a polynomial on the weight matrices whose degree depends on the network depth L, and the higher the degree of $T_{\{W_i(t)\}_{i=1}^L}$, the harder it is to bound its least eigenvalue.

We first revisit recent convergence analysis developed for two-layer networks under general initialization, then we show that much of its ingredients hint at possible ways to lower bound $\lambda_{\min}(T_{\{W_i(t)\}_{i=1}^L})$ for deep networks, then present our convergence results regarding deep networks.

3. Lessons from Two-layer Linear Models

In this section, we revisit prior work through the lens of our general convergence analysis in Section 2.1. A lower bound on $\lambda_{\min}(T_{\{W_i(t)\}_{i=1}^L})$ can be obtained from the training invariance of the gradient flow. We first consider the following imbalance matrices:

$$
D_l := W_l^T W_l - W_{l+1} W_{l+1}^T, \quad l = 1, \cdots, L - 1. \tag{8}
$$

For such imbalance matrices, we have

Lemma 2. Under (3), $\dot{D}_l(t) = 0$, $\forall t \geq 0$, $l = 1, \cdots, L - 1$.

Such invariance has been studied in most work on linear networks (Arora et al., 2018a; Du et al., 2018). We include the proof in Appendix D for completeness. Since the imbalance matrices \(\{D_l\}_{l=1}^L \) are fixed at its initial value, any point \(\{W_l(t)\}_{l=1}^L \) on the training trajectory must satisfy the imbalance constraints \(W_l(t)^T W_l(t) - W_{l+1}^T W_{l+1} = D_l(0), \ l = 1, \ldots , L - 1 \). Previous work has shown that enforcing certain non-zero imbalance at initialization leads to exponential convergence of the loss for two-layer networks (Tarmoun et al., 2021; Min et al., 2021), and for deep networks (Yun et al., 2020). Another line of work (Arora et al., 2018a,b) has shown that balanced initialization \(D_l = 0, \forall l \) has exactly \(\lambda_{\min}(T_{\{W_l(t)\}}) = L \sigma_{\min}^{2-2/L}(W(t)) \), where \(W(t) = \prod_{l=1}^L W_l(t) \). This suggests that the desired bound on \(\lambda_{\min}(T_{\{W_l(t)\}}) \) potentially depend on both the weight imbalance matrices and weight product matrix. Indeed, for \(L = 2 \), a re-statement\(^2\) of the results in (Min et al., 2022) provides a lower bound on \(\lambda_{\min}(T_{\{W_l(t)\}}) \) with the knowledge of the imbalance and the product.

Lemma 3 (re-stated from Min et al. (2022)). When \(L = 2 \), given weights \(\{W_1, W_2\} \) with imbalance matrix \(D = W_1^T W_1 - W_2 W_2^T \) and product \(W = W_1 W_2 \), define

\[
\begin{align*}
\Delta_+ &= [\lambda_1(D)]_+ - [\lambda_n(D)]_+ , \\
\Delta_- &= [\lambda_1(-D)]_+ - [\lambda_n(-D)]_+ , \\
\Delta &= [\lambda_n(D)]_+ + [\lambda_n(-D)]_+ ,
\end{align*}
\]

Then for the linear operator \(T_{\{W_1, W_2\}} \), we have

\[
2 \lambda_{\min}(T_{\{W_1, W_2\}}) \geq -\Delta_+ + \sqrt{(\Delta_+ + \Delta)^2 + 4 \sigma_n^2(W)} - \Delta_- + \sqrt{(\Delta_- + \Delta)^2 + 4 \sigma_n^2(W)} .
\]

Min et al. (2022) include a detailed discussion on the bound, including tightness. For our purpose, we note the following:

Effect of imbalance: It follows from (9) that \(\lambda_{\min}(T_{\{W_1, W_2\}}) \geq \Delta \) since \(\sigma_{\min}(W) \geq 0 \). Therefore, \(\Delta \) is always a lower bound on the convergence rate. This means that, for most initializations, the fact that the imbalance matrices are bounded away from zero (characterized by \(\Delta > 0 \)) is already sufficient for exponential convergence.

Effect of product: The role of the product in (9) is more nuanced: Assume \(n = m \) for simplicity so that \(\sigma_n(W W^T) = \sigma_n(W^T W) = \sigma_n^2(W) \). We see that the non-negative quantities \(\Delta_+ , \Delta_- \) control how much the product affects the convergence. More precisely, the lower bound in (9) is a decreasing function of both \(\Delta_+ \) and \(\Delta_- \). When \(\Delta_+ = \Delta_- = 0 \), the lower bound reduces to

\[
\sqrt{\Delta^2 + 4 \sigma_n^2(W)} ,
\]

showing a joint contribution to convergence from both imbalance and product. However, as \(\Delta_+ , \Delta_- \) increases, the bound decreases towards \(\Delta \), which means that the effect of imbalance always exists, but the effect of the product diminishes for large \(\Delta_+ , \Delta_- \). We note that \(\Delta_+ , \Delta_- \) measure how the eigenvalues of the imbalance matrix \(D \) are different in magnitude, i.e., how “ill-conditioned” the imbalance matrix is.

Implication on convergence: Note that (9) is almost a lower bound for \(\lambda_{\min}(T_{\{W_1(t), W_2(t)\}}) , t \geq 0 \), as the imbalance matrix \(D \) is time-invariant (so are \(\Delta_+ , \Delta_- , \Delta \), except the right-hand side of (9) also depends on \(\sigma_{\min}(W(t)) \)). If \(f \) satisfies \(A_2 \), then \(f \) has a unique minimizer \(W^* \). Moreover, one can show that given a initial product \(W(0) \), \(W(t) \) is constrained to lie within a closed ball \(\{W : ||W - W^*||_F \leq \frac{K}{\mu} ||W(0) - W^*||_F \} \). i.e., \(W(t) \) does not get too far away from \(W^* \) during training. We can use this to derive the following lower bound on \(\sigma_{\min}(W(t)) \):

\[
\sigma_{\min}(W(t)) \geq \left[\sigma_{\min}(W^*) - \sqrt{\frac{K}{\mu} ||W(0) - W^*||_F} \right]_+ .
\]

This margin term being positive guarantees that the closed ball excludes any \(W \) with \(\sigma_{\min}(W) = 0 \). With this observation, we find a lower bound \(\lambda_{\min}(T_{\{W_1(t), W_2(t)\}}) , t \geq 0 \) that depends on both the weight imbalance and margin, and the exponential convergence of loss \(L \) follows:

Theorem 1. Let \(D \) be the imbalance matrix for \(L = 2 \). The continuous dynamics in (3) satisfy

\[
L(t) - L^* \leq \exp \left(-\alpha_2 \gamma t \right) (L(0) - L^*) , \forall t \geq 0 ,
\]

1. If \(f \) satisfies only \(A_1 \), then \(\alpha_2 = \Delta : \)
2. If \(f \) satisfies both \(A_1 \) and \(A_2 \), then

\[
\alpha_2 = -\Delta_+ + \sqrt{(\Delta_+ + \Delta)^2 + 4 \nu_n^2} - \Delta_- + \sqrt{(\Delta_- + \Delta)^2 + 4 \nu_m^2} ,
\]

where

\[

\nu_n = \left[\sigma_n(W^*) - \sqrt{\frac{K}{\mu} ||W(0) - W^*||_F} \right]_+ , \\
\nu_m = \left[\sigma_m(W^*) - \sqrt{\frac{K}{\mu} ||W(0) - W^*||_F} \right]_+ ,
\]

\(W(0) = \prod_{l=1}^L W_l(0) \), and \(W^* \) equal to the unique optimizer of \(f \).

Please see Appendix F for the proof. Theorem 1 is new as it generalizes the result in Min et al. (2022), which is only for \(l^2 \) loss in linear regression. We consider a general loss...
function defined by f, including the losses for matrix factorization (Arora et al., 2018a), linear regression (Min et al., 2022), and matrix sensing (Arora et al., 2019a). Additionally, Arora et al. (2018a) first introduced the notion of margin for f in matrix factorization problems ($K = 1, \mu = 1$), and we extend it to any f that is smooth and strongly convex.

Towards deep models: So far, we revisited prior results on two-layer networks, showing how $\lambda_{\text{min}}(T_{W_1,W_2})$ can be lower bounded by weight imbalance and product, from which the convergence result is derived. Can we generalize the analysis to deep networks? The challenge is that even computing $\lambda_{\text{min}}(T_{W_1,W_2})$ is complicated: For $L = 2$, $\lambda_{\text{min}}(T_{W_1,W_2}) = \lambda_n(W_1W_2^T) + \lambda_m(W_2^T W_2)$, but such nice relation does not exist for $L > 3$, which makes the search for a tight lower bound potentially difficult. On the other hand, the findings in (9) shed light on what can be potentially shown for the deep layer case:

1. For two-layer networks, we always have the bound $\lambda_{\text{min}}(T_{W_1,W_2}) \geq \Delta$, which depends only on the imbalance. Can we find a lower bound on the convergence rate of a deep network that depends only on an imbalance quantity analogous to Δ? If yes, how does such a quantity depend on network depth?

2. For two-layer networks, the bound reduces to $\sqrt{\Delta^2 + 4\sigma_{\text{min}}^2(W)}$ when the imbalance is “well-conditioned” ($\Delta_+, \Delta_- \text{ are small}$). For deep networks, can we characterize such joint contribution from the imbalance and product, given a similar assumption?

We will answer these questions as we present our convergence results for deep networks.

4. Convergence Results for Deep Linear Models

4.1. Three-layer Model

To answer the first question of how weight imbalance affects convergence, we derive a novel rate bound for three-layer models showing the general effect of imbalance. For ease of presentation, we denote the two imbalance matrices for three-layer models, D_1 and D_2, as

$$
\begin{align*}
-D_1 &= W_2 W_1^T - W_1^T W_1 : = D_{21}, \quad (13) \\
D_2 &= W_2^T W_2 - W_3 W_3^T := D_{23}. \quad (14)
\end{align*}
$$

Our lower bound comes after a few definitions.

Definition 1. Given two real symmetric matrices A, B of order n, we define a non-commutative binary operation \wedge_r as $A \wedge_r B := \text{diag}\{\min\{\lambda_i(A), \lambda_{i+1-r}(B)\}\}_{i=1}^n$, where $\lambda_j(\cdot) = +\infty, \forall j \leq 0$.

Definition 2. Given $(D_{21}, D_{23}) \in \mathbb{R}^{h_1 \times h_1} \times \mathbb{R}^{h_2 \times h_2}$, define

$$
\begin{align*}
\hat{D}_{h_1} &= \text{diag}\{\{\max\{\lambda_i(D_{21}), \lambda_{i+1}(D_{23})\}, 0\}\}_{i=1}^{h_1} \\
\hat{D}_{h_2} &= \text{diag}\{\{\max\{\lambda_i(D_{21}), \lambda_{i+1}(D_{23})\}, 0\}\}_{i=1}^{h_2} \\
\Delta_{21} &= \text{tr}(\hat{D}_{h_1}) - \text{tr}(\hat{D}_{h_1} \wedge_n D_{21}) \\
\Delta_{21}^{(2)} &= \text{tr}(\hat{D}_{h_2}^2) - \text{tr}(\hat{D}_{h_2} \wedge_m D_{21}) \quad (15) \\
\Delta_{23} &= \text{tr}(\hat{D}_{h_2}) - \text{tr}(\hat{D}_{h_2} \wedge_m D_{23}) \\
\Delta_{23}^{(2)} &= \text{tr}(\hat{D}_{h_2}^2) - \text{tr}(\hat{D}_{h_2} \wedge_m D_{23}^2).
\end{align*}
$$

Theorem 2. When $L = 3$, given weights $\{W_1, W_2, W_3\}$ with imbalance matrices (D_{21}, D_{23}) as defined in (13)(14), then for the linear operator $T_{\{W_1,W_2,W_3\}}$, we have

$$
\lambda_{\text{min}}\left(T_{\{W_1,W_2,W_3\}}\right)
\leq \frac{1}{2}(\Delta_{21}^{(2)} + \Delta_{21}^2) + \Delta_{21} \Delta_{23} + \frac{1}{2}(\Delta_{23}^{(2)} + \Delta_{23}^2)
:= \Delta^*(D_{21}, D_{23}).
$$

Proof Sketch. It is generally difficult to study $T_{\{W_1,W_2,W_3\}}$, hence we use the lower bound $\lambda_{\text{min}}(T_{\{W_1,W_2,W_3\}}) \geq \lambda_n(W_1W_2W_3^T W_1^T) + \lambda_n(W_1W_2^T)\lambda_m(W_2^T W_3) + \lambda_m(W_2^T W_2 W_3) := g(W_1, W_2, W_3)$. We show that given D_{21}, D_{23}, the optimal value of

$$
\min_{W_1, W_2, W_3} g(W_1, W_2, W_3)
$$

s.t. $W_2 W_2^T - W_1^T W_1 = D_{21}, W_2^T W_2 - W_3 W_3^T = D_{23},$

is $\Delta^*(D_{21}, D_{23})$. Please see Appendix G for the proof. □

With the theorem, we have the following corollary.

Corollary 1. When $L = 3$, given initialization with imbalance matrices (D_{21}, D_{23}) and f satisfying A1, the continuous dynamics in (3) satisfy

$$
\mathcal{L}(t) - \mathcal{L}^* \leq \exp(-\alpha_3 t) (\mathcal{L}(0) - \mathcal{L}^*), \forall t \geq 0, \quad (17)
$$

where $\alpha_3 = \frac{1}{2}(\Delta_{21}^{(2)} + \Delta_{21}^2) + \Delta_{21} \Delta_{23} + \frac{1}{2}(\Delta_{23}^{(2)} + \Delta_{23}^2)$. We make the following remarks regarding the contribution.

Optimal bound via imbalance: First of all, as shown in the proof sketch, our bound should be considered as the best lower bound on $\lambda_{\text{min}}(T_{\{W_1(t), W_2(t), W_3(t)\}})$ one can obtain given knowledge of the imbalance matrices only. More importantly, the bound works for ANY initialization and has the same role as Δ does in two-layer networks, i.e., (15) quantifies the general effect imbalance on the convergence. Finding an improved bound that takes the effect of $\sigma_{\text{min}}(W)$ into account is an interesting future research direction.

Implication on convergence: Corollary 1 suggests that the gradient flow starting at any initialization with positive $\Delta^*(D_{21}, D_{23})$ converges exponentially. However, due to
its complicated expression, it is less clear under what initialization the bound is positive. We conjecture that most random initialization schemes would have a positive Δ^*, and through some numerical experiments in Section 5, we show that random initialization (outside NTK regime) is most likely to have a positive Δ^*, thus exponential convergence is guaranteed by our theorem.

Technical contribution: We highlight in Section 2 the challenge in bounding $\lambda_{\min}(\mathcal{T}_{\{W_l(i)\}_{i=1}^L})$ for deep networks. One needs to develop new mathematical tools for the eigenanalysis: The way we find the lower bound in (15) is by studying the generalized eigenvalue interlacing relation imposed by the imbalance constraints. Specifically, $W_2W_2^T - W_1^TW_1 = D_{21}$ suggests that $\lambda_{i+n}(W_2W_2^T) \leq \lambda_i(D_{21}) \leq \lambda_i(W_2^TW_2^T), \forall i$ because $W_2W_2^T - D_{21}$ is a matrix of at most rank-n. We derive, from such interlacing relation, novel eigenvalue bounds (See Lemma G.6) on $\lambda_n(W_2^TW_1)$ and $\lambda_n(W_1W_2W_2^TW_1)$ that depends on eigenvalues of both $W_2W_2^T$ and D_{21}. Then the eigenvalues of $W_2W_2^T$ can also be controlled by the fact that W_2 must satisfy both imbalance equations in (13)(14). Since imbalance equations like those in (13)(14) appear in deep networks and certain nonlinear networks (Du et al., 2018; Le & Jegelka, 2022), we believe our mathematical results are potentially useful for understanding those networks.

Comparison with prior work: The convergence of multilayer linear networks under balanced initialization ($D_l = 0, \forall i$) has been studied in Arora et al. (2018a;b), and our result is complementary as we study the effect of non-zero imbalance on the convergence of three-layer networks. Some settings with imbalanced weights have been studied: Yun et al. (2020) studies a special initialization scheme ($D_l \geq 0, l = 1, \cdots, L - 2$, and $D_{L-1} \geq \lambda I_{n_{L-1}}$) that forces the partial ordering of the weights, and Wu et al. (2019) uses similar initialization to study the linear residual networks. Our bound works for such initialization and also show such partial ordering is not necessary for convergence.

4.2. Deep Linear Models

The lower bound we derived for three-layer networks applies to any initialization. However, the bound is a fairly complicated function of all the imbalance matrices that is hard to interpret. Searching for such a general bound is even more challenging for models with arbitrary depth ($L \geq 3$).

Therefore, our results for deep networks will rely on extra assumptions on the weights that simplify the lower bound to facilitate interpretability. Specifically, we consider the following properties of the weights:

Definition 3. A set of weights $\{W_l\}_{l=1}^L$ with imbalance matrices $\{D_l := W_l^TW_l - W_{l+1}W_{l+1}^T\}_{l=1}^{L-1}$ is said to be unimodal with index l^* if there exists $l^* \in [L]$ such that $D_l \geq 0$, for $l < l^*$ and $D_l \leq 0$, for $l \geq l^*$.

We define its cumulative imbalances $\{\tilde{d}(i)\}_{l=1}^{L-1}$ as

$$\tilde{d}(i) = \begin{cases}
\sum_{i=1}^l \lambda_m(-D_i), & i \geq l^* \\
\sum_{i=1}^{l^*-1} \lambda_n(D_i), & i < l^*.
\end{cases}$$

Furthermore, for weights with unimodality index l^*, if additionally, $D_l = d_l I_{n_l}, l = 1, \cdots, L - 1$ for $d_l \geq 0$, for $l < l^*$ and $d_l \leq 0$, for $l \geq l^*$, those weights are said to have homogeneous imbalance.

The unimodality assumption enforces an ordering of the weights w.r.t. the positive semi-definite cone. This is more clear when considering scalar weights $\{w_l\}_{l=1}^L$, in which case unimodality requires w_l^2 to be descending until index l^* and ascending afterward. Under this unimodality assumption, we show that imbalance contributes to the convergence of the loss via a product of cumulative imbalances. Furthermore, we also show the combined effects of imbalance and weight product when the imbalance matrices are “well-conditioned” (in this case, homogeneous).

Theorem 3. For weights $\{W_l\}_{l=1}^L$ with unimodality index l^* and product $W = \prod_{l=1}^L W_l$, we have

$$\lambda_{\min}(\mathcal{T}_{\{W_l\}_{l=1}^L}) \geq \prod_{l=1}^{L-1} \tilde{d}(i). \quad (18)$$

Furthermore, if the weights have homogeneous imbalance,

$$\lambda_{\min}(\mathcal{T}_{\{W_l\}_{l=1}^L}) \geq \sqrt{\left(\prod_{i=1}^{L-1} \tilde{d}(i)\right)^2 + \left(L \sigma_{\min}^2(W)\right)^2}, \quad (19)$$

We make the following remarks:

Connection to results for three-layer: For three-layer networks, we present an optimal bound given some imbalance. Interestingly, when comparing the three-layer bound (15) with our bound in (18), we have (See Appendix H):

Claim. When $L = 3$, for weights $\{W_1, W_2, W_3\}$ with unimodality index l^*,

1. If $l^* = 1$, then $\frac{1}{2}(\Delta_{23}^2 + \Delta_{23}^2) = \prod_{l=1}^{L-1} \tilde{d}(i)$ and $\frac{1}{2}(\Delta_{21}^2 + \Delta_{23}^2) = \Delta_{21} \Delta_{23} = 0$;
2. If $l^* = 2$, then $\Delta_{21} \Delta_{23} = \prod_{i=1}^{L-1} \tilde{d}(i)$ and $\frac{1}{2}(\Delta_{21}^2 + \Delta_{23}^2) = \frac{1}{2}(\Delta_{21}^2 + \Delta_{23}^2) = 0$;
3. If $l^* = 3$, then $\frac{1}{2}(\Delta_{21}^2 + \Delta_{23}^2) = \prod_{i=1}^{L-1} \tilde{d}(i)$ and $\frac{1}{2}(\Delta_{21}^2 + \Delta_{23}^2) = \Delta_{21} \Delta_{23} = 0$.

The claim shows that the bound in (18) is optimal for three-layer unimodal weights as it coincides with the one in Theorem 2. We conjecture that (18) is also optimal for multilayer unimodal weights and leave the proof for future research. Interestingly, while the bound for three-layer models
is complicated, the three terms $\frac{1}{2} (\Delta_{23}^{(2)} + \Delta_{23}^{(2)})$, $\Delta_{21} \Delta_{23}$, $\frac{1}{2} (\Delta_{21}^{(2)} + \Delta_{23}^{(2)})$, seem to roughly capture how close the weights are to unimodality. This hints at potential generalization of Theorem 2 to the deep case where the bound should have L terms capturing how close the weights could be to those with different unimodality ($l^* = 1, \cdots, L$).

Effect of imbalance under unimodality: For simplicity, we assume unimodality index $l^* = L$. The bound $\prod_{i=1}^{L-1} d(i)$, as a product of cumulative imbalances, generally grows exponentially with the depth L. Prior work Yun et al. (2020) studies the case $D_l \geq 0, l = 1, \cdots, L - 2$, and $D_{L-1} \geq \lambda I_{h_{L-1}}$, in which case $\prod_{i=1}^{L-1} d(i) \geq \lambda^{L-1}$. Our bound $\prod_{i=1}^{L-1} \delta(i)$ suggests the dependence on L could be super-exponential: When $\lambda(t_n(D_l)) \geq e > 0$, for $l = 1, \cdots, L - 1$, we have $\prod_{i=1}^{L-1} d(i) = \prod_{i=1}^{L-1} \sum_{l=1}^{\lambda_i} n_i(D_l) \geq \prod_{i=1}^{L-1} (e^L - 1)^i$, which grows faster in L than λ^{L-1} for any λ. Therefore, for gradient flow dynamics, the depth L could greatly improve convergence in the presence of weight imbalance. One should note, however, that such analysis can not be directly translated into fast convergence guarantees of gradient descent algorithm as one requires careful tuning of the step size for the discrete updates to follow the trajectory of the continuous dynamics (Elkabetz & Cohen, 2021).

Convergence under unimodality: The following immediately comes from Theorem 3:

Corollary 2. If the initialization weights $\{W_l(0)\}_{1 \leq l \leq L}$ are unimodal, then the continuous dynamics in (3) satisfy

$$L(t) - L^* \leq \exp (-\alpha_L t) (L(0) - L^*), \forall t \geq 0. \tag{20}$$

1. If f satisfies A1 only, then $\alpha_L = \prod_{i=1}^{L-1} \delta(i)$;

2. If f satisfies both A1, A2, and the weights additionally have homogeneous imbalance, then $\alpha_L = \sqrt{\left(\prod_{i=1}^{L-1} \delta(i)\right)^2 + \left(L_\nu \min\right)^2}$, where

$$\nu \min = \left[\sigma \ min (W^*) - \sqrt{K/\mu} \|W(0) - W^*\|_F\right]_+, \quad W(0) = \prod_{l=1}^{L-1} W_l(0) \text{ and } W^* \text{ equal to the unique optimizer of } f.$$

Spectral initialization under l_2 loss: Suppose $f = \frac{1}{2} \|Y - W\|_F^2$ and $W = \prod_{l=1}^{L} W_l$. We write the SVD of $Y \in \mathbb{R}^{n \times m}$ as $Y = P \begin{bmatrix} \Sigma_Y & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} Q \\ \bar{Q} \end{bmatrix} = P \Sigma_Y \bar{Q}$, where $P \in \mathcal{O}(n), Q \in \mathcal{O}(m)$. Consider the spectral initialization $W_1(0) = R \Sigma_1 V_1^T, W_l(0) = V_{l-1} \Sigma_l V_l^T, l = 2, \cdots, L - 1, W_L(0) = V_{L-1} \Sigma_L Q$, where $\Sigma_l, l = 1, \cdots, L$ are diagonal matrices of our choice and $V_l \in \mathbb{R}^{n \times h_l}, l = 1, \cdots, L$ with $V_l^2 V_l = I_{h_l}$. It can be shown that (See Appendix E.1)

$$W_l(t) = R \Sigma_1(t) V_1^T, \quad W_L(t) = V_{L-1} \Sigma_L(t) Q, \quad W_i(t) = V_{i-1} \Sigma_i(t) V_i^T, l = 2, \cdots, L - 1.$$

Moreover, only the first m diagonal entries of Σ_l are changing. Let $\sigma_{i,t}, \sigma_{i,y}$ denote the i-th diagonal entry of Σ_l and Σ_y respectively, then the dynamics of $\{\sigma_{i,t}\}_{l \leq L}$ follow the gradient flow on $L_i((\sigma_{i,t})_{l \leq L}) = \frac{1}{2} \sum_{i=1}^{L} \sigma_{i,y} - \sum_{i=1}^{L} \sigma_{i,t}^2$ for $l = 1, \cdots, m$, which is exactly a multi-layer model with scalar weights: $f(w) = |\sigma_y - w|^2/2, w = \prod_{l=1}^{L-1} w_l$. Therefore, spectral initialization under l_2 loss can be decomposed into m deep linear models with scalar weights, whose convergence is shown by Corollary 2. Note that networks with scalar weights are always unimodal, because the gradient flow dynamics remain the same under any reordering of the weights, and always have homogeneous imbalance, because the imbalances are scalars.

Diagonal linear networks: Consider f a function on \mathbb{R}^n satisfying A1 and $L = f(w_1 \odot \cdots \odot w_L)$, where $w_l \in \mathbb{R}^n$ and \odot denote the entrywise product. We can show that (See Appendix E.2) $\mathcal{L} = -\|\nabla \mathcal{L}\|^2_F \leq -\sum_{l=1}^{n} \min_{i} \left(\frac{\lambda_i}{\lambda_{\min}(T_{w_l} \Sigma_{i,l})} \right)^2 (\mathcal{L} - \mathcal{L}^*),$ where w_i is the i-th entry of w_l. Then Theorem 3 gives lower bound on each $\lambda_{\min}(T_{w_l} \Sigma_{i,l})^{\frac{L-1}{L}}$.

Comparison with prior work: Regarding unimodality, Yun et al. (2020) studies the initialization scheme $D_l \geq 0, l = 1, \cdots, L - 2$ and $D_{L-1} \geq \lambda I_{h_{L-1}}$, which is a special case ($l^* = L$) of ours. The homogeneous imbalance assumption was first shown in Tarmoun et al. (2021) for two-layer networks, and we generalize it to the deep case. We compare, in Table 1, our bound to existing work (Arora et al., 2018a; Yun et al., 2020) on convergence of deep linear networks outside the kernel regime. Note that Yun et al. (2020) only studies a special case of unimodal weights ($l^* = L$ with $\delta_i \geq \lambda > 0, \forall i$). For homogeneous imbalance, (Yun et al., 2020) studied spectral initialization and diagonal linear networks, which necessarily have homogeneous imbalance, but the result does not generalize to the case of matrix weights. Our results for homogeneous imbalance works also for networks with matrix weights, and our rate also shown the effect of the product $L_\sigma^{2-2/L}(W)$, thus covers the balanced.
4.3. Convergence Results for Classification Tasks

Note that the loss functions used in Gunasekar et al. (2018); Yun et al. (2020) are classification losses, such as the exponential loss, which do not satisfy A1. However, we can show $O(1/t)$ convergence with an alternative assumption.

Theorem 4. Suppose f satisfies (A1') $\|\nabla f(W)\|_F \geq \gamma(f(W) - f^*)$, $\forall W \in \mathbb{R}^{n \times m}$. Given initialization $\{W_i(0)\}_{i=1}^L$ such that $\lambda_{\min}(T_{\{W_i(t)\}_{i=1}^L}) \geq \alpha, \forall t$, then

$$\mathcal{L}(t) - \mathcal{L}^* \leq \frac{\mathcal{L}(0) - \mathcal{L}^*}{(\mathcal{L}(0) - \mathcal{L}^*)(\alpha \gamma t + 1)}.$$ \hspace{1cm} (21)

We refer readers to Appendix C for the proof. The lower bound on $\lambda_{\min}(T_{\{W_i(t)\}_{i=1}^L})$ can be obtained for different networks by their results in previous sections.

5. Numerical Experiments

In Section 4.1, we have shown a rate bound for three-layer networks under general initialization in Theorem 2. However, due to its complicated expression, it is less clear under what initialization the bound is positive. Through some numerical experiments, we show that our bound is very likely to be positive under various random initialization schemes. In Figure 1, we show a box plot of our bound $\Delta = \Delta^*(D_{21}, D_{23})$ in Theorem 2 under: NTK initialization (Du & Hu, 2019), Xavier initialization (Glorot & Bengio, 2010), and Fanout initialization. These initialization schemes all randomly sample the network weights with Gaussian distribution, but with different variances for each layer. We refer the reader to Appendix A for details on the experiment setting. Shown from the box plot, our bound is non-vacuous for random initialization: All the sampled instances of random initialization, we have $\Delta^*(D_{21}, D_{23}) > 0$, i.e., exponential convergence is guaranteed for all cases, while no existing work provide exponential convergence guarantee for this experiment because the initialization has a non-zero imbalance (Arora et al. (2018a) requires balancedness), and the network has only a moderate width (Du & Hu (2019) requires extremely large width).

Next, we run gradient descent on three-layer networks under Fanout initialization with a loss function $\mathcal{L} = \|Y - W_1W_2W_3\|_F^2/2$, and compare our theoretical bound from Corollary 1 with the actual loss curve. We see that for certain cases $n = 1, m = 1$ (Middle plot in Figure 1), our bound provides a good characterization of the actual convergence rate, but appears less tight for problems with higher dimensions $n = 5, m = 1$ (Right plot in Figure 1). However, we note that even in the latter case, initialization with a large value of the bound Δ does converge faster, hence there exists some correlation between the bound Δ and the actual convergence rate, and formally justify such correlation is an interesting future research. Moreover, we view the fact that Δ fails to provide a tight bound for problems with larger scales as some evidence showing that imbalance constraint is relatively weaker in characterizing the eigenmodes of $T_{\{W_i(t)\}_{i=1}^L}$ for deep networks, despite its usefulness in shallow networks (Tarmoun et al., 2021; Min et al., 2021). This suggests that we should be searching for new structural properties on the weights to fully understand the convergence of deep networks.

6. Conclusion and Discussion

In this paper, we study the convergence of gradient flow on multi-layer linear models with a loss of the form $f(W_1W_2 \cdots W_L)$. We show that with proper initialization, the loss converges to its global minimum exponentially. Our analysis applies to various types of multi-layer linear networks, and our assumptions on f are general. Future directions include extending our results to gradient descent algorithm (Xu et al., 2023) and to nonlinear networks. Du et al. (2018) shows the diagonal entries of the imbalance are preserved, and Le & Jegelka (2022) shows a stronger version of such invariance given additional assumptions on the training trajectory. Therefore, the weight imbalance could
be used to understand the training of nonlinear networks. Moreover, (Zhao et al., 2022) shows that exploiting the symmetry that induces imbalance invariance could lead to an accelerated gradient descent algorithm, thus our general analysis could potentially also aid the algorithmic design.

Acknowledgement

The authors thank the support of the NSF-Simons Research Collaborations on the Mathematical and Scientific Foundations of Deep Learning (NSF grant 2031985), the NSF HDR TRIPODS Institute for the Foundations of Graph and Deep Learning (NSF grant 1934979), the ONR MURI Program (ONR grant 503405-78051), and the NSF CAREER Program (NSF grant 1752362). The authors also thank Ziqing Xu and Salma Tarmoun for their suggestions and comments during the preparation of the manuscript.

References

On the Convergence of Gradient Flow on Multi-layer Linear Models

A. Experiment Details

For the box plot, we consider a three-layer network with $n = 5$, $m = 1$, $h_1 = h_2 = 200$, we use the following random initialization schemes

1. NTK initialization (Du & Hu, 2019): $[W_1]_{ij} \sim \mathcal{N}(0, 1)$, $[W_2]_{ij} \sim \mathcal{N}(0, 1)$, $[W_3]_{ij} \sim \mathcal{N}(0, 1)$

 Note: the model used in Du & Hu (2019) is scaled by $\frac{1}{\sqrt{mh_1h_2}}$, i.e., the loss is of the form $f(\frac{1}{\sqrt{mh_1h_2}} W_1 W_2 W_3)$, thus the rate is scaled by $\frac{1}{\sqrt{mh_1h_2}}$. The box plot shows the scaled rate.

2. Xavier/Fan_in initialization (Glorot & Bengio, 2010): $[W_1]_{ij} \sim \mathcal{N}(0, \frac{1}{n})$, $[W_2]_{ij} \sim \mathcal{N}(0, \frac{1}{h_1})$, $[W_3]_{ij} \sim \mathcal{N}(0, \frac{1}{h_2})$

3. Fan_out initialization: $[W_1]_{ij} \sim \mathcal{N}(0, \frac{1}{n})$, $[W_2]_{ij} \sim \mathcal{N}(0, \frac{1}{h_1})$, $[W_3]_{ij} \sim \mathcal{N}(0, \frac{1}{m})$

For each random initialization scheme, we sample 100 instances of weight initialization and compute our bound $\Delta^*(D_{21}, D_{23})$ for each weight initialization. Then we plot the 100 values in the box plot in Figure 1. From the box plot, we see that our bound is non-vacuous for random initialization: All the sampled instances of random initialization, we have $\Delta^*(D_{21}, D_{23}) > 0$, i.e., exponential convergence is guaranteed for all cases.

For the middle and right plots in Figure 1, we run gradient descent on three-layer networks under Fan_out initialization with a loss function $L = \|Y - W_1 W_2 W_3\|_F^2 / 2$ with step size η:

1. Middle plot: $n = 1, m = 1, Y = -2, \eta = 5e - 6$;

2. Right plot: $n = 5, m = 1, Y = [1, 1, 1, 1, 1]^T, \eta = 5e - 6$;

We consider networks with different width: $(h_1, h_2) = (100, 200), (200, 300), (300, 500)$, the choice of Y is made such that for network with different widths, the random initialization has roughly the same initial loss. The dashed line is an upper bound on the loss provided by Corollary 1, since when step size is small, Corollary 1 suggests $L(k) \leq \exp(1 - \gamma \Delta^*(D_{21}, D_{23}) k \eta) L(0)$, where $L(k)$ is the loss at k-th iteration.
B. Controlling Product with Margin

Most of our results regarding the lower bound on \(\lambda_{\min} \mathcal{R}_{\{W_l\}_{l=1}^L} \) are given as a value that depends on 1) the imbalance of the weights; 2) the minimum singular value of the product \(W = \prod_{l=1}^L W_l \). The former is time-invariant, thus is determined at initialization. As we discussed in Section 3, we require the notion of margin to lower bound \(\sigma_{\min}(W(t)) \) for the entire training trajectory.

The following Lemma that will be used in subsequent proofs.

Lemma B.1. If \(f \) satisfies A2, then the gradient flow dynamics (3) satisfies

\[
\sigma_{\min}(W(t)) \geq \sigma_{\min}(W^*) - \frac{\sqrt{K \mu}}{\mu} \|W(0) - W^*\|_F, \forall t \geq 0
\]

where \(W(t) = \prod_{l=1}^L W_l(t) \) and \(W^* \) is the unique minimizer of \(f \).

Proof. From Polyak (1987), we know if \(f \) is \(\mu \)-strongly convex, then it has unique minimizer \(W^* \) and

\[
f(W) - f^* \geq \frac{\mu}{2} \|W - W^*\|_F^2.
\]

Additionally, if \(f \) is \(K \)-smooth, then

\[
f(W) - f^* \leq \frac{K}{2} \|W - W^*\|_F^2.
\]

This suggests that for any \(t \geq 0 \),

\[
\frac{K}{2} \|W(t) - W^*\|_F^2 \geq \mathcal{L}(t) - \mathcal{L}^* \geq \frac{\mu}{2} \|W - W^*\|_F^2.
\]

Therefore we have the following

\[
\sigma_{\min}(W(t)) = \sigma_{\min}(W(t) - W^* + W^*) \\
\text{(Weyl’s inequality (Horn & Johnson, 2012, 7.3.P16))} \geq \sigma_{\min}(W^*) - \|W(t) - W^*\|_2 \\
\geq \sigma_{\min}(W^*) - \|W(t) - W^*\|_F \\
(f \text{ is } \mu\text{-strongly convex}) \geq \sigma_{\min}(W^*) - \sqrt{\frac{2}{\mu}(\mathcal{L}(t) - \mathcal{L}^*)} \\
(\mathcal{L}(t) \text{ non-decreasing under (3)}) \geq \sigma_{\min}(W^*) - \sqrt{\frac{2}{\mu}(\mathcal{L}(0) - \mathcal{L}^*)} \\
(f \text{ is } K\text{-smooth}) \geq \sigma_{\min}(W^*) - \sqrt{\frac{K}{\mu} \|W(0) - W^*\|_F^2} \\
= \sigma_{\min}(W^*) - \sqrt{\frac{K}{\mu} \|W(0) - W^*\|_F}.
\]

Lemma B.1 directly suggests

\[
\sigma_{\min}(W(t)) \geq \left[\sigma_{\min}(W^*) - \sqrt{\frac{K}{\mu} \|W(0) - W^*\|_F} \right]_+ := \text{margin},
\]

and the margin is positive when the initial product \(W(0) \) is sufficiently close to the optimal \(W^* \).
C. Convergence Analysis for Classification Losses

In this section, we consider \(f \) that satisfies, instead of \(A1 \), the following

Assumption 2. \(f \) satisfies \(A1' \) the Łojasiewicz inequality-like condition

\[
\|\nabla f(W)\|_F \geq \gamma (f(W) - f^*), \forall W \in \mathbb{R}^{n \times m}.
\]

Theorem 4 (Restated). Given initialization \(\{W_l(0)\}_{l=1}^L \) such that

\[
\lambda_{\min}(T_{\{W_l(t)\}}) \geq \alpha, \forall t \geq 0,
\]

and \(f \) satisfying \(A1' \), then

\[
\mathcal{L}(t) - \mathcal{L}^* \leq \frac{\mathcal{L}(0) - \mathcal{L}^*}{(\mathcal{L}(0) - \mathcal{L}^*)\alpha\gamma^2t + 1}.
\]

Proof. When \(f \) satisfies \(A1' \), then (5) becomes

\[
\dot{\mathcal{L}} = -\left\langle T_{\{W_l\}} \nabla f(W), \nabla f(W) \right\rangle_F \\
\leq -\lambda_{\min}(T_{\{W_l\}}) \|\nabla f(W)\|_F^2 \\
(A1') \leq -\lambda_{\min}(T_{\{W_l\}}) \gamma^2 (f(W) - f^*)^2 = -\lambda_{\min}(T_{\{W_l\}}) \gamma^2 (\mathcal{L} - \mathcal{L}^*)^2.
\]

This shows

\[
-\frac{1}{(\mathcal{L} - \mathcal{L}^*)^2} \frac{d}{dt} (\mathcal{L} - \mathcal{L}^*) \geq \lambda_{\min}(T_{\{W_l\}}) \gamma^2 \geq \alpha \gamma^2.
\]

Take integral \(\int dt \) on both sides, we have for any \(t \geq 0 \),

\[
\frac{1}{\mathcal{L} - \mathcal{L}^*} \bigg|_0^t \geq \alpha \gamma^2 t,
\]

which is

\[
\mathcal{L}(t) - \mathcal{L}^* \leq \frac{\mathcal{L}(0) - \mathcal{L}^*}{(\mathcal{L}(0) - \mathcal{L}^*)\alpha\gamma^2t + 1}.
\]

Following similar argument as in Yun et al. (2020), we can show that exponential loss on linearly separable data satisfies \(A1' \).

Claim. Let \(f(w) = \sum_{i=1}^N \exp \left(-y_i \cdot (x_i^T w) \right) \), if there exists \(z \in \mathbb{S}^{n-1} \) and \(\gamma > 0 \) such that

\[
y_i(x_i^T z) \geq \gamma, \forall i = 1, \cdots, N,
\]

then

\[
\|\nabla f(w)\|_F \geq \gamma f(w), \forall w \in \mathbb{R}^n.
\]

Proof. Using the linear separability, we have

\[
\|\nabla f(w)\|_F^2 = \left\| \sum_{i=1}^N \exp \left(-y_i \cdot (x_i^T w) \right) y_i x_i \right\|_F^2 \\
(Cauchy-Schwarz inequality) \geq \left\| z, \sum_{i=1}^N \exp \left(-y_i \cdot (x_i^T w) \right) y_i x_i \right\|^2 \\
\geq \left\| \sum_{i=1}^N \exp \left(-y_i \cdot (x_i^T w) \right) \gamma \right\|^2 = |f(w)\gamma|^2,
\]

as desired.

Therefore, our convergence results applies to classification tasks with exponential loss.
D. Proofs in Section 2

First we prove the expression for $\dot{\mathcal{L}}$ in Lemma 1

Lemma 1 (Restated). Under continuous dynamics in (3), we have

$$
\dot{\mathcal{L}} = - \| \nabla L \left(\{ W_i \}_{i=1}^L \right) \|^2_F = - \left\langle T_{\{ W_i \}_{i=1}^L} \nabla f(W), \nabla f(W) \right\rangle_F,
$$

where $W = \prod_{i=1}^L W_i$, and $T_{\{ W_i \}_{i=1}^L}$ is a positive semi-definite linear operator on $\mathbb{R}^{n \times m}$ with

$$
T_{\{ W_i \}_{i=1}^L} = \sum_{l=1}^L \left(\prod_{i=1}^{l-1} W_i \right) \left(\prod_{i=1}^{l-1} W_i \right)^T E \left(\prod_{i=l+1}^{L+1} W_i \right) \left(\prod_{i=l+1}^{L+1} W_i \right)^T, W_0 = I_n, W_{L+1} = I_m.
$$

Proof. The gradient flow dynamics (3) satisfies

$$
\frac{d}{dt} W_i = - \frac{\partial}{\partial W_i} \mathcal{L} \left(\{ W_i \}_{i=1}^L \right) = - \left(\prod_{i=1}^{l-1} W_i \right)^T \nabla f(W) \left(\prod_{i=l+1}^{L+1} W_i \right)^T,
$$

where $W = \prod_{i=1}^L W_i$ and $W_0 = I_n, W_{L+1} = I_m$.

Therefore

$$
\dot{\mathcal{L}} = \sum_{l=1}^L \left\langle \frac{\partial}{\partial W_i} \mathcal{L} \left(\{ W_i \}_{i=1}^L \right), \frac{d}{dt} W_i \right\rangle_F \quad (D.1)
$$

Next, we prove that the imbalance matrices are time-invariant

Lemma 2 (Restated). Under continuous dynamics (3), we have $D_l(t) = 0, \forall t \geq 0, l = 1, \cdots, L - 1$.

Proof. Each imbalance matrix is defined as

$$
D_l = W_l^T W_l - W_{l+1} W_{l+1}^T, \quad l = 1, \cdots, L - 1
$$

We only need to check that $\frac{d}{dt} (W_l^T W_l)$ and $\frac{d}{dt} (W_{l+1} W_{l+1}^T)$ are identical.
From the following derivation, for $l = 1, \cdots, L - 1$,

\[
\frac{d}{dt} (W_l^T W_l) = \dot{W}_l^T W_l + W_l^T \dot{W}_l
\]

\[
= - \left(\prod_{i=l+1}^{L+1} W_i \right) \nabla^T f(W) \left(\prod_{i=1}^{l-1} W_i \right) W_l - W_l^T \left(\prod_{i=1}^{l-1} W_i \right) \nabla f(W) \left(\prod_{i=l+1}^{L+1} W_i \right)
\]

\[
= - \left(\prod_{i=l+1}^{L+1} W_i \right) \nabla^T f(W) \left(\prod_{i=1}^{l-1} W_i \right) - \left(\prod_{i=1}^{l} W_i \right) \nabla f(W) \left(\prod_{i=l+1}^{L+1} W_i \right),
\]

\[
\frac{d}{dt} (W_{l+1}^T W_{l+1}^T) = \dot{W}_{l+1}^T W_{l+1} + W_{l+1}^T \dot{W}_{l+1}
\]

\[
= - \left(\prod_{i=1}^{l} W_i \right) \nabla^T f(W) \left(\prod_{i=1}^{L+1} W_i \right) W_{l+1}^T - W_{l+1} \left(\prod_{i=1}^{L+1} W_i \right) \nabla^T f(W) \left(\prod_{i=1}^{l} W_i \right)
\]

\[
= - \left(\prod_{i=1}^{l} W_i \right) \nabla^T f(W) \left(\prod_{i=1}^{L+1} W_i \right) - \left(\prod_{i=l+1}^{L+1} W_i \right) \nabla^T f(W) \left(\prod_{i=1}^{l} W_i \right)
\]

We know $\frac{d}{dt} (W_l^T W_l) = \frac{d}{dt} (W_{l+1}^T W_{l+1}^T)$, therefore $\dot{D}_l(t) = 0, l = 1, \cdots, L - 1$.
E. Linear Models Related to Scalar Dynamics

E.1. Spectral Initialization under l_2 loss

The spectral initialization (Saxe et al., 2014; Gidel et al., 2019; Tarmoun et al., 2021) considers the following:

Suppose $f = \frac{1}{2}\|Y - XW\|_F^2$ and we have overparametrized model $W = \prod_{l=1}^{L} W_l$. Additionally, we assume $Y \in \mathbb{R}^{N \times m}$, $X \in \mathbb{R}^{N \times n}$ ($n \geq m$) are co-diagonalizable, i.e. there exist $P \in \mathbb{R}^{N \times N}$ with $P^T P = I_n$ and $Q \in O(m)$, $R \in O(n)$ such that we can write the SVDs of Y, X as $Y = P \begin{bmatrix} \Sigma_Y & 0 \\ 0 & 0 \end{bmatrix} Q$ and $X = P \Sigma_X R^T$.

Remark 1. In Section 4, we discussed the case $f = \frac{1}{2}\|Y - W\|_F^2$, which is essentially considering the aforementioned setting with $N = n$ and $X = I_n$.

Given any set of weights $\{W_l\}_{l=1}^{L}$ such that

$$W_1 = R \Sigma_1 V_1^T, \quad W_l = V_{l-1} \Sigma_l V_l^T, \quad l = 2, \cdots, L - 1, \quad W_L = V_{L-1} \Sigma_L \tilde{Q},$$

where $\Sigma_l, l = 1, \cdots, L$ are diagonal matrices and $V_l \in \mathbb{R}^{n \times h_l}$, $l = 1, \cdots, L - 1$ with $V_l^T V_l = I_{h_l}$. The gradient flow dynamics requires

$$\dot{W}_1 = -\frac{\partial L}{\partial W_1} = -X^T (Y - XW) W_L^T W_{L-1}^T \cdots W_2^T$$

$$= -R \Sigma_X P^T \cdot (P \Sigma_Y \tilde{Q} - P \Sigma_X R^T \cdot R \prod_{l=1}^{L} \Sigma_l \tilde{Q}) \cdot \tilde{Q}^T \Sigma_L V_{L-1} \cdot V_{L-1} \Sigma_{L-1} V_{L-2}^T \cdots \Sigma_2 V_1^T$$

$$= -R \left(\Sigma_X \left(\Sigma_Y - \Sigma_X \prod_{l=1}^{L} \Sigma_l \right) \tilde{Q} \tilde{Q}^T \prod_{l=2}^{L} \Sigma_l \right) V_1^T$$

$$= -R \left(\Sigma_X \left(\Sigma_Y - \Sigma_X \prod_{l=1}^{L} \Sigma_l \right) \begin{bmatrix} I_m \\ 0 \end{bmatrix} \prod_{l=2}^{L} \Sigma_l \right) V_1^T,$$

which shows that the singular space R, V_1 for W_1 do not change under the gradient flow, and the singular values $\sigma_{i,1}$ of W_1 satisfies

$$\dot{\sigma}_{i,1} = \left(\sigma_{i,y} - \sigma_{i,x} \prod_{l=1}^{L} \sigma_{i,1} \right) \sigma_{i,x} \prod_{l=2}^{L} \sigma_{i,l}, \quad i = 1, \cdots, m,$$

and $\dot{\sigma}_{i,1} = 0$, $i = m + 1, \cdots, n$.

Similarly, we can show that

$$\dot{W}_l = V_{l-1} \left(\Sigma_X \left(\Sigma_Y - \Sigma_X \prod_{i=1}^{L} \Sigma_i \right) \begin{bmatrix} I_m \\ 0 \end{bmatrix} \prod_{i=l}^{L} \Sigma_i \right) V_l^T, \quad l = 2, \cdots, L - 1,$$

$$\dot{W}_L = V_{L-1} \left(\Sigma_X \left(\Sigma_Y - \Sigma_X \prod_{i=1}^{L} \Sigma_i \right) \begin{bmatrix} I_m \\ 0 \end{bmatrix} \prod_{i=L}^{L} \Sigma_i \right) \tilde{Q}.$$

Overall, this suggests that the singular space of $\{W_l\}_{l=1}^{L}$ do not change under the gradient flow, and their singular values satisfies, for $i = 1, \cdots, m$,

$$\dot{\sigma}_{i,l} = \left(\sigma_{i,y} - \sigma_{i,x} \prod_{k=1}^{L} \sigma_{i,k} \right) \sigma_{i,x} \prod_{k \neq l}^{L} \sigma_{i,k}, \quad l = 1, \cdots, L.$$

Each dynamic equation is equivalent to the one from gradient flow on $L_i(\{\sigma_{i,l}\}_{l=1}^{L}) = \frac{1}{2} \left| \sigma_{i,y} - \sigma_{i,x} \prod_{l=1}^{L} \sigma_{i,l} \right|^2$. Therefore, under spectral initialization, the dynamics of the weights are decoupled into at most m dynamics discussed in Section 4.2.
E.2. Diagonal Linear Networks

The loss function of diagonal linear networks (Gunasekar et al., 2017; Yun et al., 2020) is of the form $f(w_1 \odot \cdots \odot w_L)$, we write

$$L(\{w_l\}_{l=1}^L) = f(w_1 \odot \cdots \odot w_L) = f(w^{(1)}, \cdots, w^{(n)}) = f \left(\prod_{l=1}^L w_{l,1}, \cdots, \prod_{l=1}^L w_{l,n} \right),$$

i.e. f takes n variables $w^{(1)}, \cdots, w^{(n)}$ and each variable $w^{(i)}$ is overparametrized into $\prod_{l=1}^L w_{l,i}$.

Then we can show that

$$\dot{L} = -\|\nabla_{\{w_l\}_{l=1}^L} L \|^2_F$$

$$= \sum_{i=1}^n \sum_{l=1}^L \left| \frac{\partial L}{\partial w_{l,i}} \right|^2$$

$$= \sum_{i=1}^n \left| \frac{\partial f}{\partial w^{(i)}} \right|^2 \sum_{l=1}^L \left| \frac{\partial w^{(i)}}{\partial w_{l,i}} \right|^2$$

$$= \sum_{i=1}^n \left| \frac{\partial f}{\partial w^{(i)}} \right|^2 \tau_{\{w_{l,i}\}_{l=1}^L}$$

$$\leq - \left(\min_{1 \leq i \leq n} \tau_{\{w_{l,i}\}_{l=1}^L} \right) \sum_{i=1}^n \left| \frac{\partial f}{\partial w^{(i)}} \right|^2$$

(f satisfies A1 $\leq - \left(\min_{1 \leq i \leq n} \tau_{\{w_{l,i}\}_{l=1}^L} \right) \gamma (f - f^*) = - \left(\min_{1 \leq i \leq n} \tau_{\{w_{l,i}\}_{l=1}^L} \right) \gamma (L - L^*).$)

Moreover, the imbalances $\{d_i^{(i)} := w_{l,i}^2 - w_{l+1,i}^2\}_{l=1}^{L-1}$ are time-invariant for each $i = 1, \cdots, n$ by Lemma 2. Therefore, we can lower bound each $\tau_{\{w_{l,i}\}_{l=1}^L}$ using the imbalance $\{d_i^{(i)}\}_{l=1}^{L-1}$ as in Proposition 3, from which one obtain the exponential convergence of L.

F. Proof for Two-layer Model

Using Lemma 3, we can prove Theorem 1

Theorem 1 (Restated). Let D be the imbalance matrix for $L=2$. The continuous dynamics in (3) satisfy

$$\mathcal{L}(t) - \mathcal{L}^* \leq \exp\left(-\alpha_2 \gamma t\right) \left(\mathcal{L}(0) - \mathcal{L}^*\right), \forall t \geq 0,$$

where

1. If f satisfies only $A1$, then $\alpha_2 = \Delta$;

2. If f satisfies both $A1$ and $A2$, then

$$\alpha_2 = -\Delta_+ + \sqrt{(\Delta_+ + \Delta)^2 + 4\left(\sigma_n(W^*) - \sqrt{K/\mu}\|W(0) - W^*\|_F\right)_+^2}$$

$$- \Delta_- + \sqrt{(\Delta_- + \Delta)^2 + 4\left(\sigma_m(W^*) - \sqrt{K/\mu}\|W(0) - W^*\|_F\right)_+^2}.$$

with $W(0) = \prod_{l=1}^L W_l(0)$ and W^* equal to the unique optimizer of f.

Proof. As shown in (5) in Section 2. We have

$$\frac{d}{dt}(\mathcal{L}(t) - \mathcal{L}^*) \leq -\lambda_{\min} T_{\{W_1(t),W_2(t)\}} \gamma (\mathcal{L}(t) - \mathcal{L}^*).$$

Consider any $\{W_1(t),W_2(t)\}$ on the trajectory, we have, by Lemma 3,

$$\lambda_{\min} T_{\{W_1(t),W_2(t)\}} \geq \frac{1}{2} \left(-\Delta_+ + \sqrt{(\Delta_+ + \Delta)^2 + 4\sigma_n^2(W(t))} \right)$$

$$- \Delta_- + \sqrt{(\Delta_- + \Delta)^2 + 4\sigma_m^2(W(t))}\right) \geq \frac{1}{2} \left(-\Delta_+ + \sqrt{(\Delta_+ + \Delta)^2} - \Delta_- + \sqrt{(\Delta_- + \Delta)^2} = \Delta := \alpha_2.$$

When f also satisfies A2: we need to prove

$$\sigma_n(W(t)) \geq \left[\sigma_n(W^*) - \sqrt{K/\mu}\|W(0) - W^*\|_F\right]_+,$$

$$\sigma_m(W(t)) \geq \left[\sigma_m(W^*) - \sqrt{K/\mu}\|W(0) - W^*\|_F\right]_+.$$

When $n = m$, both inequalities are equivalent to

$$\sigma_{\min}(W(t)) \geq \left[\sigma_{\min}(W^*) - \sqrt{K/\mu}\|W(0) - W^*\|_F\right]_+,$$

which is true by Lemma B.1.

When $n \neq m$, one of the two inequalities become trivial. For example, if $n > m$, then (F.4) is trivially $0 \geq 0$, and (F.5) is equivalent to

$$\sigma_{\min}(W(t)) \geq \left[\sigma_{\min}(W^*) - \sqrt{K/\mu}\|W(0) - W^*\|_F\right]_+,$$

which is true by Lemma B.1.
Overall, we have

\[
\lambda_{\text{min}} T \{ W_1(t), W_2(t) \} \\
\geq \frac{1}{2} \left(-\Delta_+ + \sqrt{(\Delta_+ + \Delta)^2 + 4\sigma_n^2(W(t))} \\
- \Delta_- + \sqrt{(\Delta_- + \Delta)^2 + 4\sigma_m^2(W(t))} \right)
\]

\[
\geq \frac{1}{2} \left(-\Delta_+ + \sqrt{(\Delta_+ + \Delta)^2 + 4\left(\sigma_n(W^*) - \sqrt{K/\mu}\|W(0) - W^*\|_F \right)_+^2} \\
- \Delta_- + \sqrt{(\Delta_- + \Delta)^2 + 4\left(\sigma_m(W^*) - \sqrt{K/\mu}\|W(0) - W^*\|_F \right)_+^2} \right)
\]

:= \alpha_2.

Either case, we have \(\frac{d}{dt}(\mathcal{L}(t) - \mathcal{L}^*) \leq -\alpha_2 \gamma (\mathcal{L}(t) - \mathcal{L}^*), \) and by Grönwall’s inequality, we have

\[\mathcal{L}(t) - \mathcal{L}^* \leq \exp(-\alpha_2 \gamma t)(\mathcal{L}(0) - \mathcal{L}^*). \]
G. Proofs for Three-layer Model

In Section G.1, we discuss the proof idea for Theorem 2, then present the complete proof. Consider the case when $n = m = 1$, we use the following notations for the weights $\{w_1^T, W_2, w_3\} \in \mathbb{R}^{1 \times h_1} \times \mathbb{R}^{h_1 \times h_2} \times \mathbb{R}^{h_2 \times 1}$. The quantity we need to lower bound is

$$\lambda_{\min} T_{(w_1^T, W_2, w_3)} = w_1^T W_2 W_2^T w_1 + w_1^T W_2 w_3 + w_3^T W_2^T w_2$$

where our linear operator $T_{(w_1^T, W_2, w_3)}$ reduces to a scalar. The remaining thing to do is to find

$$\min_{w_1^T, W_2, w_3} \|w_2^T w_1\|^2 + \|w_1\|^2 \|w_3\|^2 + \|W_2 w_3\|^2$$

s.t. $W_2 W_2^T - w_1 w_1^T = D_{21}$

$W_2^T W_2 - w_3 w_3^T = D_{23}$

i.e., we try to find the best lower bound on $\lambda_{\min} T_{(w_1^T, W_2, w_3)}$ given the fact that the weights have to satisfy the imbalance constraints from D_{21}, D_{23}, and $\lambda_{\min} T_{(w_1^T, W_2, w_3)}$ is related to the norm of some weights $\|w_1\|, \|w_3\|$ and the “alignment” between weights $\|w_2^T w_1\|, \|W_2 w_3\|$.

The general idea of the proof is to lower bound each term $\|w_2^T w_1\|^2, \|w_1\|^2, \|w_3\|^2, \|W_2 w_3\|^2$ individually given the imbalance constraints, then show the existence of some $\{w_1^T, W_2, w_3\}$ that attains the lower bound simultaneously. The following discussion is most for lower bounding $\|w_1\|, \|W_2 w_3\|$ but the same argument holds for lower bounding other quantities.

Understanding what can be chosen to be the spectrum of $W_2 W_2^T (W_2^T W_2)$ is the key to derive an lower bound, and the imbalance constraints implicitly limit such choices. To see this, notice that $W_2 W_2^T - w_1 w_1^T = D_{21}$ suggests an eigenvalue interlacing relation (Horn & Johnson, 2012, Corollary 4.39) between $W_2 W_2^T$ and D_{21}, i.e.

$$\lambda_{h_1}(D_{21}) \leq \lambda_{h_1}(W_2 W_2^T) \leq \lambda_{h_1-1}(D_{21}) \leq \cdots \leq \lambda_2(W_2 W_2^T) \leq \lambda_1(D_{21}) \leq \lambda_1(W_2 W_2^T).$$

Therefore, any choice of $\{\lambda_i(W_2 W_2^T)\}_{i=1}^{h_1}$ must satisfy the interlacing relation with $\{\lambda_i(D_{21})\}_{i=1}^{h_1}$. Similarly, $\{\lambda_i(W_2^T W_2)\}_{i=1}^{h_2}$ must satisfy the interlacing relation with $\{\lambda_i(D_{23})\}_{i=1}^{h_2}$. Moreover, $\{\lambda_i(W_2 W_2^T)\}_{i=1}^{h_1}$ and $\{\lambda_i(W_2^T W_2)\}_{i=1}^{h_2}$ agree on non-zero eigenvalues. In short, an appropriate choice of the spectrum of $W_2 W_2^T (W_2^T W_2)$ needs to respect the interlacing relations with the eigenvalues of D_{21} and D_{23}.

The following matrix is defined

$$\tilde{D}_{h_1} := \text{diag}\{\text{max}\{\lambda_i(D_{21}), \lambda_i(D_{23})\}, 0\}_{i=1}^{h_1}$$

to be the “minimum” choice of the spectrum of $W_2 W_2^T (W_2^T W_2)$ in the sense that any valid choice of $\{\lambda_i(W_2 W_2^T)\}_{i=1}^{h_1}$ must satisfies

$$\lambda_i(W_2 W_2^T) \geq \lambda_i(\tilde{D}_{h_1}) \geq \lambda_i(D_{21}), \ i = 1, \cdots, h_1.$$

That is, the spectrum of \tilde{D}_{h_1} “lies between” the one of $W_2 W_2^T$ and of D_{21}. Now we check the imbalance constraint again $W_2 W_2^T - w_1 w_1^T = D_{21}$, it shows that: using a rank-one update $w_1 w_1^T$, one obtain the spectrum of D_{21} starting from the spectrum of $W_2 W_2^T$, and more importantly, we require the norm $\|w_1\|^2$ to be (taking the trace on the imbalance equation)

$$\text{tr}(W_2 W_2^T) - \|w_1\|^2 = \text{tr}(D_{21}) \quad \Rightarrow \quad \|w_1\|^2 = \text{tr}(W_2 W_2^T) - \text{tr}(D_{21}).$$

Now since \tilde{D}_{h_1} “lies inbetween”, we have

$$\|w_1\|^2 = \text{tr}(W_2 W_2^T) - \text{tr}(D_{21})$$

$$\begin{align*}
= & \ (\text{changes from } \lambda_i(W_2 W_2^T) \text{ to } \lambda_i(D_{21})) \\
= & \ (\text{changes from } \lambda_i(W_2 W_2^T) \text{ to } \lambda_i(\tilde{D}_{h_1})) + \ (\text{changes from } \lambda_i(\tilde{D}_{h_1}) \text{ to } \lambda_i(D_{21})) \\
\geq & \ (\text{changes from } \lambda_i(\tilde{D}_{h_1}) \text{ to } \lambda_i(D_{21})) = \text{tr}(\tilde{D}_{h_1}) - \text{tr}(D_{21}),
\end{align*}$$
which is a lower bound on $\|w_1\|^2$. It is exactly the Δ_{21} in Theorem 2 (It takes more complicated form when $n > 1$).

A lower bound on $\|W^T_2 w_1\|^2$ requires carefully exam the changes from the spectrum of D_{h_3} to the one of D_{21}. If $\lambda_{h_3}(D_{21}) < 0$, then “changes from $\lambda_i(D)$ to $\lambda_i(D_{21})$” has two parts

1. (changes from $\lambda_{i}(D)$ to $[\lambda_{i}(D_{21})]_+$) through the part where w_1 is “aligned” with W^T_2,

2. (changes from 0 to $\lambda_{h_3}(D_{21}))$ through the part where w_1 is “orthogonal” to W^T_2.

Only the former contributes to $\|W^T_2 w_1\|^2$ hence we need the expression $\Delta^{(2)}_{21} + \Delta^2_{21}$, which excludes the latter part. Using similar argument we can lower bound $\|w_2\|^2, \|W_2 w_3\|^2$. Lastly, the existence of $\{w^T_1, W_2, w_3\}$ that attains the lower bound is from the fact that $D_{h_3} (D_{h_2})$ is a valid choice for the spectrum of $W_2 W^T_2 (W^T_2 W_2)$.

The complete proof of the Theorem 2 follows the same idea but with a generalized notion of eigenvalue interlacing, and some related novel eigenvalue bounds.

G.2. Proof of Theorem 2

Theorem 2 is the direct consequence of the following two results.

Lemma G.1. Given any set of weights $\{W_1, W_2, W_3\} \in \mathbb{R}^{n \times h_1} \times \mathbb{R}^{h_1 \times h_2} \times \mathbb{R}^{h_2 \times m}$, we have

$$
\lambda_{\min} \mathcal{T}_{\{W_1, W_2, W_3\}} \geq \lambda_n(W_1 W_2 W^T_3 W_1^T) + \lambda_n(W_1 W^T_2) \lambda_m(W^T_3 W_3) + \lambda_m(W^T_3 W^T_2 W_2 W_3).
$$

(Note that $\lambda_{\min} \mathcal{T}_{\{W_1, W_2, W_3\}}$ does not have a closed-form expression. One can only work with its lower bound $\lambda_n(W_1 W_2 W^T_3 W_1^T) + \lambda_n(W_1 W^T_2) \lambda_m(W^T_3 W_3) + \lambda_m(W^T_3 W^T_2 W_2 W_3)$.)

Theorem G.2. Given imbalance matrices pair $(D_{21}, D_{23}) \in \mathbb{R}^{h_1 \times h_1} \times \mathbb{R}^{h_2 \times h_2}$, then the optimal value of

$$
\min_{W_1, W_2, W_3} 2 (\lambda_n(W_1 W_2 W^T_3 W_1^T) + \lambda_n(W_1 W^T_2) \lambda_m(W^T_3 W_3) + \lambda_m(W^T_3 W^T_2 W_2 W_3))
$$

s.t. $W^T_2 W_2 - W^T_3 W_3 = D_{23}$

is

$$
\Delta^* (D_{21}, D_{23}) = \Delta^{(2)}_{21} + 2 \Delta_{21} \Delta_{23} + \Delta^{(2)}_{23} + \Delta^2_{23}.
$$

Combining those two results gets $\lambda_{\min} \mathcal{T}_{\{W_1, W_2, W_3\}} \geq \Delta^* (D_{21}, D_{23}) / 2$, as stated in Theorem 2.

The Lemma G.1 is intuitive and easy to prove:

Proof of Lemma G.1. Notice that $\mathcal{T}_{\{W_1, W_2, W_3\}}$ is the summation of three positive semi-definite linear operators on $\mathbb{R}^{n \times m}$, i.e.

$$
\mathcal{T}_{\{W_1, W_2, W_3\}} = \mathcal{T}_{12} + \mathcal{T}_{13} + \mathcal{T}_{23},
$$

where

$$
\mathcal{T}_{12} E = W_1 W_2 W^T_3 W_1^T E, \quad \mathcal{T}_{13} E = W_1 W^T_2 E W^T_3 W_3, \quad \mathcal{T}_{23} E = W^T_3 W^T_2 W_2 W_3,
$$

and $\lambda_{\min} \mathcal{T}_{12} = \lambda_n(W_1 W_2 W^T_3 W_1^T), \lambda_{\min} \mathcal{T}_{13} = \lambda_n(W_1 W^T_2) \lambda_m(W^T_3 W_3), \lambda_{\min} \mathcal{T}_{23} = \lambda_m(W^T_3 W^T_2 W_2 W_3)$.

Therefore, let E_{\min} with $\|E_{\min}\|_F = 1$ be the eigenmatrix associated with $\lambda_{\min} \mathcal{T}_{\{W_1, W_2, W_3\}}$, we have

$$
\lambda_{\min} \mathcal{T}_{\{W_1, W_2, W_3\}} = \langle \mathcal{T}_{\{W_1, W_2, W_3\}}, E_{\min} \rangle_F = \langle \mathcal{T}_{12}, E_{\min} \rangle_F + \langle \mathcal{T}_{13}, E_{\min} \rangle_F + \langle \mathcal{T}_{23}, E_{\min} \rangle_F
\geq \lambda_{\min} \mathcal{T}_{12} + \lambda_{\min} \mathcal{T}_{13} + \lambda_{\min} \mathcal{T}_{23}.
$$

\hfill \Box

The rest of this section is dedicated to prove Theorem G.2.

We will first state a few Lemmas that will be used in the proof, then show the proof for Theorem G.2, and present the long proofs for the auxiliary Lemmas in the end.
G.3. Auxiliary Lemmas

The main ingredient used in proving Theorem G.2 is the notion of \(r \)-interlacing relation between the spectrum of two matrices, which is a natural generalization of the interlacing relation as seen in classical Cauchy Interlacing Theorem (Horn & Johnson, 2012, Theorem 4.3.17).

Definition 4. Given real symmetric matrices \(A, B \) of order \(n \), write \(A \succeq_r B \), if
\[
\lambda_{i+r}(A) \leq \lambda_{i}(B) \leq \lambda_{i}(A), \forall i
\]
where \(\lambda_j(\cdot) = +\infty, j \leq 0 \) and \(\lambda_j(\cdot) = -\infty, j > n \). The case \(r = 1 \) gives the interlacing relation.

Claim. We only need to check
\[
\lambda_{i+r}(A) \leq \lambda_{i}(B) \leq \lambda_{i}(A), \forall i \in [n],
\]
for showing \(A \succeq_r B \).

Proof. Any inequality regarding index outside \([n]\) is trivial.

The following Lemma is a direct consequence of Weyl’s inequality Horn & Johnson (2012, Theorem 4.3.1), and stated as a special case of Horn & Johnson (2012, Corollary 4.3.3)

Lemma G.3. Given real symmetric matrices \(A, B \) of order \(n \), if \(A - B \) is positive semi-definite and \(\text{rank}(A - B) \leq r \), then \(A \succeq_r B \)

The converse is also true

Lemma G.4. Given real symmetric matrices \(A, B \) of order \(n \), if \(A \succeq_r B \), then there exists a positive semi-definite matrix \(XX^T \) with \(\text{rank}(XX^T) \leq r \) and a real orthogonal matrix \(V \) such that \(A - XX^T = VBV^T \).

Proof. The case \(r = 1 \) is proved in Horn & Johnson (2012, Theorem 4.3.26). The case \(r > 1 \) is proved in Wang & Zheng (2019, Theorem 1.3) by induction.

Specifically for our problem, we also need the following (\(\tilde{D}_{h_1} \) and \(\tilde{D}_{h_2} \) are defined in Section 4)

Lemma G.5. Given imbalance matrices pair \((D_{21}, D_{23}) \in \mathbb{R}^{h_1 \times h_1} \times \mathbb{R}^{h_2 \times h_2} \), we have \(\tilde{D}_{h_1} \succeq_n D_{21} \) and \(\tilde{D}_{h_2} \succeq_m D_{23} \).

In our analysis, the weights \(W_1, W_2, W_3 \) are “constrained” by the imbalance \(D_{21}, D_{23} \), such constraints leads to some special eigenvalue bounds (The operation \(\wedge_r \) was defined in Section 4):

Lemma G.6. Given an positive semi-definite matrix \(A \) of order \(n \), and \(Z \in \mathbb{R}^{r \times n} \) with \(r \leq n \), when
\[
A - Z^T Z = B,
\]
we have
\[
\lambda_r(ZZ^T) \geq \text{tr}(A) - \text{tr}(A \wedge_r B),
\]
and
\[
2\lambda_r(ZAZ^T) \geq \text{tr}(A^2) - \text{tr}((A \wedge_r B)^2) + (\text{tr}(A) - \text{tr}(A \wedge_r B))^2
\]
and this bound is actually tight

Lemma G.7. Given two real symmetric matrices \(A, B \) of order \(n \), if \(A \succeq_r B \) (\(r \leq n \)), then there exist \(Z \in \mathbb{R}^{r \times n} \) and some orthogonal matrix \(V \in \mathcal{O}(n) \), such that
\[
A - Z^T Z = VBV^T,
\]
and
\[
\lambda_r(ZZ^T) = \text{tr}(A) - \text{tr}(A \wedge_r B),
\]
\[
2\lambda_r(ZAZ^T) = \text{tr}(A^2) - \text{tr}((A \wedge_r B)^2) + (\text{tr}(A) - \text{tr}(A \wedge_r B))^2.
\]

Remark 2. To see how Lemma G.6 is used, let \(A = W_2 W_2^T \) and \(Z = W_1 \), \(B = D_{21} \), one obtain a lower bound on \(\lambda_r(W_1 W_1^T) \) that depends on the entire spectrum of \(W_2 W_2^T \) and \(D_{21} \). This bound is strictly better than \(\lambda_r(W_2 W_2^T) - \lambda_1(D_{21}) \), the one from Weyl’s inequality (Horn & Johnson, 2012). This should not be suprising because we have “more information” on \(W_2 W_2^T \) and \(D_{21} \) (entire spectrum v.s. certain eigenvalue).
With these Lemmas, we are ready to prove Theorem G.2.

Proof of Theorem G.2. The proof is presented in two parts: First, we show \(\Delta^*(D_{21}, D_{23}) \) is a lower bound on the optimal value; then we construct an optimal solution \((W_1^*, W_2^*, W_3^*)\) that attains \(\Delta^*(D_{21}, D_{23}) \) as the objective value.

Showing \(\Delta^*(D_{21}, D_{23}) \) is a lower bound: Given any feasible triple \((W_1, W_2, W_3)\), the imbalance equations

\[
\begin{align*}
W_2 W_2^T - W_1 W_1^T &= D_{21}, \\
W_2^T W_2 - W_3 W_3^T &= D_{23},
\end{align*}
\]

implies \(W_2 W_2^T \geq_n D_{21} \) and \(W_2^T W_2 \geq_m D_{23} \) by Lemma G.3. These interlacing relation shows

\[\lambda_i(W_2 W_2^T) \geq \lambda_i(D_{21}), \quad \lambda_i(W_2^T W_2) \geq \lambda_i(D_{23}), \quad \forall i, \]

which is

\[\lambda_i(W_2 W_2^T) = \lambda_i(W_2^T W_2) \geq \max\{\lambda_i(D_{21}), \lambda_i(D_{23}), 0\} = \lambda_i(D_{h_1}) \geq 0, \quad \forall i \in [h_1] \] (G.9)

Now by Lemma G.6, imbalance equation (G.7) suggests

\[\lambda_n(W_1 W_1^T) \geq \text{tr}(W_2 W_2^T) - \text{tr}(W_2 W_2^T \wedge_n D_{21}), \]

and

\[
2\lambda_n(W_1 W_2 W_2^T W_2^T) \\
\geq \text{tr}((W_2 W_2^T)^2) - \text{tr}((W_2 W_2^T \wedge_n D_{21})^2) + (\text{tr}(W_2 W_2^T) - \text{tr}(W_2 W_2^T \wedge_n D_{21}))^2.
\]

Notice that

\[
\begin{align*}
\lambda_r(W_2 W_2^T) &\geq \text{tr}(W_2 W_2^T) - \text{tr}(W_2 W_2^T \wedge_n D_{21}) \\
&= \sum_{i=1}^{h_1} \lambda_i(W_2 W_2^T) - \min\{\lambda_i(W_2 W_2^T), \lambda_{i+1-n}(D_{21})\} \\
&= \sum_{i=1}^{h_1} \max\{\lambda_i(W_2 W_2^T) - \lambda_{i+1-n}(D_{21}), 0\} \\
&\geq \sum_{i=1}^{h_1} \max\{\lambda_i(D_{h_1}) - \lambda_{i+1-n}(D_{21}), 0\} \\
&= \text{tr}(\bar{D}_{h_1}) - \text{tr}(\bar{D}_{h_1} \wedge_n D_{21}) = \Delta_{21},
\end{align*}
\] (G.10)

where the inequality holds because (G.9) and the fact that ReLU function \(f(x) = \max\{x, 0\} \) is a monotonically non-decreasing function.

Since \(\Delta_{21} \) can be viewed as summation of ReLU outputs, it has to be non-negative, then (G.10) also suggests

\[
(\text{tr}(W_2 W_2^T) - \text{tr}(W_2 W_2^T \wedge_n D_{21}))^2 \geq \Delta_{21}^2.
\] (G.11)
Next we have
\[
2\lambda_n(W_1W_2W_2^TW_1^T) \\
\geq \text{tr}((W_2W_2^T)^2) - \text{tr}((W_2W_2^T \& n D_21)^2) + \text{tr}(W_2W_2^T) - \text{tr}(W_2W_2^T \& n D_21))^2 \\
\overset{(G.11)}{=} \Delta_{21}^2 + \text{tr}((W_2W_2^T)^2) - \text{tr}((W_2W_2^T \& n D_21)^2) \\
= \Delta_{21}^2 + \sum_{i=1}^{h_1} \lambda_i^2(W_2W_2^T) - (\min\{\lambda_i(W_2W_2^T), \lambda_{i+1-n}(D_21)\})^2 \\
\geq \Delta_{21}^2 + \sum_{i=1}^{h_1} \lambda_i^2(\bar{D}_{hi}) - (\min\{\lambda_i(\bar{D}_{hi}), \lambda_{i+1-n}(D_21)\})^2 \\
= \Delta_{21}^2 + \text{tr}(\bar{D}_{hi}) - \text{tr}((\bar{D}_{hi} \& n D_21)^2) = \Delta_{21}^2 + \Delta_{21}^{(2)},
\]
where the last inequality is because \((G.9)\) and the fact that the function
\[
g(x) = x^2 - (\min\{x, a\})^2 = \begin{cases} 0, & x \leq a \\ x^2 - a^2, & x > a \end{cases},
\]
is monotonically non-decreasing on \(R_{\geq 0}\) for any constant \(a \in R\).

At this point, we have shown
\[
\lambda_n(W_1W_1^T) \geq \Delta_{21}, \quad 2\lambda_n(W_1W_2W_2^TW_1^T) \geq \Delta_{21}^2 + \Delta_{21}^{(2)}. \quad (G.12)
\]

We can repeat the proofs above with the following replacement
\[
W_2 \rightarrow W_2^T, W_1 \rightarrow W_3^T, D_21 \rightarrow D_23, \bar{D}_{hi} \rightarrow \bar{D}_{h2},
\]
and obtain
\[
\lambda_m(W_3^TW_3) \geq \Delta_{23}, \quad 2\lambda_m(W_3^TW_2^TW_2W_3) \geq \Delta_{23}^2 + \Delta_{23}^{(2)}. \quad (G.13)
\]

These inequalities \((G.12)(G.13)\) show that
\[
\Delta^*(D_21, D_23) = \Delta_{21}^{(2)} + \Delta_{21}^2 + 2\Delta_{21}\Delta_{23} + \Delta_{23}^{(2)} + \Delta_{23}^2.
\]
is a lower bound on the optimal value of our optimization problem. Now we proceed to show tightness.

Constructing optimal solution:

By Lemma \(G.5,\) we know \(\bar{D}_{hi} \succeq_n D_{21},\) and by Lemma \(G.7,\) there exists \(Z_1 \in R^{n \times h_1}\) and orthogonal \(V_1 \in O(h_1)\) such that
\[
\bar{D}_{hi} - Z_1^T Z_1 = V_1 D_{21} V_1^T,
\]
and most importantly,
\[
\lambda_n(Z_1Z_1^T) = \Delta_{21}, \quad 2\lambda_n(Z_1 \bar{D}_{hi} Z_1^T) = \Delta_{21}^{(2)} + \Delta_{21}^2. \quad (G.14)
\]

Similarly, by Lemma Lemma \(G.5,\) we know \(\bar{D}_{h2} \succeq_m D_{23},\) and by Lemma \(G.7,\) there exists \(Z_3 \in R^{m \times h_2}\) and orthogonal \(V_3 \in O(h_2)\) such that
\[
\bar{D}_{h2} - Z_3^T Z_3 = V_3 D_{23} V_3^T,
\]
and most importantly,
\[
\lambda_m(Z_3Z_3^T) = \Delta_{23}, \quad 2\lambda_m(Z_3 \bar{D}_{h2} Z_3^T) = \Delta_{23}^{(2)} + \Delta_{23}^2. \quad (G.15)
\]

Let
\[
W_2^* = \begin{cases} V_1^T \left[\begin{array}{c} \bar{D}_{h1} \times (h_2 - h_1) \\ \bar{D}_{h2} \times \end{array} \right] V_3, & h_2 \geq h_1 \\
V_1^T \left[\begin{array}{c} \bar{D}_{h1} \\ 0_{(h_1 - h_2) \times h_2} \end{array} \right] V_3, & h_2 < h_1 \end{cases}
\]

25
where \(\bar{D} = \text{diag}\{\max\{\lambda_i(D_{21}), \lambda_i(D_{21})\}\})_{i=1}^{\min\{h_1, h_2\}} \), and
\[
W_1^* = Z_1 V_1, \quad W_3^* = V_3^T Z_3^T,
\]
we have
\[
W_2^*(W_2^*)^T - (W_1^*)^T W_1^* = V_1^T \bar{D}_{h_1} V_1 - V_1^T Z_1^T Z_1 V_1 = D_{21} \\
(W_2^*)^T W_2^* - W_3^*(W_3^*)^T = V_3^T \bar{D}_{h_3} V_3 - V_3^T Z_3^T Z_3 V_3 = D_{23},
\]
and
\[
\lambda_r(W_1^*(W_1^*)^T) = \lambda_r(Z_1 Z_1^T) = \Delta_{21}, \\
\lambda_m((W_3^*)^T W_3^*) = \lambda_m(Z_3^T Z_3) = \Delta_{23}, \\
2\lambda_r(W_1^*(W_1^*)^T) (W_1^*)^T = \lambda_r(Z_1 \bar{D}_{h_1} Z_1^T) = \Delta_{21}^{(2)} + \Delta_{21}^2, \\
2\lambda_m((W_3^*)^T W_3^* W_3^*) = \lambda_m(Z_3^T \bar{D}_{h_2} Z_3) = \Delta_{23}^{(2)} + \Delta_{23}^2,
\]
Therefore the lower bound \(\Delta^*(D_{21}, D_{23}) \) is tight.

G.5. Proofs for Auxiliary Lemmas

We finish this section by providing the proofs for auxiliary lemmas we used in the last section.

Proof of Lemma G.5. Since \((D_{21}, D_{23})\) is a pair of imbalance matrices, there exists \(W_2 W_2^T\), such that
\[
W_2 W_2^T \succeq_n D_{21}, W_2^T W_2 \succeq_m D_{23}, \tag{G.18}
\]
because at least our weight initialization \(W_1(0), W_2(0), W_3(0)\) have to satisfy \(W_2(0) W_2(0)^T - W_2^T(0) W_1(0) = D_{21}, W_2^T(0) W_2(0) - W_3(0) W_3^T(0) = D_{23}\).

Therefore, for \(0 < i \leq h_1 - n\),
\[
\lambda_{i+n}(\bar{D}_{h_1}) = \max\{\lambda_{i+n}(D_{21}), \lambda_{i+n}(D_{23}), 0\} \leq \lambda_{i+n}(W_2 W_2^T) \leq \lambda_i(D_{21}) \leq \lambda_i(\bar{D}_{h_1}),
\]
where the first two inequalities uses (G.18) and the fact that \(\lambda_{i+n}(W_2 W_2^T) = \lambda_{i+n}(W_2^T W_2)\). Also the last inequality is from the fact that \(\lambda_i(D_{h_i}) = \max\{\lambda_i(D_{21}), \lambda_i(D_{23}), 0\}, \forall i \in [h_1]\).

For \(h_1 \geq i > h_1 - n\), we still have
\[
-\infty = \lambda_{i+n}(\bar{D}_{h_1}) \leq \lambda_i(D_{21}) \leq \lambda_i(\bar{D}_{h_1}),
\]

Overall, we have
\[
\lambda_{i+n}(\bar{D}_{h_1}) \leq \lambda_i(D_{21}) \leq \lambda_i(\bar{D}_{h_1}), \forall i,
\]
which is exactly \(\bar{D}_{h_1} \succeq_n D_{21}\).

Similarly, for \(0 < i \leq h_2 - m\),
\[
\lambda_{i+m}(\bar{D}_{h_2}) = \max\{\lambda_{i+m}(D_{21}), \lambda_{i+m}(D_{23}), 0\} \leq \lambda_{i+m}(W_2^T W_2) \leq \lambda_i(D_{23}) \leq \lambda_i(\bar{D}_{h_2}),
\]
where the first two inequalities uses (G.18) and the fact that \(\lambda_{i+m}(W_2^T W_2) = \lambda_{i+m}(W_2^T W_2)\). Also the last inequality is from the fact that \(\lambda_i(D_{h_i}) = \max\{\lambda_i(D_{21}), \lambda_i(D_{23}), 0\}, \forall i \in [h_2]\).

For \(h_2 \geq i > h_2 - m\), we still have
\[
-\infty = \lambda_{i+m}(\bar{D}_{h_2}) \leq \lambda_i(D_{23}) \leq \lambda_i(\bar{D}_{h_2}),
\]

Overall, we have
\[
\lambda_{i+m}(\bar{D}_{h_2}) \leq \lambda_i(D_{23}) \leq \lambda_i(\bar{D}_{h_2}), \forall i,
\]
which is exactly \(\bar{D}_{h_2} \succeq_m D_{23}\). \qed
Proof of Lemma G.6. Notice that \(\text{rank}(Z^TZ) \leq r \), hence we consider the eigendecomposition

\[
Z^TZ = \sum_{i=1}^{r} \lambda_i(Z^TZ)v_i v_i^T,
\]

where \(v_i \) are unit eigenvectors of \(Z^TZ \). Then we can write

\[
A - \lambda_r(Z^TZ)v_i v_i^T - \sum_{i=1}^{r-1} \lambda_i(Z^TZ)v_i v_i^T = B
\]

We let \(D = A - \lambda_r(Z^TZ)v_i v_i^T \), then by Lemma G.3, we know \(A \succeq_1 D \), and \(D \succeq_{r-1} B \), which suggests that \(\forall i \),

\[
\begin{align*}
\lambda_{i+1}(A) &\leq \lambda_i(D) \leq \lambda_i(A) & (G.19) \\
\lambda_{i+r-1}(D) &\leq \lambda_i(B) \leq \lambda_i(D). & (G.20)
\end{align*}
\]

In particular, we have \(\lambda_i(D) \leq \lambda_i(A) \) from (G.19) and \(\lambda_i(D) \leq \lambda_{i+1-r}(B) \) from (G.20), which suggests

\[
\lambda_i(D) \leq \min\{\lambda_i(A), \lambda_{i+1-r}(B)\} = \lambda_i(A \wedge_r B), \forall i.
\]

Hence

\[
\text{tr}(A \wedge_r B) \geq \text{tr}(D) = \text{tr}(A) - \lambda_r(Z^TZ)\text{tr}(v_i v_i^T) = \text{tr}(A) - \lambda_r(Z^TZ).
\]

This proves the first inequality.

For the second the inequality, let \(x \) be the unit eigenvector associated with \(\lambda_r(ZAZ^T) \), then \(\lambda_r(ZAZ^T) = x^TZAZ^Tx \).

Now write

\[
A - Zxx^TZ^T - Z(I - xx^T)Z^T = B.
\]

Let \(\tilde{D} = A - Zxx^TZ^T \), then again by Lemma G.3 we have \(A \succeq_1 \tilde{D} \), and \(\tilde{D} \succeq_{r-1} B \).

Notice that

\[
\tilde{D}^2 = (A - Zxx^TZ^T)^2 = A^2 + (Zxx^TZ^T)^2 - AZxx^TZ^T - Zxx^TZ^T A.
\]

Taking trace on both side of this equation and using the cyclic property of trace operation lead to

\[
\text{tr}(\tilde{D}^2) = \text{tr}(A^2) + \|Zx\|^4 - 2\lambda_r(ZAZ^T). \quad (G.21)
\]

We only need to lower bound \(\|Zx\|^4 - \text{tr}(\tilde{D}^2) \), for which we write the eigendecomposition \(\tilde{D} \) using eigenpairs \(\{(\lambda_i(\tilde{D}), u_i)\}_{i=1}^{n} \) as

\[
\tilde{D} = \sum_{i=1}^{n} \lambda_i(\tilde{D})u_i u_i^T = \sum_{j=1}^{n-1} \lambda_i(\tilde{D})u_i u_i^T + \lambda_n(\tilde{D})u_n u_n^T.
\]

Then we have

\[
\|Zx\|^2 = \text{tr}(Zxx^TZ^T) = \text{tr}(A) - \text{tr}(\tilde{D})
\]

\[
= \text{tr}(A) - \sum_{j=1}^{n-1} \frac{\lambda_j(\tilde{D}) - \lambda_n(\tilde{D})}{2}
\]

\[
\geq \text{tr}(A) - \sum_{j=1}^{n-1} \left(\lambda_j(A \wedge_r B) - \lambda_n(\tilde{D}) \right)
\]

\[
= \text{tr}(A) - \text{tr}(A \wedge_r B) + \lambda_n(A \wedge_r B) - \lambda_n(\tilde{D}),
\]

where the inequality follows similar argument in the previous part of the proof and uses

\[
\lambda_i(\tilde{D}) \leq \min\{\lambda_i(A), \lambda_{i+1-r}(B)\} = \lambda_i(A \wedge_r B), \quad (G.22)
\]

27
from the fact that $A \succeq_1 \tilde{D}$, and $\tilde{D} \succeq_{r-1} B$.

Now examine the right-hand side carefully: The first component $\text{tr}(A) - \text{tr}(A \land_r B)$ is non-negative because $\lambda_i(A) \geq \lambda_i(A \land_r B), \forall i$. The second component $\lambda_n(A \land_r B) - \lambda_n(\tilde{D})$ is non-negative as well by (G.22). Therefore the right-hand side is non-negative and we can take square on both sides of the inequality, namely,

\[\|W_1 x\|^4 \geq \left(\text{tr}(A) - \text{tr}(A \land_r B) + \lambda_n(A \land_r B) - \lambda_n(\tilde{D})\right)^2.\] \hspace{1cm} (G.23)

We also have

\[\text{tr}(\tilde{D}^2) = \sum_{i=1}^{n-1} \lambda_i^2(\tilde{D}) + \lambda_n^2(\tilde{D})\]

\[\leq \sum_{i=1}^{n-1} \lambda_i^2(A \land_r B) + \lambda_n^2(\tilde{D})\]

\[= \text{tr}\left((A \land_r B)^2\right) - \lambda_n^2(A \land_r B) + \lambda_n^2(\tilde{D}),\] \hspace{1cm} (G.24)

The inequality holds because for $i = 1, \cdots, n - 1$,

\[0 \leq \lambda_{i+1}(A) \leq \lambda_i(\tilde{D}) \leq \lambda_i(A \land_r B),\]

where the inequality on the left is from $A \succeq_1 \tilde{D}$ and the inequality on the right is due to (G.22).

With those two inequalities (G.23)(G.24), we have (For simplicity, denote $\tilde{\lambda} := \lambda_n(A \land_r B), \tilde{\lambda} := \lambda_n(\tilde{D})$)

\[\|W_1 x\|^4 - \text{tr}(\tilde{D}^2) - \left[\left(\text{tr}(A) - \text{tr}(A \land_r B)\right)^2 - \text{tr}\left((A \land_r B)^2\right)\right]\]

\[\geq \lambda_n^2 A - \tilde{\lambda}^2 - 2\lambda_n \tilde{\lambda} + 2(\lambda_n - \tilde{\lambda})(\text{tr}(A) - \text{tr}(A \land_r B)) + \lambda_n^2 - \tilde{\lambda}^2\]

\[= 2\lambda_n^2 - 2\lambda_n \tilde{\lambda} + 2(\lambda_n - \tilde{\lambda})(\text{tr}(A) - \text{tr}(A \land_r B))\]

\[= 2(\lambda_n - \tilde{\lambda})(\text{tr}(A) - \text{tr}(A \land_r B) + \lambda_n) \geq 0,\]

where the last inequality is due to the facts that $\lambda_n \geq \tilde{\lambda}$ by (G.22) and

\[\text{tr}(A) - \text{tr}(A \land_r B) + \lambda_n\]

\[= \sum_{i=1}^{n-1} (\lambda_i(A) - \lambda_i(A \land_r B)) + \lambda_n(A) \geq 0.\]

This shows

\[\|Zx\|^4 - \text{tr}(\tilde{D}^2) \geq (\text{tr}(A) - \text{tr}(A \land_r B))^2 - \text{tr}\left((A \land_r B)^2\right) .\]

Finally from (G.21) we have

\[2\lambda_r(ZAZ^T) = \text{tr}\left((A)^2\right) + \|Zx\|^4 - \text{tr}(\tilde{D}^2)\]

\[\geq \text{tr}\left((A)^2\right) - \text{tr}\left((A \land_r B)^2\right) + (\text{tr}(A) - \text{tr}(A \land_r B))^2 .\]

To proof Lemma G.7, we need one final lemma

Lemma G.8. Given two real symmetric matrices A, B of order n, for any $r \leq n$, if $A \succeq_r B$, then $A \succeq_1 (A \land_r B)$ and $(A \land_r B) \succeq_{r-1} B$.

Proof. Denote $D := A \land_r B$, we show $A \succeq_1 D$ and $D \succeq_{r-1} B$. The following statements holds for any index $i \in [n]$.

First of all, we have

\[\lambda_i(D) = \min\{\lambda_i(A), \lambda_{i+1-r}(B)\} \leq \lambda_i(A),\] \hspace{1cm} (G.25)
and
\[\lambda_{i+1}(A) \leq \min\{\lambda_i(A), \lambda_{i+1-r}(B)\} = \lambda_i(D), \] (G.26)
where \(\lambda_{i+1}(A) \leq \lambda_{i+1-r}(B) \) is from \(A \succeq_r B \). (G.25)(G.26) together show \(A \succeq_1 D \).

Next, notice that
\[\lambda_i(B) \leq \min\{\lambda_i(A), \lambda_{i+1-r}(B)\} = \lambda_i(D), \] (G.27)
where \(\lambda_i(B) \leq \lambda_i(A) \) is from \(A \succeq_r B \), and
\[\lambda_{i+r-1}(D) = \min\{\lambda_{i+r-1}(A), \lambda_i(B)\} \leq \lambda_i(B) \] (G.28)
(G.27)(G.28) together show \(D \succeq_{r-1} B \).

Then we are ready to prove Lemma G.7

Proof of Lemma G.7. Denote \(D := A \wedge_r B \). We have shown in Lemma G.8 that \(A \succeq_1 D \) and \(D \succeq_{r-1} B \).

With the two interlacing relations, we know there exist \(x \in \mathbb{R}^{n \times 1}, X \in \mathbb{R}^{n \times (r-1)} \) and some orthogonal matrices \(V_1, V_2 \in \mathcal{O}(n) \) such that
\[A - xx^T = V_1DV_1^T, \quad D - XX^T = V_2BV_2^T, \] (G.29)
then let \(V := V_1V_2 \), we have
\[A - xx^T - V_1XX^TV_1^T = V_1V_2BV_2^TV_1^T = BV^TV. \] (G.30)

Notice that
\[xx^T + V_1XX^TV_1^T = \begin{bmatrix} x & V_1X \end{bmatrix} \begin{bmatrix} x^TV_1^T \\ V_1^T \end{bmatrix}, \]
then with \(Z^T := [x \quad V_1X] \in \mathbb{R}^{n \times r} \), we can write
\[A - Z^TZ = V_1V_2BV_2^TV_1^T = BV^TV. \]

It remains to show \(\lambda_r(ZZ^T) \) and \(2\lambda_r(ZAZ^T) \) have the exact expressions as stated.

Notice that \(A - xx^T = V_1DV_1^T \), then we have
\[\|x\|^2 = \text{tr}(xx^T) = \text{tr}(A - V_1DV_1^T) = \text{tr}(A) - \text{tr}(D). \] (G.31)

Moreover, taking trace on both sides of \((A - xx^T)^2 = (V_1DV_1^T)^2 \) yields
\[\text{tr}\left((A)^2\right) - 2Axx + \|x\|^4 = \text{tr}(D^2), \]
from which we have
\[2Axx = \text{tr}(A) - \text{tr}(D^2) + \|x\|^4 = \text{tr}(A) - \text{tr}(D^2) + (\text{tr}(A) - \text{tr}(D))^2. \] (G.32)

Finally, notice that the first diagonal entry of
\[ZZ^T = \begin{bmatrix} x^T \\ X^TV_1^T \end{bmatrix} \begin{bmatrix} x & V_1X \end{bmatrix} = \begin{bmatrix} \|x\|^2 & x^TX \\ X^TX & X^TX \end{bmatrix} \]
is \(\|x\|^2 \), we have, by Horn & Johnson (2012, Corollary 4.3.34),
\[\lambda_r(ZZ^T) \leq \|x\|^2 = \text{tr}(A) - \text{tr}(D) = \text{tr}(A) - \text{tr}(A \wedge_r B). \]

Since we have already shown in Lemma G.6 that
\[\lambda_r(ZZ^T) \geq \text{tr}(A) - \text{tr}(A \wedge_r B), \]
we must have the exact equality \(\lambda_r(ZZ^T) = \text{tr}(A) - \text{tr}(A \wedge_r B). \)
Similarly, the first diagonal entry of
\[ZAZ^T = \begin{bmatrix} x^T \\ X^T V_1^T \end{bmatrix} A \begin{bmatrix} x \\ V_1 X \end{bmatrix} = \begin{bmatrix} x^T A x & x^T A X \\ X^T A x & X^T A X \end{bmatrix} \]
is \(x^T A x \), then we have, by Horn & Johnson (2012, Corollary 4.3.34),
\[2\lambda_r(ZAZ^T) \leq 2x^T A x = \text{tr} (A^2) - \text{tr} ((A \wedge_r B)^2) + (\text{tr}(A) - \text{tr}(A \wedge_r B))^2. \]
Again, Lemma G.6 shows the inequality in the opposite direction, hence one must take the equality
\[2\lambda_r(ZAZ^T) = x^T A x = \text{tr} (A^2) - \text{tr} ((A \wedge_r B)^2) + (\text{tr}(A) - \text{tr}(A \wedge_r B))^2. \]
H. Simplification of the bound in Theorem 2 under unimodality assumption

Consider weights \(\{W_1, W_2, W_3\} \) with unimodality index \(l^* \), there are three cases:

\(l^* = 1: D_{21} \geq 0, D_{23} \leq 0 \)

Definiteness of imbalance matrix put rank constraints on the weight matrices:

Since \(W_2^TW_2 - W_3W_3^T = D_{23} \leq 0, \) \(\text{rank}(W_3W_3^T) \geq m \) implies \(\text{rank}(D_{23}) \leq m \). \((D_{23} \text{ can only have negative, if non-zero, eigenvalues and any negative eigenvalue is contributed from } W_3W_3^T) \)

\(\text{rank}(D_{23}) \leq m \) and \(D_{23} \preceq 0 \) together implies \(\text{rank}(W_2^TW_2) \leq m \) (\(W_2^TW_2 \) having positive invariant subspace with dimension larger than \(m \) will give positive eigenvalue to \(D_{23} \)), which is equivalent to \(\text{rank}(W_2^TW_2) \leq m \).

\(\text{rank}(W_2^TW_2) \leq m \) forces \(\text{rank}(D_{21}) \leq m \). \((D_{22} \text{ can only have positive, if non-zero, eigenvalues and any positive eigenvalue is contributed from } W_2^TW_2) \)

In summary, we have \(\text{rank}(D_{23}) \leq m \) and \(\text{rank}(D_{21}) \leq m \), which implies,

\[
\lambda_i(D_{23}) = \begin{cases}
0, & 1 \leq i < h_2 - m + 1 \\
1, & h_2 - m + 1 \leq i \leq h_2 \\
\geq 0, & 1 \leq i < m \\
0, & m + 1 \leq i \leq h_1.
\end{cases}
\]

We also have

\[
\tilde{D}_{h_1} = \diag\{\max\{\lambda_i(D_{21}), 0\}\}_{i=1}^{h_1}, \quad \tilde{D}_{h_2} = \diag\{\max\{\lambda_i(D_{21}), 0\}\}_{i=1}^{h_2},
\]

Then

\[
\tilde{D}_{h_1} \land_n D_{21} = \tilde{D}_{h_1}, \quad \tilde{D}_{h_2} \land_m D_{23} = \begin{cases}
\lambda_i(D_{21}), & 1 \leq i \leq m - 1 \\
\lambda_{h_2+1-m}(D_{23}), & m \leq i < h_2
\end{cases}.
\]

\[
\Delta_{21} = \Delta_{21}^{(2)} = 0, \quad \Delta_{23} = \lambda_m(D_{21}) - \lambda_{h_2+1-m}(D_{23})
\]

\[
\Delta_{23}^{(2)} = \lambda_m^2(D_{21}) - \lambda_{h_2+1-m}^2(D_{23})
\]

\[
\Delta_{23}^2 + \Delta_{21}^{(2)} = 2\lambda_m(D_{21})(\lambda_m(D_{21}) - \lambda_{h_2+1-m}(D_{23})).
\]

\(l^* = 3: D_{23} \succeq 0, D_{21} \leq 0 \)

Similar to previous cases, (by considering unimodal weights \(\{W_3^T, W_2^T, W_1^T\} \))

\[
\Delta_{23} = \Delta_{23}^{(2)} = 0, \quad \Delta_{21}^2 + \Delta_{21}^{(2)} = 2\lambda_i(D_{23}) (\lambda_n(D_{23}) - \lambda_{h_1+1-n}(D_{21})).
\]

\(l^* = 2: D_{23} \preceq 0, D_{21} \preceq 0 \)

\(D_{23}, D_{21} \) being negative semi-definite implies \(\text{rank}(D_{21}) \leq n, \text{rank}(D_{23}) \leq m \).

In this cases,

\[
\tilde{D}_{h_1} = 0, \tilde{D}_{h_2} = 0,
\]

and

\[
\tilde{D}_{h_1} \land_n D_{21} = \begin{cases}
0, & 1 \leq i < h_1 \\
\lambda_{h+1-n}(D_{21}), & i = h_1
\end{cases}, \quad \tilde{D}_{h_2} \land_m D_{23} = \begin{cases}
0, & 1 \leq i < h_2 \\
\lambda_{h+1-m}(D_{23}), & i = h_2
\end{cases}.
\]

then

\[
\Delta_{21} = -\lambda_{h+1-n}(D_{21}), \quad \Delta_{23} = -\lambda_{h+1-m}(D_{23})
\]

\[
\Delta_{21}^{(2)} = -\lambda_{h+1-n}^2(D_{21}), \quad \Delta_{23}^{(2)} = -\lambda_{h+1-m}^2(D_{23}) = 0.
\]

Therefore

\[
2\Delta_{21}\Delta_{23} = 2(-\lambda_{h+1-n}(D_{21}))(-\lambda_{h+1-m}(D_{23})), \quad \Delta_{21}^2 + \Delta_{21}^{(2)} = \Delta_{23}^2 + \Delta_{23}^{(2)}.
\]
I. Proofs for deep models

We prove Theorem 3 in two parts: First, we prove the lower bound under the unimodality assumption in Section I.1. Then we show the bound for the weights with homogeneous imbalance in Section I.2.

I.1. Lower bound on $\lambda_{\min}(T_{\{W_i\}_{i=1}^L})$ under unimodality

We need the following two Lemmas (proofs in Section I.3):

Lemma 4. Given $A \in \mathbb{R}^{n \times h}, B \in \mathbb{R}^{h \times m}$, and $D = AT A - BB^T \in \mathbb{R}^{h \times h}$. If $\text{rank}(A) \leq r$ and $D \succeq 0$, then

1. $\text{rank}(B) \leq r$, and $\text{rank}(D) \leq r$.
2. There exists $Q \in \mathbb{R}^{h \times r}$ with $Q^T Q = I_r$, such that

 $$AQQ^T = AB, \quad AQQ^T A = AA^T, \quad B^T QQ^T B = B^T B,$$

 and

 $$\lambda_i(Q^T DQ) = \lambda_i(D), \quad i = 1, \ldots, r.$$

Lemma 5. For $W_1 \in \mathbb{R}^{n \times h_1}, W_2 \in \mathbb{R}^{h_1 \times h_2}, \ldots, W_{L-1} \in \mathbb{R}^{h_{L-2} \times h_{L-1}}$ and $W_L \in \mathbb{R}^{h_{L-1} \times h_L}$ such that

 $$D_l = W_l^T W_l - W_{l+1} W_{l+1}^T \succeq 0, \quad l = 1, \ldots, L - 1$$

we have

$$\lambda_{\min}(W_1 W_2 \cdots W_{L-1} W_{L-1}^T \cdots W_L^T W_1^T) \geq \prod_{i=1}^{L-1} \sum_{l=i}^{L-1} \lambda_{\min}(D_l).$$

Then we can prove the following:

Theorem I.1. For weights $\{W_i\}_{i=1}^L$ with unimodality index l^*, we have

$$\lambda_{\min}\left(T_{\{W_i\}_{i=1}^L}\right) \geq \prod_{i=1}^{L-1} \tilde{d}(i). \quad (I.33)$$

Proof. Recall that

$$T_{\{W_i\}_{i=1}^L} E = \sum_{L=1}^L \left(\prod_{i=1}^{L-1} W_i \right) T \left(\prod_{i=1}^{L+1} W_i \right) T \left(\prod_{i=l+1}^{L+1} W_i \right), W_0 = I_n, W_{L+1} = I_m.$$

For simplicity, define p.s.d. operators

$$T_l E := \left(\prod_{i=1}^{L-1} W_i \right) T \left(\prod_{i=1}^{L+1} W_i \right) T \left(\prod_{i=l+1}^{L+1} W_i \right), \quad l = 1, \ldots, L.$$

Then $T_{\{W_i\}_{i=1}^L} = \sum_{L=1}^L T_l$.

When $l^* = L$, we have, by Lemma 5,

$$\lambda_{\min}(T_{\{W_i\}_{i=1}^L}) \geq \lambda_{\min}(T_L) = \lambda_{\min}(W_1 \cdots W_{L-1} W_{L-1}^T \cdots W_L^T) \geq \prod_{i=1}^{L-1} \sum_{l=i}^{L-1} \lambda_{\min}(D_l) = \prod_{l=1}^{L-1} \tilde{d}(i).$$

When $l^* = 1$, we have, again by Lemma 5,

$$\lambda_{\min}(T_{\{W_i\}_{i=1}^L}) \geq \lambda_{\min}(T_1) = \lambda_{\min}(W_L^T \cdots W_2^T W_2 \cdots W_L) \geq \prod_{i=1}^{L-1} \sum_{l=i}^{L-1} \lambda_{\min}(-D_{L-l})$$

$$= \prod_{i=1}^{L-1} \sum_{l=1}^{L-i} \lambda_{\min}(-D_l)$$

$$= \prod_{i=1}^{L-1} \sum_{l=1}^{L-i} \lambda_{\min}(-D_l) = \prod_{l=1}^{L-1} \tilde{d}(i).$$

32
We need the following Lemma (proof in Section I.3):

\[W_L^T \rightarrow W_1, \cdots, W_{L-1}^T \rightarrow W_l, \cdots, W_1^T \rightarrow W_L, \]

and this naturally leads to \(-D_{L-1} \rightarrow D_l\). The expressions on the right-hand side of the arrow are those appearing in Lemma 5.

Now for unimodality index \(1 < l^* < L\), we have

\[\lambda_{\min}(T_{(W_i)_{i=1}^L}) \geq \lambda_{\min}(T_l) = \lambda_n(W_1 \cdots W_{l^*-1} W_{l^*-1}^T \cdots W_1) \lambda_{m}(W_L^T \cdots W_{l^*+1}^T W_{l^*+1} \cdots W_L). \]

Now apply Lemma 5 to both \(\{W_1, \cdots, W_{l^*-1}, W_l\}\) and \(\{W_L^T, \cdots, W_{l^*+1}^T, W_{l^*}\}\), we have

\[
\lambda_n(W_1 \cdots W_{l^*-1} W_{l^*-1}^T \cdots W_1) \geq \prod_{i=1}^{l^*-1} \sum_{l=i}^{l^*-1} \lambda_n(D_i) = \prod_{i=1}^{l^*-1} \tilde{d}(i), \tag{I.34}
\]

and

\[\lambda_{m}(W_L^T \cdots W_{l^*+1}^T W_{l^*+1} \cdots W_L) \geq \prod_{i=1}^{L-l^*} \sum_{l=i}^{L-l^*} \lambda_{m}(-D_{L-l}) = \prod_{i=1}^{L-l^*} \sum_{l=i}^{L-l^*} \lambda_{m}(-D_l) = \prod_{i=l^*}^{L-1} \sum_{i=1}^{l^*} \lambda_{m}(-D_l) = \prod_{i=l^*}^{L-1} \tilde{d}(i). \tag{I.35} \]

Combining (I.34) and (I.35), we have

\[
\lambda_n(W_1 \cdots W_{l^*-1} W_{l^*-1}^T \cdots W_1) \lambda_{m}(W_L^T \cdots W_{l^*+1}^T W_{l^*+1} \cdots W_L) \geq \prod_{i=1}^{L-1} \tilde{d}(i), \tag{I.36}
\]

which leads to \(\lambda_{\min}(T_{(W_i)_{i=1}^L}) \geq \prod_{i=1}^{L-1} \tilde{d}(i)\). The proof is complete as we have shown \(\lambda_{\min}(T_{(W_i)_{i=1}^L}) \geq \prod_{i=1}^{L-1} \tilde{d}(i)\) for any unimodality index \(l^* \in [L]\).

I.2. Lower bound on \(\lambda_{\min}(T_{(W_i)_{i=1}^L})\) under homogeneous imbalance

We need the following Lemma (proof in Section I.3):

Lemma 1.2. Given any set of scalars \(\{w_i\}_{i=1}^L\) such that \(d_{(i)} := w_i^2 - w_L^2 \geq 0, i = 1, \cdots, L - 1,\) we have

\[
\sum_{l=1}^{L} \prod_{i \neq l}^L w_i^2 = \sum_{l=1}^{L} w_l^2 \geq \sqrt{\left(\prod_{i=1}^{L-1} \tilde{d}(i)\right)^2 + \left(L w^{2-2/L}\right)^2}, \tag{I.37}
\]

where \(w = \prod_{l=1}^{L} w_l\).

Then we can prove the following:

Theorem 1.3. For weights \(\{W_i\}_{i=1}^L\) with homogeneous imbalance, we have

\[
\lambda_{\min}(T_{(W_i)_{i=1}^L}) \geq \sqrt{\left(\prod_{l=1}^{L-1} \tilde{d}(i)\right)^2 + \left(L \sigma_{\min}^{2-2/L}(W)^2\right)^2}, \quad W = \prod_{l=1}^{L} W_l. \tag{I.38}
\]

Proof. When all imbalance matrices are zero matrices, this is the balanced case (Arora et al., 2018b) and \(\lambda_{\min}(T_{(W_i)_{i=1}^L}) = L \sigma_{\min}^{2-2/L}(W)\). Here we only prove the case when some \(d_l \neq 0\).
Notice that given the homogeneous imbalance constraint

\[W_l^T W_l - W_{l+1} W_{l+1}^T = d_l I, \]

\(W_l^T W_l \) and \(W_{l+1} W_{l+1}^T \) must be co-diagonalizable: If we have \(Q^T Q = I \) such that \(Q^T W_l^T W_l Q \) is diagonal, then \(Q^T W_{l+1} W_{l+1}^T Q \) must be diagonal as well since \(Q^T W_l W_l Q - Q^T W_{l+1} W_{l+1} Q = d_l I \).

Moreover, if the diagonal entries of \(Q^T W_l^T W_l Q \) are in decreasing order, then so are those of \(Q^T W_{l+1} W_{l+1}^T Q \) because the latter is the shifted version of the former by \(d_l \).

This suggests that all \(W_l, l = 1, \cdots, L \) have the same rank and one has the following decomposition of the weights:

\[W_l = Q_l - \Sigma_l Q_l^T, \quad (I.39) \]

Here, \(\Sigma_l, l = 1, \cdots, L \) are diagonal matrix of size \(k = \min\{n, m\} \) whose entries are in decreasing order. And \(Q_l \in \mathbb{R}^{h_l \times \min\{n, m\}} \) with \(Q_l^T Q_l = I \). \((h_0 = n, h_L = m) \). From such decomposition, we have

\[W = W_1 \cdots W_L = Q_0 \Sigma_1 Q_1 \Sigma_2 Q_2^T \cdots Q_{L-1} \Sigma_L Q_L^T = Q_0 \left(\prod_{l=1}^L \Sigma_l \right) Q_L^T, \quad (I.40) \]

thus

\[\sigma_{\min}(W) = \prod_{l=1}^L \lambda_{\min}(\Sigma_l). \quad (I.41) \]

Regarding the imbalance, we have

\[Q_l^T (W_l^T W_l - W_{l+1} W_{l+1}^T) Q_l = d_l I \implies \Sigma_l^2 - \Sigma_{l+1}^2 = d_l I, \quad (I.42) \]

which suggests that

\[\lambda_{\min}^2(\Sigma_l) - \lambda_{\min}^2(\Sigma_{l+1}) = d_l, l = 1, \cdots, L-1. \quad (I.43) \]

Now consider the set of scalars \(\{w_i\}_{i=1}^L \):

\[w_l = \lambda_{\min}(\Sigma_l), l = 1, \cdots, l^* - 1 \]
\[w_l = \lambda_{\min}(\Sigma_{l+1}), l = l^*, \cdots, L - 1 \]
\[w_L = \lambda_{\min}(\Sigma_L). \]

Then \(\{w_i\}_{i=1}^L \) satisfy the assumption in Lemma 1.2:

\[w_i^2 - w_{i-1}^2 = \tilde{d}_{(i)} \geq 0, i = 1, \cdots, L - 1, \quad (I.44) \]

where \(\tilde{d}_{(i)} \) is precisely the cumulative imbalance. Then Lemma 1.2 gives \((I.41)\) is also used here

\[\sum_{i=1}^L \prod_{j \neq i} w_j^2 \geq \left(\prod_{i=1}^{L-1} \tilde{d}_{(i)} \right)^2 + \left(L \sigma_{\min}^2(W') \right)^2 \quad (I.45) \]

Recall that

\[\mathcal{T}_{\{W_l\}_{l=1}^L} E = \sum_{l=1}^L \left(\prod_{i=0}^{l-1} W_i \right) \left(\prod_{i=0}^{l-1} W_i \right)^T E \left(\prod_{i=l+1}^{L} W_i \right) \left(\prod_{i=l+1}^{L} W_i \right)^T, W_0 = I_n, W_{L+1} = I_m. \]

For simplicity, define p.s.d. operators

\[\mathcal{T}_l E := \left(\prod_{i=0}^{l-1} W_i \right) \left(\prod_{i=0}^{l-1} W_i \right)^T E \left(\prod_{i=l+1}^{L} W_i \right) \left(\prod_{i=l+1}^{L} W_i \right)^T, l = 1, \cdots, L \]
Then $T_{\{W_i\}_{i=1}^L} = \sum_{l=1}^L T_l$.

Notice that the summand $\prod_{i \neq l} w_i^2$ exactly corresponds to one of $\lambda_{\min}(T_l)$. For example,

$$
\lambda_{\min}(T_l) = \lambda_{\min}(W_L^T \cdots W_2^T W_2 \cdots W_L) = \lambda_{\min} \left(Q_L^T \left(\prod_{i=2}^L \sigma_i^2 \right) Q_L \right) = \prod_{i \neq l} w_i^2. \tag{I.46}
$$

More precisely, we have

$$
\lambda_{\min}(T_l) = \prod_{i \neq l} w_i^2, \quad l < l^*
$$

$$
\lambda_{\min}(T_l) = \prod_{i \neq l-1} w_i^2, \quad l > l^*
$$

$$
\lambda_{\min}(T_l) = \prod_{i \neq \frac{L}{l}} w_i, \quad l = l^*.
$$

Therefore, we finally have

$$
\lambda_{\min}(T_{\{W_i\}_{i=1}^L}) \geq \sum_{l=1}^L \lambda_{\min}(T_l) = \sum_{l=1}^L \prod_{i \neq l} w_i^2 \geq \sqrt{\left(\prod_{i=1}^{L-1} d_i \right)^2 + \left(L \sigma_{\min}^{2/2} (W) \right)^2}. \tag{I.47}
$$

\[\square \]

I.3. Proofs for Auxiliary Lemmas

Proofs for Lemma 5. The proof is rather simple when $n = h_1 = h_2 = \cdots = h_{L-1}$: Notice that

$$
\lambda_n(W_1 W_2 \cdots W_{L-1} W_{L-1}^T \cdots W_2^T W_1^T)
\geq \lambda_n(W_{L-1} W_{L-1}^T) \cdot \lambda_n(W_1 W_2 \cdots W_{L-2} W_{L-2}^T \cdots W_2^T W_1^T)
\geq \lambda_n(W_{L-1} W_{L-1}^T) \cdot \lambda_n(W_{L-2} W_{L-2}^T) \cdot \lambda_n(W_1 W_2 \cdots W_{L-3} W_{L-3}^T \cdots W_2^T W_1^T)
\cdots
\geq \prod_{i=1}^{L-1} \lambda_n(W_i W_i^T).
$$

Then it remains to show that $\lambda_n(W_i W_i^T) \geq \sum_{l=i}^{L-1} \lambda_n(D_l)$ for $i = 1, \cdots, L - 1$.

Suppose $\lambda_n(W_k W_k^T) \geq \sum_{l=k}^{L-1} \lambda_l(D)$ for some $k \in [L - 1]$, then we have

$$
\lambda_n(W_{k-1} W_{k-1}^T) = \lambda_n(W_{k-1}^T W_{k-1})
= \lambda_n(W_k W_k^T + D_{k-1})
\geq \lambda_n(W_k W_k^T) + \lambda_n(D_{k-1})
\geq \sum_{l=k}^{L-1} \lambda_n(D_l) + \lambda_n(D_{k-1}) = \sum_{l=k-1}^{L-1} \lambda_n(D_l).
$$

Therefore, we only need to show $\lambda_n(W_{L-1} W_{L-1}^T) \geq \lambda_n(D_{L-1})$ then the rest follows by the induction above. Indeed

$$
\lambda_n(W_{L-1} W_{L-1}^T) = \lambda_n(W_{L-1}^T W_{L-1}) = \lambda_n(W_L W_L^T + D_{L-1}) \geq \lambda_n(D_{L-1}),
$$

which finishes the proof for the case of $n = h_1 = h_2 = \cdots = h_{L-1}$.

When the above assumptions does not hold, Lemma 4 allows us to related the set of weights $\{W_i\}_{i=1}^L$ to the one $\{\tilde{W}_i\}_{i=1}^L$ that satisfy the equal dimension assumption. More specifically, apply Lemma 4 using each imbalance constraint

$$
D_l = W_l^T W_l - W_{l+1} W_{l+1}^T \geq 0, \quad l = 1, \cdots, L - 1,
$$

35
to obtain a $Q_l \in \mathbb{R}^{h_l \times n}$ that has all the property in Lemma (4). Use these $Q_l, l = 1, \cdots , L - 1$ to define

$$
\begin{align*}
\tilde{W}_l &= Q_{l-1}^T W_l Q_l, l = 1, \cdots , L, \\
\tilde{D}_l &= \tilde{W}_l^T \tilde{W}_l - W_{l+1}^T \tilde{W}_{l+1}, l = 1, \cdots , L - 1,
\end{align*}
$$

where $Q_0 = I, Q_L = I$. Now $\{\tilde{W}_l\}_{l=1}^L$ satisfies the assumption that $n = h_1 = \cdots = h_{L-1}$, then

$$
\lambda_n(\tilde{W}_1 \tilde{W}_2 \cdots \tilde{W}_{L-1} \tilde{W}_L^T \tilde{W}_1^T) \geq \prod_{i=1}^{L-1} \sum_{l=i}^{L-1} \lambda_n(\tilde{D}_l).
$$

(48)

Using the properties of $Q_l \in \mathbb{R}^{h_l \times n}, l = 1, \cdots , L - 1$, we have

$$
\begin{align*}
\lambda_n(\tilde{W}_1 \tilde{W}_2 \cdots \tilde{W}_{L-1} \tilde{W}_L^T \tilde{W}_1^T) &= \lambda_n(W_1 Q_1^T W_2 \cdots Q_{L-2}^T W_{L-1} Q_{L-1}^T W_L^T) \geq \lambda_n(W_1 W_2 \cdots W_{L-1} W_L^T),
\end{align*}
$$

and

$$
\begin{align*}
\prod_{i=1}^{L-1} \sum_{l=i}^{L-1} \lambda_n(\tilde{D}_l) &= \prod_{i=1}^{L-1} \sum_{l=i}^{L-1} \lambda_n(Q_l^T D_l Q_l) = \prod_{i=1}^{L-1} \sum_{l=i}^{L-1} \lambda_n(D_l).
\end{align*}
$$

Therefore, (48) is exactly

$$
\lambda_n(W_1 W_2 \cdots W_{L-1} W_L^T) \geq \prod_{i=1}^{L-1} \sum_{l=i}^{L-1} \lambda_n(D_l).
$$

(49)

Proofs for Lemma 4. Since $\text{rank}(A) \leq r$, A has a compact SVD $A = P \Sigma_A Q^T$ such that $Q \in \mathbb{R}^{h \times r}$ and $Q^T Q = I_r$.

This is exactly Q we are looking for. Let $Q_\perp Q_\perp^T = I_h - QQ^T$ be the projection onto the subspace orthogonal to the columns of Q. Then

$$
D = A^T A - B B^T \Rightarrow Q_\perp^T D Q_\perp = Q_\perp^T A^T A Q_\perp - Q_\perp^T B B^T Q_\perp \Rightarrow Q_\perp^T D Q_\perp + Q_\perp^T B B^T Q_\perp = 0.
$$

$Q_\perp^T D Q_\perp$ and $Q_\perp^T B B^T Q_\perp$ are two p.s.d. matrices whose sum is zero, which implies

$$
Q_\perp^T D Q_\perp = 0, \quad D Q_\perp = 0, \quad Q_\perp^T B B^T Q_\perp = 0, \quad B^T Q_\perp = 0.
$$

$Q_\perp^T D Q_\perp = 0$ shows that the nullspace of D has at least dimension $h - r$, i.e., $\text{rank}(D) \leq r$.

Moreover

$$
\begin{align*}
A Q Q^T B &= A(I_h - Q_\perp Q_\perp^T) B = AB \\
A Q Q^T A^T &= A(I_h - Q_\perp Q_\perp^T) A^T = AA^T \\
B^T Q Q^T B &= B^T (I_h - Q_\perp Q_\perp^T) B = B^T B
\end{align*}
$$

The last equality $B^T B = B^T Q Q^T B$ shows that $\text{rank}(B) \leq r$.

Lastly, we have, for $i = 1, \cdots , r$,

$$
\lambda_i(Q^T D) = \lambda_i(Q Q^T D) = \lambda_i((I_h - Q_\perp Q_\perp^T) D) = \lambda_i(D).
$$

Before proving Lemma 1.2, we state a Lemma that will be used in the proof.
Lemma I.4. Given positive \(x_i, i = 1, \cdots, n\), we have
\[
\sum_{i=1}^{n} x_i \geq n \left(\prod_{i=1}^{n} x_i \right)^{1/n}.
\]

Proof. This is from the fact that arithmetic mean of \(\{x_i\}_{i=1}^{n}\) is greater than the geometric mean of \(\{x_i\}_{i=1}^{n}\).

We are ready to prove Lemma I.2.

Proof of Lemma I.2. We denote
\[
\tau_{\{w_l\}_{l=1}^{L}} := \sum_{l=1}^{L} \prod_{i \neq l} w_{l}^{2}.
\]

Notice that \(w_{l}^{2} = w_{L}^{2} + \sum_{j=i}^{L-1} (w_{j}^{2} - w_{j+1}^{2}) = w_{L}^{2} + d_{(i)}\). Let \(d_{(L)} = 0\), we write the expression for \(\tau\) as
\[
\tau_{\{w_l\}_{l=1}^{L}} = \sum_{l=1}^{L} \prod_{i \neq l} w_{l}^{2} = \sum_{l=1}^{L} \prod_{i \neq l} (w_{l}^{2} + d_{(i)}) := \tau(w_{L}^{2}; \{d_{(i)}\}_{i=1}^{L-1}) .
\]

Therefore, when fixing \(\{d_{(i)}\}_{i=1}^{L-1}\), \(\tau\) can be viewed as a function of \(w_{L}^{2}\).

When \(w = 0\): one of \(w_{l}\) must be zero, and because \(w_{L}^{2}\) has the least value among all the weights, we know \(w_{L}^{2} = 0\). Then
\[
\tau_{\{w_l\}_{l=1}^{L}} = \tau(0; \{d_{(i)}\}_{i=1}^{L-1}) = \prod_{i=1}^{L-1} d_{(i)},
\]
i.e. we actually have equality when \(w = 0\).

When \(w \neq 0\): then \(w^{2} \neq 0\) and we write
\[
w^{2} = \prod_{l=1}^{L} w_{l}^{2} = w_{L}^{2} \prod_{i=1}^{L-1} (w_{L}^{2} + d_{(i)}) := p(w_{L}^{2}; \{d_{(i)}\}_{i=1}^{L-1}) ,
\]
which shows \(w^{2}\) is a function of \(w_{L}^{2}\) when \(\{d_{(i)}\}_{i=1}^{L-1}\) are fixed. Here we use \(p\) to denote \(w^{2}\) for simplicity. Moreover, function \(p: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}\) has differentiable inverse \(p^{-1}\) as long as \(p > 0\), because
\[
\frac{dp}{dw_{L}^{2}} = \sum_{l=1}^{L} \prod_{i \neq l} (w_{l}^{2} + d_{(i)}) = \sum_{l=1}^{L} \prod_{i \neq l} w_{l}^{2} \geq L \left(p^{-1} \right)^{1/L} > 0 ,
\]
and inverse function theorem (Rudin, 1953) shows the existence of differentiable inverse. Whenever, \(p^{-1}\) exists, it derivative is
\[
\frac{dw_{L}^{2}}{dp} = \left(\sum_{l=1}^{L} \prod_{i \neq l} (w_{l}^{2} + d_{(i)}) \right)^{-1} = \tau^{-1} .
\]

Now pick any \(0 < p_{0} \leq w^{2}\) we have, by Fundamental Theorem of Calculus,
\[
\tau_{\{w_l\}_{l=1}^{L}} = \tau^{2}(p_{0}; \{d_{(i)}\}_{i=1}^{L-1}) = \tau^{2}(p_{0}; \{d_{(i)}\}_{i=1}^{L-1}) + \int_{p_{0}}^{p_{1}(w^{2})} \frac{d}{dw_{L}^{2}} \tau^{2}(w_{L}^{2}; \{d_{(i)}\}_{i=1}^{L-1}) dw_{L}^{2}.
\]
For the first part, we have
\[
\tau^2 \left(p^{-1}(p_0) \right) \left\{ d_{(i)} \right\}_{i=1}^{L-1} \geq \left(\prod_{i \neq L} (p^{-1}(p_0) + d_{(i)}) \right)^2 \geq \left(\prod_{i=1}^{L-1} d_{(i)} \right)^2,
\]
and for the second part, we have
\[
\int_{p^{-1}(p_0)}^{p^{-1}(u^2)} \frac{d}{dw_L^2} \tau^2 dw_L^2
\]
\[
= \int_{p^{-1}(p_0)}^{p^{-1}(u^2)} 2\tau \frac{d}{dw_L^2} \tau dw_L^2
\]
\[
= \int_{p^{-1}(p_0)}^{p^{-1}(u^2)} 2\tau \sum_{l=1}^{L} \sum_{i \neq l} \prod_{l \neq j, j \neq l} (w_l^2 + d_{(j)}) dw_L^2
\]
\[
= \int_{p^{-1}(p_0)}^{p^{-1}(u^2)} 2\tau \sum_{l=1}^{L} \sum_{i \neq l} \frac{p}{w_l^2 w_l^2} dw_L^2
\]
\[
(Lemma \ 1.4) \geq \int_{p^{-1}(p_0)}^{p^{-1}(u^2)} 2\tau L(L-1) \left(\prod_{l=1}^{L} \prod_{i \neq l} \frac{p}{w_l^2 w_l^2} \right)^{\frac{1}{L-1}} dw_L^2
\]
\[
= \int_{p^{-1}(p_0)}^{p^{-1}(u^2)} 2\tau L(L-1) \left(\frac{pL(L-1)}{p^2L-2} \right)^{\frac{1}{L-1}} dw_L^2
\]
\[
= \int_{p^{-1}(p_0)}^{p^{-1}(u^2)} 2\tau L(L-1)p^{1-2/L} dw_L^2
\]
\[
\int_{p_0}^{u^2} \int_{p_0}^{u^2} 2L(L-1)p^{1-2/L} dp = L^2 p^{2-2/L} \bigg|_{p_0}^{u^2} = (Lw^{2-2/L})^2 - L^2 p_0^{2-2/L}.
\]

Overall, for any 0 < p_0 ≤ u^2, we have
\[
\tau^2 \left. \int_{w_L=1}^{L-1} \right\{ d_{(i)} \} \geq \left(\prod_{i=1}^{L-1} d_{(i)} \right)^2 + (Lw^{2-2/L})^2 - L^2 p_0^{2-2/L}.
\]

Let p_0 → 0, we have \(\tau^2 \geq \left(\prod_{i=1}^{L-1} d_{(i)} \right)^2 + (Lw^{2-2/L})^2, \) i.e.
\[
\tau \geq \sqrt{\left(\prod_{i=1}^{L-1} d_{(i)} \right)^2 + (Lw^{2-2/L})^2}.
\]