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Abstract
Diffusion-based methods, represented as stochas-
tic differential equations on a continuous-time
domain, have recently proven successful as non-
adversarial generative models. Training such
models relies on denoising score matching, which
can be seen as multi-scale denoising autoencoders.
Here, we augment the denoising score match-
ing framework to enable representation learning
without any supervised signal. GANs and VAEs
learn representations by directly transforming la-
tent codes to data samples. In contrast, the in-
troduced diffusion-based representation learning
relies on a new formulation of the denoising score
matching objective and thus encodes the infor-
mation needed for denoising. We illustrate how
this difference allows for manual control of the
level of details encoded in the representation. Us-
ing the same approach, we propose to learn an
infinite-dimensional latent code that achieves im-
provements on state-of-the-art models on semi-
supervised image classification. We also compare
the quality of learned representations of diffusion
score matching with other methods like autoen-
coder and contrastively trained systems through
their performances on downstream tasks. Finally,
we also ablate with a different SDE formulation
for diffusion models and show that the benefits
on downstream tasks are still present on changing
the underlying differential equation.

1. Introduction
Diffusion-based models have recently proven successful
for generating images (Sohl-Dickstein et al., 2015; Song &
Ermon, 2020; Song et al., 2020), graphs (Niu et al., 2020),
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shapes (Cai et al., 2020), and audio (Chen et al., 2020b;
Kong et al., 2021). Two promising approaches apply step-
wise perturbations to samples of the data distribution until
the perturbed distribution matches a known prior (Song &
Ermon, 2019; Ho et al., 2020). A model is then trained to es-
timate the reverse process, which transforms samples of the
prior to samples of the data distribution (Saremi et al., 2018).
Diffusion models were further refined (Nichol & Dhariwal,
2021; Luhman & Luhman, 2021) and even achieved bet-
ter image sample quality than GANs (Dhariwal & Nichol,
2021; Ho et al., 2021; Mehrjou et al., 2017). Further, Song
et al. showed that these frameworks are discrete versions of
continuous-time perturbations modeled by stochastic differ-
ential equations and proposed a diffusion-based generative
modeling framework on continuous time. Unlike generative
models such as GANs and various forms of autoencoders,
the original form of diffusion models does not come with a
fixed architectural module that captures the representations
of the data samples.

Learning desirable representations has been an integral com-
ponent of generative models such as GANs and VAEs (Ben-
gio et al., 2013; Radford et al., 2016; Chen et al., 2016;
van den Oord et al., 2017; Donahue & Simonyan, 2019;
Chen et al., 2020a; Schölkopf et al., 2021). Recent works
on visual representation learning achieve impressive perfor-
mance on the downstream task of classification by applying
contrastive learning (Chen et al., 2020d; Grill et al., 2020;
Chen & He, 2020; Caron et al., 2021; Chen et al., 2020c).
However, contrastive learning requires additional supervi-
sion of augmentations that preserve the content of the data,
and hence these approaches are not directly comparable to
representations learned through generative systems like Vari-
ational Autoencoders (Kingma & Welling, 2013; Rezende
et al., 2014) and the current work which are considered
fully unsupervised. Moreover, training the encoder to output
similar representation for different views of the same image
removes information about the applied augmentations, thus
the performance benefits are limited to downstream tasks
that do not depend on the augmentation, which has to be
known beforehand. Hence our proposed algorithm does
not restrict the learned representations to specific down-
stream tasks and solves a more general problem instead. We
provide a summary of contrastive learning approaches in
Appendix A. Similar to our approach, Denoising Autoen-
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Figure 1.Conditional score matching with a parametrized latent
code is representation learning. Denoising score matching esti-
mates the score at eachx t ; we add a latent representationz of the
clean datax0 as additional input to the score estimator.

coders (DAE) (Vincent et al., 2008) can be used to encode
representations that can be manually controlled by adjusting
the noise scale (Geras & Sutton, 2015; Chandra & Sharma,
2014; Zhang & Zhang, 2018). Note that, unlike DAEs, the
encoder in our approach does not receive noisy data as input,
but instead extracts features based on the clean images. For
example, this key difference allows DRL to be used to limit
the encoding to �ne-grained features when focusing on low
noise levels, which is not possible with DAEs.

Recently, there have been some works that rely on addi-
tional encoders in the model architecture of diffusion based
models (Preechakul et al., 2022; Mittal et al., 2021a; Sinha
et al., 2021). Sinha et al. (2021) considers an autoencoder
based setup with the diffusion model de�ning the prior
whereas Pandey et al. (2022) considers the opposite where
a diffusion model is used to further improve the decoded
samples from a VAE. Preechakul et al. (2022) is a concur-
rent work that is closest to our setup, however, instead of
relying on time-conditioned encoder, they rely only on an
unconditional encoder. Further, they concentrate more on
generation-based tasks while our approach focuses more on
evaluating the representations learned for downstream tasks.

The main contributions of this work are

• We present an alternative formulation of the denoising
score matching objective, showing that the objective
cannot be reduced to zero. We leverage this property
to learn representations for downstream tasks.

• We introduce Diffusion-based Representation Learning
(DRL), a novel framework for representation learning
in diffusion-based generative models. We show how
this framework allows for manual control of the level
of details encoded in the representation through an
in�nite-dimensional code. We evaluate the proposed
approach on downstream tasks using the learned repre-
sentations directly as well as using it as a pre-training
step for semi-supervised image classi�cation, thereby
improving state-of-the-art approaches for the latter.

• We evaluate the effect of the initial noise scale and
achieve signi�cant improvements in sampling speed,

which is a bottleneck in diffusion-based generative
models compared with GANs and VAEs, without sac-
ri�cing image quality.

1.1. Diffusion-based generative modeling

We �rst give a brief overview of the technical background
for the framework of the diffusion-based generative model
as described in (Song et al., 2021b). The forward diffusion
process of the data is modeled as an SDE on a continuous-
time domaint 2 [0; T]. Let x0 2 Rd denote a sample
from the data distributionx0 � p0, whered is the data
dimension. The trajectory(x t )t 2 [0;T ] of data samples is a
function of time determined by the diffusion process. The
SDE is chosen such that the distributionp0T (xT jx0) for
any samplex0 � p0 can be approximated by a known prior
distribution. Notice that the subscript0T of p0T refers to the
conditional distribution of the diffused data at timeT given
the data at time0. For simplicity we limit the remainder of
this paper to the so-called Variance Exploding SDE (Song
et al., 2021b), that is,

dx = f (x; t ) dt + g(t) dw :=

r
d[� 2(t)]

dt
dw; (1)

wherew is the standard Wiener process. The perturbation
kernel of this diffusion process has a closed-form solution
beingp0t (x t jx0) = N (x t ; x0; [� 2(t) � � 2(0)]I ). It was
shown by Anderson (1982) that the reverse diffusion process
is the solution to the following SDE:

dx = [ f (x; t ) � g2(t)r x logpt (x)] dt + g(t) dw; (2)

wherew is the standard Wiener process when the time
moves backwards. Thus, given the score function
r x logpt (x) for all t 2 [0; T], we can generate samples
from the data distributionp0(x). In order to learn the score
function, the simplest objective is Explicit Score Matching
(ESM) (Hyvärinen & Dayan, 2005), that is,

Ex t

�
ks� (x t ; t) � r x t logpt (x t )k2

2

�
: (3)

Since the ground-truth score functionr x t logpt (x t ) is gen-
erally not known, one can apply denoising score matching
(DSM) (Vincent, 2011), which is de�ned as the following:

J DSM
t (� ) = Ex 0 f Ex t j x 0 [ks� (x t ; t)

� r x t logp0t (x t jx0)k2
2 ]g:

(4)

The training objective over allt is augmented by Song et al.
(2021b) with a time-dependent positive weighting function
� (t), that is,J DSM (� ) = E t

�
� (t)J DSM

t (� )
�
. One can

also achieve class-conditional generation in diffusion-based
models by training an additional time-dependent classi�er
pt (yjx t ) (Song et al., 2021b)). In particular, the condi-
tional score for a �xedy can be expressed as the sum of
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Figure 2.Results of proposed DRL models trained on MNIST and CIFAR-10 with point clouds visualizing the latent representation of
test samples, colored according to the digit class. The models are trained withLeft: uniform sampling oft andRight: a focus on high
noise levels. Samples are generated from a grid of latent values ranging from -1 to 1.

the unconditional score and the score of the classi�er, that
is, r x t logpt (x t jy) = r x t logpt (x t ) + r x t logpt (yjx t ).
We take motivation from an alternative way to allow for
controllable generation, which, given supervised samples
(x; y(x)) , uses the following training objective for each time
t

J CSM
t (� ) = Ex 0 f Ex t j x 0 [ks� (x t ; t; y (x0))

� r x t logp0t (x t jx0)k2
2 ]g:

(5)

The objective in Equation 5 is minimized if and only
if the model equals the conditional score function
r x t logpt (x t jy(x0) = ŷ) for all labelsŷ.

2. Diffusion-based Representation Learning

We begin this section by presenting an alternative formu-
lation of the Denoising Score Matching (DSM) objective,
which shows that this objective cannot be made arbitrarily
small. Formally, the formula of the DSM objective can be
rearranged as

J DSM
t (� ) = Ex 0 f Ex t j x 0

�
ks� (x t ; t) � r x t logpt (x t )k2

2

+ kr x t logp0t (x t jx0) � r x t logpt (x t )k2
2

�
g:
(6)

The above formulation holds, because the DSM objec-
tive in Equation 4 is minimized when8x t : s� (x t ; t) =
r x t logpt (x t ), and differs from ESM in Equation 3 only
by a constant (Vincent, 2011). Hence, the constant is equal
to the minimum achievable value of the DSM objective. A
detailed proof is included in the Appendix B.

It is noteworthy that the second term in the right-hand side
of the Equation 6 does not depend on the learned score func-
tion of x t for everyt 2 [0; T]. Rather, it is in�uenced by the
diffusion process that generatesx t from x0. This observa-
tion has not been emphasized previously, probably because
it has no direct effect on the learning of the score func-
tion, which is handled by the second term in the Equation
6. However, the additional constant has major implications
for �nding other hyperparameters such as the function� (t)
and the choice of� (t) in the forward SDE. As (Kingma
et al., 2021) shows, changing the integration variable from
time to signal-to-noise ratio (SNR) simpli�es the diffusion
loss such that it only depends on the end values of SNR.

Hence, the loss is invariant to the intermediate values of
the noise schedule. However, the weight functions� (�) is
still an important hyper-parameter whose choice might be
affected by the non-vanishing constant in Equation 6.

To the best of our knowledge, there is no known theoretical
justi�cation for the values of� (t). While these hyperpa-
rameters could be optimized in ESM using gradient-based
learning, this ability is severely limited by the non-vanishing
constant in Equation 6.

Even though the non-vanishing constant in the denoising
score matching objective presents a burden in multiple ways
such as hyperparameter search and model evaluation, it
provides an opportunity for latent representation learning,
which will be described in the following sections. We note
that this is different from Sinha et al. (2021); Mittal et al.
(2021b) as they consider a Variational Autoencoder model
followed by diffusion in the latent space, where their repre-
sentation learning objective is still guided by reconstruction.
Contrary to this, our representation learning approach does
not utilize a variational autoencoder model and is guided by
denoising instead. Our approach is similar to Preechakul
et al. (2022) but we also condition the encoder system on the
time-step, thereby improving representation capacity and
leading to parameterized curve-based representations.

2.1. Learning latent representations

Since supervised data is limited and rarely available, we
propose to learn a labeling functiony(x0) at the same time
as optimizing the conditional score matching objective in
Equation 5. In particular, we represent the labeling func-
tion as a trainable encoderE � : Rd ! Rc, whereE � (x0)
maps the data samplex0 to its corresponding code in the
c-dimensional latent space. The code is then used as ad-
ditional input to the score model. Formally, the proposed
learning objective for Diffusion-based Representation Learn-
ing (DRL) is the following:

J DRL (�; � ) = E t;x 0 ;x t [� (t)ks� (x t ; t; E � (x0))

� r x t logp0t (x t jx0)k2
2 + 
 kE � (x0)k1]

(7)

where we add a small amount ofL 1 regularization, con-
trolled by
 , on the output of the trainable encoder.

To get a better idea of the above objective, we provide an
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