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Abstract
We develop an analytical framework to character-
ize the set of optimal ReLU neural networks by
reformulating the non-convex training problem
as a convex program. We show that the global
optima of the convex parameterization are given
by a polyhedral set and then extend this charac-
terization to the optimal set of the non-convex
training objective. Since all stationary points of
the ReLU training problem can be represented
as optima of sub-sampled convex programs, our
work provides a general expression for all criti-
cal points of the non-convex objective. We then
leverage our results to provide an optimal prun-
ing algorithm for computing minimal networks,
establish conditions for the regularization path of
ReLU networks to be continuous, and develop
sensitivity results for minimal ReLU networks.

1. Introduction
Neural networks have transformed machine learning. De-
spite their success, little is known about the global optima
for typical non-convex training problems, the solution path
of regularized networks, or how to prune networks without
degrading the model fit. This is in stark contrast to general-
ized linear models with ℓ2 or ℓ1 penalties; for example, it
is well-known that the lasso (Tibshirani, 1996) has a piece-
wise linear path (Osborne et al., 2000; Efron et al., 2004),
a polyhedral solution set (Tibshirani, 2013), and admits
efficient algorithms for computing minimal solutions (Tib-
shirani, 2013). In this paper, we close the gap by studying
neural networks through the lens of convex reformulations.

One of the main challenges of neural networks is non-
convexity. For non-convex problems, stationarity of the
training objective does not imply optimality of the network
weights and so, to the best of our knowledge, no work has
been able to derive an analytical expression for the optimal
set. Convex reformulations provide a solution by rewriting
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Figure 1. Convex vs non-convex solution spaces for two-layer
ReLU networks. We plot the first feature of three different neurons;
the non-convex parameterization maps the compact polytope of
solutions for the convex parameterization into a curved manifold.

the non-convex optimization problem as a convex program
in a lifted parameter space (Pilanci & Ergen, 2020). We fo-
cus on the convex reformulation for two-layer networks with
ReLU activation functions and weight decay regularization.
The resulting problem is related to the group lasso (Yuan &
Lin, 2006) and induces neuron sparsity in the network.

Let Z∈Rn×d be a data matrix and y∈Rn associated targets.
The prediction function for two-layer ReLU networks is

fW1,w2
(Z) =

m∑
i=1

(ZW1i)+ w2i,

where W1 ∈ Rm×d, w2 ∈ Rm are the weights of the first
and second layers, m is the number of hidden units, and
(·)+ = max {·, 0} is the ReLU activation. Fitting fW1,w2

with convex loss L with weight decay (ℓ2) regularization
leads to the standard non-convex optimization problem:

min
W1,w2

L
(
fW1,w2

(Z), y
)
+

λ

2
(∥W1∥2F + ∥w2∥22)︸ ︷︷ ︸

R(W1,w2)

. (1)

The regularization path or solution function of this training
problem is the mapping between the regularization parame-
ter λ and the set of optimal model weights,

O∗(λ) = argmin
W1,w2

L
(
fW1,w2

(Z), y
)
+

λ

2
R(W1, w2). (2)

In general, the optimal neural network is not unique and
O∗(λ) will be set valued. Indeed, there are always at least
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m! solutions since any permutation of the hidden units yields
an identical model. We call the solution to a ReLU training
p-unique when it is unique up to permutations.

We study O∗ by re-writing Equation (1) as an instance of
the constrained group lasso (CGL). We make the following
contributions by analyzing CGL:

• We derive an analytical expression for the solution set
of two-layer ReLU networks and simple criteria for the
solution to be p-unique, i.e. unique up to permutation.

• We extend this characterization to show that the set of
stationary points of a two-layer ReLU model is exactly
Cλ =

{
(W1,w2) : D̃⊆DZ , fW1,w2

(Z)= ŷD̃,

W1i = (αi/λ)
1/2vi(D̃), w2i = (αiλ)

1/2,

αi ≥ 0, i ∈ [m] \ Sλ =⇒ αi = 0
}
,

(3)

where D̃ is a set of sub-sampled activation patterns, ŷD̃
is the unique optimal model fit using those patterns,
and vi(D̃) are uniquely given by optimal parameters
for the dual of the convex reformulation. See Figure 1.

• We provide an optimal pruning algorithm that can be
used to compute minimal models — the smallest-width
neural networks which are optimal for a given dataset
and regularization parameter — and an intuitive exten-
sion for pruning beyond minimal models.

• We prove that the regularization path of ReLU net-
works is discontinuous in general and establish suffi-
cient conditions for path to be closed/continuous.

• We give a simple algorithm for computing the unique
ReLU network corresponding to the min-norm model
in the convex lifting and, under additional constraint
qualifications, develop differential sensitivity results
for minimal ReLU networks.

In many cases, we obtain strictly stronger results for gated
ReLU networks (Fiat et al., 2019), which correspond di-
rectly to an unconstrained group lasso problem (Mishkin
et al., 2022). In particular, we give new sufficient conditions
for (i) the group lasso to be unique, (ii) global continuity of
the group lasso model fit, and (iii) weak differentiability of
the solution function for gated ReLU networks.

The paper is structured as follows: we cover related work in
Section 1.1 and introduce notation in Section 1.2. Then we
provide details for convex reformulations of neural network
in Section 2. Section 3 analyzes CGL and Section 4 inter-
prets these results in the specific context of two-layer ReLU
networks. Section 5 concludes with experiments.

1.1. Related Work
The Lasso and Group Lasso: Our work is most similar to
Hastie et al. (2007), who consider homotopy methods, and
Tibshirani (2013), who characterize the lasso solution set.

Limited results exist beyond the lasso. Tibshirani & Taylor
(2011) analyze the generalized lasso, while Yuan & Lin
(2006) show the group lasso is piece-wise linear when X
is orthogonal. Roth & Fischer (2008) partially characterize
the group lasso solution set, while Vaiter et al. (2012) derive
stability results and the degrees-of-freedom.

Convex Reformulations: Convex reformulations for neu-
ral networks have rapidly advanced since Pilanci & Ergen
(2020); convolutions (Ergen & Pilanci, 2021b; Gupta et al.,
2021), vector-outputs (Sahiner et al., 2021), batch-norm (Er-
gen et al., 2021), and deeper networks (Ergen & Pilanci,
2021a) have all been explored.

Neural Network Solution Sets: Characterizations of solu-
tion sets are largely empirical. Mode connectivity has been
studied extensively, Garipov et al. (2018); Draxler et al.
(2018). Nguyen (2019); Kuditipudi et al. (2019) attempt to
theoretically explain mode connectivity. Sensitivity is con-
nected to differentiable optimization layers (Agrawal et al.,
2019) and hypergradient descent (Baydin et al., 2017) We
refer to Blalock et al. (2020) for an overview on pruning.

1.2. Notation
We use lower-case a to denote vectors and upper-case A for
matrices. For d ∈ N, [d] = {1, . . . , d}. Calligraphic letters
C denote sets. For a block of indices bi ⊆ [d], we write
Abi for the sub-matrix of columns indexed by bi. Similarly,
abi is the sub-vector indexed by bi. IfM is a collection of
blocks, then AM is the submatrix and aM the sub-vector
with columns/elements indexed by blocks in the collection.
Finally, |M| is cardinality of the union of blocks inM.

2. Convex Reformulations
Now we introduce background on convex reformulations.
Convex reformulations re-write Equation (1) as a convex
program by enumerating the activations a single neuron in
the hidden layer can take on for fixed Z as follows:

DZ =
{
D = diag(1(Zu ≥ 0)) : u ∈ Rd

}
.

This set grows as |DZ | ≤ O(r(n/r)r), where r := rank(Z)
(Pilanci & Ergen, 2020). Each “activation pattern” Di ∈ DZ

is associated with a convex cone,

Ki =
{
u ∈ Rd : (2Di − I)Zu ⪰ 0

}
.

If u ∈ Ki, then u matches Di, meaning DiZu = (Zu)+.
For any subset D̃ ⊆ DZ , the convex reformulation is,

min
v,w

L
(∑
Di∈D̃

DiZ(vi−ui), y
)
+λ

∑
Di∈D̃

∥vi∥2+∥ui∥2

s.t. vi, ui ∈ Ki.

(4)

Pilanci & Ergen (2020) prove that this program and Equa-
tion (1) are equivalent in the following sense: if D̃ = DZ
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and m ≥ m∗ for some m∗ ≤ n+ 1, then the two programs
have the same optimal value and every solution to the con-
vex program can be mapped to a solution of the non-convex
training problem and vice-versa. Given a solution (v∗, u∗),
optimal weights for the ReLU problem are given by

W1i = v∗i /
√
∥v∗i ∥, w2i =

√
∥v∗i ∥

W1j = u∗
i /
√
∥u∗

i ∥, w2j = −
√
∥u∗

i ∥,
(5)

where we use the convention that 0/0 = 0.

In practice, learning with DZ is intractable except when
the data are low rank. Mishkin et al. (2022) provide refined
conditions on D̃ which are sufficient for Equation (4) to
be equivalent to the non-convex problem, while Wang et al.
(2021) show that the minimum of every sub-sampled convex
program is a stationary point of the ReLU training problem.

2.1. Gated ReLU Networks
An alternative is the gated ReLU activation function,

ϕg(Z, u) = diag(1(Zg ≥ 0))Zu,

where g ∈ Rd is a “gate” vector, which is also optimized.
The gated ReLU activation modifies the ReLU activation to
decouple the thresholding operator from the neuron weights.
Two-layer gated ReLU networks predict as follows:

hW1,w2(Z) =

m∑
i=1

ϕgi(Z,W1i)w2i. (6)

Mishkin et al. (2022) show that this gated ReLU neural
network has the convex reformulation,

min
u

L
( ∑

Di∈D̃

DiZwi, y
)
+ λ

∑
Di∈D̃

∥wi∥2, (7)

where decoupling the activations from the neuron weights
allows ui, vi ∈ Ki to be merged. The solution mapping
for w∗ and conditions for for the convex program to be
equivalent to Equation (6) are similar to the ReLU case.

3. The Constrained Group Lasso
In this section, we develop properties of CGL, a generalized
linear model which captures both the convex ReLU and
convex gated ReLU programs. Let B = {b1, . . . , bm} be a
disjoint partition of the feature indices [d]. Given regulariza-
tion parameter λ ≥ 0, CGL solves the program:

p∗(λ)=min
w

Fλ(w) :=
1

2
∥Xw−y∥22 + λ

∑
bi∈B

∥wbi∥2

s.t. K⊤
biwbi ≤ 0 for all bi ∈ B,

(8)

where Kbi ∈ R|bi|×abi . Solutions to Equation (8) are block
sparse when λ is sufficiently large, meaning wbi = 0 subset

of bi. This is similar to the feature sparsity given by the
lasso, to which CGL naturally reduces when bi = {i} and
Kbi = 0 for each bi ∈ B. Although we consider squared-
error, our results generalize to strictly convex losses — see
Appendix C for comments.

The convex reformulations introduced in the previous sec-
tion are instances of CGL using the basis function X =
[D1Z . . .DpZ], where p = |D̃Z |. For gated ReLU models,
Kbi = 0 while ReLU models set Kbi = −Z⊤(2Di − I).
For both problems, block sparsity from the group ℓ1 penalty
induces neuron sparsity in the final solution.

Our goal is to characterize the solution function of CGL,

W∗(λ) := argmin
w :K⊤

bi
wbi

Fλ(w)

For a general data matrix, Fλ is not strictly convex and
CGL may admit multiple solutions — these correspond to
networks which are not related by permutation. As such,W∗

is a point-to-set map and we must use a criterion to define a
function; for instance, the min-norm solution mapping

w∗(λ) = argmin {∥w∥2 : w ∈ W∗(λ)} ,

defines a function for all λ ≥ 0.

Now we introduce notation that will be used throughout this
section. Let ŷ(λ) = Xw for w ∈ W∗(λ) denote the optimal
model fit, which is the same for any choice of optimal w
(Lemma A.1). Similarly, define the optimal residual r(λ) :=
y − ŷ(λ) and cbi(λ) := X⊤

bi
r(λ) as the correlation vector

for block bi. We write c ∈ Rd for the concatenation of these
block-vectors. Finally, let ρbi be the dual parameters for the
constraint K⊤

bi
wbi ≤ 0, ρ their concatenation, and K the

block-diagonal matrix with blocks given by Kbi .

The Lagrangian associated with Equation (8) is

L(w, ρ) = 1

2
∥Xw−y∥22+λ

∑
bi∈B

∥wbi∥2+ ⟨Kρ,w⟩ . (9)

The constraints are linear, strong duality attains if feasibility
holds, and the necessary and sufficient conditions for primal-
dual pair (w, ρ) to be optimal are the KKT conditions:

X⊤
bi (Xw − y) +Kbiρbi + sbi = 0

K⊤
biwbi ≤ 0

[ρbi ]j · [Kbi ]
⊤
j wbi = 0 ∀ j ∈ [abi ]

ρbi ≥ 0,

(10)

where sbi ∈ ∂λ∥wbi∥2. Since the KKT conditions hold
for every combination of optimal primal-dual pair (Boyd
& Vandenberghe, 2014), we always use the min-norm dual
optimal parameter ρ∗ with no loss of generality. To sim-
plify our notations, we define vbi := cbi −Kbiρ

∗
bi

. In what
follows, all proofs are deferred to Appendix A.
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3.1. Describing the Optimal Set
Stationary of the Lagrangian implies the equicorrelation set

Eλ = {bi ∈ B : ∥vbi∥2 = λ} .

contains all blocks which may be active for fixed λ. That is,
the active set Aλ(w) = {bi : wbi ̸= 0} satisfies Aλ(w) ⊆
Eλ for every w ∈ W∗(λ). However, not all blocks in Eλ
may be non-zero for some solution. Thus, we define

Sλ = {bi ∈ B : ∃w ∈ W∗(λ), wbi ̸= 0} ,

which is the set of blocks supported by some solution.

Our first result combines KKT conditions with uniqueness
of ŷ(λ) to characterize the solution set for fixed λ > 0.

Proposition 3.1. Fix λ > 0. The optimal set for the CGL
problem is given by

W∗(λ)=
{
w∈Rd :∀ bi∈Sλ, wbi =αbivbi , αbi≥0,

∀ bj ∈ B \ Sλ, wbj = 0, Xw = ŷ
} (11)

Since this characterization is implicit due to the dependence
on Sλ, we also give an alternative and explicit construction
in Proposition A.2, which shows that when K = 0 we may
replace Sλ with Eλ; We prefer Proposition 3.1 to Proposi-
tion A.2 since it better mirrors this simpler setting. However,
Proposition A.2 can be substituted wherever desired.

Now that we know “shape” of the solution set, it is possible
to obtain simple conditions for existence of a unique solu-
tion. As an immediate consequence of Proposition 3.1, the
solution map is a subset of directions in Null(XEλ

).

Corollary 3.2. If w,w′ ∈ W∗(λ) and z′ = w − w′, then

z′Eλ
∈ Nλ :=Null(XEλ

) ∩ {zEλ
: ∀bi ∈ Eλ, zbi =αbivbi} .

As a result, the group lasso solution is unique if Nλ = {0}.

Corollary 3.2 extends a similar result for the lasso to CGL
(Tibshirani, 2013, Eq. 9) and implies the solution is unique
for all λ ≥ 0 if the columns of X are linearly indepen-
dent. The corollary also provides a simple check for primal
uniqueness given a primal-dual solution pair.

Lemma 3.3. Fix λ > 0. The solution to CGL problem is
unique if and only if {Xbivbi}Sλ

are linearly independent.

Note that a dual solution ρ is necessary to compute v in
general; By uniformizing over vbi , we obtain a stronger
condition that can be checked whenever Eλ is known, yet is
still weaker than linear independence of the columns of X .

Corollary 3.4. If the columns of XEλ
are linearly indepen-

dent, then CGL problem has a unique solution.

Finally, we consider the special case when there are no
constraints and K = 0. In this setting, vbi = cbi — the dual
parameters are trivially zero — and we can provide a global
condition which is much stronger than linear independence.

Proposition 3.5. [Group General Position] Suppose for
every E ⊆ B, |E| ≤ n + 1, there do not exist unit vectors
zbi ∈ R|bi| such that for any j ∈ E ,

Xbjzbj ∈ affine({Xbizbi : bi ∈ E \ bj}).

Then the group lasso solution is unique for all λ > 0.

We call this uniqueness condition group general position
(GGP) because it naturally extends general position to
groups of vectors. General position itself is an extension
of affine independence and is sufficient for the lasso solu-
tion to be unique (Tibshirani, 2013). GGP is strictly weaker
than linear independence of the columns of X , but neither
implies nor is implied by general position (Proposition A.3).

3.2. Computing Dual Optimal Parameters
The main difficulty of Lemma 3.3 is that knowledge of
a dual optimal parameter is required to check if a unique
solution exists. A dual optimal parameter is also required
to fully leverage our characterization of the optimal set. As
such, now we turn to computing optimal dual parameters.

We give one Lagrange dual problem for CGL in Lemma A.4.
A nice feature of this dual problem is vbi attains an alterna-
tive interpretation as dual variable. However, evaluating the
dual requires computing (X⊤X)+, which may be difficult
even if X is structured, as in the convex ReLU program.
Instead, we focus on computing ρ given a primal solution.

Let w ∈ W∗(λ). If wbi ̸= 0, then KKT conditions imply

Kbiρbi = cbi − λ
wbi

∥wbi∥2
, (12)

so that the “dual fit” d̂bi = Kbiρbi is easily computed. Re-
covering the dual parameter is a linear feasibility problem:

ρbi ∈
{
ρbi ≥ 0 : Kbiρbi = d̂bi

}
. (13)

If wbi = 0, then complementary slackness is trivially sat-
isfied and we compute the min-norm dual parameter by
solving the following program:

min {∥ρbi∥2 : ∥cbi −Kbiρbi∥2 ≤ λ, ρbi ≥ 0} . (14)

In general, however, we only need some dual optimal pa-
rameter for our results to hold; thus, is is typically easier to
find ρ by solving the following non-negative regression:

ρbi = argmin
{
∥Kbiρbi − cbi∥22 : ρbi ≥ 0

}
. (15)

See Proposition A.5 for details.

3.3. Minimal Solutions and Optimal Pruning
Often we want the most parsimonious solution, i.e. the one
using the fewest feature groups. We say a primal solution
w is minimal if there does not exist w′ ∈ W∗(λ) such that
Aλ(w

′) ⊊ Aλ(w). Building on the previous section, we
start with a sufficient condition for w to be minimal.
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Algorithm 1 Optimal Solution Pruning
Input: data matrix X , solution w.
k ← 0.
wk ← w.
while ∃β ̸= 0 s.t.

∑
bi∈Aλ(wk) βbiXbiw

k
bi
= 0 do

bi
k ← argmaxbi

{
|βbi | : bi ∈ Aλ(w

k)
}

tk ← 1/|βbik |
wk+1 ← wk(1− tkβbi)
k ← k + 1

end while
Output: final weights wk

Proposition 3.6. For λ > 0, w ∈ W∗(λ) is minimal if and
only if the vectors {Xbiwbi}A(w) are linearly independent.

Linear independence of {Xbiwbi}A(w) also identifies w

as a vertex of W∗(λ) (Bertsekas, 2009), meaning mini-
mal models are exactly the extreme points of the optimal
set. Combining this characterization with our condition for
uniqueness of a solution (Lemma 3.3) shows that minimal
solutions are the only solution on their support.

Corollary 3.7. Suppose w is a minimal solution. Then w is
the unique solution with support Aλ(w).

Furthermore, all minimal solutions are equivalent in the
sense that they have the same number of active blocks.

Proposition 3.8. Let V=Span({Xbiw̄bi}) for w̄ ∈ W∗(λ).
Every minimal solution has c = dim(V) active blocks.

Algorithm 1 gives a procedure which, starting from any
optimal solution w, computes a optimal model with the
smallest possible number of active blocks in O((n3l + nd)
time, where l is the number active blocks in w. (see Proposi-
tion A.6). Our algorithm can also be used to verify a minimal
solution, since if w minimal then it is unique on its support
and Algorithm 1 must return w immediately. This procedure
also implies the existence of at least one minimal solution.

Corollary 3.9. There exists w ∈ W∗(λ) for which the
vectors {Xbiw(λ) : bi ∈ A(w)} are linearly independent.

Corollary 3.9 will be useful tool later when we study sensi-
tivity of the model fit to perturbations in y and λ.

A disadvantage of Algorithm 1 is that it cannot continue
beyond a minimal solution. However, minimal models may
still be quite large. We can perform approximate pruning in
such cases using the least squares fit to approximate β,

β̃ = argmin ∥Aβ −Xbjwbj∥22,

where A = [Xbiwbi ]Aλ\bj and bj ∈ Aλ is chosen randomly.
Using β̃ in Algorithm 1 is optimal when {Xbiwbi}Aλ

are
dependent and chooses the update parameters to minimize
degradation of the model fit otherwise.

3.4. Continuity of the Solution Path
A major concern when learning with regularizers is how to
tune the parameter λ. Typical strategies like grid-search on
the (cross) validation loss are effective only if the solution
function satisfies basic continuity properties. For example, if
W∗ is single-valued but discontinuous in λ, then the sample
complexity of grid-search can be made arbitrarily poor by
“hiding” the optimal λ in a discontinuity (Nesterov et al.,
2018, Sec. 1.1). In this section, we justify grid-search for
CGL by proving several continuity properties of the solution
function, particularly when the solution is unique. We start
with basic definitions of continuity for point-to-set maps.

Definition 3.10 (Closed). T : X → 2Z is closed if {xk} ⊂
X , xk → x̄ and zk ∈ T (xk), zk → z̄ implies z̄ ∈ T (x̄).

Definition 3.11 (Open). T : X → 2Z is open if {xk} ⊂ X ,
xk → x̄ and z̄ ∈ T (x̄), implies there exists k′ ∈ N, zk ∈
T (xk) for k ≥ k′, such that zk → z̄.

We say that T is continuous if it is both closed and open. If
T (x) is a singleton for all x ∈ X , then openness/closedness
are equivalent and imply continuity. We start with (func-
tional) continuity of the optimal objective.

Proposition 3.12. λ 7→ p∗(λ) is continuous for all λ ≥ 0.

While standard sensitivity results imply thatW∗ is closed,
unfortunately openness is not possible in the general setting.

Proposition 3.13. WhileW∗ is closed on R+, it is open 0
if only if X is full column rank. However, if the solution is
unique on Λ ⊂ R+, thenW∗ is open at every λ ∈ Λ.

As a corollary of Proposition 3.13,W∗ is open on R+ if and
only if X is full column rank. Continuity ofW∗ is impossi-
ble in general because, as Hogan (1973) shows, openness is
a local stability property; sinceW∗(0) is unbounded, many
“unstable” solutions exist at λ = 0 which are not limit points
of other solutions. Continuity of the unique solution path is
an immediate corollary of Proposition 3.13.

Corollary 3.14. If the CGL solution is unique on an interval
Λ ⊂ R+, then it is also continuous on Λ.

In particular, if K = 0 and GGP holds, then the group lasso
solution is continuous for all λ > 0. We can strengthen
our continuity results when Kbi = 0 in another way: by
analyzing the dual of the group lasso problem, we extend
continuity from p∗ to the optimal model fit.

Proposition 3.15. If K = 0, then ŷ(λ) is continuous on R+

and the penalty
∑

bi∈B ∥wbi(λ)∥2 is continuous for λ > 0.

3.5. The Min-Norm Path
Now we turn our attention to the min-norm solution path.
Min-norm solutions are typically used in under-determined
problems and the norm of the solution is connected to
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generalization performance (Neyshabur et al., 2015; Gu-
nasekar et al., 2017) Furthermore, the min-norm solution
is a function of λ, unlike W∗. Throughout this section,
A∗

λ = Aλ(w
∗) denotes the active set of the min-norm solu-

tion.

Unfortunately, studying the min-norm path immediately en-
counters a surprising difficulty: as opposed to least-squares
problems or the lasso (see Tibshirani (2013)), the min-norm
solution may not lie in the row space of the active set.

Proposition 3.16. Suppose Kbi = 0. There exists (X, y)
and λ > 0 such that w∗

A∗
λ
(λ) ̸∈ Row(XA∗

λ
).

Since the min-norm solution is not given by projecting onto
Row(XA∗

λ
), how can we compute and study it? Again, our

characterization for the solution set provides a way forward.

Proposition 3.17. Let λ > 0 and consider the program:

α∗ = argmin
α≥0

∥α∥22 s.t.
∑

bi∈Sλ

αbiXbivbi = ŷ. (16)

Then the min-norm solution is given by w∗
bi
= α∗

bi
vbi .

Equation (16) is a quadratic program (QP) that can be solved
with off-the-shelf software like CVXPY (Diamond & Boyd,
2016). If |B| and d are large, this QP may be too expensive
to handle directly. In such situations, we propose to the solve
the following elastic-net-type problem

min
w

1

2
∥Xw − y∥22 + λ

∑
bi∈B

∥wbi∥2 +
δ

2
∥w∥22

s.t. K⊤
biwbi ≤ 0 for all bi ∈ B.

(17)

This ℓ2-penalized CGL problem is equivalent to CGL with
modified dataset (X̃, ỹ) (Lemma A.14). Since the optimiza-
tion problem is strongly convex (X̃ is full column rank),
invoking Proposition 3.13 implies the solution wδ(λ) is con-
tinuous for all λ ≥ 0. Moreover, as δ → 0, the penalized
solution converges to the min-norm solution to CGL.

Proposition 3.18. The solution to the ℓ2-penalized problem
converges to the min-norm solution as δ → 0. That is,

lim
δ→0

wδ(λ) = w∗(λ).

Uniqueness and continuity of the solution path for the pe-
nalized CGL problem mean we may prefer to solve Prob-
lem (17) with small δ > 0 when tuning λ. Proposition 3.18
guarantees that the bias induced by δ will be small and a
polishing step with δ = 0 can always be used. Finally, non-
zero δ ensures the objective is strongly convex, meaning we
can use linearly convergent methods to solve the problem.

3.6. Sensitivity
Now we move onto the problem of sensitivity of a solution
w ∈ W∗(λ, y) to perturbations, either in λ or the targets y.
The main tool for measuring such perturbations are the gra-
dients, for example∇λw(λ, y). However, since the solution
path of the group lasso is non-smooth, we must cope with
the fact that gradients are not available everywhere.

We show that the gradients of minimal solutions exist almost
everywhere under additional constraint qualifications (CQs).
We do so by considering a reduced problem and showing
that the solution to this reduced problem is exactly wAλ

.
Define the reduced problem as follows:

min
wAλ

1

2
∥XAλ

wAλ
− y∥22 + λ

∑
bi∈Aλ

∥wbi∥2

s.t. K⊤
Aλ

wAλ
≤ 0

(18)

If Aλ(w) is the support of a minimal solution, then w is
the only solution with support Aλ and Equation (18) can be
used to compute the unique active weights.

Proposition 3.19. Let w ∈ W∗(λ, y) be minimal. The ac-
tive blocks wAλ

are the unique solution to Problem (18).

We use this fact to obtain a local solution function for CGL
using the implicit function theorem. Given a solution w, let

B(w) =
⋃

bi∈Aλ

{
j ∈ [abi ] : [Kbi ]

⊤
j wbi = 0

}
,

be the active constraints. We now need two classical CQs.

Definition 3.20 (LICQ). w∈W∗(λ, y) satisfies linear inde-
pendence CQ if {[K]j : j∈B(w)} are linearly independent.

Definition 3.21 (SCS). Primal solution w ∈ W∗(λ) sat-
isfies strict complementary slackness if there exists a dual
optimal parameter ρ such that [ρ]j > 0 for every j ∈ B.

Now we can state our main differential sensitivity result.

Proposition 3.22. Let w ∈ W∗(λ̄, ȳ) be minimal and sup-
pose w satisfies LICQ on the active set Aλ and SCS on the
equicorrelation set Eλ. Then w has a locally continuous
solution function (λ, y) 7→ w(λ, y). Moreover, if

D =

[
X⊤

Aλ
XAλ

+M(w̄) KAλ

¯ρAλ
⊙KAλ

diag(K⊤
Aλ

¯wAλ
)

]
,

where ⊙ is the element-wise product, ubi =
wbi

∥wbi
∥2

, u is the
concatenation of these vectors, and M is block-diagonal
projection matrix in Equation (26), then the Jacobians of
w(λ̄, ȳ) with respect to λ and y are given as follows:

∇λw(λ̄, ȳ) = −[D−1]Aλ
uAλ

∇yw(λ̄, ȳ) = [D−1]Aλ
X⊤

Aλ
,

where [D−1
Aλ

]Aλ
is the |Aλ| × |Aλ| dimensional leading

principle submatrix of D.
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Algorithm 2 Approximate ReLU Pruning
Input: data matrix Z, weights W1, w2, score function s.
m← |Aλ(W1)|
(W 0

1 , w
0
2)← (W1, w2).

q0i ← (XW 0
1i)+w

0
2

for k = 0 to m− 1 do
jk = argmini∈Aλ(Wk

1i)
s(W k

1i)

βk = argminβ ∥
∑

i ̸=jk βiq
k
i − qkjk∥

2
2

ik ← argmaxi
{
|βi| : i ∈ Aλ(W

k
1i)
}

tk ← 1/|βik |
(W k+1

1i , wk+1
2i )← (W k

1i, w
k
2i) · (1− tkβi)

1/2

qk+1
i ← qki · (1− tkβi)

end for
Output: final weights W k

1 , w
k
2

4. Specialization to Neural Networks
Now we specialize our results for CGL to two-layer neural
networks with ReLU or gated ReLU activations. We state
and prove our results for ReLU networks, but they are easily
adapted to gated ReLUs. We start by interpreting conditions
for uniqueness in the context of non-convex ReLU models
and then move on to discussing optimal pruning for ReLU
networks and continuity properties of the solution function.
Proofs are deferred to Appendix B.

Optimal Sets and Uniqueness: Combining the mapping
between solutions for the convex reformulation and the
original non-convex training problem (Equation (5)) and
Proposition 3.1 immediately allows us to characterize the
solution set for the full ReLU problem:

Corollary 4.1. Suppose m ≥ m∗ and D̃ = DZ (no sub-
sampling), with p = |D̃Z |. Then the optimal set for the
ReLU problem is

Oλ=
{
(W1,w2) : fW1,w2(Z)= ŷ,W1i=(αi/λ)

1/2vi,

w2i=(αiλ)
1/2, αi≥0, i∈ [2p]\Sλ⇒αi=0

}
,

(19)

Eq. (19) abuses notation slightly by using Sλ as a subset set
of the neuron indices {1, . . . 2p}, where indices {1, . . . p}
index the positive neurons (neurons corresponding to blocks
DiZ in the convex program) and {p+ 1, . . . , 2p} index the
negative neurons (−DiZ). Figure 1 plots the first feature
of three neurons as they vary over this solution set. The
mapping from convex to non-convex parameterization trans-
forms the flat polytope of solutions into a curved manifold.

Choosing a sub-sampled set of patterns D̃ ⊂ DZ corre-
sponds to finding a stationary point of the non-convex train-
ing problem (Wang et al., 2021). Using this fact with Corol-
lary 4.1 finally justifies description of all stationary points
of the ReLU problem given in the introduction.

Proposition 4.2. The set of stationary points of two-layer
ReLU networks is given by

Cλ =
{
(W1,w2) : D̃⊆DZ , fW1,w2(Z)= ŷD̃,

W1i = (αi/λ)
1/2vi(D̃), w2i = (αiλ)

1/2,

αi ≥ 0, i ∈ [2|D̃|] \ Sλ =⇒ αi = 0
}
,

where D̃ are sub-sampled activation patterns, ŷD̃ is the op-
timal model fit using those patterns, and vi(D̃) = cbi(D̃)−
Kbiρbi(D̃) is determined by the fit and the dual parameters.

We note that since deeper networks are also related to CGL
through convex reformulations (Ergen & Pilanci, 2021a),
Proposition 4.2 may also be applied beyond two layers.

Recall that the solution set for a two-layer ReLU network is
typically not unique due to permutation symmetries. How-
ever, if the convex solution is unique, then the non-convex
ReLU training problem is p-unique. Combining this with
our results for CGL gives the following sufficient conditions.

Proposition 4.3. Let λ > 0 and suppose that the convex
ReLU problem has a unique solution. Then the ReLU model
solution is p-unique. In particular, if {DiZvbi}Eλ

are lin-
early independent, then the non-convex solution is p-unique.

For gated ReLU networks, it is also sufficient to check the
blocks [DiZ]Di∈D̃ to see if they satisfy GGP. By looking at
the structure of DiX , we give simple sufficient conditions
for sub-sampled convex ReLU programs to be unique.

Proposition 4.4. Let λ > 0 and p = |D̃|. Suppose Z follows
a continuous probability distribution and nnz(Di) ≥ p · d
for every Di ∈ D̃. If Eλ does not contain two blocks with
the same activation pattern, then the sub-sampled convex
ReLU program has a unique solution almost surely.

Proposition 4.4 requires n to be much greater than d to be
useful due to the trivial bound nnz(Di) ≤ n. In practice,
the condition on activation patterns can be enforced by con-
straining vi = 0 or wi = 0 for each activation pattern before
solving the convex reformulation.

Pruning: If (v, u) is a minimal solution to the convex re-
formulation, then the corresponding ReLU network is the
p-unique model using only those activation patterns (Propo-
sitions 3.6 and 4.3). Thus, Algorithm 1 can be used to
prune any solution to obtain the “narrowest” neural net-
work achieving the optimal training objective. Algorithm 2
specializes our pruning algorithm to the ReLU problem
and extends it to support approximate pruning. Note the
resulting procedure is completely independent of the convex
reformulation. The complexity of this method is as follows.

Proposition 4.5. Suppose r = rank(X). Then an optimal
and minimal ReLU network with at most m∗ ≤ n non-zero
neurons can be computed in O

(
d3r3(n/r)3r

)
time.

As a consequence, the complexity of computing an optimal
and minimal ReLU network is fully polynomial when r
is bounded. We also have a more sensitive statement for
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Figure 2. Pruning neurons from two-layer ReLU networks on binary classification tasks from the UCI repository. We compare our
theory-inspired approach (Optimal/LS), against removing the neuron with smallest ℓ2 norm (Neuron Magnitude), removing the neuron
with the smallest weighted gradient norm (Gradient Magnitude), and random pruning (Random). For Optimal/LS, we use Algorithm 2,
which begins with optimal pruning and then switches to a least-squares heuristic. We plot test accuracy against number of active neurons.
Optimal/LS dominates the baseline methods on every dataset and even improves test accuracy on breast-cancer and fertility.

Table 1. Tuning neural networks by searching over the optimal set.
We fit two-layer ReLU networks on the training set and compute
the minimum ℓ2 norm solution (Min L2). Then we tune by finding
an extreme point approximating the maximum ℓ2-norm solution
(EP), minimizing validation MSE over the optimal set (V-MSE),
and minimizing test MSE over the optimal set (T-MSE). Results
show median test accuracy; Max Diff. reports the difference be-
tween the best and worse models found. Exploring the optimal set
reveals a huge disparity in the performance of optimal networks,
with the generalization gap exceeding 20 points on four datasets.

Dataset Min L2 EP V-MSE T-MSE Max Diff.

fertility 0.66 0.69 0.65 0.64 0.05
heart-hung. 0.75 0.75 0.71 0.85 0.14
mammogr. 0.77 0.77 0.57 0.78 0.21
monks-1 0.67 0.66 0.49 0.57 0.17
planning 0.53 0.52 0.53 0.7 0.17
spectf 0.64 0.64 0.56 0.58 0.08
horse-colic 0.75 0.59 0.74 0.85 0.26
ilpd-indian 0.59 0.59 0.53 0.72 0.19
parkinsons 0.74 0.74 0.65 0.88 0.23
pima 0.68 0.68 0.68 0.87 0.2

the minimal width: if (W ∗
1 , w

∗
2) are optimal weights for the

ReLU model, then m∗ is exactly the dimensional of the span
of the optimal activations {(XW ∗

1i)+}i (Proposition 3.8).
We experiment with pruning ReLU networks using this
approach in Section 5 and that show it is more effective than
naive pruning strategies.

Continuity: First we give a negative result for singular
networks, that is, models where m < m∗ and no convex
reformulation exists. In this setting, the solution map can be
made to behave arbitrarily poorly.

Proposition 4.6. There exists (Z, y) for which O∗ is not
open nor is the model fit fW1,w2

(Z) continuous in λ.

Combined with the next result, Proposition 4.6 indicates that

the threshold m∗ may be crucial for continuity to extend to
the non-convex parameterization.

Corollary 4.7. Suppose m ≥ m∗. Then the optimal model
fit for two-layer gated ReLU networks is continuous at all
λ > 0. Similarly, if the (gated) ReLU solution is p-unique
on an open interval Λ, then the regularization path is also
continuous on Λ up to permutations of the weights.

Together, Corollary 4.7 and Proposition 4.4 are concrete
conditions for the model fit and regularization path of a
sub-sampled problem to be continuous.

Min-Norm Solutions: In Section 3.5, we examined the min-
imum ℓ2-norm solution to CGL. However, all optimal ReLU
networks have the same ℓ2-norm when λ > 0. Minimizing
the Euclidean norm of solutions to the convex reformulation
instead selects for the network which minimizes the sum of
neuron norms to the fourth power.

Lemma 4.8. The minimum ℓ2-norm solution to the convex
reformulation of a (gated) ReLU model corresponds to the
p-unique optimal neural network which minimizes

r(W1, w2) =

m∑
i=1

∥W1i∥42 + ∥w2i∥42.

As a result, we can compute the r-minimal optimal ReLU
network by solving Problem (16). If Sλ is unknown, then
usingAλ(w) for some solution w as an approximation gives
the r-minimal network using a subset of those activations.

Sensitivity: Proposition 3.22 extends similar results for the
group lasso by Vaiter et al. (2012) to CGL using standard
CQs. Since K is block-diagonal, LICQ will be satisfied
whenever the rows of Z are linearly independent. SCS is
more challenging; while the classical theorem of Goldman
& Tucker (2016) establishes that SCS is satisfied for linear
programs, it is known that SCS can fail for general cone
programs (Tunçel & Wolkowicz, 2012). As such, SCS must
be checked on a per-problem basis in general.
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Figure 3. Pruning neurons from two-layer ReLU networks on two
binary classification tasks drawn from the CIFAR-10 dataset. We
compare our method (Optimal/LS) against baselines; see Figure 2
for details. Our approach, which makes use of a weight correction
after pruning, outperforms every baseline.

In the context of gated ReLU problems, K = 0 and there
is no requirement for CSC/LICQ. Minimal models w(λ, y)
are weakly differentiable, which Vaiter et al. (2012) uses to
compute the degrees of freedom of w via Stein’s Lemma
(Stein, 1981). It is straightforward to extend this calculation
to the gated ReLU weights using the chain rule, which can
then be used to calculate Stein’s unbiased risk estimator.

5. Experiments
Through convex reformulations, we have characterized the
optimal sets of ReLU networks, minimal networks, and
sensitivity results . Our goal in this section is to illustrate
the power of our framework for analyzing ReLU networks
and developing new algorithms.

Tuning: We first consider a tuning task on 10 binary clas-
sification datasets from the UCI repository (Dua & Graff,
2017). For each dataset, we do a train/validation/test split, fit
a two-layer ReLU model on the training set, and then com-
pute the minimum ℓ2-norm model. We use this to explore
the optimal set in three ways: (i) we compute an extreme
point that (approximately) maximizes the model’s ℓ2-norm;
(ii) we minimize the validation MSE overW∗(λ); (iii) we
minimize test MSE overW∗(λ). These procedures select
for different optimal models, have no effect on the training
objective, and are only possible because we knowW∗.

The results are summarized in Table 1. We see that optimal
models can perform very differently at test time despite
having exactly the same training error and model norm.
Indeed, 9/10 datasets show at least a 10 percent gap between
the best and worst models and 4/10 have a gap exceeding 20
percent accuracy. We conclude that the training objective is
badly under-determined even for shallow neural networks,
implying that implicit regularization is critical in practice.
See Appendix D for results on additional datasets.

Pruning: We also consider several neuron pruning task. We
use two-layer ReLU networks and start pruning from the
model given by optimizing the convex reformulation. We
compare four strategies: (i) pruning neurons optimally using
Algorithm 2 until {(XW1i)+}Aλ

are linearly independent
and then approximately using least-squares fits; and (ii) by
removing the neuron with the smallest magnitude, ∥W1i ·
w2i∥; (iii) by remove the neuron with the smallest weighted
gradient; and (iv) by random pruning.

Figure 2 shows test performance of the two methods for five
UCI datasets. Our theory-based pruning method has better
test performance than the baselines on every dataset con-
sidered; on hill-valley, the gap between our approach
and magnitude-based pruning is approximately 40%. Fig-
ure 3 presents similar results for two binary tasks taken from
the CIFAR-10 dataset (Krizhevsky et al., 2009). We provide
experiments on additional datasets, including MNIST (Le-
Cun et al., 1998), and experimental details in Appendix D.

6. Conclusion
We study the structure and properties of solution sets for
shallow neural networks with (gated) ReLU activations. Un-
like previous work, we avoid non-convexity of neural net-
works by studying the constrained group lasso, a generalized
linear model which unifies the convex reformulations of
both ReLU and gated ReLU networks. We derive analytical
expressions for the optima and all stationary points of the
training objective for two-layer ReLU networks. Building on
this characterization, we develop conditions for the optimal
neural network to be permutation unique, an algorithm for
optimal pruning of neural networks, and sensitivity results.
We demonstrate the utility of our framework in experiments
on MNIST, CIFAR-10, and UCI datasets.

There is still much work to do in this area. For example, we
conjecture that the min-norm CGL solution, which corre-
sponds to the network minimizing a fourth-power penalty,
always has a continuous regularization path. More generally,
it remains to extend our characterization of the solution set
to deeper networks and vector-output models.
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July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pp. 1308–1317. PMLR, 2018.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. Least
angle regression. The Annals of statistics, 32(2):407–499,
2004.

Ergen, T. and Pilanci, M. Global optimality beyond two lay-
ers: Training deep ReLU networks via convex programs.
In Meila, M. and Zhang, T. (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML
2021, 18-24 July 2021, Virtual Event, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 2993–3003.
PMLR, 2021a.

Ergen, T. and Pilanci, M. Implicit convex regularizers of
CNN architectures: Convex optimization of two- and
three-layer networks in polynomial time. In International
Conference on Learning Representations: ICLR 2021,
2021b.

Ergen, T., Sahiner, A., Ozturkler, B., Pauly, J. M., Mardani,
M., and Pilanci, M. Demystifying batch normalization in
ReLU networks: Equivalent convex optimization models
and implicit regularization. In International Conference
on Learning Representations, 2021.

Fiacco, A. V. and Ishizuka, Y. Sensitivity and stability anal-
ysis for nonlinear programming. Annals of Operations
Research, 27(1):215–235, 1990.

Fiat, J., Malach, E., and Shalev-Shwartz, S. Decoupling
gating from linearity. arXiv preprint arXiv:1906.05032,
2019.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P.,
and Wilson, A. G. Loss surfaces, mode connectivity,
and fast ensembling of DNNs. In Bengio, S., Wallach,
H. M., Larochelle, H., Grauman, K., Cesa-Bianchi, N.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems 31: Annual Conference on Neural
Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pp. 8803–8812,
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A. Constrained Group Lasso: Proofs
A.1. Describing the Optimal Set

Lemma A.1. The model fit is the same for all optimal solutions to the CGL problem. That is,

Xw = Xw′ for all w,w′ ∈ W∗(λ).

As a consequence, the sum of group norms is also constant when λ > 0.

Proof. This follows in a similar fashion to the classic result for the group lasso. Let w,w′ ∈ W∗(λ), w̄ = 1
2w + 1

2w
′, and

suppose p∗ is the optimal value of the constrained program. By convexity, we have

1

2
∥Xw̄ − y∥22 + λ

∑
bi∈B

∥w̄bi∥2 ≤
1

2
p∗ +

1

2
p∗ = p∗,

where the inequality is strict if Xw ̸= Xw′ by strong convexity of f(u) = ∥u− y∥22. Since w,w′ are both feasible, w̄ is
also feasible and clearly w̄ cannot obtain an objective value less than p∗. Thus, Xw = Xw′ must hold.

To see the second part of the result, observe that

λ
∑
bi∈B

∥w̄bi∥2 = p∗ − 1

2
∥ŷ(λ)− y∥22,

is also constant overW∗(λ).

Proposition 3.1. Fix λ > 0. The optimal set for the CGL problem is given by

W∗(λ)=
{
w∈Rd :∀ bi∈Sλ, wbi =αbivbi , αbi≥0,

∀ bj ∈ B \ Sλ, wbj = 0, Xw = ŷ
} (11)

Proof. Fix λ > 0 and let w ∈ W∗(λ). If wbi ̸= 0, then the KKT conditions require

λ
wbi

∥wbi∥2
= vbi =⇒ wbi = αbivbi ,

for α > 0. If wbi = 0, then wbi = αbivbi holds trivially for αbi = 0. Since w is optimal, it must satisfy

Xw = ŷ,

by Lemma A.1. Finally, Aλ(w) ⊆ Sλ so that w satisfies the characterization.

For the reverse direction, we start by defining

X =

{
w ∈ Rd :∀ bi ∈ Sλ, wbi = αbivbi , αbi ≥ 0,

∀ bj ∈ B \ Sλ, wbj = 0, Xw = ŷ

}
Take any w′ ∈ X . If w′

bi
̸= 0, then

w′
bi = αvbi =⇒

w′
bi

∥w′
bi
∥2

=
vbi
λ

=⇒ λ
w′

bi

∥w′
bi
∥2

= vbi ,

where we have used the fact that ∥vbi∥2 = λ for all bi ∈ Eλ. That is,

X⊤
bi (Xw − y) + λ

w′
bi

∥w′
bi
∥2

+Kbiρ
∗
bi = 0,

12
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which is exactly stationarity of the Lagrangian.

If w′
bi
= 0, then

Xw′ = ŷ =⇒ ∥X⊤
bi (y −Xw′) +Kρ∗bi∥2 ≤ λ,

which also implies the Lagrangian is stationary.

Now we show optimality of w′ by checking feasibility and complementary slackness. If w′
bi
̸= 0 then w′

bi
=

α′
bi

αbi
wbi for

some other optimal solution w with αbi > 0. This follows since w′
bi
̸= 0 implies bi ∈ Sλ. Thus,

K⊤
biw

′
bi =

α′
bi

αbi

wbi ≤ 0,

by feasibility of wbi . Similarly, we find that complementary slackness is satisfied as follows:

[ρbi ]j · [Kbi ]
⊤
j w

′
bi =

α′
bi

αbi

[ρbi ]j · [Kbi ]
⊤
j wbi = 0.

If wbi = 0, then both feasibility and complementary slackness are trivial. Since (w′, ρ∗) are feasible and ρ∗ is dual optimal,
we conclude the KKT conditions are satisfied and thus w′ ∈ W∗(λ). This completes the proof.

Proposition A.2. Fix λ > 0. The optimal set for CGL problem is given by

W∗(λ) =

{
w ∈ Rd :∀ bi ∈ Eλ, wbi = αbivbi , αbi ≥ 0,

∀ bj ∈ B \ Eλ, wbj = 0, Xw = ŷ,

K⊤w ≤ 0,
〈
ρ∗,K⊤w

〉
= 0

} (20)

Proof. Fix λ > 0 and let w ∈ W∗(λ). If wbi ̸= 0, then the KKT conditions require

λ
wbi

∥wbi∥2
= vbi =⇒ wbi = αbivbi ,

for α > 0. If wbi = 0, then wbi = αbivbi holds trivially for αbi = 0. Since w is optimal, it must satisfy

Xw = ŷ,

by Lemma A.1. Finally, ⟨ρ∗,Kw⟩ = 0 and is feasible by KKT conditions so that w satisfies the characterization.

For the reverse direction, we start by defining

X =

{
w ∈ Rd :∀ bi ∈ Eλ, wbi = αbivbi , αbi ≥ 0,

∀ bj ∈ B \ Eλ, wbj = 0, Xw = ŷ,

K⊤w ≤ 0,
〈
ρ∗,K⊤w

〉
= 0

}
Take any w′ ∈ X ; If w′

bi
̸= 0, then

w′
bi = αvbi =⇒

w′
bi

∥w′
bi
∥2

=
vbi
λ

=⇒ λ
w′

bi

∥w′
bi
∥2

= vbi ,

13
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where we have used the fact that ∥vbi∥2 = λ for all bi ∈ Eλ. That is,

X⊤
bi (Xw − y) + λ

w′
bi

∥w′
bi
∥2

+Kbiρ
∗
bi = 0,

which is exactly stationarity of the Lagrangian.

If w′
bi
= 0, then

Xw′ = ŷ =⇒ ∥X⊤
bi (y −Xw′) +Kρ∗bi∥2 ≤ λ,

which also implies the Lagrangian is stationary.

Since
〈
ρ∗,K⊤w′〉 = 0 and K⊤w ≤ 0, i.e. w is feasible, it is clear that complementary slackness must also hold. We

conclude that (w′, ρ∗) are primal-dual optimal by the KKT conditions and the proof is complete.

Lemma 3.3. Fix λ > 0. The solution to CGL problem is unique if and only if {Xbivbi}Sλ
are linearly independent.

Proof. Suppose by way of contradiction that w,w′ ∈ W∗(λ) such that w ̸= w′. By Proposition 3.1, we have

0 = X(w − w′) =
∑

bi∈Sλ

Xbi(wbi − w′
bi)

=
∑

bi∈Sλ

(αbi − α′
bi)Xbivbi ,

which implies that the vectors {Xbivbi}Sλ
are linearly dependent.

Necessity follows from Algorithm 1, which shows that, given a solution w ∈ W∗(λ), linear dependence of
{Xbiw(λ) : bi ∈ A(w(λ))} implies the exist of at least one additional solution.

Proposition 3.5. [Group General Position] Suppose for every E ⊆ B, |E| ≤ n+1, there do not exist unit vectors zbi ∈ R|bi|

such that for any j ∈ E ,
Xbjzbj ∈ affine({Xbizbi : bi ∈ E \ bj}).

Then the group lasso solution is unique for all λ > 0.

Proof. Suppose the group Lasso solution is not unique. Then, Corollary 3.2 implies

Nλ = Null(XEλ
)
⋂
{z : zbi = αbicbi , bi ∈ Eλ} ,

is non-empty. That is, there exist αbi ≥ 0 such that

Xbjcbj =
∑

bi∈Eλ\j

αbiXbicbi

=⇒ Xbjcbj =
∑

bi∈Eλ\j

αbiXbicbi .

Taking inner-products on both sides with the residual r,

=⇒ λ2 =
∑

bi∈Eλ\j

αbiλ
2

=⇒ 1 =
∑

bi∈Eλ\j

αbi .

Thus, we deduce that
Xbjcbj =

∑
bi∈Eλ\j

βbiXbicbi , (21)

14
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where
∑

bi∈Eλ\j βbi = 1. Now, suppose that |Eλ| > n + 1. Then, {Xbicbi : bi ∈ Eλ \ j} are linearly dependent and, by
eliminating dependent vectors Xbicbi , we can repeat the above proof with a subset E ′ of at most n + 1 blocks. Noting
∥cbi∥2 = λ for each bi ∈ Eλ and rescaling both sides of Equation (21) by λ implies the existence of unit vectors zbi which
contradict GGP. This completes the proof.

Proposition A.3. Group general position does not imply the columns of X are in general position. Similarly, general
position of the columns of X does not imply group general position.

Proof. Consider the simple case where we have two groups: b1 = {1} and b2 = {2, . . . , d}. Group general position is
violated if there exists a unit vector zb2 such that

x1 = Xb2zb2 .

⇐⇒ x1 ∈ Xb2Bd−1,

where Bn−1 =
{
z ∈ Rd−1 : ∥z∥2 ≤ 1

}
. In contrast, general position is violated if

x1 ∈ affine(x2, . . . , xd)

⇐⇒ x1 ∈ X {z : ⟨z, 1⟩ = 1} .

Taking Xb2 = I , it is trivial to see that group general position can hold when general position is violated and vice-versa.

A.2. Computing Dual Optimal Parameters

Lemma A.4. One Lagrange dual of CGL is the following:

max
η,ρ
− 1

2
(η +Kρ−X⊤y)(X⊤X)+(η +Kρ−X⊤y) +

1

2
∥y∥22

s.t. η +Kρ ∈ Row(X), ∥ηbi∥2 ≤ λ ∀ bi ∈ B,
(22)

where ηbi = cbi −Kbiρbi shows that the vectors vbi are, in fact, dual variables. Moreover, if K = 0, then ρ∗ = 0 and η has
the unique solution ηbi = X⊤

bi
(y −Xw) = cbi . That is, the dual parameters are the (unique) block correlation vectors.

Proof. We re-write the group Lasso problem as follows:

min
w

1

2
∥Xz − y∥22 + λ

∑
bi∈B

∥wbi∥2 s.t. z = w, K⊤
bizbi ≤ 0.

The Lagrangian for this problem is

L(w, z, η, ρ) = 1

2
∥Xz − y∥22 + ⟨η, z − w⟩+

〈
ρ,K⊤z

〉
+ λ

∑
bi∈B

∥wbi∥2

=
1

2
∥Xz − y∥22 + ⟨η +Kρ, z⟩ − ⟨η, w⟩+ λ

∑
bi∈B

∥wbi∥2.

Minimizing over z, we find that stationarity implies

X⊤(y −Xz) = η +Kρ,

so that η +Kρ ∈ Row(X). Solving this system, we find

X⊤Xz = X⊤y − η −Kρ =⇒ z = (X⊤X)+
[
X⊤y − η −Kρ

]
+ c,

where c ∈ Null(X). Let us minimize over w similarly. The Lagrangian decouples block-wise in w, so that we must solve

min
wbi

λ∥wbi∥2 − ⟨ηbi , wbi⟩ ,
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for each bi ∈ B. The minimum value is achieved by the (negative) Fenchel conjugate of λ∥wbi∥2 evaluated at ηbi ; that is,

min
wbi

λ∥wbi∥2 − ⟨ηbi , wbi⟩ = −1(∥ηbi∥2 ≤ λ).

Combining this with the expression for z, we obtain

L(c, η, ρ) = −1

2
(η +Kρ−X⊤y)(X⊤X)+(η +Kρ−X⊤y) + ⟨η +Kρ, c⟩ −

∑
bi∈B

1(∥ηbi∥2 ≤ λ)

= −1

2
(η +Kρ−X⊤y)(X⊤X)+(η +Kρ−X⊤y)−

∑
bi∈B

1(∥ηbi∥2 ≤ λ),

where the second equality follows since η + Kρ ∈ Row(X) and c ∈ Null(X) are orthogonal. (Alternatively, one can
observe that the dual problem is unbounded below whenever ⟨c, η +Kρ⟩ ≠ 0.) Thus, the dual problem is equal to

max
η,ρ
−1

2
(η +Kρ−X⊤y)(X⊤X)+(ηKρ−X⊤y)−

∑
bi∈B

1(∥ηbi∥2 ≤ λ)− 1(η +Kρ ∈ Row(X)),

which completes the derivation.

Recalling z = w for any primal-dual optimal pair and

X⊤(y −Xz) = η +Kρ,

shows that ηbi = cbi − Kρ as claimed. Moreover, if K = 0, then we may assume without loss of generality that he
corresponding dual vectors ρbi are zero. In this case, ηbi = cbi and, since cbi is unique, the dual solution must also be
unique.

Proposition A.5. Let λ > 0 and w ∈ W∗(λ). If wbi = 0, then any solution to Equation (15) is dual optimal for block bi.

Proof. Let ρbi be a solution to Equation (15). Since w is optimal and strong duality holds, there exists some min-norm dual
optimal vector ρ∗. Moreover ρ∗ satisfies ρ∗bi ≥ 0 and

∥Kbiρbi − cbi∥22 ≤ ∥Kbiρ
∗
bi − cbi∥22 ≤ λ2,

so w is both feasible satisfies stationarity of the Lagrangian, Finally, because wbi = 0, complementary slackness,

[ρbi ]j · [Kbi ]
⊤
j wbi = 0,

is verified for every j ∈ [abi ]. Since the KKT conditions are sufficient for primal-dual optimality, we conclude that ρbi is
dual optimal. This completes the proof.

A.3. Minimal Solutions and Optimal Pruning

Proposition 3.6. For λ > 0, w ∈ W∗(λ) is minimal if and only if the vectors {Xbiwbi}A(w) are linearly independent.

Proof. Let w ∈ W∗(λ) and assume that the vectors {Xbiwbi}A(w) are linearly independent. By way of contradiction,
assume there exists w′ ∈ W∗(λ) with strictly smaller support. By Proposition 3.1, we have

w′
bi = βbiwbi ,

for some βbi ≥ 0. This holds for each bi ∈ Aλ(w) (with βbi = 0 when bi ∈ Aλ(w) \ Aλ(w
′)) so that

Xw = Xw′ =⇒
∑

bi∈Aλ(w)

(1− βbi)Xbiwbi = 0,

which is a contradiction.

For the reverse direction, assume that w is minimal, but that {Xbiwbi}A(w) are not linearly independent. Then the correctness
of Algorithm 1 (see Proposition A.6) implies w is not minimal.
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Proposition A.6. Algorithm 1 returns a minimal solution to the constrained group lasso problem in at most O(n3l + nd)
time, where l is the number of non-zero groups in the initial solution.

Proof. Correctness: Let w ∈ W∗(λ) andA be the associated active set. If w0 = w is minimal, then Proposition 3.6 implies
{Xbiwbi}A are linearly independent the algorithm returns a minimal solution.

Let k ≥ 0 and suppose wk is not minimal. Then there exist weights βbi such that∑
bi∈A

βbiXbiw
k = 0.

Let wt
bi
= (1− tβbi)wbi and let tk be as defined in the algorithm. By construction, tk is the smallest magnitude t such that

(1− tβbi) = 0 for some bi ∈ A. We assume without loss of generality that tk > 0.

Fix 0 < t < tk. Let’s show that wt is a solution to the constrained problem. Firstly, we have

Xwt = Xwk − t
∑
bi∈A

βbiXbiw
k
bi = Xw,

showing that the model fit preserved. Moreover,

wt
bi = (1− tβbi)w

k
bi = (1− tβbi)αbivbi ,

where (1− tβbi)αbi > 0 by the choice of t. We conclude that wt is optimal by Proposition 3.1.

By construction,

lim
t↑tk

wt = wk+1.

Since wt is an optimal solution, it has the (unique) optimal squared error and sum of group norms. Taking limits as t ↑ tk,
we see that

Xwk+1 = Xwk,
∑
bi∈B

∥wk+1
bi
∥2 =

∑
bi∈B

∥wbi∥2, K⊤wk+1 ≤ 0,

which implies that wk+1 obtains the optimal objective value and is feasible. Thus wk+1 is also a solution. Finally, A(wk+1)
is strictly smaller than A, as required.

Arguing by induction now implies that Algorithm 1 returns an minimal solution in a finite number of steps.

Complexity: First, observe that we can pre-compute the block-wise model fits qbi = Xbiwbi before running the algorithm.
The complexity is at most O(nd). At iteration iteration of the algorithm, we must do two things: (i) compute a non-trivial
solution to a homogeneous equation and (ii) update the weights of the model fits. For (i), it is clear that any set of n+ 1 qbi
vectors will be linearly dependent, so that we compute a non-trivial solution to the homogeneous equation using the SVD in
an at most O(n3) operations. For (ii), updating at most n of the βbi ’s requires O(n) time. Since the algorithm runs at most l
iterations, we obtain a final complexity o f O(n3l + nd), as claimed.

Lemma A.7. Each step of the Algorithm 1 preserves the span of
{
Xbiw

k
bi

}
. That is, only linearly dependent vectors are

removed.

Proof. Let V = Span {Xbiwbi} be the span of the initial solution. Since w0 = w by definition, the base case holds trivially.
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Suppose Span(Xbiw
k
bi
) = V . Let v ∈ V and observe that

v =
∑

bi∈Aλ(wk)

αbiXbiw
k
bi

=
∑

bi∈Aλ(wk+1)

(
αbi

1− tkβbi

)
Xbiw

k+1
bi

+
∑

bi∈Aλ(wk)\Aλ(wk+1)

αbiXbiw
k
bi

=
∑

bi∈Aλ(wk+1)

(
αbi

1− tkβbi

)
Xbiw

k+1
bi

+
1

βbik

∑
bi∈Aλ(wk+1)

αbiβbiXbiw
k+1
bi

=
∑

bi∈Aλ(wk+1)

αbi

(
1

1− tkβbi

+
βbi

βbik

)
Xbiw

k+1
bi

,

where we have used the fact that βbi = βbik for every block that is pruned at iteration k. Thus, Span(Xbiw
k+1
bi

) = V .
Arguing by induction completes the proof.

Lemma A.8. Let X = {x1, . . . , xk} be a set of linearly dependent vectors. Every linearly independent subset of X obtained
by iteratively removing linearly dependent vectors has the same cardinality.

Proof. Let Y,Y ′ ⊂ X be linearly independent subsets obtained by pruning linearly dependent vectors from X and assume
|Y ′| < |Y|. Since Y and Y ′ are obtained by pruning only linearly dependent vectors, it must be that

Span (Y ′) = Span (Y) = Span (X ) .

Let c = dim (Span (X )). Only a set of c linearly independent vectors can span Span (X ); thus, |Y| = c must hold and Y ′

cannot span Span (X ). This is a contradiction. We conclude |Y ′| = |Y| as claimed.

Lemma A.9. There exists a solution to CGL with support exactly Sλ.

Proof. By definition, there exists w ∈ W∗(λ) such that wbi ̸= 0 for every bi ∈ Sλ. Taking convex combination of these
solutions yields w′ with support exactly Sλ. SinceW∗(λ) is convex, w′ is also a solution. This completes the proof.

Lemma A.10. Let w be a minimal solution and w̄ be a solution with support Sλ, which exists by Lemma A.9. Then, w̄ can
be pruned step to obtain w.

Proof. Suppose w̄ is minimal. Then {Xbiw̄bi}Sλ
are linearly independent, which implies {Xbivbi}Sλ

are also linearly
independent. We conclude w̄ is the unique solution to CGL by Lemma 3.3 and the claim holds trivially.

Suppose w̄ is not minimal. Since Aλ(w) ⊂ Sλ, Span {Xbiwbi} ⊂ Span {Xbiw̄bi} so that every vector Xbiwbi can be
written as a linear combination of vectors in {Xbiw̄bi}. Thus, we find that∑

bi∈Aλ(w̄)

Xbiw̄bi = ŷ =
∑

bi∈Aλ(w)

Xbiwbi

=⇒
∑

bi∈Sλ\Aλ(w)

Xbiw̄bi +
∑

bi∈Aλ(w)

βbiXbiw̄bi = 0,

where βbi = 1− αbi

ᾱbi
for wbi = αbivbi , w̄bi = ᾱbivbi . Thus, {Xbiw̄bi} are linearly dependent and it is possible to prune the

solution.

Now we show that we can, in fact, prune all vectors in Sλ \ Aλ(w) in one pruning step. First, observe that αbi

ᾱbi
> 0 so that

βbi < 1 for every bi ∈ Aλ(w). Following the proof of Proposition A.6, define

wt
bi = (1− tβbi)w̄bi = (1− tβbi)ᾱbivbi ,

for 0 < t < 1. Since βbi < 1 for every bi ∈ Sλ, it is straightforward to deduce that wt
bi

is optimal by Proposition 3.1.
Arguing as in Proposition A.6, we can show w1 is also optimal. It remains only to notice that w1

bi
= 0 for bi ∈ Sλ \ Aλ(w)

and w1
bi
= wbi for bi ∈ Aλ(w). Thus, the pruning algorithm can move from w̄ to w in one step.
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Proposition 3.8. Let V=Span({Xbiw̄bi}) for w̄ ∈ W∗(λ). Every minimal solution has c = dim(V) active blocks.

Proof. Suppose w and w′ are two minimal solutions. Both can be obtained by pruning the maximal solution with support Sλ
(Lemma A.10). Thus, w and w′ both span Span({Xbiwbi}) by Lemma A.7. Lemma A.8 now implies w and w′ have the same
number of active blocks. This number must be c, otherwise there would be a linearly dependent vector in {Xbiwbi}(Aλ (w))
and w would not be minimal. This completes the proof.

A.4. Continuity of the Solution Path
Lemma A.11. Every solution to the constrained group lasso problem is bounded by an absolute constant independent of λ.
Specifically, every w ∈ W∗(λ) satisfies ∑

bi∈B

∥wbi∥2 ≤
∑
bi∈B

∥w̄bi∥2.

where w̄ ∈ W∗(0) is the least-squares solution with minimum ℓ2-norm.

Proof. Let h(w) =
∑

bi∈B ∥wbi∥2, and define Wg to be the set of least squares solutions with minimum group norm. That
is,

Wg = argmin {h(w) : w ∈ W∗(0)} .

Let wg ∈Wg , and suppose that h(wg) < h(w(λ)) for some λ > 0, w ∈ W∗(λ). Since

1

2
∥Xwg − y∥22 ≤

1

2
∥Xw(λ)− y∥22

we deduce
1

2
∥Xwg − y∥22 + λh(wg) <

1

2
∥Xw(λ)− y∥22 + λh(w(λ)),

which is a contradiction. So h(w(λ)) ≤ h(wg) for all λ > 0. Observing h(wg) ≤ h(w̄) since w̄ may not be in Wg gives the
result. Since h(w̄) is independent of λ, we conclude thatW∗(λ) is bounded independent of λ.

Proposition 3.12. λ 7→ p∗(λ) is continuous for all λ ≥ 0.

Proof. Define the joint objective function

f(w, λ) =
1

2
∥Xw − y∥22 + λ

∑
bi∈B

∥wbi∥2.

Clearly f(w, λ) is jointly continuous in w and λ. By Lemma A.11, minimization of f(w, λ) subject to K⊤
bi
wbi ≤ 0 is

equivalent to the constrained minimization problem,

p∗(λ) = min
w

f(w, λ) s.t.
∑
bi∈B

∥wbi∥2 ≤ C, K⊤
biwbi ≤ 0,

where C is a finite absolute constant. Note that this expression is also valid when λ = 0 as the min-norm solution to the
unregularized least squares problem obeys the constraint.

Thus,W∗ is a continuous optimization problem over a continuous (constant in this case) compact constraint set and the
classical result of Berge (1997) (see also Hogan (1973)[Theorem 7]) implies p∗ is continuous.

Proposition 3.13. WhileW∗ is closed on R+, it is open 0 if only if X is full column rank. However, if the solution is unique
on Λ ⊂ R+, thenW∗ is open at every λ ∈ Λ.

Proof. Joint continuity of the objective

f(w, λ) =
1

2
∥Xw − y∥22 + λ

∑
bi∈B

∥wbi∥2,
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combined with continuity of the (constant) constraint allows us to use Robinson & Day (1974, Theorem 1) to obtain that
thatW∗ is upper semi-continuous. SinceW∗ is convex and bounded, it is compact. It is thus also uniformly compact and
lower semi-continuity is equivalent to closedness (Hogan, 1973)[Theorem 3]. We conclude thatW∗ is closed as claimed.

If X is full column rank, then the constrained group lasso solution is unique for all λ ≥ 0. The solution map is a singleton
on R+, and closedness and openness are equivalent properties for singleton maps. Since we have already shown it is closed,
the solution map must also be open. An identical argument shows that the solution map is open at on any interval over which
the solution is unique.

Now we show the reverse implication by proving the contrapositive. Assume X is not full column-rank and suppose Kbi = 0
for each bi ∈ B. The solution map at λ = 0 is the solution set to the least squares problem,

min
w

1

2
∥Xw − y∥22,

which is known to beW∗(0) = {w∗(0) + z : z ∈ Null(X)}. WhileW∗(0) is unbounded, it holds thatW∗(λ) ⊂ C for
some bounded C for every λ > 0 (Lemma A.11). As a result, there exist uncountably many solutions inW∗(0) which are
not limit points of solutions inW∗(λk) as λk → 0. In other words,W∗(0) is not open at 0.

Proposition 3.15. If K = 0, then ŷ(λ) is continuous on R+ and the penalty
∑

bi∈B ∥wbi(λ)∥2 is continuous for λ > 0.

Proof. Consider the dual problem from Lemma A.4,

max
η
− 1

2
(η −X⊤y)(X⊤X)+(η −X⊤y) +

1

2
∥y∥22

s.t. η ∈ Row(X), ∥ηbi∥2 ≤ λ ∀ bi ∈ B.

The objective function is a convex quadratic and continuous in η. The constraint set is

C(λ) = {η : η ∈ Row(X), : ∥ηbi∥2 ≤ λ ∀ bi ∈ B} .

Let’s show that C is continuous.

Let λk ≥ 0, λk → λ̄ and ηk ∈ C(λk) such that ηk → η̄. Since ηk ∈ Row(X), η̄ ∈ Row(X). Moreover,

∥[ηk]bi∥2 ≤ λk,

so that taking limits on both sides implies ∥η̄k∥2 ≤ λ̄. Thus, η̄ ∈ C(λ̄), showing that C is closed.

Hogan (1973, Theorem 12) states that C(λ) is open at λ̄ if for each bi ∈ B, gbi(λ, η) = ∥ηbi∥2−λ is continuous on λ̄×C(λ),
convex in η, and for fixed λ, and there exists η̄ such that such that g(λ, η̄) < 0.

Let us check these conditions. First, observe that gbi is continuous and convex in η for any choice of λ. Taking η̄ = 0, we
find

gbi(λ, 0) = −λ < 0,

as long as λ > 0. Thus, C(λ) is open at each λ > 0.

At λ = 0, C(λ) = {0}. Since C is closed everywhere, we conclude it is open at λ = 0. Putting these results together proves
that C is continuous.

Recall that the dual solution satisfies η∗bi = cbi , so that it is always unique. Combining this fact with Robinson & Day (1974,
Theorem 1) implies that λ 7→ η∗(λ) is a continuous function. Since we have

η∗(λ) = c(λ) = X⊤(y −Xw∗(λ)),

it must be that the model fit ŷ(λ) = Xw∗(λ) is continuous as well (any discontinuities must be in Null(X), but ŷ is
orthogonal to Null(X)).

Finally, using Proposition 3.12, we have

p∗(λ)− 1

2
∥ŷ(λ)− y∥22 = λ

∑
bi∈B

∥wbi∥2,
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is a sum of continuous functions and thus continuous. Writing

g(λ) =
∑
bi∈B

∥bi∥2 =

[
λ
∑
bi∈B

∥bi∥2

] [
1

λ

]
,

as the product of continuous functions shows g(λ) is continuous at every λ > 0.

A.5. The Min-Norm Path

Proposition A.12. Consider the min group-norm interpolation problem,

min
w

∑
bi∈B

∥wbi∥2 s.t. Xw = y.

There exist X, y such that the minimum ℓ2 norm solution to this problem is not in Row(XA∗
λ
).

Proof. We provide a counter-example where the solution is not the row space of the active set. Consider the problem given
by

X =

[
1 2 0
1 0 2

]
, y =

[
1
1

]
,

where the vertical line indicates the block structure, i.e., b1 = {1, 2} and b2 = {3}.

Clearly a solution using only b2 cannot interpolate the data, so the active set must be {b1, b2} or {b1}. If the active set is b1,
then the minimum norm interpolating solution can only be w = [1 0 0]⊤, which has group norm 1.

Now, consider when the active set is {b1, b2}. The interpolating solution in Row(X) satisfies the following system

[
1 2 0
1 0 2

]α

12
0

+ β

10
2

 =

[
1
1

]

=⇒
[
5α+ β
α+ 5β

]
=

[
1
1

]
.

Solving for α and β yields α = 1− 5β and 24β = 4, which implies β = 1/6 and α = 1/6. The optimal w∗ is thus

w∗ =

1/31/3
1/3

 ,

and group norm of w∗ is ∑
bi∈B

∥w∗
bi∥2 =

√
2/9 + 1/3 = (1 +

√
2)/3.

Now let’s see if we can reduce the norm by including directions in Null(X). The Null space is orthogonal to both rows of
X , from which we conclude

Null(X) =

γz : z =

−2/31/3
1/3

 , γ ∈ R

 .

Any vector w′ = w∗ + γz is an interpolating solution, so it only remains to check if there is a choice of γ that decreases the
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group norm. Assuming γ > −1, ∑
bi∈B

∥w∗
bi∥2 ≤

∑
bi∈B

∥w′
bi∥2

⇐⇒ 1 +
√
2

3
=

√
(
1

3
− 2γ

3
)2 + (

1

3
+

γ

3
)2 +

∣∣∣∣1 + γ

3

∣∣∣∣
⇐⇒ 1 +

√
2

3
− 1 + γ

3
≤
√

(
1

3
− 2γ

3
)2 + (

1

3
+

γ

3
)2 (since γ > −1)

⇐⇒

(
1 +
√
2

3
− 1 + γ

3

)2

≤ (
1

3
− 2γ

3
)2 + (

1

3
+

γ

3
)2

⇐⇒
(√

2− γ
)2
≤ (1− 2γ)2 + (1 + γ)2

The left-hand side satisfies (√
2− γ

)2
= 2− 2

√
2γ + γ2,

while the right-hand side is

(1− 2γ)2 + (1 + γ)2 = 1− 4γ + 4γ2 + 1 + 2γ + γ2 = 2− 2γ + 5γ2.

As a result, ∑
bi∈B

∥w∗
bi∥2 ≤

∑
bi∈B

∥w′
bi∥2

⇐⇒ 2− 2γ + 5γ2 − 2− γ2 + 2
√
2γ ≥ 0

⇐⇒ 2(
√
2− 1)γ + 4γ2 ≥ 0.

However, it is easy to check that this fails for γ ∈ ((1−
√
2)/2, 0). So the minimum ℓ2-norm interpolating solution is not in

Row(XA∗
λ
).

Lemma A.13. Let Wg be the set of least squares solution with minimum group norm. That is,

Wg = argmin

{∑
bi∈B

∥wbi∥2 : X⊤Xw = X⊤y

}
.

Then every limit point of the min-norm group lasso solution lies in Wg .

Proof. Let λk → 0 and observe that w∗(λk) has at least one limit point since it is bounded (Lemma A.11). Since
∥cbi(λk)∥2 ≤ λk, we see that limk ∥cbi(λk)∥2 = 0 and thus limk cbi(λk) = 0.

FO optimality conditions imply
(X⊤X)w∗(λ) = X⊤y − c(λ), (23)

which, taking limits on both sides, gives
lim
k
(X⊤X)w∗(λk) = X⊤y. (24)

That is, every limit point w̄ of w∗(λk) is a least squares solution satisfying h(w̄) ≤ h(wg). We conclude that w̄ ∈Wg as
claimed.

Proposition 3.16. Suppose Kbi = 0. There exists (X, y) and λ > 0 such that w∗
A∗

λ
(λ) ̸∈ Row(XA∗

λ
).
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Proof. Consider the setting of Proposition A.12, with

X =

[
1 2 0
1 0 2

]
, y =

[
1
1

]
,

where the vertical line indicates the block structure, i.e., b1 = {1, 2} and b2 = {3}. We have shown that the min group norm
interpolant is unique, is supported on b1 and b2, and does not lie in Row(X). Let wg be this solution.

Let λk ↓ 0. By Lemma A.13, every limit point of w∗(λk) = wg. Thus, limk w
∗(λk) exists and is exactly wg. Moreover,

w∗(λk) must be supported on b1 and b2 for all k sufficiently large.

Decomposing wg = a+ b and w∗(λk) = rk + nk where a, rk ∈ Row(X) and b, nk ∈ Null(X), we see that

∥wg − w∗(λk)∥22 = ∥a− rk∥22 + ∥b− nk∥22 → 0,

implying that nk ̸= 0 for sufficiently large k. In other words, the min-norm solution to the group lasso problem fails to fall
in Row(X) for some λ > 0.

Proposition 3.17. Let λ > 0 and consider the program:

α∗ = argmin
α≥0

∥α∥22 s.t.
∑

bi∈Sλ

αbiXbivbi = ŷ. (16)

Then the min-norm solution is given by w∗
bi
= α∗

bi
vbi .

Proof. Let w ∈ W∗(λ). By Proposition 3.1, wbi = αbivbi where αbi ≥ 0. Moreover, αbi = 0 for every bi ∈ B \ Sλ. As a
result,

∥w∥22 = ∥wEλ
∥22

=
∑

bi∈Sλ

∥αbivbi∥22

= λ∥α∥22,

where the last equality follows from bi ∈ Sλ =⇒ bi ∈ Eλ, which implies ∥vbi∥2 = λ.

Now suppose α∗ is optimal for the cone program and let w ∈ Rd such that wbi = α∗
bi
vbi . By construction, α∗

bi
= 0 for all

bi ∈ B \ Sλ (or it could not be optimal) so that wbi = 0 for all bi ∈ B \ Sλ. Moreover,

Xw =
∑

bi∈Sλ

α∗
biXbivbi = ŷ,

Thus, w solves
argmin

w
∥w∥22 s.t. ∀ bi ∈ Sλ, wbi = αbivbi , αbi ≥ 0,

∀ bj ∈ B \ Sλ, wbj = 0, Xw = ŷ.

Invoking Proposition 3.1 now proves that w is the min-norm solution.

Lemma A.14. The ℓ2-penalized group lasso problem in Equation (17) is equivalent to the following group lasso problem:

min
w

1

2
∥X̃w − ỹ∥22 + λ

∑
bi∈B

∥wbi∥2

s.t. K⊤
biwbi ≤ 0 for all bi ∈ B.

(25)

where we have defined the extended data matrix and targets

X̃ =

[
X√
δI

]
ỹ =

[
y
0

]
.

Moreover, X̃ is full column-rank and thus the group lasso solution is unique.
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Proof. It is straightforward to show the equivalence by direct calculation. For any w ∈ Rd,

1

2
∥X̃w − ỹ∥22 =

1

2
∥Xw − y∥22 +

1

2
∥
√
δIw − 0∥22

=
1

2
∥Xw − y∥22 +

δ

2
∥w∥22,

Substituting this identity into Equation (25) establishes the equivalence.

It is clear by inspection that X̃ is full column rank. Then Null(XC) = ∅ for all C ⊂ B and the solution is unique by
Proposition 3.1.

Proposition 3.18. The solution to the ℓ2-penalized problem converges to the min-norm solution as δ → 0. That is,

lim
δ→0

wδ(λ) = w∗(λ).

Proof. First we show that ∥wδ(λ)∥2 ≤ ∥w∗(λ)∥2. Suppose by way of contradiction that ∥wδ(λ)∥2 > ∥w∗(λ)∥2 for some
δ > 0. Since

1

2
∥Xw∗(λ)− y∥22 + λ

∑
bi∈B

∥w∗
bi(λ)∥2 = min

w:Kbi
wbi

≤0

1

2
∥Xw − y∥22 + λ

∑
bi∈B

∥wbi∥2

≤ 1

2
∥Xwδ(λ)− y∥22 + λ

∑
bi∈B

∥wδ
bi(λ)∥2,

we deduce

1

2
∥Xw∗(λ)− y∥22 + λ

∑
bi∈B

∥w∗
bi(λ)∥2 +

δ

2
∥w∗(λ)∥22 <

1

2
∥Xwδ(λ)− y∥22 + λ

∑
bi∈B

∥[wδ(λ)]bi∥2 +
δ

2
∥wδ(λ)∥22,

which contradicts optimality of wδ(λ). So ∥wδ(λ)∥2 ≤ ∥w∗(λ)∥2 for all δ > 0. As a result, the sequence
{
wδk(λ)

}
δk

,
where δk ↓ 0, is bounded and admits at least one convergent subsequence. Let w̄(λ) be the limit point associated with one
such subsequence; clearly ∥w̄(λ)∥2 ≤ ∥w(λ)∗∥2.

Let’s show that w̄(λ) is a solution to the group lasso problem by checking the KKT conditions. Suppose λ > 0. Stationarity
of the Lagrangian is

X⊤(Xwδk(λ)− y) +Kρδk(λ) + sδk(λ) + δkw
δk(λ) = 0,

where sδkbi (λ) ∈ ∂λ∥wδk
bi
∥2. Since ∥sδkbi (λ)∥2 ≤ λ and wδk(λ) is bounded, clearly Kρδk(λ) is also bounded.

Dropping to a subsequence if necessary, let limk w
δk(λ) = w̄ and limk Kbiρ

δk
bi

= z̄bi . Define

R1/n =

{
ρbi : ∥Kbiρbi − z̄bi∥∞ ≤

1

n
, ρbi ≥ 0

}
.

The sequence of sets R1/n is polyhedral and thus retractive. Moreover, for each n ∈ N, there exists k such that

∥Kbiρ
δk
bi
− z̄bi∥∞ ≤ 1/n,

since Kbiρ
δk
bi
→ z̄bi . Recalling ρδkbi ≥ 0 shows that R1/n is non-empty. The limit of a sequence of nested, non-empty,

retractive sets is also non-empty (Bertsekas, 2009, Proposition 1.4.10). Moreover, since the limit is exactly

R̄ = {ρbi : Kbiρbi = z̄bi , ρbi ≥ 0} ,

we deduce that there exists ρ̄ ≥ 0 such that Kbi ρ̄bi = z̄bi .

Taking limits on either side of the stationarity condition, we find

X⊤
bi (y −Xw̄(λ))−Kbi ρ̄(λ) = s̄bi ,
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where the limit point s̄bi satisfies ∥s̄bi∥ ≤ λ. If bi ∈ B \ Aλ(w̄(λ)), then w̄bi satisfies stationarity.

Let bi ∈ Aλ(w̄(λ)). Since wδk(λ)→ w̄(λ), ∥wδk
bi
−wbi∥2 → 0 and it must happen that wδk

bi
> 0 for all k sufficiently large.

That is, A(wδk(λ)) ⊇ A(w̄) for all k ≥ k′. Using bi ∈ A(wδk(λ)) provides a closed-form expression for sδkbi :

lim
k

sδk(λ) = λ lim
k

wδk
bi
(λ)

∥wδk
bi
(λ)∥2

= λ
w̄bi(λ)

∥w̄bi(λ)∥2
,

which shows that s̄bi is a subgradient of λ∥wbi∥2. We conclude that the Lagrangian is stationary in w̄bi as well.

Let us check the remainder of the KKT conditions. For feasibility, it is straightforward to observe that

K⊤
biw

δk
bi
(λ) ≤ 0 ∀ k =⇒ K⊤

bi w̄bi(λ) ≤ 0.

Similarly, 〈
ρδkbi ,K

⊤
biw

δk
bi

〉
= 0 ∀ k =⇒

〈
ρ̄bi ,K

⊤
bi w̄bi

〉
≤ 0,

which, combined with ρ̄ ≥ 0, is sufficient to establish complementary slackness. We have shown the subsequential limits
(w̄, ρ̄) satisfies the KKT conditions and thus w̄ is a solution to the constrained group lasso problem.

Since the min-norm solution is unique and ∥w̄(λ)∥2 ≤ ∥w∗(λ)∥2, it must be that w̄(λ) = w∗(λ). Noting that this holds for
every limit point implies limδ↓0 w

δ(λ) exists and is w∗(λ). This completes the proof for λ > 0.

If λ = 0, then the proposition follows similarly with the additional observation that sδk(0) = 0 for all k.

A.6. Sensitivity

Proposition 3.19. Let w ∈ W∗(λ, y) be minimal. The active blocks wAλ
are the unique solution to Problem (18).

Proof. Let w be as in the theorem statement. We starting by showing that w obtains the optimal objective value for the
reduced problem:

1

2
∥XAλ

wAλ
− y∥22 + λ

∑
bi∈Aλ

∥wbi∥2 = min
w:Kbi

wbi
≤0

1

2
∥Xw − y∥22 + λ

∑
bi∈B

∥wbi∥2

≤ min
wAλ

:KAλ
wAλ

≤0

1

2
∥XAλ

wAλ
− y∥22 + λ

∑
bi∈Aλ

∥wbi∥2

≤ 1

2
∥XAλ

wAλ
− y∥22 + λ

∑
bi∈Aλ

∥wbi∥2,

where the last inequality makes explicit use of feasibility of wAλ
. Since wAλ

is feasible for the reduced problem and attains
the minimum objective value, it must be optimal. Note that it is straightforward to check that the active blocks of the
min-norm dual parameter ρ∗Aλ

are dual optimal for the reduced problem.

Now, let w′
Aλ

be an optimal solution to the reduced problem. Since ρ∗Aλ
is dual optimal for the reduced problem, Proposi-

tion 3.1 implies
w′

bi = α′
bivbi ,

for every bi ∈ Aλ, with α′
bi
≥ 0. Since XAλ

w′
Aλ

= XAλ
wAλ

, we deduce∑
bi∈Aλ

(αbi − α′
bi)Xbibi = 0,

which contradicts minimality of w unless αbi = α′
bi

. That is, w′
Aλ

= wAλ
. We conclude that the reduced problem provides

the unique minimal solution with support Aλ.
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Lemma A.15. Let w ∈ W∗(λ) be minimal. Then w is a second-order stationary point of the reduced problem (Equa-
tion (18)).

Proof. Define M(w) to be the block-diagonal projection matrix given by

M(w̄)bi =
1

∥w̄bi∥2

(
I − w̄bi

∥w̄bi∥2
w̄⊤

bi

∥w̄bi∥2

)
. (26)

The Hessian of the Lagrangian of the reduced problem with respect to w is exactly

∇2
wL(wAλ

, ρAλ
) = X⊤

Aλ
XAλ

+ λMAλ
(w).

A sufficient condition for w to be second-order stationary is that this Hessian is positive-definite. We now shows this fact
holds.

Clearly ∇2
wL(wAλ

, ρAλ
) is positive semi-definite as it is the sum of a PSD projection matrix and a Gram matrix, which is

always PSD. Let w̄ ∈ R|Aλ| such that w̄ ̸= 0. Suppose that

0 = w̄⊤∇2
wL(wAλ

, ρAλ
)w̄

= w̄⊤X⊤
Aλ

XAλ
w̄ + w̄⊤λM(w̄)w̄

= ∥XAλ
w∥22 + λw⊤M(w̄)w.

Since M(w̄) is PSD, it must hold that
w̄⊤M(w̄)w̄ = 0,

which is true if and only if w̄bi = βbiw̄bi , βbi ∈ R, for each bi ∈ Aλ. As a result, we find that

XAλ
w =

∑
bi∈Aλ

βbiXbiw̄bi = 0,

which is a contradiction with the fact that w̄ is a minimal solution. We conclude that the Hessian is positive-definite as
desired.

Proposition 3.22. Let w ∈ W∗(λ̄, ȳ) be minimal and suppose w satisfies LICQ on the active set Aλ and SCS on the
equicorrelation set Eλ. Then w has a locally continuous solution function (λ, y) 7→ w(λ, y). Moreover, if

D =

[
X⊤

Aλ
XAλ

+M(w̄) KAλ

¯ρAλ
⊙KAλ

diag(K⊤
Aλ

¯wAλ
)

]
,

where ⊙ is the element-wise product, ubi =
wbi

∥wbi
∥2

, u is the concatenation of these vectors, and M is block-diagonal

projection matrix in Equation (26), then the Jacobians of w(λ̄, ȳ) with respect to λ and y are given as follows:

∇λw(λ̄, ȳ) = −[D−1]Aλ
uAλ

∇yw(λ̄, ȳ) = [D−1]Aλ
X⊤

Aλ
,

where [D−1
Aλ

]Aλ
is the |Aλ| × |Aλ| dimensional leading principle submatrix of D.

Proof. Recall from Proposition 3.19 that wAλ
is the unique solution to the reduced group lasso problem. In fact, as we

show in Lemma A.15, wAλ
is a second order stationary point for the reduced problem. Now, combining this fact with LICQ

and SCS and using standard results on differential sensitivity from optimization theory (see, e.g. Fiacco & Ishizuka (1990,
Theorem 5.1) and the references therein) we obtain the following:

For (λ, y) in a neighborhood of λ̄, ȳ, there exists a unique once continuously differentiable function

l̃(λ, y) =

[
h̃(λ, y)
g̃(λ, y),

]
such that h̃(λ̄, ȳ) = wAλ

, g̃(λ̄, ȳ) = ρ∗Aλ
, and l̃(λ, y) is a primal-dual solution to the reduced problem.
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Now we show that l̃ can be extended from the reduced problem to obtain a local solution function for the constrained group
lasso. Define h(λ, y) such that hAλ

(λ, y) = h̃(λ, y) and hB\Aλ
(λ, y) = 0. We shall show how to extend g shortly. For

bi ∈ Aλ, the pair hbi(λ, y), gbi(λ, y) verifies the KKT conditions (which are separable over block) since it verifies them for
the reduced problem. So, we need only consider bi ∈ B \ Aλ.

First, consider bi ∈ B \ Eλ. In this case, we have

∥X⊤
bi (ȳ −Xh(λ̄, ȳ)) +Kbiρbi(λ̄, ȳ)∥2 < λ̄,

Since this inequality is strict and
z(λ̄, ȳ) = X⊤

bi (ȳ −Xh(λ̄, ȳ),

is continuous in λ̄, ȳ, there exists a neighborhood of λ̄, ȳ on which

∥z(λ, y) +Kbiρbi(λ̄, ȳ)∥2 ≤ λ.

Since ρbi(λ̄, ȳ) ≥ 0 and wbi = 0, dual feasibility and complementary slackness hold. We conclude that the extension
gbi(λ, y) = ρbi(λ̄, ȳ) satisfies KKT conditions on this neighbourhood.

Now suppose bi ∈ Eλ(λ̄, ȳ) \ Aλ. If
∥X⊤

bi (y −Xh(λ, y))∥2 = λ,

then taking gbi(y, λ) = 0 satisfies KKT conditions. Otherwise, observe that

∥X⊤
bi (ȳ −Xh(λ̄, ȳ)) +Kbiρbi(λ̄, ȳ)∥2 = λ̄,

must hold for some dual parameter ρbi(λ̄, ȳ) by KKT conditions. Moreover, SCS implies that we can choose the dual
parameter to satisfy,

ρbi(λ̄, ȳ) > 0,

since K⊤
bi
wbi(λ̄, ȳ) = 0. Finally, because

X⊤
bi (y −Xh(λ, y))

is a continuous function of (y, λ), taking λ, y sufficiently close to λ̄, ȳ implies there exists ρbi(λ, y) ≥ 0 such that

∥X⊤
bi (y −Xh(λ, y)) +Kbiρbi(λ, y)∥2 ≤ λ.

Now we choose our extension to be gbi(λ, y) = ρbi(λ, y) so that (hbi , gbi) satisfies stationarity of the Lagrangian as well.
Since gbi is feasible and hbi is the zero function, primal feasibility, dual feasibility, and complementary slackness also hold.

Since l = (g, h) satisfies the KKT conditions in a local neighborhood of λ̄, ȳ, it is exactly a local solution function. Moreover,
since gB\A(λ, y) = 0 over this neighborhood, it is easy to see that the gradient for parameter blocks in B \ A is 0. For gAλ

,
Fiacco & Ishizuka (1990, Theorem 5.1) implies that the gradients are given as follows:

Recall from Lemma A.15, that MAλ
is a block-diagonal projection matrix with blocks given by

M(w̄)bi =
1

∥w̄bi∥2

(
I − w̄bi

∥w̄bi∥2
w̄⊤

bi

∥w̄bi∥2

)
.

Then, the Jacobian of ∇wL( ¯wAλ
, ¯ρAλ

) for the reduced problem with respect to the primal-dual parameters is given by

D =

[
X⊤

Aλ
XAλ

+M(w̄) KAλ

¯ρAλ
⊙KAλ

diag(K⊤
Aλ

¯wAλ
)

]
.

It also holds that D is invertible. Finally, let ui =
wi

∥wbi
∥2

and u the concatenation of these vectors. We are now able to write
the Jacobians of w(y, λ) with respect to y and λ as follows:

∇λw(λ̄, ȳ) = −[D−1]Aλ
uAλ

∇yw(λ̄, ȳ) = [D−1]Aλ
X⊤

Aλ
,

where [D−1
Aλ

]Aλ
is the |Aλ| × |Aλ| dimensional leading principle submatrix of D.
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B. Specialization: Proofs
Proposition 4.2. The set of stationary points of two-layer ReLU networks is given by

Cλ =
{
(W1,w2) : D̃⊆DZ , fW1,w2

(Z)= ŷD̃,

W1i = (αi/λ)
1/2vi(D̃), w2i = (αiλ)

1/2,

αi ≥ 0, i ∈ [2|D̃|] \ Sλ =⇒ αi = 0
}
,

where D̃ are sub-sampled activation patterns, ŷD̃ is the optimal model fit using those patterns, and vi(D̃) = cbi(D̃) −
Kbiρbi(D̃) is determined by the fit and the dual parameters.

Proof. The proof is almost immediate.

Given any sub-sampled set of activation patterns D̃ ⊂ DZ , Wang et al. (2021, Theorem 3) prove that the solutions to the
sub-sampled convex program are Clarke stationary points (Clarke, 1990) of the non-convex ReLU optimization problem in
Equation (1), and vice-versa. Using the expression for the CGL solution set in Proposition 3.1, which applies to sub-sampled
convex reformulations as well as the full program, we obtain a version of Corollary 4.1 for stationary points. That is, every
model (W1, w2) in

Cλ(D̃) =
{
(W1,w2) : fW1,w2

(Z)= ŷD̃,W1i = (αi/λ)
1/2vi(D̃), w2i = (αiλ)

1/2,

αi ≥ 0, i ∈ [m] \ Sλ =⇒ αi = 0
}
,

is a stationary point of the non-convex ReLU program. Taking the union over all sub-sampled sets of activation patterns
gives Cλ, which is guaranteed to contain every stationary point of the non-convex objective. This completes the proof.

Lemma B.1. Let (W1, w2) and (W ′
1, w

′
2) be two solutions to the non-convex ReLU training problem. If for every i ∈ [m], it

holds that
W1iw2i = W ′

1iw
′
2i,

and sign(w2i) = sign(w′
2i), then W1 = W ′

1 and w2 = w′
2. That is, the solutions are the same.

Proof. The ReLU prediction function fW1,w2
is invariant to scalings of the form

W̄1i = αW1i w̄2i = w2i/α,

where α > 0. Using this, we deduce that both solutions must satisfy the following equations:

1 = argmin
α

α2∥W1i∥22 + ∥w2i∥22/α2

1 = argmin
α

α2∥W ′
1i∥22 + ∥w′

2i∥22/α2,

which in turn implies that
∥W1i∥2 = ∥w2i∥2.

We deduce

∥W1i∥22 = ∥W1i · ∥w2i∥2∥2
= ∥W ′

1i · ∥w′
2i∥2∥2

= ∥W ′
1i∥22,

where we have used the fact that ∥w2i∥2 = |w2i|. But this implies W1i = W ′
1i and w2i = w′

2i, completing the proof.

Lemma B.2. Let (W1, w2) and (W ′
1, w

′
2) be two solutions to the non-convex ReLU training problem. If (W1, w2) and

(W ′
1, w

′
2) map to the same solution in the convex reformulation, then they are equal up to permutations of the neurons.

28



Optimal Sets and Solution Paths of ReLU Networks

Proof. We recall from Pilanci & Ergen (2020) that the mapping from solutions to the non-convex training problem to
solutions of the convex reformulation is given by

vi =

{
W1iw2i if w2i ≥ 0

0 otherwise

ui =

{
−W1iw2i if w2i < 0

0 otherwise,

Since (W1, w2) and (W ′
1, w

′
2) map to the same solution, the following must hold (up to orderings of the neurons):

W1iw2i = W ′
1iw

′
2i.

Lemma B.1 now implies the two solutions are the same up to permutations.

Proposition 4.3. Let λ > 0 and suppose that the convex ReLU problem has a unique solution. Then the ReLU model
solution is p-unique. In particular, if {DiZvbi}Eλ

are linearly independent, then the non-convex solution is p-unique.

Proof. Since is only one solution to the convex reformulation, all solutions to the non-convex training problem must map to
that solution. Lemma B.2 now implies that the solution map for the non-convex problem is p-unique.

Proposition 4.4. Let λ > 0 and p = |D̃|. Suppose Z follows a continuous probability distribution and nnz(Di) ≥ p · d
for every Di ∈ D̃. If Eλ does not contain two blocks with the same activation pattern, then the sub-sampled convex ReLU
program has a unique solution almost surely.

Proof. We assume without loss of generality that only indices from 1 to p are in Eλ. By Lemma 3.3, the constrained group
lasso admits a unique solution if and only if ⋃

i∈Eλ

{DiZvbi} ,

are linearly independent. We now show that this fact holds under the proposed sufficient condition by proving the stronger
fact that

⋃
i∈Eλ
{[DiZ]j : j ∈ [d]} are linearly independent with probability one, where [DiZ]j is the jth column of DiZ.

Since nnz(Di) ≥ d ∗ p and Z has a continuous probability distribution, it holds that [DiZ]j has at least d ∗ p non-zero
entries with probability 1. Let

Sij = Span

( ⋃
i∈Eλ

{[DiZ]j : j ∈ [d]} \ [DiZ]j

)
,

and observe that dim(S) ≤ d ∗ p− 1. As a result, the conditional probability [DiZ]j falls in this subspace satisfies

Pr([DiZ]j ∈ Sij |
⋃
i∈Eλ

{[DiZ]j : j ∈ [d]} \ [DiZ]j) = 0.

Taking expectations over the remaining vectors in Z implies

Pr([DiZ]j ∈ Sij) = 0.

Finally, using a union bound over i, j implies that
⋃

i∈Eλ
{[DiZ]j : j ∈ [d]} are linearly independent almost surely.

Proposition 4.5. Suppose r = rank(X). Then an optimal and minimal ReLU network with at most m∗ ≤ n non-zero
neurons can be computed in O

(
d3r3(n/r)3r

)
time.

Proof. The proof follows directly from existing results.

Recall from Pilanci & Ergen (2020) that there are at most

p ∈ O

(
r
n

r

3r
)
,
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activation patterns in the convex reformulation and that the complexity of computing an optimal ReLU model using a
standard interior-point solver is O(d3r3(n/r)3r).

We know from Proposition A.6 that the complexity of pruning an optimal neural network with at most 2p neuron is
O(n3p+ nd). Combining these complexities, we find that the cost of optimization dominates and overall complexity of
computing an optimal and minimal neural network grows as O(d3r3(n/r)3r).

Finally, the bound on the number of active neurons follows from the fact that dimSpan({(XW ∗
1i)+}i) ≤ n. This completes

the proof.

Lemma 4.8. The minimum ℓ2-norm solution to the convex reformulation of a (gated) ReLU model corresponds to the
p-unique optimal neural network which minimizes

r(W1, w2) =

m∑
i=1

∥W1i∥42 + ∥w2i∥42.

Proof. Let (u, v) be an optimal solution to the convex reformulation. Pilanci & Ergen (2020) show that an optimal solution
to the original two-layer ReLU optimization problem is given by setting

W1i =
ui√
∥ui∥2

, w2i =
√
∥ui∥2,

and
W1j =

vi√
∥vi∥2

, w2j = −
√
∥vi∥2,

where we define 0
0 = 0. Then, the r-value of any such solution can be calculated as

r(W1, w2) =

m∑
i=1

∥W1i∥42 + ∥w2i∥42

=
∑
ui ̸=0

∥ ui√
∥ui∥2

∥42 + ∥
√
∥ui∥2∥42 +

∑
vi ̸=0

∥ vi√
∥vi∥2

∥42 + ∥
√
∥vi∥2∥42

=
∑
ui ̸=0

∥ui∥22 + ∥ui∥22 +
∑
vi ̸=0

∥vi∥22 + ∥vi∥22

= 2∥u∥22 + 2∥v∥22.

That is, r(W1, w2) is a monotone transformation of the Euclidean norm of (u, v). Moreover, since every optimal ReLU
network can be obtained as the solution to a convex reformulation, the minimum r-valued optimal ReLU network is given
by the minimum ℓ2-norm solution to the convex reformulation.

Finally, let’s show that this solution is unique up to permutations. Suppose (W ′
1, w

′
2) is a optimal ReLU model which also

minimizes r. We know from the theory of convex reformulations that W ′
1i, w

′
2i corresponds to an optimal solution of the

convex program; by reversing our calculations above, we deduce that this convex parameterization must also minimize the
ℓ2-norm. Such the minimum ℓ− 2-norm solution to the convex reformulation is unique, we have

W ′
1i = α′

iu
∗
i =

α′
i

αi
W1i,

so that each neuron in the two solutions is related by a strictly positive scaling. Lemma B.2 now implies the optimal neural
network which minimizes r is p-unique.

Proposition 4.6. There exists (Z, y) for which O∗ is not open nor is the model fit fW1,w2
(Z) continuous in λ.

Proof. Mishkin et al. (2022) show that Equation 1 has the same global optimal values as

min
v,γ∈{−1,1}

1

2
∥

p∑
i=1

(Xvi)+γ − y∥+ λ

p∑
i=1

∥wi∥2. (27)
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Moreover, the objective-preserving mapping W1i = vi/
√
∥vi∥2, w2i = γi

√
∥vi∥2 can be used to obtain an optimal ReLU

network from a solution to Equation (27). We proceed by analyzing this equivalent problem and then use the mapping to
return to the original non-convex formulation.

Consider the case p = 1. Let X, y consist of two training points, (x1, y1) = (−100, 1) and (x2, y2) = (1, 10). In what
follows, we drop the subscript for v and γ since p = 1 and we consider a one-dimensional. The optimization problem of
interest is

min
v,γ

1

2
((x1v)+γ − y1)

2
+ ((x2v)+γ − y2)

2
+ λ |v| .

Since x1 < 0 and x2 > 0, we can re-write this optimization problem as

min
v,γ

1

2
1v≤0

(
(x1vγ − y1)

2
+ y22

)
+ 1v>0

(
(x2vγ − y2)

2
+ y21

)
+ λ |v| .

By inspection, we see that γ = +1 is optimal in both cases, leading to the following simplified expression:

min
v

1

2
1v≤0

(
(x1v − y1)

2
+ y22

)
+ 1v>0

(
(x2v − y2)

2
+ y21

)
+ λ |v| .

This is a piece-wise continuous (but non-smooth) quadratic with a breakpoint at v∗ = 0. We determine the solution to this
minimization problem via a case analysis.

Case 1: v∗ = 0. Then, the optimal objective is trivially f(v∗) = y21 + y22 = 101.

Case 2: v∗ < 0. First order optimality conditions are

x1

(
x1v

∗
− − y1

)
− λ = 0 =⇒ v∗− =

y1 · x1 + λ

x2
1

,

which is valid only if λ < |y1 · x1| = 100. The minimum objective value is then

1

2

((
x1v

∗
− − y1

)2
+ y22

)
− λv∗− =

((
x1

y1 · x1 + λ

x2
1

− y1

)2

+ y22

)
− λ

(
y1 · x1 + λ

x2
1

)
=

λ2

x2
1

+ y22 − λ

(
y1 · x1 + λ

x2
1

)
= −λy1

x1
+ y22

=
λ

100
+ 100.

Case 3: v∗+ > 0. Similarly to the previous case, we obtain

x2

(
x2v

∗
+ − y2

)
+ λ = 0 =⇒ v∗+ =

y2 · x2 − λ

x2
2

,

which is valid only if λ < |y2 · x2| = 10. In this case, the minimum objective is

1

2

((
x2v

∗
+ − y2

)2
+ y21

)
+ λv∗+ =

((
x2

y2 · x2 + λ

x2
2

− y2

)2

+ y21

)
− λ

(
y2 · x2 + λ

x2
2

)
=

λ2

x2
2

+ y22 + λ

(
y2 · x2 − λ

x2
2

)
=

λy2
x2

+ y21

= 10λ+ 1.
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To combine the cases, observe that

f(v∗+)− f(v∗−) =
λy2
x2

+ y21 −
[
−λy1

x1
+ y22

]
= λ

(
x1y2 + x2y1

x1x2

)
+ y21 − y22

= λ

(
−100(10) + 1(1)

−100(1)

)
+ 1− 100

= 9.99λ− 99.

We deduce that f(v∗+)− f(v∗−) > 0 (and thus v∗ ≤ 0) whenever λ > 99
9.99 ≈ 10 and f(v∗+)− f(v∗−) > 0 < 0 otherwise. In

this latter case, v∗ ≥ 0.

Taking λ = 10, we find
f(v∗−) = 100− 0.1 = 99.99 < 101 = y21 + y22 = f(0),

so that v∗− is optimal and v∗− < 0. Moreover, v∗− is strictly increasing as a function of λ, for all λ > 99
9.99 so that v∗− is

optimal and strictly negative on the interval [ 99
9.99 , 10].

Now, consider λ = 99
9.99 − ϵ to see that

f(v∗+) =
990

9.99
+ 1− 10ϵ < 101 = y21 + y22 = f(0),

for all ϵ > 0. We deduce that v∗+ is optimal for all ϵ > 0 and thus v∗+ is optimal and strictly positive on the interval [0, 99
9.99 ].

To summarize, the solution function for this problem is as follows:

W∗(λ) =


λ

1002 − 0.01 if λ > 99
9.99{

λ
1002 − 0.01, 0.1− λ

100

}
if λ = 99

9.99

0.1− λ
100 if λ < 99

9.99 .

This point-to-set map is clearly not open: for every sequence λk ↑ 99
9.99 , vk ∈ W∗(λk) implies limk vk ̸= λ

1002 − 0.01.
Moreover, a similar result holds for limits from above. Finally, it is clear by inspection that the optimal model fit is not
unique at λ = 99

9.99 , cannot be continuous in the functional sense, and, since it is not open, also fails to be continuous in the
sense of point-to-set maps.

C. Extension to General Losses
In this section, we briefly discuss how to extend our results to general loss functions. Although we use the least-squares
error throughout our derivations, this can be generalized to a smooth and strictly convex loss function L : Rn × Rn → R
without difficulty. To do so, consider the more general problem,

p∗(λ)=min
w

Fλ(w) :=
1

2
L(Xw, y) + λ

∑
bi∈B

∥wbi∥2

s.t. K⊤
biwbi ≤ 0 for all bi ∈ B.

(28)

If L is strictly convex, then uniqueness of the optimal model fit ŷ(λ) = Xw follows from straightforward adaption of
Lemma A.1. Indeed, the only property of the squared-error used in this lemma is strict convexity.

Since the model fit is constant inW∗ and L is both smooth and strictly convex, the gradient ∇wL(Xw, y), which is given
by

X⊤∇ŷL(ŷ, y),

must also be constant over W∗. Thus, it is straightforward to replace the correlation vector cbi = X⊤
bi
(y − Xw) with

X⊤
bi
∇ŷL(ŷ, y) throughout our derivations.
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Figure 4. Pruning neurons on five datasets from the UCI repository. This figure extends Figure 2 with training accuracy in addition to the
test accuracies shown in the main paper.

We form a Lagrange dual problem for CGL for one continuity-type result. Proposition 3.15 uses the Lagrange dual to show
that the correlation vector cbi is the unique solution to a convex optimization program and applies standard sensitivity results
to obtain continuity of ŷ. In this same fashion, X⊤

bi
∇ŷL(ŷ, y) is the unique solution to a Lagrange dual problem where the

dual objective uses the convex conjugate L∗, rather than the dual of the quadratic penalty. If ∇ŷL(ŷ, y) is continuous in ŷ,
then this is sufficient to deduce continuity of the model fit using the same argument.

D. Additional Experiments
In this section we provide additional experimental results as well as the necessary details to replicate our pruning experiments.
Code to replicate all of our experiments is provided at https://github.com/pilancilab/relu_optimal_
sets.

D.1. Additional Results
Tuning Table 2 shows results for our tuning task on an additional 7 datasets, as well as the 10 given in Table 1. We report
the interquartile range as well as median test accuracies for each method. We observe similar results as presented in the
main text. Only one dataset (tic-tac-toe) shows no variation in test accuracy as we explore the optimal set.

Pruning: Figure 4 shows train and test accuracy for our optimal/least-squares pruning method as well as magnitude/gradient-
based pruning and random pruning on the same five datasets from the UCI repository as presented in Figure 2. Our approach
shows significantly less decay in train accuracy as neurons are pruned; this matches the intuition of the least-squares heuristic
for pruning, which selects the coefficients β to best preserve the model fit.
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Figure 5. Pruning neurons on five additional datasets from the UCI repository. See Figure 2 for details. Our method (Optimal/LS)
preservers test accuracy for longer than the baseline methods, leading to compact models with better generalization.

We observe that both our pruning method and pruning by neuron/gradient norm show very similar training accuracy until
most of the neurons have been pruned. While this behavior is expected from our theory-based approach, it is somewhat
surprising that pruning by neuron/gradient-norm also maintains train accuracy nearly as well. This behavior suggests that
there are many neurons with very small norm which can be eliminated without significantly affecting the model prediction.

Figure 5 presents results for neuron pruning on five additional datasets from the UCI repository, while Figure 7 shows results
for three binary classification tasks taken from the MNIST dataset. The trends are generally the same as in Figure 4, with
our approach (Theory/LS) outperforming the baselines. Finally Figure 6 extends the results on CIFAR-10 given in Figure 3
with one additional task and with training accuracies.

D.2. Experimental Details
Now we give the details necessary to reproduce our experiments. Our experiments use the pre-processed versions of UCI
datasets provided by Delgado et al. (2014), but do we do not use their evaluation procedure as it is known to have data
leakage.
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Figure 6. Pruning experiments on binary classification tasks from the CIFAR-10 dataset. This figure reproduces results from Figure 3 with
training accuracies added and also includes results for an additional task, cats vs dogs, not presented in the main paper.
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Figure 7. Pruning experiments on three binary classification tasks taken from MNIST.
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Table 2. Tuning neural networks by searching over the optimal set. We fit two-layer ReLU networks on the training set and compute
the minimum ℓ2 norm solution (Min L2). Then we tune by finding an extreme point approximating the maximum ℓ2-norm solution
(EP), minimizing validation MSE over the optimal set (V-MSE), and minimizing test MSE over the optimal set (T-MSE). Max Diff.
reports the difference between the best and worse models found. For each method we give the median and interquartile range as median
(lower/upper).

Dataset Min L2 EP V-MSE T-MSE Max Diff.

blood 0.72 (0.72/0.74) 0.72 (0.72/0.74) 0.62 (0.61/0.62) 0.7 (0.68/0.71) 0.1 (0.11/0.12)
breast-cancer 0.64 (0.61/0.65) 0.64 (0.61/0.65) 0.61 (0.6/0.64) 0.71 (0.66/0.71) 0.1 (0.06/0.08)
fertility 0.66 (0.62/0.7) 0.69 (0.62/0.69) 0.65 (0.64/0.7) 0.64 (0.57/0.64) 0.05 (0.06/0.06)
heart-hungarian 0.75 (0.7/0.77) 0.75 (0.7/0.77) 0.71 (0.56/0.72) 0.85 (0.82/0.86) 0.14 (0.26/0.14)
hepatitis 0.75 (0.74/0.78) 0.75 (0.74/0.78) 0.73 (0.69/0.75) 0.77 (0.77/0.9) 0.05 (0.08/0.15)
hill-valley 0.64 (0.64/0.65) 0.65 (0.64/0.65) 0.64 (0.64/0.67) 0.64 (0.64/0.65) 0.0 (0.0/0.01)
mammographic 0.77 (0.77/0.77) 0.77 (0.77/0.77) 0.57 (0.56/0.62) 0.78 (0.78/0.8) 0.21 (0.22/0.18)
monks-1 0.67 (0.64/0.71) 0.66 (0.64/0.71) 0.49 (0.48/0.51) 0.57 (0.51/0.61) 0.17 (0.15/0.2)
planning 0.53 (0.51/0.61) 0.52 (0.51/0.61) 0.53 (0.52/0.53) 0.7 (0.68/0.74) 0.17 (0.17/0.21)
spectf 0.64 (0.62/0.7) 0.64 (0.62/0.7) 0.56 (0.53/0.56) 0.58 (0.56/0.66) 0.08 (0.09/0.14)
horse-colic 0.75 (0.75/0.76) 0.59 (0.57/0.61) 0.74 (0.73/0.75) 0.85 (0.85/0.85) 0.26 (0.27/0.24)
ilpd-indian-liver 0.59 (0.57/0.6) 0.59 (0.57/0.6) 0.53 (0.53/0.57) 0.72 (0.7/0.73) 0.19 (0.17/0.17)
parkinsons 0.74 (0.72/0.74) 0.74 (0.72/0.74) 0.65 (0.65/0.74) 0.88 (0.86/0.9) 0.23 (0.21/0.16)
pima 0.68 (0.66/0.68) 0.68 (0.66/0.68) 0.68 (0.64/0.7) 0.87 (0.86/0.88) 0.2 (0.22/0.19)
tic-tac-toe 0.98 (0.98/0.98) 0.76 (0.69/0.8) 0.98 (0.98/0.99) 1.0 (1.0/1.0) 0.24 (0.31/0.2)
statlog-heart 0.71 (0.7/0.73) 0.71 (0.7/0.73) 0.7 (0.67/0.73) 0.84 (0.83/0.86) 0.14 (0.17/0.13)
ionosphere 0.85 (0.83/0.86) 0.76 (0.73/0.76) 0.84 (0.84/0.84) 0.88 (0.88/0.89) 0.12 (0.15/0.12)

D.2.1. TUNING

We select 17 binary classification datasets from the UCI repository. For each dataset we use a random 60/20/20 split of the
data into train, validation, and test sets. We use the commercial interior point method MOSEK (ApS, 2022) through the
interface provided by CVXPY (Diamond & Boyd, 2016) to compute the initial model which is then tuned. We modify the
tolerances of this method to use τ = 10−8 for measuring both primal convergence and violation of the constraints. For each
dataset, we use fixed λ = 0.001 and a maximum of 100 neurons. To compute the min ℓ2-norm optimal model, we use the
MOSEK and the optimization problem given in Proposition 3.17.

To approximate the maximum ℓ2-norm model, we solve the following program:

α∗ = argmax
α≥0

∑
bi∈Sλ

αbi s.t.
∑

bi∈Sλ

αbiXbivbi = ŷ.

This is a linear program which is straightforward to solve using interior point methods. Moreover, we have

∥w∗∥22 = λ2
∑
bi

(α∗
bi)

2,

so that
∑

bi
αbi acts as an approximation, where we recall αbi ≥ 0 necessarily.

To tune each model with respect to the validation/test MSE, we solve the following optimization problem:

min
w

{
1

2
∥X̃w − ỹ∥22 : w ∈ W∗(λ)

}
,

with respect to the parameters of the convex formulation. Here, (X̃, ỹ) is either the validation or test set. We repeat each
experiment five times with different random splits of the data and random resamplings of 500 activation patterns Di. This
guarantees that each non-convex network has at most 1000 neurons after optimization, although it may have less due to the
sparsity inducing penalty.
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D.2.2. PRUNING

Methods: We use the augmented Lagrangian method of Mishkin et al. (2022) to compute the starting model which is then
pruned. We modify the tolerances of this method to use τ = 10−8 for measuring both primal convergence and violation of
the constraints.

Pruning by neuron magnitude is straightforward: we sort the neurons by ∥W1iw2i∥2, which measures the total magnitude
of the neuron, and then drop the smallest one. For pruning by gradient norm, we compute G1i = ∇W1i

L(fW1,w2
(Z), y),

g2i = ∇W2iL(fW1,w2(Z), y) and then score each neuron as

si = ∥W1i ·G1iw2ig2i∥2,

where · indicates the element-wise product. The neuron with smallest score is zeroed. This is consistent the existing
implementations of pruning by gradient norm (Blalock et al., 2020) and attempts to measure the variation of a linearization
of the loss in neuron i. For Random, we simply select a neuron from a uniform random distribution.

For Optimal/LS, we start by using Algorithm 1 to prune until no linear dependence exists amongst the neuron fits DiZW1i.
At this point, we choose β to minimize the squared-error in the training fit. We choose the neuron to prune by selecting the
index that minimizing the residual in the least-squares fit,

ik = argmin
j

min
β

1

2
∥
∑
i ̸=j

βiDiZwi −DjZwj∥.

This produced the best result in all of our experiments, although you can also select ik using neuron magnitude or any other
rule in the literature on structured pruning.

UCI Datasets: We select 10 moderately-sized binary classification datasets from the UCI repository. For each dataset we use
a random 50/50 split of the data into train and test sets, fixed λ = 0.01, and sample 25 activation patterns Di. This results
in a maximum of 50 neurons in each final model; since the datasets are low dimensional, randomly sampling activation
patterns typically results in fewer than 50 neurons. All results are repeated for five different random splits and we plot the
median and interquartile ranges of the results.

MNIST and CIFAR-10: We select three binary classification tasks from each dataset such that no task shares a target with
another task. For each dataset we use a random 50/50 split of the data into train and test sets. For MNIST, we use λ− 0.01,
while we used λ = 0.05 for CIFAR-10. We sample 50 activation patterns Di for each tasking, which produces a maximum
of 100 neurons in each final model. All results are repeated for five different random splits and we plot the median and
interquartile ranges of the results.
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