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Abstract

We study the SAM (Sharpness-Aware Minimiza-
tion) optimizer which has recently attracted a lot
of interest due to its increased performance over
more classical variants of stochastic gradient de-
scent. Our main contribution is the derivation of
continuous-time models (in the form of SDEs)
for SAM and two of its variants, both for the full-
batch and mini-batch settings. We demonstrate
that these SDEs are rigorous approximations of
the real discrete-time algorithms (in a weak sense,
scaling linearly with the learning rate). Using
these models, we then offer an explanation of
why SAM prefers flat minima over sharp ones –
by showing that it minimizes an implicitly regu-
larized loss with a Hessian-dependent noise struc-
ture. Finally, we prove that SAM is attracted to
saddle points under some realistic conditions. Our
theoretical results are supported by detailed ex-
periments.

1. Introduction
Optimization plays a fundamental role in the performance
of machine learning models. The core problem it addresses
is the minimization of the following optimization problem:

min
x∈Rd

[
f(x) :=

1

N

N∑
i=1

fi(x)

]
, (1)

where f, fi : Rd → R for i = 1, . . . , N . In machine
learning, f is an empirical risk (or loss) function where
fi are the contributions due to the i-th data point. In this
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puter Science, ETH Zürich, Zürich, Switzerland 3Department
of Mathematics, University of Oslo, Oslo, Norway 4Inria,
Ecole Normale Supérieure PSL Research University, Paris,
France. Correspondence to: Enea Monzio Compagnoni
<enea.monziocompagnoni@unibas.ch>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

notation, x ∈ Rd is a vector of trainable parameters and N
is the size of the dataset.

Solving Eq. (1) is typically achieved via Gradient Descent
(GD) methods that, starting from a given estimate x0, itera-
tively update an estimate xk as follows,

xk+1 = xk − η∇f(xk), (2)

where η > 0 is the learning rate. Since ∇f(x) requires
computing the average of the N gradients ∇fi(x) (which is
computationally expensive for large datasets where N ≫ 1),
it is common to instead replace ∇f(xk) with a gradient
estimated on a subset γk of size B ≥ 1 of the dataset which
is called a mini-batch. The resulting algorithm is known as
Stochastic Gradient Descent (SGD) whose update is

xk+1 = xk − η∇fγk
(xk), (3)

where {γk} are modelled here as i.i.d. random variables
uniformly distributed and taking value in {1, · · · , N}.

Recently, Foret et al. (2021) proposed a stochastic optimizer
known as Sharpness-Aware Minimization (SAM), which
yields significant performance gains in various fields such
as computer vision and natural language processing (Bahri
et al., 2022; Foret et al., 2021). The general idea behind
SAM is to seek parameters in low-loss regions that have
a flatter curvature, which has been shown to improve the
generalization of the model (Hochreiter & Schmidhuber,
1997; Keskar et al., 2017; Dziugaite & Roy, 2017; Jiang
et al., 2019). For a radius ρ > 0, the iteration of SAM is

xk+1 = xk − η∇fγk

(
xk + ρ

∇fγk
(xk)

∥∇fγk
(xk)∥

)
. (4)

Numerous works have studied SAM and proposed variants
such as ESAM (Du et al., 2022), ASAM (Kwon et al., 2021),
GSAM (Zhuang et al., 2022), as well as Random SAM and
Variational SAM (Ujváry et al., 2022). Since SAM is hard to
treat theoretically, (Andriushchenko & Flammarion, 2022)
introduced USAM which is more easily analyzable as it
drops the gradient normalization in Eq. (4), thus yielding
the following update:

xk+1 = xk − η∇fγk
(xk + ρ∇fγk

(xk)) . (5)
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Before analyzing the full version of SAM, we first take
a smaller step toward it by considering a variant with a
deterministic normalization factor. We call the resulting
algorithm DNSAM (Deterministic Normalization SAM),
whose update step is

xk+1 = xk − η∇fγk

(
xk + ρ

∇fγk
(xk)

∥∇f(xk)∥

)
. (6)

We will demonstrate both theoretically and empirically that
DNSAM is a better proxy of SAM than USAM. However,
we do not claim that DNSAM is an algorithm to be used
in practice as its update requires the calculation of the full
gradient of the loss.

Following the theoretical framework of (Li et al., 2017),
our work provides the first formal derivation of the SDEs
of DNSAM, USAM, and SAM. Formally, such continuous-
time models are weak approximations (i.e. approximations
in distribution) of their respective discrete-time models. Im-
portantly, SDE models are not meant to be used as practical
implementations since they have to be discretized, giving
rise to their discrete-time counterparts. Instead, continuous-
time models have typically been used in the recent literature
to derive novel insights about the discrete algorithms, see
e.g. (Su et al., 2014; Li et al., 2017).

We make the following contributions:

1. Small ρ regime. If ρ = O(η), we show that USAM,
DNSAM, and SAM essentially behave like SGD.

2. Moderate ρ regime. For ρ = O(
√
η), we derive an

SDE model of USAM (7), of DNSAM (10), and of
SAM (11). These can be interpreted as the SDE of
SGD on an implicitly regularized loss and with an ad-
ditional implicit curvature-induced noise. Leveraging
these results, we demonstrate that the additional noise
is driven by the Hessian of the loss so that the noise
of the processes is larger in sharp minima. This is a
key factor that leads SAM and its variants to prefer
flatter minima where the additional noise decreases.
However, while larger values of ρ increase the noise
of the process, it also amplifies the implicit bias of
the optimizer toward critical points independently of
whether they are minima, saddles, or maxima.

3. Both in the full and mini-batch versions, USAM and
SAM have very different implicit regularizations.

4. USAM might be attracted by saddles if ρ is too large.
Differently, for any ρ > 0, DNSAM and SAM might
be attracted by saddles but eventually, escape them
after a long time. Thus, DNSAM is a more reliable
model to theoretically study SAM than USAM.

5. Empirical validation. We empirically validate the
proposed SDEs on several models and landscapes com-
monly studied in the optimization and machine learn-
ing communities.

In order to gain further insights from these continuous-time
models, we also study their behaviors on quadratic losses.
The latter are commonly used to model the landscape in the
proximity of a critical point (Ge et al., 2015; Levy, 2016;
Jin et al., 2017; Poggio et al., 2017; Mandt et al., 2017b),
including several recent works that studied SAM (Bartlett
et al., 2022; Wen et al., 2023). This leads us to the following
important observations:

1. ODE - Pitfalls. After noticing that the ODE of SAM
and DNSAM coincide, we derive precise conditions
under which SAM and USAM converge to the origin
even when it is a saddle or a maximum.

2. SDE - Pitfalls. We derive the stationary distribution
of the USAM SDE and find that even this model is
attracted by saddles under the same condition on ρ as
found for the ODE 1. In contrast to USAM, we find that
the dynamics of DNSAM is more complex: while a
certain region centered at the origin behaves like an at-
tractor, the origin itself repulses the dynamics away as
the volatility rapidly increases to infinity. This behav-
ior of DNSAM is consistent with what was empirically
reported in (Kaddour et al., 2022) about SAM being
able to get stuck around saddles. To the best of our
knowledge, this is the first time that these potential
pitfalls are formally demonstrated.

3. Empirical validation. We empirically validate our
claims for the quadratic loss as well as other models.

2. Related Work
Theoretical Understanding of SAM The current under-
standing of the dynamics of SAM and USAM is still limited.
Prior work includes the recent work by (Bartlett et al., 2022)
that shows that, for convex quadratics, SAM converges to a
cycle oscillating between the sides of the minimum in the
direction with the largest curvature. For the non-quadratic
case, they also show that the dynamics drifts towards wider
minima. A concurrent work by (Wen et al., 2023) makes
similar findings to (Bartlett et al., 2022) as well as provides
further insights regarding which notion of sharpness SAM
regularizes. Interestingly, the behavior of full-batch and
mini-batch SAM is intrinsically different. The former mini-
mizes the largest eigenvalue of the hessian of the loss, while
the latter tries to uniformly reduce the magnitude of the trace
of the hessian of the loss. More interestingly, (Wen et al.,
2023) show how the dynamics of 1-SAM can be divided
into two phases. The first phase follows the gradient flow
with respect to the loss until the dynamics approaches a
manifold of minimizers. In the second phase, the dynamics
is driven towards parts of the landscape with a lower trace of
the hessian of the loss. (Rangwani et al., 2022) showed that

1Of course, the SDE does not point-wise converge to the origin
but rather oscillates around it with a certain variance.
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USAM could in some cases escape saddles faster than SGD.
We however note that their analysis is not completely formal
as it relies on prior results by (Daneshmand et al., 2018)
which were specifically derived for SGD, not for USAM.
On our side, we here provide a more complete and rigorous
description that shows that USAM can be much slower than
SGD at escaping a saddle. Finally, a concurrent work (Kim
et al., 2023) informally derived an SDE for USAM around
critical points, which relies on approximating the objective
function by a quadratic function. We remark that the au-
thors did not formally derive any guarantee showing the
SDE closely approximates the true discrete-time algorithm.
In contrast, we formally and empirically demonstrate the
validity of our SDEs. In addition, our SDEs and analyses do
not require the quadratic approximation assumption made
by (Kim et al., 2023) and are instead valid for the entire tra-
jectory of an optimizer, including, of course, around critical
points.

ODE Approximations Continuous-time models in the
form of (stochastic) differential equations are a well-
established tool to study discrete-time optimizers; see
e.g. Helmke & Moore (1994) and Kushner & Yin (2003). In
machine learning, such models have lately received increas-
ing interest to study both deterministic and stochastic opti-
mizers. A notable reference is the work by Su et al. (2014)
that derives a second-order ODE to model Nesterov’s accel-
erated gradient. ODE models have also been used recently
to study SAM. This includes the work of Wen et al. (2023,
Section 4.2) discussed above, as well as Andriushchenko &
Flammarion (2022, Appendix B.1). Importantly we high-
light two significant differences with our work. First, our
analysis focuses on the stochastic setting for which we de-
rive SDEs. Second, the ODE representations used in Wen
et al. (2023) only hold formally in the limit ρ → 0, which is
not the case in practical settings where ρ > 0. In contrast,
our analysis allows for significantly larger values of ρ, more
precisely ρ = O(

√
η). Last but not least, neither of these

papers empirically validates the ODEs they derived.

SDE Approximations of Stochastic Optimizers. For
stochastic optimizers, Li et al. (2017; 2019) derived an
SDE that provably approximates SGD (in the weak sense,
i.e. in distribution). The validity of this SDE model was
experimentally tested in (Li et al., 2021). Similar results are
derived for ASGD by (An et al., 2020), and for RMSprop
and Adam by Malladi et al. (2022). In this paper, we derive
an SDE approximation for SAM, DNSAM, and USAM. The
proof technique employed in our work (as well as in An
et al. (2020); Malladi et al. (2022)) relies on the theoretical
framework established by Li et al. (2017; 2019) (which it-
self requires Assumption A.3 to hold). SDE approximations
have also been derived for different types of noise. This in-
cludes heavy-tailed noise that is shown to be a good model

for the noise of SGD in Simsekli et al. (2019), although
the evidence is still somewhat contested (Panigrahi et al.,
2019; Xie et al., 2021; Li et al., 2021). Zhou et al. (2020)
also derived a Lévy-driven stochastic differential equation
to model the non-gaussianity of the noise, which however
does not enjoy any type of known theoretical approximation
guarantee. Finally, fractional Brownian noise, a generaliza-
tion of Brownian noise that allows for correlation, was used
by (Lucchi et al., 2022).

Applications of SDE Approximations. Continuous-time
models are valuable analysis tools to study and design new
optimization methods. For instance, one concrete applica-
tion of such models is the use of stochastic optimal control
to select the learning rate (Li et al., 2017; 2019) or the
batch size (Zhao et al., 2022). In addition, scaling rules
to adjust the optimization hyperparameters w.r.t. the batch
size can be recovered from SDE models (Malladi et al.,
2022). Apart from these algorithmic contributions, SDE
approximation can be useful to better understand stochastic
optimization methods. In this regard, (Jastrzebski et al.,
2018) analyzed the factors influencing the minima found
by SGD, and (Orvieto & Lucchi, 2019) derived conver-
gence bounds for mini-batch SGD and SVRG. (Smith et al.,
2020) used an SDE model to distinguish between ”noise-
dominated” and ”curvature-dominated” regimes of SGD.
Yet another example is the study of escape times of SGD
from minima of different sharpness (Xie et al., 2021). More-
over, (Li et al., 2020) and (Kunin et al., 2021) studied the
dynamics of the SDE approximation under some symmetry
assumptions. Finally, SDEs can be studied through the lens
of various tools in the field of stochastic calculus, e.g. the
Fokker–Planck equation gives access to the stationary dis-
tribution of a stochastic process. Such tools are for instance
valuable in the field of Bayesian machine learning (Mandt
et al., 2017a). For additional references, see (Kushner &
Yin, 2003; Ljung et al., 2012; Chen et al., 2015; Mandt et al.,
2015; Chaudhari & Soatto, 2018; Zhu et al., 2019; He et al.,
2018; An et al., 2020).

3. Formal Statements & Insights: The SDEs
In this section, we present the general formulations of the
SDEs of USAM, DNSAM, and SAM. Due to the technical
nature of the analysis, we refer the reader to the Appendix
for the complete formal statements and proofs. For didactic
reasons, we provide simplified versions under mild addi-
tional assumptions in the main paper.

Definition 3.1 (Weak Approximation). Let G denote the
set of continuous functions Rd → R of at most polyno-
mial growth, i.e. g ∈ G if there exists positive integers
κ1, κ2 > 0 such that |g(x)| ≤ κ1

(
1 + |x|2κ2

)
, for all

x ∈ Rd. Then, we say that a continuous-time stochastic
process {Xt : t ∈ [0, T ]} is an order α weak approximation
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of a discrete stochastic process {xk : k = 0, . . . , N} if for
every g ∈ G, there exists a positive constant C, independent
of η, such that maxk=0,...,N |Eg (xk)− Eg (Xkη)| ≤ Cηα.

This definition comes from the field of numerical analysis
of SDEs, see (Mil’shtein, 1986). Consider the case where
g(x) = ∥x∥j , then the bound limits the difference between
the j-th moments of the discrete and the continuous process.

In Theorem A.7 (USAM), Theorem A.11 (DNSAM), and
Theorem A.16 (SAM), we prove that if ρ = O(η) (small ρ
regime), the SDE of SGD (Eq. (18)) is also an order 1 weak
approximation for USAM, DNSAM, and SAM. In contrast,
in the more realistic moderate ρ regime where ρ = O(

√
η),

Eq. (18) is no longer an order 1 weak approximation for any
the models we analyze. Under such a condition, we recover
more insightful SDEs.

3.1. USAM SDE

Theorem 3.2 (USAM SDE - Informal Statement of Theo-
rem A.4). Under sufficient regularity conditions and ρ =
O(

√
η) the solution of the following SDE is an order 1 weak

approximation of the discrete update of USAM (5):

dXt = −∇f̃USAM(Xt)dt+ (7)√
η
(
ΣSGD(Xt) + ρ

(
Σ̃(Xt) + Σ̃(Xt)⊤

))
dWt,

where Σ̃(x) is defined as

E [(∇f (x)−∇fγ (x)) · (8)(
E
[
∇2fγ(x)∇fγ(x)

]
−∇2fγ(x)∇fγ(x)

)⊤]
and f̃USAM(x) := f(x) + ρ

2E
[
∥∇fγ(x)∥22

]
.

To have a more direct comparison with the SDE of SGD (Eq.
(18)), we prove Corollary 3.3, a consequence of Theorem
3.2 that provides a more interpretable SDE for USAM.

Corollary 3.3 (Informal Statement of Corollary A.6). Un-
der the assumptions of Theorem (3.2) and assuming a con-
stant gradient noise covariance, i.e. ∇fγ(x) = ∇f(x) +Z
such that Z is a noise vector that does not depend on x, the
solution of the following SDE is the order 1 weak approxi-
mation of the discrete update of USAM (5):

dXt =−∇f̃USAM(Xt)dt (9)

+
(
Id + ρ∇2f(Xt)

) (
ηΣSGD (Xt)

)1/2
dWt,

where f̃USAM(x) := f(x) + ρ
2∥∇f(x)∥22.

Corollary 3.3 shows that the dynamics of USAM is equiva-
lent to that of SGD on a regularized loss and with an addi-
tional noise component that depends on the curvature of the
landscape (captured by the term ∇2f ).

3.2. DNSAM: A step towards SAM

Theorem 3.4 (DNSAM SDE - Informal Statement of The-
orem A.9). Under sufficient regularity conditions, assum-
ing a constant gradient noise covariance, i.e. ∇fγ(x) =
∇f(x) + Z such that Z is a noise vector that does not
depend on x, and ρ = O(

√
η) the solution of the follow-

ing SDE is the order 1 weak approximation of the discrete
update of DNSAM (6):

dXt =−∇f̃DNSAM(Xt)dt (10)

+

(
Id + ρ

∇2f(Xt)

∥∇f(Xt)∥2

)(
ηΣSGD(Xt)

) 1
2 dWt

and f̃DNSAM(x) = f(x) + ρ∥∇f(x)∥2.

Theorem 3.4 shows that similarly to USAM, the dynamics
of DNSAM is equivalent to that of SGD on a regularized
loss with an additional noise component that depends on
the curvature of the landscape. However, we notice that, un-
like USAM, the volatility component explodes near critical
points.

3.3. SAM SDE

Theorem 3.5 (SAM SDE - Informal Statement of The-
orem A.12). Under sufficient regularity conditions and
ρ = O(

√
η) the solution of the following SDE is the or-

der 1 weak approximation of the discrete update of SAM
(4):

dXt =−∇f̃ SAM(Xt)dt (11)

+

√
η
(
ΣSGD(Xt) + ρ

(
Σ̂(Xt) + Σ̂(Xt)⊤

))
dWt

where Σ̂(x) is defined as

E [(∇f (x)−∇fγ (x)) · (12)(
E
[
∇2fγ(x)∇fγ(x)

∥∇fγ(x)∥2

]
− ∇2fγ(x)∇fγ(x)

∥∇fγ(x)∥2

)⊤]

and f̃ SAM(x) := f(x) + ρE [∥∇fγ(x)∥2] .

To have a more direct comparison with the SDE of SGD (Eq.
(18)), we derive a corollary of Theorem 3.5 that provides a
more insightful SDE for SAM.
Corollary 3.6 (Informal Statement of Corollary A.15). Un-
der the assumptions of Theorem 3.5 and assuming a constant
gradient noise covariance, i.e. ∇fγ(x) = ∇f(x) + Z such
that Z is a noise vector that does not depend on x, the solu-
tion of the following SDE is an order 1 weak approximation
of the discrete update of SAM (4)

dXt = −∇f̃ SAM(Xt)dt+ (13)√
η
(
ΣSGD(Xt) + ρHt

(
Σ̄(Xt) + Σ̄(Xt)⊤

))
dWt
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where Ht := ∇2f(Xt) and Σ̄(x) is defined as

E [(∇f (x)−∇fγ (x)) · (14)(
E
[

∇fγ(x)

∥∇fγ(x)∥2

]
− ∇fγ(x)

∥∇fγ(x)∥2

)⊤
]
,

and f̃ SAM(x) := f(x) + ρE [∥∇fγ(x)∥2] .

We note that the regularization term of SAM is the expected
norm of some gradient. While one can of course use sam-
pling in order to simulate the SDE in Eq. (13), it results in an
additional computational cost, which is worth highlighting.

3.4. Comparison: USAM vs (DN)SAM

The analyses of the SDEs we derived (Eq. (9), Eq. (13),
and Eq. (10)) reveal that all three algorithms are implicitly
minimizing a regularized loss with an additional injection
of noise (in addition to the SGD noise). While the reg-
ularized loss is ρ

2∥∇f(x)∥22 for USAM, it is ρ∥∇f(x)∥2
(not squared) for DNSAM, and ρE [∥∇fγ(x)∥2] for SAM.
Therefore, when the process is closer to a stationary point,
the regularization is stronger for (DN)SAM while it is the
opposite when it is far away.

Regarding the additional noise, we observe that it is
curvature-dependent as the Hessian appears in the expres-
sion of all volatility terms. Note that the sharper the min-
imum, the larger the noise contribution from the Hessian.
This phenomenon is more extreme for DNSAM where the
volatility is scaled by the inverse of the norm of the gradi-
ent which drives the volatility to explode as it approaches
a critical point. Based on the SAM SDE, it is clear that
the diffusion term is more regular than that of DNSAM (in
the sense that the denominator does not vanish). There-
fore, SAM is intrinsically less volatile than DNSAM near
a critical point. In contrast, we note that the SAM dynam-
ics exhibits more randomness than USAM which in turn is
more noisy than SGD. These theoretical insights are vali-
dated experimentally in Section 5. Therefore, it is intuitive
that SAM and its variants are more likely to stop or oscillate
in a flat basin and more likely to escape from sharp minima
than SGD.

We conclude with a discussion of the role of ρ. On one hand,
larger values of ρ increase the variance of the process. On
the other hand, they also increase the marginal importance of
the factor ρ

2∥∇f(x)∥22 (USAM) and ρ∥∇f(x)∥2 (DNSAM),
and ρE [∥∇fγ(x)∥2] (SAM), which for sufficiently large ρ
might overshadow the marginal relevance of minimizing f
and thus implicitly bias the optimizer toward any point with
zero gradients, including saddles and maxima. We study
this pitfall in detail for the quadratic case in the next section
and verify it experimentally in Section 5 for other models
as well. See Table 2 and Table 3 for a detailed summary.

4. Behavior Near Saddles - Theory
In this section, we leverage the ODEs (modeling the full-
batch algorithms) and SDEs (modeling the mini-batch al-
gorithms) to study the behavior of SAM and its variants
near critical points. We especially focus on saddle points
that have been a subject of significant interest in machine
learning (Jin et al., 2017; 2021; Daneshmand et al., 2018).
We consider a quadratic loss (which as mentioned earlier
is a common model to study saddle points) of the form
f(x) = 1

2x
⊤Hx. W.l.o.g. we assume that the Hessian

matrix H is diagonal 2 and denote the eigenvalues of H
by (λ1, . . . , λd) where λ1 ≥ λ1 ≥ · · · ≥ λd. If there are
negative eigenvalues, we denote by λ∗ the largest negative
eigenvalue.

4.1. USAM ODE

We study the deterministic dynamics of USAM on a
quadratic which is defined as

dXt = −H (Id + ρH)Xtdt ⇒ Xj
t = Xj

0e
−λj(1+ρλj)t.

(15)
Therefore, it is obvious (see Lemma C.1) that, if all the
eigenvalues of H are positive, for all ρ > 0, we have that
Xj

t
t→∞→ 0, ∀j ∈ {1, . . . , d}. In particular, we notice

that, since e−λj(1+ρλj)t < e−λjt, such convergence to 0
is faster for the flow of USAM than for the gradient flow.
More interestingly, if ρ is too large, the following result
states that the deterministic dynamics of USAM might be
attracted by a saddle or even a maximum.

Lemma 4.1 (Informal Statement of Lemma C.2). Let H
have at least one strictly negative eigenvalue. Then, for all
ρ > − 1

λ∗
, Xj

t
t→∞→ 0, ∀j ∈ {1, . . . , d}.

Therefore, if ρ is not chosen appropriately, USAM might
converge to 0 ∈ Rd, even if it is a saddle point or a max-
imum, which is very undesirable. Of course, we observe
that if ρ < 1

λ∗
, USAM will diverge from the saddle (or

maximum), which is desirable. Interestingly, we also notice
that since e−λj(1+ρλj)t < e−λjt, USAM will escape the
saddle but more slowly than the gradient flow.

4.2. USAM SDE

Based on Corollary A.6, if we assume that ΣSGD = ς2Id,
the SDE of USAM on a quadratic is given by

dXt = −H (Id + ρH)Xtdt+ [(Id + ρH)
√
ης] dWt.

(16)

Theorem 4.2 (Stationary distribution - Theorem C.3 and
Theorem C.4). If all the eigenvalues of H are positive, i.e. 0
is a minimum, we have that for any ρ > 0, ∀i ∈ {1, · · · , d},

2Recall that symmetric matrices can be diagonalized.
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the stationary distribution of Eq. (16) is

P (x) =

√
λi

πης2
1

1 + ρλi
exp

[
− λi

ης2
1

1 + ρλi
x2

]
. (17)

If there exists a negative eigenvalue, this formula does not,
in general, parametrize a probability distribution. However,
if ρ > − 1

λ∗
, Eq. (17) is still the stationary distribution of

Eq.(16), ∀i ∈ {1, · · · , d}.

Theorem 4.2 states that in case the origin is a saddle (or a
maximum) and ρ is small enough, the stationary distribution
of USAM is divergent at infinity, meaning that the process
will escape the bad critical point, which is desirable. In such
a case, the escape from the saddle is however slower than
SGD as the variance in the direction of negative eigenvalues,
e.g. the escape directions, is smaller. However, if ρ is too
large, then the dynamics of the USAM SDE will oscillate
around the origin even if this is a saddle or a maximum,
which is undesirable. This is consistent with the results
derived for the SDE of USAM in Section 4.1. There, we
found that under the very same condition on ρ, the USAM
ODE converges to 0 even when it is a saddle or a maximum.

4.3. SAM ODE

We now provide insights on the dynamics of the SAM ODE
on a quadratic with Hessian H .

Lemma 4.3 (Lemma C.6). For all ρ > 0, if H is PSD (Pos-
itive Semi-Definite), the origin is (locally) asymptotically
stable. Additionally, if H is not PSD and ∥HXt∥ ≤ −ρλ∗,
then the origin is still (locally) asymptotically stable.

Lemma 4.3 demonstrates that USAM and SAM have com-
pletely different behaviors. For USAM, Lemma 4.1 shows
that selecting ρ small enough would prevent the convergence
towards a saddle or a maximum. In contrast, Lemma 4.3
shows that for any value of ρ, if the dynamics of SAM is
close enough to any critical point, i.e. enters an attractor, it is
attracted by it. We also observe that if ρ → 0, this attractor
reduces to a single point, i.e. the critical point itself.

To the best of our knowledge, this is the first time that these
phenomena are formally demonstrated. Importantly, these
theoretical insights are consistent with the experimental
results of (Kaddour et al., 2022) that show how SAM might
get stuck around saddles.

Finally, by comparing the ODE of USAM (Eq. (15)) with
that of SAM (Eq. (149)), we observe that the dynamics
of SAM is equivalent to that of USAM where the radius ρ
has been scaled by 1

∥HXt∥ . In a way, while USAM has a
fixed radius ρ, SAM has an time-dependent radius ρ

∥HXt∥
which is smaller than ρ if the dynamics is far from the origin
(∥HXt∥ > 1) and larger when it is close to it (∥HXt∥ < 1).

Therefore, SAM converges to the origin slower than USAM
when it is far from it and it becomes faster as it gets closer.

4.4. (DN)SAM SDE

We now provide insights on the dynamics of the DNSAM
SDE on a quadratic with Hessian H .
Observation 4.4 (Details in C.7). We observe that for all
ρ > 0, there exists an ϵ > 0 such that if ∥HXt∥ ∈
(ϵ,−ρλ∗), the dynamics of Xt is attracted towards the origin.
If the eigenvalues are all positive, the condition becomes
∥HXt∥ ∈ (ϵ,∞). On the contrary, if ∥HXt∥ < ϵ, then the
dynamics is pushed away from the origin.

This insight suggests that if DNSAM is initialized close
enough to a quadratic saddle, it is attracted toward it, but
is also repulsed by it if it gets too close. This is due to
the explosion of the volatility next to the origin. We ex-
pect that this observation extends to SAM as well, and it
remains to be shown theoretically in future work. In the
next section, we experimentally verify that the dynamics
gets cyclically pulled to 0 and pushed away from it, not only
for the quadratic saddle but also for that of other models.

5. Experiments
The main goal of this experimental section is two-fold: 1)
to verify the validity of the theorems derived in Section 3,
and 2) to validate the claims made about the behavior of
SAM and its variants near saddle points. The latter requires
us to use models, for which saddle points are known to be
present (Safran & Shamir, 2018), including for instance
linear autoencoders (Kunin et al., 2019).

5.1. Empirical Validation of the SDEs

We first experimentally validate the results of Corollary
3.3, Corollary 3.6, and Theorem 3.4. To do so, we use
two different test functions (g(x) in Def. (3.1)), which are
g1(x) := ∥x∥ + ∥∇f(x)∥ and g2(x) := f(x). We test on
four models. The first model is a convex quadratic land-
scape. The second task is a classification one on the Iris
Database (Dua & Graff, 2017) using a linear MLP with 1
hidden layer. The third is a classification task on the Breast
Cancer Database (Dua & Graff, 2017) using a nonlinear
MLP with 1 hidden layer. The fourth is a Teacher-Student
model where the Teacher is a linear MLP with 20 hidden
layers and the Student is a nonlinear MLP with 20 hidden
layers. Figure 2 uses the first metric g1(x) to measure the
maximum absolute error (across the whole trajectory) of
the SDEs of SGD, USAM, DNSAM, and SAM in approx-
imating the respective discrete algorithms. Additionally,
we plot the same error if we were to use the SDE of SGD
to model/approximate the discrete iterates of SAM and its
variants. We observe that when ρ = η, the absolute error is
small in all cases, meaning that all the discrete iterates and
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Figure 1. Comparison in terms of g1(x) with respect to ρ.

SDEs behave essentially in the same way. This supports our
claim that if ρ = O(η), the SDE of SGD is a good model
for USAM, DNSAM, and SAM (Theorem A.7, Theorem
A.11, and Theorem A.16). When ρ =

√
η, we see that the

derived SDEs correctly approximate the respective discrete
algorithms, while the SDE of SGD has a significantly larger
relative error, which validates the results of Corollary 3.3,
Theorem 3.4, and Corollary 3.6. Although we do not have
any theoretical guarantee for larger ρ, we observe empir-
ically that the modeling error is still rather low. Finally,
Figure 3 shows the evolution of the metric g2(x) := f(x)
for the different algorithms. We notice that all the SDEs are
matching the respective algorithms. In Appendix D.1.1, we
provide evidence that failing to include the correct diffusion
terms in the USAM SDE Eq. (7) and the DNSAM SDE Eq.
(10) leads to less accurate models.

Finally, Figure 1 shows that, in the Quadratic case, DNSAM
results in a much closer approximation to SAM than other
SDEs. Based on this observation and the analyses of Sec-
tion 4, we conclude that DNSAM is a better proxy to theo-
retically study SAM than USAM. It however remains not
advised to employ DNSAM as a practical algorithm since
its update rule requires the calculation of the full gradient,
see Eq. (6).

Interplay between noise, curvature, ρ, and suboptimality
Next, we check how the parameter ρ and the curvature
(measured by the trace operator of the Hessian) influence
the noise of the stochastic process and its suboptimality.
These insights substantiate the intuition that SAM and its
variants are more likely to escape sharp minima faster than
SGD.

First of all, we fix the value of ρ as well as a diagonal
Hessian H with random positive eigenvalues. Then, we
study the loss for SGD, USAM, DNSAM, and SAM as
they optimize a convex quadratic loss of increasingly larger
curvature (i.e. larger Hessian magnitude). We observe that
DNSAM exhibits a loss that is orders of magnitude larger
than that of SGD, with more variance, and even more so as
the curvature increases. Note that SAM behaves similarly
to DNSAM, but with less variance. Finally, USAM exhibits
a similar pattern but less pronounced. All the observations
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Figure 2. Comparison in terms of g1(x) with respect to ρ -
Quadratic (top left); Teacher-Student (top right); Deep linear class
(lower left); Deep Nonlinear class (lower right).

are consistent with the insights gained from the covariance
matrices in the respective SDEs. For details, we refer the
reader to Figure 8, Figure 9, and Figure 10 in Appendix.

In a similar experiment, we fix the Hessian as above and
study the loss as we increase ρ. Once again, we observe that
DNSAM exhibits a larger loss with more variance, and this
is more and more clear as ρ increases. Observations similar
to the above ones can be done for SAM and USAM. For
details, we refer the reader to Figure 11, 12 and Figure 13
in Appendix.

Finally, we note that SAM and its variant exhibit an addi-
tional implicit curvature-induced noise compared to SGD.
This leads to increased suboptimality as well as a higher
likelihood to escape sharp minima. We provide an additional
justification for this phenomenon in Observation C.5.

5.2. Behavior Near Saddles

In this section, we study the behavior of SAM and USAM
(full batch versions), and of PSAM, DNSAM, and PUSAM
(perturbed gradient versions) near saddle points. See Table
1 for more details.

Quadratic Landscape We first empirically verify the in-
sight gained in Section 4.4 — the dynamics of DNSAM is
attracted to the origin, but if it gets too close, it gets repulsed
away. For a quadratic saddle, in Figure 4 we show the dis-
tribution of 105 trajectories after 5 · 104 iterations. These
are distributed symmetrically around the origin but the con-
centration is lower close to it. While this is intuitive for the
convex case (see Figure 14 in Appendix), it is surprising for
the saddle case: our insights are fully verified. The second
and third images of Figure 4 show that all the trajectories
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Figure 3. Comparison in terms of g2(x) with respect to time -
Quadratic (top left); Teacher-Student (top right); Deep linear class
(lower left); Deep Nonlinear class (lower right).

are initialized outside of a certain ball around the origin
and then they get pulled inside it. Then, we see that the
number of points outside this ball increased again and the
right-most image shows the number of points jumping in
and out of it. This shows that there is a cyclical dynamics
towards and away from the origin. Of course, all the points
eventually escape the saddle, but much more slowly than
what would happen under the dynamics of SGD where the
trajectories would not even get close to the origin in the
first place. In Figure 15 in Appendix, we show the behavior
of several optimizers when initialized in an escaping direc-
tion from the saddle and we observe that full-batch SAM is
attracted by the saddle while the others are able to escape
it. Interestingly, PSAM is anyway slower than SGD in es-
caping. Figure 15 in Appendix shows that full-batch SAM
and PSAM cannot escape the saddle if it is too close to it,
while DNSAM can if it is close enough to enjoy a spike in
volatility. More details are in the Appendix D.2.

Linear Autoencoder Inspired by the insights gained so
far, we study the behavior of SAM when it is initialized
close to the saddle present at the origin of the linear autoen-
coder introduced by (Kunin et al., 2019). The top-left of
Figure 5 shows the evolution of the loss as we optimize it
with SAM starting from different starting points closer and
closer to the saddle in the origin. The scalar σ parametrizes
how close the initialization is to the origin. We observe that
when SAM starts sufficiently far from it (σ ≥ 0.005), it
optimizes immediately, while the closer it is initialized to it,
the more it stays around it, up to not being able to move at
all (σ ≤ 0.001). Regarding DNSAM, in the top-right figure,
we observe the same behavior, apart from one case: if it is
initialized sufficiently close to the origin, instead of getting
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Figure 4. Quadratic Saddle - Top Left: Distribution points around
the origin are scarcer near to the origin; Top Right: Number of
trajectories outside a small ball around the origin increases over
time; Lower Left: All the trajectories eventually enter the ball and
then start exiting it; Lower Right: There is a constant oscillation
of points in and out of the ball.

stuck there, it jumps away following a spike in volatility.
Differently, PSAM behaves more like SAM and is slower in
escaping if σ is lower. The bottom-right of Figure 5 shows
the comparison with other optimizers: SAM does not opti-
mize the loss while the other optimizers do. These findings
are consistent with those observed in Figure 15 in Appendix
for the quadratic landscape. In Figure 16 in Appendix, we
show a similar result for a saddle landscape studied in (Luc-
chi et al., 2022). More details are in Appendix D.3 and
Appendix D.4, respectively. In both these experiments, we
observe the suboptimality patterns forecasted by our theory.

6. Discussion
6.1. Future Work

Inspired by (Malladi et al., 2022), it would be interesting
to study possible scaling rules for SAM and its variants,
thus shedding light on the interplay of the learning rate
η, the batch size B, and ρ. Another direction could be
to use our SDEs to study the role of ρ in balancing the
optimization speed and generalization properties of SAM.
The insights gained could be useful in improving SAM in
terms of optimization speed and generalization. Finally, we
expect that the application of more analytical tools to the
SDEs of SAM and DNSAM will lead to further insights into
SAM. It would for instance be of particular interest to revisit
claims made about other optimizers via their SDE models
(see “Applications of SDE approximations” in Section 2).
Hopefully, this will help to demystify the high performance
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Figure 5. Autoencoder - Top-Left: SAM does not escape the saddle
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close to the origin thanks to a volatility spike. Bottom-Left: Like
SAM, PSAM does not escape if too close to the origin. Bottom-
Right: DNSAM is the fastest to escape, while SAM is stuck.

of SAM on large-scale ML problems.

6.2. Limitations

We highlight that modeling discrete-time algorithms via
SDEs relies on Assumption A.3. Furthermore, this setup
cannot fully capture the regime of large learning rates. As
observed in (Li et al., 2021), a large η or the lack of certain
conditions on ∇f and on the noise covariance matrix might
lead to an approximation failure. However, the authors
claim that this failure could be avoided by increasing the
order of the weak approximation. Additionally, most of
our discussions are focused on the case where ρ = O(

√
η),

which is not the only interesting setup, as some authors use
ρ < η. Finally, since our work is more theoretical in nature,
we did not aim at conducting SOTA experiments but rather
focused on improving the understanding of the dynamics
of SAM. Thus, we analyzed relatively simple models and
landscapes that are relevant to the optimization and machine
learning community.

6.3. Conclusion

We proposed new continuous-time models (in the form of
SDEs) for the SAM optimizer and two variants. While
the USAM variant was introduced in prior work (An-
driushchenko & Flammarion, 2022), the DNSAM variant
we introduce is a step between USAM and SAM, allowing
us to gain further insights into the role of the normaliza-
tion. We formally proved (and experimentally verified) that
these SDEs approximate their real discrete-time counter-

parts; see Theorems 3.2–3.6 for the theory and Section 5.1
for the experiments. An interesting side aspect of our analy-
sis is that DNSAM appears to be a better surrogate model
to describe the dynamics of SAM than USAM: SAM and
DNSAM share common behaviors around saddles, they
have more similar noise structures, and experiments support
these claims. Of course, by no means does this paper in-
tend to propose DNSAM as a new practical optimizer: it is
instead meant to be used for theoretical analyses.

The SDEs we derived explicitly decompose the learning
dynamics (in the parameter space) into a deterministic drift
and a stochastic diffusion coefficient which in itself reveals
some novel insights: The drift coefficient – by the definition
of f̃ in Theorems 3.2–3.6 – exposes how the ascent parame-
ter ρ impacts the average dynamics of SAM and its variants.
The diffusion coefficient, on the other hand, increases with
the Hessian of the loss – thereby implying that SAM and
its variants are noisier in sharp minima. This could be in-
terpreted as an implicit bias towards flat minima (as sharp
minima will be more unstable due to the noise).

The continuous-time SDE models allow the application of
tools from stochastic calculus (e.g. integration and differ-
entiation) to study the behavior of SAM. As a start in this
direction, we proved that the flow of USAM gets stuck
around saddles if ρ is too large. In contrast, SAM oscillates
around saddles if initialized close to them but eventually
slowly escapes them thanks to the additional noise. Im-
portantly, our claims are substantiated by experiments on
several models and invite further investigation to prevent a
costly waste of computation budget near saddle points.
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A. Theoretical Framework - SDEs
In the subsequent proofs, we will make repeated use of Taylor expansions in powers of η. To simplify the presentation, we
introduce the shorthand that whenever we write O (ηα), we mean that there exists a function K(x) ∈ G such that the error
terms are bounded by K(x)ηα. For example, we write

b(x+ η) = b0(x) + ηb1(x) +O
(
η2
)

to mean: there exists K ∈ G such that

|b(x+ η)− b0(x)− ηb1(x)| ≤ K(x)η2.

Additionally, let us introduce some notation:

• A multi-index is α = (α1, α2, . . . , αn) such that αj ∈ {0, 1, 2, . . .}

• |α| := α1 + α2 + · · ·+ αn

• α! := α1!α2! · · ·αn!

• For x = (x1, x2, . . . , xn) ∈ Rn, we define xα := xα1
1 xα2

2 · · ·xαn
n

• For a multi-index β, ∂|β|
β f(x) := ∂|β|

∂
β1
x1

∂
β2
x2

···∂βn
xn

f(x)

• We also denote the partial derivative with respect to xi by ∂ei .

Lemma A.1 (Lemma 1 (Li et al., 2017)). Let 0 < η < 1. Consider a stochastic process Xt, t ≥ 0 satisfying the
SDE

dXt = b (Xt) dt+ η
1
2σ (Xt) dWt

with X0 = x ∈ Rd and b, σ together with their derivatives belong to G. Define the one-step difference ∆ = Xη − x,
then we have

1. E∆i = biη + 1
2

[∑d
j=1 bj∂ej bi

]
η2 +O

(
η3
)

∀i = 1, . . . , d;

2. E∆i∆j =
[
bibj + σσT

(ij)

]
η2 +O

(
η3
)

∀i, j = 1, . . . , d;

3. E
∏s

j=1 ∆(ij) = O
(
η3
)

for all s ≥ 3, ij = 1, . . . , d.

All functions above are evaluated at x.

Theorem A.2 (Theorem 2 and Lemma 5, (Mil’shtein, 1986)). Let the assumptions in Theorem A.4 hold and let us
define ∆̄ = x1−x to be the increment in the discrete-time algorithm. If in addition there exists K1,K2,K3,K4 ∈ G
so that

1.
∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d;

2.
∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d;

3.
∣∣∣E∏s

j=1 ∆ij − E
∏s

j=1 ∆̄ij

∣∣∣ ≤ K3(x)η
2, ∀s ≥ 3, ∀ij ∈ {1, . . . , d};

4. E
∏3

j=1

∣∣∆̄ij

∣∣ ≤ K4(x)η
2, ∀ij ∈ {1, . . . , d}.

Then, there exists a constant C so that for all k = 0, 1, . . . , N we have

|Eg (Xkη)− Eg (xk)| ≤ Cη.

13
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Before starting, we remind the reader that the order 1 weak approximation SDE of SGD (see Li et al. (2017; 2019)) is given
by

dXt = −∇f(Xt)dt+
√
η
(
ΣSGD(Xt)

) 1
2 dWt (18)

where ΣSGD(x) is the SGD covariance matrix defined as

E
[
(∇f (x)−∇fγ (x)) (∇f (x)−∇fγ (x))

T
]
. (19)

A.1. Formal Derivation - USAM

The next result is inspired by Theorem 1 of (Li et al., 2017) and is derived under some regularity assumption on the function
f .

Assumption A.3. Assume that the following conditions on f, fi and their gradients are satisfied:

• ∇f,∇fi satisfy a Lipschitz condition: there exists L > 0 such that

|∇f(x)−∇f(y)|+
n∑

i=1

|∇fi(x)−∇fi(y)| ≤ L|x− y|;

• f, fi and its partial derivatives up to order 7 belong to G;

• ∇f,∇fi satisfy a growth condition: there exists M > 0 such that

|∇f(x)|+
n∑

i=1

|∇fi(x)| ≤ M(1 + |x|);

We will consider the stochastic process Xt ∈ Rd defined by

dXt = −∇f̃USAM(Xt)dt+
√
η
(
ΣSGD(Xt) + ρ

(
Σ̃(Xt) + Σ̃(Xt)

⊤
)) 1

2

dWt (20)

where

ΣSGD(x) := E
[
(∇f (x)−∇fγ (x)) (∇f (x)−∇fγ (x))

T
]
.

is the usual covariance of SGD, while

Σ̃(x) := E
[
(∇f (x)−∇fγ (x))

(
E
[
∇2fγ(x)∇fγ(x)

]
−∇2fγ(x)∇fγ(x)

)⊤]
(21)

and

f̃USAM(x) := f(x) +
ρ

2
E
[
∥∇fγ(x)∥22

]
.

In the following, we will use the notation

ΣUSAM(x) :=
(
ΣSGD(Xt) + ρ

(
Σ̃(Xt) + Σ̃(Xt)

⊤
))

(22)
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Theorem A.4 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let xk ∈ Rd, 0 ≤ k ≤
N denote a sequence of USAM iterations defined by Eq. (5). Additionally, let us take

ρ = O
(
η

1
2

)
. (23)

Consider the stochastic process Xt defined in Eq. (20) and fix some test function g ∈ G and suppose that g and its
partial derivatives up to order 6 belong to G.
Then, under Assumption A.3, there exists a constant C > 0 independent of η such that for all k = 0, 1, . . . , N , we
have

|Eg (Xkη)− Eg (xk)| ≤ Cη1.

That is, the SDE (20) is an order 1 weak approximation of the SAM iterations (5).

Lemma A.5. Under the assumptions of Theorem A.4, let 0 < η < 1 and consider xk, k ≥ 0 satisfying the USAM
iterations (5)

xk+1 = xk − η∇fγk
(xk + ρ∇fγk

(xk))

with x0 = x ∈ Rd. Additionally, we define ∂ei f̃
USAM(x) := ∂eif(x) + ρE

[∑
j ∂

2
ei+ejfγ(x)∂ejfγ(x)

]
. From the

definition the one-step difference ∆̄ = x1 − x, then we have

1. E∆̄i = −∂ei f̃
USAM(x)η +O(ηρ2) ∀i = 1, . . . , d.

2. E∆̄i∆̄j = ∂ei f̃
USAM(x)∂ej f̃

USAM(x)η2 +ΣUSAM
(ij) η2 +O

(
η3
)

∀i, j = 1, . . . , d.

3. E
∏s

j=1 ∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}.

and all the functions above are evaluated at x.

Together with many other proofs in this Section, the following one relies on a Taylor expansion. The truncated terms are
multiplied by a mixture of terms in η and ρ. Therefore, a careful balancing of the relative size of these two quantities is
needed as reflected in Equation (23).

Proof of Lemma A.5. Since the first step is to evaluate E∆i = E [−∂eifγ(x+ ρ∇fγ(x))η], we start by analyzing ∂eifγ(x+
ρ∇fγ(x)), that is the partial derivative in the direction ei := (0, · · · , 0, 1

i−th
, 0, · · · , 0). Then, we have that

∂eifγ(x+ ρ∇fγ(x)) = ∂eifγ(x) +
∑
|α|=1

∂2
ei+αfγ(x)ρ∂αfγ(x) +R∂ei

fγ(x)
x,1 (ρ∇fγ(x)), (24)

where the residual is defined in Eq. (4) of (Folland, 2005). Therefore, for some constant c ∈ (0, 1), it holds that

R∂ei
fγ(x)

x,1 (ρ∇fγ(x)) =
∑
|α|=2

∂3
ei+αfγ(x+ cρ∇fγ(x))ρ

2 (∇fγ(x))
α

α!
. (25)

Therefore, we can rewrite it as

∂eifγ(x+ ρ∇fγ(x)) = ∂eifγ(x) + ρ
∑
j

∂2
ei+ejfγ(x)∂ejfγ(x) + ρ2

∑
|α|=2

∂3
ei+αfγ(x+ cρ∇fγ(x)) (∇fγ(x))

α

α!


(26)
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Now, we observe that

Ki(x) :=

∑
|α|=2

∂3
ei+αfγ(x+ cρ∇fγ(x)) (∇fγ(x))

α

α!

 (27)

is a finite sum of products of functions that by assumption are in G. Therefore, Ki(x) ∈ G andK̄i(x) = E [Ki(x)] ∈ G.
Based on these definitions, we rewrite Eq. (26) as

∂eifγ(x+ ρ∇fγ(x)) = ∂eifγ(x) + ρ
∑
j

∂2
ei+ejfγ(x)∂ejfγ(x) + ρ2Ki(x). (28)

which implies that

E [∂eifγ(x+ ρ∇fγ(x))] = ∂eif(x) + ρE

∑
j

∂2
ei+ejfγ(x)∂ejfγ(x)

+ ρ2K̄i(x). (29)

Let us now remember that

∂ei f̃
USAM(x) = ∂ei

(
f(x) +

ρ

2
E
[
∥∇fγ(x)∥22

])
= ∂eif(x) + ρE

∑
j

∂2
ei+ejfγ(x)∂ejfγ(x)

 (30)

Therefore, by using Eq. (29), Eq. (30), and the assumption (23) we have that ∀i = 1, . . . , d

E∆̄i = −∂ei f̃
USAM(x)η + ηρ2K̄i(x) = −∂ei f̃

USAM(x)η +O
(
η2
)
. (31)

Additionally, we have that

E∆̄i∆̄j =Cov(∆̄i, ∆̄j) + E∆̄iE∆̄j

(31)
= Cov(∆̄i, ∆̄j) + ∂ei f̃

USAM∂ej f̃
USAMη2 + η2ρ2(∂ei f̃

USAMK̄j(x) + ∂ej f̃
USAMK̄i(x)) + η2ρ4K̄i(x)K̄j(x)

= Cov(∆̄i, ∆̄j) + ∂ei f̃
USAM∂ej f̃

USAMη2 +O
(
η2ρ2

)
+O

(
η2ρ4

)
= ∂ei f̃

USAM∂ej f̃
USAMη2 + Cov(∆̄i, ∆̄j) +O

(
η2ρ2

)
+O

(
η2ρ4

)
∀i, j = 1, . . . , d (32)

Let us now recall the expression (21) of Σ̃ and the expression (22) of ΣUSAM. Then, we automatically have that

Cov(∆̄i, ∆̄j) = η2
(
ΣSGD

i,j (x) + ρ
[
Σ̃i,j(x) + Σ̃i,j(x)

⊤
]
+O(ρ2)

)
= η2ΣUSAM

i,j (x) +O(η2ρ2) (33)

Therefore, remembering Eq. (32) and Eq. (23) we have

E∆̄i∆̄j = ∂ei f̃
USAM∂ej f̃

USAMη2 +ΣUSAM
i,j η2 +O

(
η3
)
, ∀i, j = 1, . . . , d (34)

Finally, with analogous considerations, it is obvious that under our assumptions

E
s∏

j=1

∆̄ij = O (ηs) ∀s ≥ 3, ij ∈ {1, . . . , d}

which in particular implies that

E
3∏

j=1

∆̄ij = O
(
η3
)
, ij ∈ {1, . . . , d}.
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Additional Insights from Lemma A.5. Let us notice that ∇fγ(x) is dominated by a factor M(1 + |x|), if all ∂3
ei+αfγ(x)

are limited by a common constant L, for some positive constant C we have that

|Ki(x)| =ρ2

∣∣∣∣∣∣
∑
|α|=2

∂3
ei+αfγ(x+ cρ∇fγ(x)) (∇fγ(x))

α

α!

∣∣∣∣∣∣ (35)

≤ ρ2CL∥∇fγ(x)∇fγ(x)
⊤∥2F ≤ ρ2CLd2M2(1 + |x|)2 (36)

Therefore, Ki(x) does not only lay in G, but has at most quadratic growth.

Proof of Theorem A.4. To prove this result, all we need to do is check the conditions in Theorem A.2. As we apply Lemma
A.1, we make the following choices:

• b(x) = −∇f̃USAM (x);

• σ(x) = ΣUSAM(x)
1
2 .

First of all, we notice that ∀i = 1, . . . , d, it holds that

• E∆̄i
1. Lemma A.5

= −∂ei f̃
USAM(x)η +O(η2);

• E∆i
1. Lemma A.1

= −∂ei f̃
USAM(x)η +O

(
η2
)
.

Therefore, we have that for some K1(x) ∈ G

∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d. (37)

Additionally,we notice that ∀i, j = 1, . . . , d, it holds that

• E∆̄i∆̄j
2. Lemma A.5

= ∂ei f̃
USAM∂ej f̃

USAMη2 +ΣUSAM
i,j η2 +O

(
η3
)
;

• E∆i∆j
2. Lemma A.1

= ∂ei f̃
USAM∂ej f̃

USAMη2 +ΣUSAM
i,j η2 +O

(
η3
)
.

Therefore, we have that for some K2(x) ∈ G

∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d (38)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , d}, it holds that

• E
∏s

j=1 ∆̄ij
3. Lemma A.5

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma A.1

= O
(
η3
)
.

Therefore, we have that for some K3(x) ∈ G

∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(x)η
2. (39)

Additionally, for some K4(x) ∈ G, ∀ij ∈ {1, . . . , d}
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E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma A.5
≤ K4(x)η

2. (40)

Finally, Eq. (37), Eq. (38), Eq. (39), and Eq. (40) allow us to conclude the proof.

Corollary A.6. Let us take the same assumptions of Theorem A.4. Additionally, let us assume that the dynamics
is near the minimizer. In this case, the noise structure is such that the stochastic gradient can be written as
∇fγ(x) = ∇f(x) + Z such that Z is the noise that does not depend on x. Therefore, the SDE (20) becomes

dXt = −∇f̃USAM(Xt)dt+
(
Id + ρ∇2f(Xt)

) (
ηΣSGD(Xt)

) 1
2 dWt (41)

where
ΣSGD(x) := E

[
(∇f (x)−∇fγ (x)) (∇f (x)−∇fγ (x))

T
]

is the usual covariance of SGD, and

f̃USAM(x) = f(x) +
ρ

2
∥∇f(x)∥22.

Proof of Corollary A.6. Based on our assumption on the noise structure, we can rewrite Eq. (21) of the matrix Σ̃ as

Σ̃(x) = E
[
(∇f (x)−∇fγ (x))

(
E
[
∇2fγ(x)∇fγ(x)

]
−∇2fγ(x)∇fγ(x)

)⊤]
(42)

= ∇2f(x)E
[
(∇f (x)−∇fγ (x)) (∇f(x)−∇fγ(x))

⊤
]

(43)

Therefore, the Eq. (22) of the covariance ΣUSAM becomes

ΣUSAM(x) =
(
Id + 2ρ∇2f(x)

)
ΣSGD(Xt) (44)

which implies that

(ΣUSAM(x))
1
2 ≈

(
Id + ρ∇2f(x)

)
(ΣSGD(Xt))

1
2 . (45)

Finally, we have that

f̃USAM(x) := f(x) +
ρ

2
E
[
∥∇fγ(x)∥22

]
= f(x) +

ρ

2
E
[
∥∇f(x)∥22 + Z2 + 2Z∇fγ(x)

]
(46)

= f(x) +
ρ

2
∥∇f(x)∥22 +

ρ

2
E
[
Z2
]

(47)

Since the component E
[
Z2
]

is independent on x, we ignore it and conclude that

f̃USAM(x) = f(x) +
ρ

2
∥∇f(x)∥22.
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A.1.1. USAM IS SGD IF ρ = O(η)

The following result is inspired by Theorem 1 of (Li et al., 2017).

Theorem A.7 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let xk ∈ Rd, 0 ≤ k ≤
N denote a sequence of USAM iterations defined by Eq. (5). Additionally, let us take

ρ = O
(
η1
)
. (48)

Define Xt ∈ Rd as the stochastic process satisfying the SDE

dXt = −∇f (Xt) dt+
(
ηΣSGD (Xt)

)1/2
dWt (49)

Such that X0 = x0 and

ΣSGD(x) := E
[
(∇f (x)−∇fγ (x)) (∇f (x)−∇fγ (x))

T
]

Fix some test function g ∈ G and suppose that g and its partial derivatives up to order 6 belong to G.
Then, under Assumption A.3, there exists a constant C > 0 independent of η such that for all k = 0, 1, . . . , N , we
have

|Eg (Xkη)− Eg (xk)| ≤ Cη1.

That is, the SDE (49) is an order 1 weak approximation of the USAM iterations (5).

Lemma A.8. Under the assumptions of Theorem A.7, let 0 < η < 1. Consider xk, k ≥ 0 satisfying the USAM
iterations

xk+1 = xk − η∇fγk
(xk + ρ∇fγk

(xk))

with x0 = x ∈ Rd. From the definition the one-step difference ∆̄ = x1 − x, then we have

1. E∆̄i = −∂eif(x)η +O(η2) ∀i = 1, . . . , d.

2. E∆̄i∆̄j = ∂eif∂ejfη
2 +ΣSGD

(ij)η
2 +O

(
η3
)

∀i, j = 1, . . . , d.

3. E
∏s

j=1 ∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}.

All functions above are evaluated at x.

Proof of Lemma A.8. First of all, we write that

∂eifγ(x+ ρ∇fγ(x)) = ∂eifγ(x) +R∂ei
fγ(x)

x,0 (ρ∇fγ(x)), (50)

where the residual is defined in Eq. (4) of (Folland, 2005). Therefore, for some constant c ∈ (0, 1), it holds that

R∂ei
fγ(x)

x,0 (ρ∇fγ(x)) =
∑
|α|=1

∂2
ei+αfγ(x+ cρ∇fγ(x))ρ

1 (∇fγ(x))
α

α!
. (51)

Let us now observe that R∂ei
fγ(x)

x,0 (ρ∇fγ(x)) is a finite sum of products of functions in G and that, therefore, it lies in G.
Additionally, given its expression Eq. (51), we can factor out a common ρ and have that K(x) = ρK1(x) for some function
K1(x) ∈ G. Therefore, we rewrite Eq. (50) as

∂eifγ(x+ ρ∇fγ(x)) = ∂eifγ(x) + ρK1(x). (52)
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First of all, we notice that if we define K̄1(x) = E [K1(x)], also K̄1(x) ∈ G. Therefore, it holds that

E [∂eifγ(x+ ρ∇fγ(x))]
(52)
= ∂eif(x) + ρK̄1(x) (53)

Therefore, using assumption (48), ∀i = 1, . . . , d, we have that

E∆̄i = −∂eif(x)η + ηρK̄i(x) = −∂eif(x)η +O
(
η2
)

(54)

Additionally, by keeping in mind the definition of the covariance matrix Σ, We immediately have

E∆̄i∆̄j
(52)
=Cov(∆̄i, ∆̄j) + E∆̄iE∆̄j

= ΣSGD
(ij) η

2 + ∂eif∂ejfη
2 + η2ρ(∂eifK̄j(x) + ∂ejfK̄i(x)) + η2ρ2K̄i(x)K̄j(x)

= ΣSGD
(ij) η

2 + ∂eif∂ejfη
2 +O

(
η2ρ
)
+O

(
η2ρ2

)
= ∂eif∂ejfη

2 +ΣSGD
(ij) η

2 +O
(
η3
)

∀i, j = 1, . . . , d (55)

Finally, with analogous considerations, it is obvious that under our assumptions

E
s∏

j=1

∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}.

Proof of Theorem A.7. To prove this result, all we need to do is check the conditions in Theorem A.2. As we apply Lemma
A.1, we make the following choices:

• b(x) = −∇f (x),

• σ(x) = ΣSGD(Xt)
1
2 ;

First of all, we notice that ∀i = 1, . . . , d, it holds that

• E∆̄i
1. Lemma A.8

= −∂eif(x)η +O
(
η2
)
;

• E∆i
1. Lemma A.1

= −∂eif(x)η +O
(
η2
)
.

Therefore, we have that for some K1(x) ∈ G

∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d. (56)

Additionally,we notice that ∀i, j = 1, . . . , d, it holds that

• E∆̄i∆̄j
2. Lemma A.8

= ∂eif∂ejfη
2 +ΣSGD

(ij) η
2 +O

(
η3
)
;

• E∆i∆j
2. Lemma A.1

= ∂eif∂ejfη
2 +ΣSGD

(ij) η
2 +O

(
η3
)
.

Therefore, we have that for some K2(x) ∈ G

∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d (57)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , d}, it holds that
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• E
∏s

j=1 ∆̄ij
3. Lemma A.8

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma A.1

= O
(
η3
)
.

Therefore, we have that for some K3(x) ∈ G

∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(x)η
2. (58)

Additionally, for some K4(x) ∈ G, ∀ij ∈ {1, . . . , d}

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma A.8
≤ K4(x)η

2. (59)

Finally, Eq. (56), Eq. (57), Eq. (58), and Eq. (59) allow us to conclude the proof.

A.2. Formal Derivation - DNSAM

We now derive an SDE model for the DNSAM iteration given in (6) which we prove to be a 1-order weak approximation of
such a discrete iteration. The following result is inspired by Theorem 1 of (Li et al., 2017). We will consider the stochastic
process Xt ∈ Rd defined as the solution of the SDE

dXt = −∇f̃DNSAM(Xt)dt+

(
Id + ρ

∇2f(Xt)

∥∇f(Xt)∥2

)(
ηΣSGD(Xt)

) 1
2 dWt (60)

where the regularized loss is
f̃DNSAM(x) = f(x) + ρ∥∇f(x)∥2,

the covariance matrix is

ΣDNSAM (x) := ΣSGD(x)

(
Id + 2ρ

∇2f(x)

∥∇f(x)∥

)
(61)

and
ΣSGD(x) := E

[
(∇f (x)−∇fγ (x)) (∇f (x)−∇fγ (x))

T
]

is the usual covariance of SGD.

Theorem A.9 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let xk ∈ Rd, 0 ≤ k ≤
N denote a sequence of DNSAM iterations defined by Eq. (6). Additionally, let us assume that the noise structure is
such that the stochastic gradient can be written as ∇fγ(x) = ∇f(x) + Z and

ρ = O
(
η

1
2

)
. (62)

Consider the stochastic process Xt defined in Eq. (60) and fix some test function g ∈ G and suppose that g and its
partial derivatives up to order 6 belong to G.
Then, under Assumption A.3, there exists a constant C > 0 independent of η such that for all k = 0, 1, . . . , N , we
have

|Eg (Xkη)− Eg (xk)| ≤ Cη1.

That is, the SDE (60) is an order 1 weak approximation of the DNSAM iterations (6).
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Lemma A.10. Under the assumptions of Theorem A.9, let 0 < η < 1 and consider xk, k ≥ 0 satisfying the DNSAM
iterations (6)

xk+1 = xk − η∇fγk

(
xk + ρ

∇fγk
(xk)

∥∇f(xk)∥

)
with x0 = x ∈ Rd. Additionally, we define ∂ei f̃

DNSAM(x) := ∂eif(x) + ρ

∑
j ∂2

ei+ej
f(x)∂ej

f(x)

∥∇f(x)∥ . From the definition
the one-step difference ∆̄ = x1 − x, and we indicate with ∆̄i the i-th component of such difference. Then, we have

1. E∆̄i = −∂ei f̃
DNSAM(x)η +O(ηρ2) ∀i = 1, . . . , d;

2. E∆̄i∆̄j = ∂ei f̃
DNSAM(x)∂ej f̃

DNSAM(x)η2 +ΣDNSAM
(ij) η2 +O

(
η3
)

∀i, j = 1, . . . , d;

3. E
∏s

j=1 ∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}.

and all the functions above are evaluated at x.

Proof of Lemma A.10. Since the first step is to evaluate E∆i = −E
[
∂eifγ

(
x+ ρ

∥∇f(x)∥∇fγ(x)
)
η
]
, we start by analyzing

∂eifγ

(
x+ ρ

∥∇f(x)∥∇fγ(x)
)

, that is the partial derivative in the direction ei := (0, · · · , 0, 1
i−th

, 0, · · · , 0). Under the noise

assumption ∇fγ(x) = ∇f(x) + Z, we have that ∇2fγ(x) = ∇2f(x). Then, we have that

∂eifγ

(
x+

ρ

∥∇f(x)∥
∇fγ(x)

)
= ∂eifγ(x) +

∑
|α|=1

∂2
ei+αf(x)ρ

∂αfγ(x)

∥∇f(x)∥
+R∂ei

fγ(x)
x,1

(
ρ
∇fγ(x)

∥∇f(x)∥

)
, (63)

where the residual is defined in Eq. (4) of (Folland, 2005). Therefore, for some constant c ∈ (0, 1), it holds that

R∂ei
fγ(x)

x,1

(
ρ
∇fγ(x)

∥∇f(x)∥

)
=
∑
|α|=2

∂3
ei+αfγ

(
x+ cρ

∇fγ(x)
∥∇f(x)∥

)
ρ2
(

∇fγ(x)
∥∇f(x)∥

)α
α!

. (64)

Combining the last two equations, we obtain

∂eifγ

(
x+

ρ

∥∇f(x)∥
∇fγ(x)

)
= ∂eifγ(x) +

ρ

∥∇f(x)∥
∑
|α|=1

∂2
ei+αf(x)∂αfγ(x) (65)

+ ρ2
∑
|α|=2

∂3
ei+αfγ

(
x+ cρ

∇fγ(x)
∥∇f(x)∥

)(
∇fγ(x)
∥∇f(x)∥

)α
α!

. (66)

Now, we observe that

Ki(x) :=

∑
|α|=2

∂3
ei+αfγ

(
x+ cρ ∇f(x)

∥∇f(x)∥

)(
∇fγ(x)
∥∇f(x)∥

)α
α!

 (67)

is a finite sum of products of functions that by assumption are in G. Therefore, Ki(x) ∈ G and K̄i(x) = E [Ki(x)] ∈ G.
Based on these definitions, we rewrite Eq. (65) as

∂eifγ

(
x+

ρ

∥∇f(x)∥
∇fγ(x)

)
= ∂eifγ(x) +

ρ

∥∇f(x)∥
∑
|α|=1

∂2
ei+αf(x)∂αfγ(x) + ρ2Ki(x). (68)

which implies that

E
[
∂eifγ

(
x+

ρ

∥∇f(x)∥
∇fγ(x)

)]
= ∂eif(x) + ρ

∑
j ∂

2
ei+ejf(x)∂ejf(x)

∥∇f(x)∥
+ ρ2K̄i(x), (69)
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where we used the unbiasedness property of the stochastic gradients: E∇fγ(x) = ∇f(x).

Let us now remember that by definition

∂ei f̃
DNSAM(x) = ∂eif(x) + ρ

∑
j ∂

2
ei+ejf(x)∂ejf(x)

∥∇f(x)∥
. (70)

Therefore, by using Eq. (69), Eq. (70), and the assumption (62) we have that ∀i = 1, . . . , d,

E∆̄i = −∂ei f̃
DNSAM(x)η + ηρ2K̄i(x) = −∂ei f̃

DNSAM(x)η +O
(
η2
)
. (71)

We now observe that the covariance matrix of the difference between the drift ∇f(x) + ρ∇2f(x)∇f(x)
∥∇f(x)∥ of the SDE (60) and

the gradient ∇fγ

(
x+ ρ

∥∇f(x)∥∇fγ(x)
)
= ∇fγ(x) + ρ

∇2f(x)∇fγ(x)
∥∇f(x)∥ + ρ2K(x) in the discrete algorithm (6) is

Σ̄ := E
[(

∇f(x) + ρ
∇2f(x)∇f(x)

∥∇f(x)∥
− ∇fγ(x)− ρ

∇2f(x)∇fγ(x)

∥∇f(x)∥
− ρ2K(x)

)
(72)(

∇f(x) + ρ
∇2f(x)∇f(x)

∥∇f(x)∥
− ∇fγ(x)− ρ

∇2f(x)∇fγ(x)

∥∇f(x)∥
− ρ2K(x)

)⊤]
(73)

= ΣSGD

(
Id + 2ρ

∇2f(x)

∥∇f(x)∥

)
+O(ρ2) = ΣDNSAM (x) +O(ρ2). (74)

Therefore, we have that

E∆̄i∆̄j =Cov(∆̄i, ∆̄j) + E∆̄iE∆̄j

(71)
= Cov(∆̄i, ∆̄j) + ∂ei f̃

DNSAM∂ej f̃
DNSAMη2 + η2ρ2(∂ei f̃

DNSAMK̄j(x) + ∂ej f̃
DNSAMK̄i(x)) + η2ρ4K̄i(x)K̄j(x)

= Cov(∆̄i, ∆̄j) + ∂ei f̃
DNSAM∂ej f̃

DNSAMη2 +O
(
η2ρ2

)
+O

(
η2ρ4

)
= ∂ei f̃

DNSAM∂ej f̃
DNSAMη2 + Cov(∆̄i, ∆̄j) +O

(
η2ρ2

)
+O

(
η2ρ4

)
∀i, j = 1, . . . , d. (75)

By the definitions of ΣDNSAM and of Σ̄(x), we have

Cov(∆̄i, ∆̄j) = η2Σ̄i,j(x) = η2ΣDNSAM
i,j (x) +O(η2ρ2). (76)

Therefore, remembering Eq. (75) and Eq. (62) we have

E∆̄i∆̄j = ∂ei f̃
DNSAM∂ej f̃

DNSAMη2 +ΣDNSAM
i,j η2 +O

(
η3
)
, ∀i, j = 1, . . . , d. (77)

Finally, with analogous considerations, it is obvious that under our assumptions

E
s∏

j=1

∆̄ij = O (ηs) ∀s ≥ 3, ij ∈ {1, . . . , d}

which in particular implies that

E
3∏

j=1

∆̄ij = O
(
η3
)
, ij ∈ {1, . . . , d}.

Proof of Theorem A.9. To prove this result, all we need to do is check the conditions in Theorem A.2. As we apply Lemma
A.1, we make the following choices:
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• b(x) = −∇f̃DNSAM (x);

• σ(x) = ΣDNSAM(x)
1
2 .

First of all, we notice that ∀i = 1, . . . , d, it holds that

• E∆̄i
1. Lemma A.10

= −∂ei f̃
DNSAM(x)η +O(η2);

• E∆i
1. Lemma A.1

= −∂ei f̃
DNSAM(x)η +O

(
η2
)
.

Therefore, we have that for some K1(x) ∈ G

∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d. (78)

Additionally,we notice that ∀i, j = 1, . . . , d, it holds that

• E∆̄i∆̄j
2. Lemma A.10

= ∂ei f̃
DNSAM∂ej f̃

DNSAMη2 +ΣDNSAM
i,j η2 +O

(
η3
)
;

• E∆i∆j
2. Lemma A.1

= ∂ei f̃
DNSAM∂ej f̃

DNSAMη2 +ΣDNSAM
i,j η2 +O

(
η3
)
.

Therefore, we have that for some K2(x) ∈ G

∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d. (79)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , d}, it holds that

• E
∏s

j=1 ∆̄ij
3. Lemma A.10

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma A.1

= O
(
η3
)
.

Therefore, we have that for some K3(x) ∈ G

∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(x)η
2. (80)

Additionally, for some K4(x) ∈ G, ∀ij ∈ {1, . . . , d}

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma A.10
≤ K4(x)η

2. (81)

Finally, Eq. (78), Eq. (79), Eq. (80), and Eq. (81) allow us to conclude the proof.

A.2.1. DNSAM IS SGD IF ρ = O(η)

The following result is inspired by Theorem 1 of (Li et al., 2017). We will consider the stochastic process Xt ∈ Rd defined
as the solution of the SDE

dXt = −∇f (Xt) dt+
(
ηΣSGD (Xt)

)1/2
dWt (82)

Such that X0 = x0 and
ΣSGD(x) := E

[
(∇f (x)−∇fγ (x)) (∇f (x)−∇fγ (x))

T
]
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Theorem A.11 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let xk ∈ Rd, 0 ≤ k ≤
N denote a sequence of DNSAM iterations defined by Eq. (6). Additionally, let us take

ρ = O
(
η1
)
. (83)

Consider the stochastic process Xt defined in Eq. (82) and fix some test function g ∈ G and suppose that g and
its partial derivatives up to order 6 belong to G. Then, under Assumption A.3, there exists a constant C > 0
independent of η such that for all k = 0, 1, . . . , N , we have

|Eg (Xkη)− Eg (xk)| ≤ Cη1.

That is, the SDE (82) is an order 1 weak approximation of the SAM iterations (4).

Proof. The proof is completely similar to that of Theorem A.7 presented before and of Theorem A.16 presented later.

A.3. Formal Derivation - SAM

The following result is inspired by Theorem 1 of (Li et al., 2017). We will consider the stochastic process Xt ∈ Rd defined
as the solution of the SDE

dXt = −∇f̃SAM(Xt)dt+
√
η
(
ΣSGD(Xt) + ρ

(
Σ̂(Xt) + Σ̂(Xt)

⊤
)) 1

2

dWt (84)

where
ΣSGD(x) := E

[
(∇f (x)−∇fγ (x)) (∇f (x)−∇fγ (x))

T
]

is the usual covariance of SGD, while

Σ̂(x) := E

[
(∇f (x)−∇fγ (x))

(
E
[
∇2fγ(x)∇fγ(x)

∥∇fγ(x)∥2

]
− ∇2fγ(x)∇fγ(x)

∥∇fγ(x)∥2

)⊤]
(85)

and
f̃SAM(x) := f(x) + ρE [∥∇fγ(x)∥2] .

In the following, we will use the notation

ΣSAM(x) :=
(
ΣSGD(Xt) + ρ

(
Σ̂(Xt) + Σ̂(Xt)

⊤
))

. (86)

Theorem A.12 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let xk ∈ Rd, 0 ≤ k ≤
N denote a sequence of SAM iterations defined by Eq. (4). Additionally, let us take

ρ = O
(
η

1
2

)
. (87)

Consider the stochastic process Xt defined in Eq. (84) and fix some test function g ∈ G and suppose that g and its
partial derivatives up to order 6 belong to G.
Then, under Assumption A.3, there exists a constant C > 0 independent of η such that for all k = 0, 1, . . . , N , we
have

|Eg (Xkη)− Eg (xk)| ≤ Cη1.

That is, the SDE (84) is an order 1 weak approximation of the SAM iterations (4).
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Remark A.13. Denote by b and σ the (Borel measurable) drift and diffusion coefficient in (84), respectively. Suppose that
there exists a non-negative function F ∈ Ld+1([0,∞)× Rd) such that

∥b(t, x)∥ ≤ K + F (t, x) (88)

dt× dx− a.e. for some constant K ≥ 0. Further, assume that σσ⊤ is strongly elliptic, that is there exists a δ ∈ (0, 1) such
that for all t ≥ 0, x ∈ Rd

δId ≤ σσ⊤(t, x) ≤ δ−1Id, (89)

where Id ∈ Rd×d is the unit matrix. Then there exists a (global) weak solution to (84). Moreover, if there is a (global) weak
solution to (84), b ∈ L2d+2

loc ([0,∞)× Rd), σ is locally Lipschitz continuous uniformly in time and if (89) holds, then there
exists a unique strong solution to (84). See (Gyöngy & Martı́nez, 2001).

Lemma A.14. Under the assumptions of Theorem A.12, let 0 < η < 1 and consider xk, k ≥ 0 satisfying the USAM
iterations (4)

xk+1 = xk − η∇fγk

(
xk + ρ

∇fγk
(xk)

∥∇fγ(xk)∥

)
with x0 = x ∈ Rd. Additionally, we define ∂ei f̃

SAM(x) := ∂eif(x) + ρE
[∑

j ∂2
ei+ej

fγ(x)∂ej
fγ(x)

∥∇fγ(x)∥

]
. From the

definition the one-step difference ∆̄ = x1 − x, then we have

1. E∆̄i = −∂ei f̃
SAM(x)η +O(ηρ2) ∀i = 1, . . . , d;

2. E∆̄i∆̄j = ∂ei f̃
SAM(x)∂ej f̃

SAM(x)η2 +ΣSAM
(ij)η

2 +O
(
η3
)

∀i, j = 1, . . . , d;

3. E
∏s

j=1 ∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}.

and all the functions above are evaluated at x.

Proof of Lemma A.14. Since the first step is to evaluate E∆i = −E
[
∂eifγ

(
x+ ρ

∥∇fγ(x)∥∇fγ(x)
)
η
]
, we start by analyz-

ing ∂eifγ

(
x+ ρ

∥∇fγ(x)∥∇fγ(x)
)

, that is the partial derivative in the direction ei := (0, · · · , 0, 1
i−th

, 0, · · · , 0). Then, we

have that

∂eifγ

(
x+

ρ

∥∇fγ(x)∥
∇fγ(x)

)
= ∂eifγ(x) +

∑
|α|=1

∂2
ei+αfγ(x)ρ

∂αfγ(x)

∥∇fγ(x)∥
+R∂ei

fγ(x)
x,1

(
ρ

∇fγ(x)

∥∇fγ(x)∥

)
(90)

Where the residual is defined in Eq. (4) of (Folland, 2005). Therefore, for some constant c ∈ (0, 1), it holds that

R∂ei
fγ(x)

x,1

(
ρ

∇fγ(x)

∥∇fγ(x)∥

)
=
∑
|α|=2

∂3
ei+αfγ

(
x+ cρ

∇fγ(x)
∥∇fγ(x)∥

)
ρ2
(

∇fγ(x)
∥∇fγ(x)∥

)α
α!

. (91)

Therefore, we can rewrite it as

∂eifγ

(
x+

ρ

∥∇fγ(x)∥
∇fγ(x)

)
= ∂eifγ(x) +

ρ

∥∇fγ(x)∥
∑
|α|=1

∂2
ei+αfγ(x)∂αfγ(x) (92)

+ ρ2
∑
|α|=2

∂3
ei+αfγ

(
x+ cρ

∇fγ(x)
∥∇fγ(x)∥

)(
∇fγ(x)

∥∇fγ(x)∥

)α
α!

. (93)
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Now, we observe that

Ki(x) :=

∑
|α|=2

∂3
ei+αfγ

(
x+ cρ

∇fγ(x)
∥∇fγ(x)∥

)(
∇fγ(x)

∥∇fγ(x)∥

)α
α!

 (94)

is a finite sum of products of functions that by assumption are in G. Therefore, Ki(x) ∈ G and K̄i(x) = E [Ki(x)] ∈ G.
Based on these definitions, we rewrite Eq. (92) as

∂eifγ

(
x+

ρ

∥∇fγ(x)∥
∇fγ(x)

)
= ∂eifγ(x) +

ρ

∥∇fγ(x)∥
∑
|α|=1

∂2
ei+αfγ(x)∂αfγ(x) + ρ2Ki(x). (95)

which implies that

E
[
∂eifγ

(
x+

ρ

∥∇fγ(x)∥
∇fγ(x)

)]
= ∂eif(x) + ρE

[∑
j ∂

2
ei+ejfγ(x)∂ejfγ(x)

∥∇fγ(x)∥

]
+ ρ2K̄i(x). (96)

Let us now remember that

∂ei f̃
SAM(x) = ∂ei (f(x) + ρE [∥∇fγ(x)∥2]) = ∂eif(x) + ρE

[∑
j ∂

2
ei+ejfγ(x)∂ejfγ(x)

∥∇fγ(x)∥

]
(97)

Therefore, by using Eq. (96), Eq. (97), and the assumption (87) we have that ∀i = 1, . . . , d

E∆̄i = −∂ei f̃
SAM(x)η + ηρ2K̄i(x) = −∂ei f̃

SAM(x)η +O
(
η2
)
. (98)

Additionally, we have that

E∆̄i∆̄j =Cov(∆̄i, ∆̄j) + E∆̄iE∆̄j

(98)
= Cov(∆̄i, ∆̄j) + ∂ei f̃

SAM∂ej f̃
SAMη2 + η2ρ2(∂ei f̃

SAMK̄j(x) + ∂ej f̃
SAMK̄i(x)) + η2ρ4K̄i(x)K̄j(x)

= Cov(∆̄i, ∆̄j) + ∂ei f̃
SAM∂ej f̃

SAMη2 +O
(
η2ρ2

)
+O

(
η2ρ4

)
= ∂ei f̃

SAM∂ej f̃
SAMη2 + Cov(∆̄i, ∆̄j) +O

(
η2ρ2

)
+O

(
η2ρ4

)
∀i, j = 1, . . . , d. (99)

Let us now recall the expression (85) of Σ̂ and the expression (86) of ΣSAM. Then, we automatically have that

Cov(∆̄i, ∆̄j) = η2
(
ΣSGD

i,j (x) + ρ
[
Σ̂i,j(x) + Σ̂i,j(x)

⊤
]
+O(ρ2)

)
= η2ΣSAM

i,j (x) +O(η2ρ2). (100)

Therefore, remembering Eq. (99) and Eq. (87) we have

E∆̄i∆̄j = ∂ei f̃
SAM∂ej f̃

SAMη2 +ΣSAM
i,j η2 +O

(
η3
)
, ∀i, j = 1, . . . , d. (101)

Finally, with analogous considerations, it is obvious that under our assumptions

E
s∏

j=1

∆̄ij = O (ηs) ∀s ≥ 3, ij ∈ {1, . . . , d}

which in particular implies that

E
3∏

j=1

∆̄ij = O
(
η3
)
, ij ∈ {1, . . . , d}.
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Proof of Theorem A.12. To prove this result, all we need to do is check the conditions in Theorem A.2. As we apply Lemma
A.1, we make the following choices:

• b(x) = −∇f̃SAM (x);

• σ(x) = ΣSAM(x)
1
2 .

First of all, we notice that ∀i = 1, . . . , d, it holds that

• E∆̄i
1. Lemma A.14

= −∂ei f̃
SAM(x)η +O(η2);

• E∆i
1. Lemma A.1

= −∂ei f̃
SAM(x)η +O

(
η2
)
.

Therefore, we have that for some K1(x) ∈ G

∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d. (102)

Additionally,we notice that ∀i, j = 1, . . . , d, it holds that

• E∆̄i∆̄j
2. Lemma A.14

= ∂ei f̃
SAM∂ej f̃

SAMη2 +ΣSAM
i,j η2 +O

(
η3
)
;

• E∆i∆j
2. Lemma A.1

= ∂ei f̃
SAM∂ej f̃

SAMη2 +ΣSAM
i,j η2 +O

(
η3
)
.

Therefore, we have that for some K2(x) ∈ G

∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d. (103)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , d}, it holds that

• E
∏s

j=1 ∆̄ij
3. Lemma A.14

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma A.1

= O
(
η3
)
.

Therefore, we have that for some K3(x) ∈ G

∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(x)η
2. (104)

Additionally, for some K4(x) ∈ G, ∀ij ∈ {1, . . . , d}

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma A.5
≤ K4(x)η

2. (105)

Finally, Eq. (102), Eq. (103), Eq. (104), and Eq. (105) allow us to conclude the proof.
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Corollary A.15. Let us take the same assumptions of Theorem (A.12). Additionally, let us assume that the dynamics
is near the minimizer. In this case, the noise structure is such that the stochastic gradient can be written as
∇fγ(x) = ∇f(x) + Z such that Z is the noise that does not depend on x. In this case, the SDE (84) becomes

dXt = −∇f̃ SAM(Xt)dt+
√

η
(
ΣSGD(Xt) + ρHt

(
Σ̄(Xt) + Σ̄(Xt)⊤

))
dWt

where Ht := ∇2f(Xt) and Σ̄(x) is defined as

E

[
(∇f (x)−∇fγ (x))

(
E
[

∇fγ(x)

∥∇fγ(x)∥2

]
− ∇fγ(x)

∥∇fγ(x)∥2

)⊤
]
,

and f̃ SAM(x) := f(x) + ρE [∥∇fγ(x)∥2] .

Proof of Corollary A.15. It follows immediately by substituting the expression for the perturbed gradient.

A.3.1. SAM IS SGD IF ρ = O(η)

The following result is inspired by Theorem 1 of (Li et al., 2017). We will consider the stochastic process Xt ∈ Rd defined
as the solution of the SDE

dXt = −∇f (Xt) dt+
(
ηΣSGD (Xt)

)1/2
dWt (106)

Such that X0 = x0 and
ΣSGD(x) := E

[
(∇f (x)−∇fγ (x)) (∇f (x)−∇fγ (x))

T
]

Theorem A.16 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let xk ∈ Rd, 0 ≤ k ≤
N denote a sequence of SAM iterations defined by Eq. (4). Additionally, let us take

ρ = O
(
η1
)
. (107)

Consider the stochastic process Xt defined in Eq. (106) and fix some test function g ∈ G and suppose that g and
its partial derivatives up to order 6 belong to G. Then, under Assumption A.3, there exists a constant C > 0
independent of η such that for all k = 0, 1, . . . , N , we have

|Eg (Xkη)− Eg (xk)| ≤ Cη1.

That is, the SDE (106) is an order 1 weak approximation of the SAM iterations (4).

Lemma A.17. Under the assumptions of Theorem A.16, let 0 < η < 1. Consider xk, k ≥ 0 satisfying the SAM iterations

xk+1 = xk − η∇fγk

(
xk + ρ

∇fγk
(xk)

∥∇fγk
(xk)∥

)
with x0 = x ∈ Rd. From the definition the one-step difference ∆̄ = x1 − x, then we have

1. E∆̄i = −∂eif(x)η +O(η2) ∀i = 1, . . . , d.

2. E∆̄i∆̄j = ∂eif∂ejfη
2 +ΣSGD

(ij)η
2 +O

(
η3
)

∀i, j = 1, . . . , d.

3. E
∏s

j=1 ∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}.

All functions above are evaluated at x.
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Proof of Lemma A.17. First of all, we write that

∂eifγ

(
x+ ρ

∇fγ(x)

∥∇fγ(x)∥

)
= ∂eifγ(x) +R∂ei

fγ(x)
x,0

(
ρ

∇fγ(x)

∥∇fγ(x)∥

)
, (108)

where the residual is defined in Eq. (4) of (Folland, 2005). Therefore, for some constant c ∈ (0, 1), it holds that

R∂ei
fγ(x)

x,0

(
ρ

∇fγ(x)

∥∇fγ(x)∥

)
=
∑
|α|=1

∂2
ei+αfγ

(
x+ cρ

∇fγ(x)
∥∇fγ(x)∥

)
ρ1
(

∇fγ(x)
∥∇fγ(x)∥

)α
α!

. (109)

Let us now observe that R∂ei
fγ(x)

x,0

(
ρ

∇fγ(x)
∥∇fγ(x)∥

)
is a finite sum of products of functions in G and that, therefore, it lies in

G. Additionally, given its expression Eq. (109), we can factor out a common ρ and have that K(x) = ρK1(x) for some
function K1(x) ∈ G. Therefore, we rewrite Eq. (108) as

∂eifγ

(
x+ ρ

∇fγ(x)

∥∇fγ(x)∥

)
= ∂eifγ(x) + ρK1(x). (110)

First of all, we notice that if we define K̄1(x) = E [K1(x)], also K̄1(x) ∈ G. Therefore, it holds that

E
[
∂eifγ

(
x+ ρ

∇fγ(x)

∥∇fγ(x)∥

)]
(110)
= ∂eif(x) + ρK̄1(x) (111)

Therefore, using assumption (107), ∀i = 1, . . . , d, we have that

E∆̄i = −∂eif(x)η + ηρK̄i(x) = −∂eif(x)η +O
(
η2
)

(112)

Additionally, by keeping in mind the definition of the covariance matrix Σ, We immediately have

E∆̄i∆̄j
(110)
= Cov(∆̄i, ∆̄j) + E∆̄iE∆̄j

= ΣSGD
(ij) η

2 + ∂eif∂ejfη
2 + η2ρ(∂eifK̄j(x) + ∂ejfK̄i(x)) + η2ρ2K̄i(x)K̄j(x)

= ΣSGD
(ij) η

2 + ∂eif∂ejfη
2 +O

(
η2ρ
)
+O

(
η2ρ2

)
= ∂eif∂ejfη

2 +ΣSGD
(ij) η

2 +O
(
η3
)

∀i, j = 1, . . . , d (113)

Finally, with analogous considerations, it is obvious that under our assumptions

E
s∏

j=1

∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}.

Proof of Theorem A.16. To prove this result, all we need to do is check the conditions in Theorem A.2. As we apply Lemma
A.1, we make the following choices:

• b(x) = −∇f (x),

• σ(x) = ΣSGD(Xt)
1
2 ;

First of all, we notice that ∀i = 1, . . . , d, it holds that

• E∆̄i
1. Lemma A.17

= −∂eif(x)η +O
(
η2
)
;

30



An SDE for Modeling SAM: Theory and Insights

• E∆i
1. Lemma A.1

= −∂eif(x)η +O
(
η2
)
.

Therefore, we have that for some K1(x) ∈ G

∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d. (114)

Additionally,we notice that ∀i, j = 1, . . . , d, it holds that

• E∆̄i∆̄j
2. Lemma A.17

= ∂eif∂ejfη
2 +ΣSGD

(ij) η
2 +O

(
η3
)
;

• E∆i∆j
2. Lemma A.1

= ∂eif∂ejfη
2 +ΣSGD

(ij) η
2 +O

(
η3
)
.

Therefore, we have that for some K2(x) ∈ G

∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d (115)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , d}, it holds that

• E
∏s

j=1 ∆̄ij
3. Lemma A.17

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma A.1

= O
(
η3
)
.

Therefore, we have that for some K3(x) ∈ G

∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(x)η
2. (116)

Additionally, for some K4(x) ∈ G, ∀ij ∈ {1, . . . , d}

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma A.17
≤ K4(x)η

2. (117)

Finally, Eq. (114), Eq. (115), Eq. (116), and Eq. (117) allow us to conclude the proof.

B. Random SAM
Following (Ujváry et al., 2022) (Algorithm 2), we define Random SAM (RSAM) as the following discrete algorithm

xk+1 = xk − ηEϵ∼N (0,Σ)∇fγk (xk + ϵ) . (118)

As a first attempt, we focus on the case where Σ = σ2Id.

B.1. Formal Derivation - RSAM

We will consider the stochastic process Xt ∈ Rd defined by

dXt = −∇f̃RSAM(Xt)dt+
√
η

(
ΣSGD(Xt) +

σ2

2

(
Σ̃(Xt) + Σ̃(Xt)

⊤
)) 1

2

dWt (119)

where
ΣSGD(x) := E

[
(∇f (x)−∇fγ (x)) (∇f (x)−∇fγ (x))

T
]
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is the usual covariance of SGD, while

Σ̃(x) := E
[
(∇f (x)−∇fγ (x))

(
E
[
∇3fγ(x)[Id]

]
−∇3fγ(x)[Id]

)⊤]
(120)

and

f̃RSAM(x) := f(x) +
σ2

2
Tr(∇2f(x)).

In the following, we will use the notation

ΣRSAM(x) :=

(
ΣSGD(Xt) +

σ2

2

(
Σ̃(Xt) + Σ̃(Xt)

⊤
))

. (121)

Theorem B.1 (Stochastic modified equations). Let 0 < η < 1, T > 0 and set N = ⌊T/η⌋. Let xk ∈ Rd, 0 ≤ k ≤ N
denote a sequence of RSAM iterations defined by Eq. (118). Additionally, let us take

σ = O
(
η

1
3

)
. (122)

Consider the stochastic process Xt defined in Eq. (119) and fix some test function g ∈ G and suppose that g and its
partial derivatives up to order 6 belong to G.
Then, under Assumption A.3, there exists a constant C > 0 independent of η such that for all k = 0, 1, . . . , N , we
have

|Eg (Xkη)− Eg (xk)| ≤ Cη1.

That is, the SDE (119) is an order 1 weak approximation of the RSAM iterations (118).

Lemma B.2. Under the assumptions of Theorem B.1, let 0 < η < 1 and consider xk, k ≥ 0 satisfying the RSAM
iterations (118)

xk+1 = xk − ηEϵ∼N (0,Σ)∇fγk (xk + ϵ) .

where Σ = σ2Id and x0 = x ∈ Rd. From the definition the one-step difference ∆̄ = x1 − x, then we have

1. E∆̄i = −∂ei f̃
RSAM(x)η +O(ησ3) ∀i = 1, . . . , d.

2. E∆̄i∆̄j = ∂ei f̃
RSAM(x)∂ej f̃

RSAM(x)η2 +ΣRSAM
(ij) η2 +O

(
η3
)

∀i, j = 1, . . . , d.

3. E
∏s

j=1 ∆̄ij = O
(
η3
)

∀s ≥ 3, ij ∈ {1, . . . , d}.

and all the functions above are evaluated at x.

Proof of Lemma B.2. We perform a Taylor expansion of ∂if(·) around xk

xi
k+1 = xi

k − Eϵ∼N (0,Σ)

η∂if (xk)− η
∑
j

∂2
ijf (xk) ϵ

j
k − η

2

∑
j,l

∂3
ijlf (xk) ϵ

j
kϵ

l
k +O

(
η ∥ϵk∥3

) ,

and we notice that the term η
2

∑
j,l ∂

3
ijlf (xk) ϵ

j
kϵ

l
k is equal to η

2∂i
∑

jl ∂
2
jlf (xk) ϵ

j
kϵ

l
k due to Clairaut’s theorem (assuming

that f has continuous fourth-order partial derivatives). By exploiting that ϵk has mean zero and covariance σ2Id, we have
that

E [xk+1 − xk] = −η∇f̃RSAM (xk) +O
(
ηE
[
∥ϵk∥3

])
= −η∇f̃RSAM (xk) +O

(
ησ3

)
,

where the modified loss f̃RSAM is given by

f̃RSAM(x) := f(z) +
σ2

2
Tr
(
∇2f(x)

)
.
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Therefore, using (122), we have that ∀i = 1, . . . , d

E∆̄i = −∂ei f̃
RSAM(x)η +O

(
η2
)
. (123)

Additionally, we have that

E∆̄i∆̄j = ∂ei f̃
RSAM∂ej f̃

RSAMη2 + Cov(∆̄i, ∆̄j) +O
(
η3
)

∀i, j = 1, . . . , d. (124)

Let us now recall the expression (120) of Σ̃ and the expression (121) of ΣRSAM. Then, we automatically have that

Cov(∆̄i, ∆̄j) = η2
(
ΣSGD

i,j (x) +
σ2

2

[
Σ̃i,j(x) + Σ̃i,j(x)

⊤
]
+O(σ3)

)
= η2ΣRSAM

i,j (x) +O(η2σ3) (125)

Therefore, remembering Eq. (124) and Eq. (122) we have

E∆̄i∆̄j = ∂ei f̃
RSAM∂ej f̃

RSAMη2 +ΣSAM
i,j η2 +O

(
η3
)
, ∀i, j = 1, . . . , d (126)

Finally, with analogous considerations, it is obvious that under our assumptions

E
s∏

j=1

∆̄ij = O (ηs) ∀s ≥ 3, ij ∈ {1, . . . , d}

which in particular implies that

E
3∏

j=1

∆̄ij = O
(
η3
)
, ij ∈ {1, . . . , d}.

Proof of Theorem B.1. To prove this result, all we need to do is check the conditions in Theorem A.2. As we apply Lemma
A.1, we make the following choices:

• b(x) = −∇f̃RSAM (x);

• σ(x) = ΣRSAM(x)
1
2 .

First of all, we notice that ∀i = 1, . . . , d, it holds that

• E∆̄i
1. Lemma B.2

= −∂ei f̃
RSAM(x)η +O(η2);

• E∆i
1. Lemma A.1

= −∂ei f̃
RSAM(x)η +O

(
η2
)
.

Therefore, we have that for some K1(x) ∈ G

∣∣E∆i − E∆̄i

∣∣ ≤ K1(x)η
2, ∀i = 1, . . . , d. (127)

Additionally,we notice that ∀i, j = 1, . . . , d, it holds that

• E∆̄i∆̄j
2. Lemma B.2

= ∂ei f̃
RSAM∂ej f̃

RSAMη2 +ΣRSAM
i,j η2 +O

(
η3
)
;

• E∆i∆j
2. Lemma A.1

= ∂ei f̃
RSAM∂ej f̃

RSAMη2 +ΣRSAM
i,j η2 +O

(
η3
)
.
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Therefore, we have that for some K2(x) ∈ G

∣∣E∆i∆j − E∆̄i∆̄j

∣∣ ≤ K2(x)η
2, ∀i, j = 1, . . . , d (128)

Additionally, we notice that ∀s ≥ 3,∀ij ∈ {1, . . . , d}, it holds that

• E
∏s

j=1 ∆̄ij
3. Lemma B.2

= O
(
η3
)
;

• E
∏s

j=1 ∆ij
3. Lemma A.1

= O
(
η3
)
.

Therefore, we have that for some K3(x) ∈ G

∣∣∣∣∣∣E
s∏

j=1

∆ij − E
s∏

j=1

∆̄ij

∣∣∣∣∣∣ ≤ K3(x)η
2. (129)

Additionally, for some K4(x) ∈ G, ∀ij ∈ {1, . . . , d}

E
3∏

j=1

∣∣∆̄(ij)

∣∣ 3. Lemma B.2
≤ K4(x)η

2. (130)

Finally, Eq. (127), Eq. (128), Eq. (129), and Eq. (130) allow us to conclude the proof.

C. Convergence Analysis: Quadratic Loss
C.1. ODE USAM

Let us study the quadratic loss function f(x) = x⊤Hx where H is a diagonal matrix of eigenvalues (λ1, . . . , λd) such that
λ1 ≥ λ1 ≥ · · · ≥ λd. Under the dynamics of the ODE of USAM, we have that

dXt = −H (Xt + ρHXt) dt = −H (Id + ρH)Xtdt, (131)

which, for the single component gives us the following dynamics

dXj
t = −λj(1 + ρλj)X

j
t dt (132)

whose solution is

Xj
t = Xj

0e
−λj(1+ρλj)t. (133)

Lemma C.1. For all ρ > 0, if all the eigenvalues of H are positive, then

Xj
t

t→∞→ 0, ∀j ∈ {1, . . . , d} (134)

Proof of Lemma C.1. For each j ∈ {1, · · · , d}, we have that

Xj
t = Xj

0e
−λj(1+ρλj).

Therefore, since the exponent is always negative, Xj
t → 0 as t → ∞.
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Lemma C.2. Let H have at least one strictly negative eigenvalue and let λ∗ be the largest negative eigenvalue of
H . Then, for all ρ > − 1

λ∗
,

Xj
t

t→∞→ 0, ∀j ∈ {1, . . . , d}. (135)

Proof of Lemma C.2. For each j ∈ {1, · · · , d}, we have that

Xj
t = Xj

0e
−λj(1+ρλj).

Therefore, if λj > 0, the exponent is always negative for each value of ρ > 0. Therefore, Xj
t → 0 as t → ∞. Differently,

if λj < 0, the exponent −λj(1 + ρλj) is negative only if ρ > − 1
λ∗

where λ∗ is the largest negative eigenvalue of H .
Therefore, ifρ > − 1

λ∗
, Xj

0 → 0 if t → ∞.

C.2. SDE USAM - Stationary Distribution

Let us consider the noisy quadratic model f(x) = 1
2x

⊤Hx, where H is a symmetric matrix. Then, based on Theorem (A.4)
in the case where Σ(x) = ςId, the corresponding SDE is give by

dXt = −H (Id + ρH)Xtdt+ [(Id + ρH)
√
ης] dWt. (136)

Theorem C.3 (Stationary distribution - PSD Case.). For any ρ > 0, the stationary distribution of Eq. (136) is

P (x,∞ | ρ) =

√
λi

πης2
1

1 + ρλi
exp

[
− λi

ης2
1

1 + ρλi
x2

]
(137)

where (λ1, . . . , λd) are the eigenvalues of H and λi > 0,∀i ∈ {1, · · · , d}.

More interestingly, if ρ is too large, this same conclusion holds even for a saddle point.

Theorem C.4 (Stationary distribution - Indefinite Case.). Let (λ1, . . . , λd) are the eigenvalues of H such that there
exists at least one which is strictly negative. If ρ > − 1

λ∗
where λ∗ is the largest negative eigenvalue of H, then the

stationary distribution of Eq. (136) is

P (x,∞ | ρ) =

√
λi

πης2
1

1 + ρλi
exp

[
− λi

ης2
1

1 + ρλi
x2

]
(138)

Proof of Theorem C.3. Note that Eq. (136) is a linear SDE, and that drift and diffusion matrices are co-diagonalizable: Let
H = UΛU⊤ be one eigenvalue decomposition of H , with Λ = diag(λ1, . . . , λd). If we plug this in, we get

dXt = −U
(
Λ + ρΛ2

)
U⊤Xtdt+ U [(Id + ρΛ)

√
ης]U⊤dWt.

Let us multiply the LHS with U⊤, then

d(U⊤Xt) = −
(
Λ + ρΛ2

)
(U⊤Xt)dt+ [(Id + ρΛ)

√
ης]U⊤dWt.

Finally, note that U⊤dWt = dWt in law, so we can write

d(U⊤Xt) = −
(
Λ + ρΛ2

)
(U⊤Xt)dt+ [(Id + ρΛ)

√
ης] dWt.
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This means that the coordinates of the vector Y = U⊤X evolve independently

dYt = −
(
Λ + ρΛ2

)
Ytdt+ [(Id + ρΛ)

√
ης] dWt,

since Λ is diagonal. Therefore for the i-th component Yi we can write

dYi,t = −
(
λi + ρλ2

i

)
Yi,tdt+ [(1 + ρλi)

√
ης] dWi,t. (139)

Note that this is a simple one-dimensional Ornstein–Uhlenbeck process dYt = −θYtdt + σdWt (θ > 0, σ ̸= 0) with
parameters

θ = λi (1 + ρλi) > 0 and σ = (1 + ρλi)
√
ης > 0 (140)

Therefore, from Section 4.4.4 of (Gardiner et al., 1985), we get that

E[Yt] = e−θtY0, Var(Yt) =
σ2

2θ
(1− e−2θt). (141)

In our case we have that

E[Yt] = e−θtY0 → 0 and Var(Yt) =
σ2

2θ
(1− e−2θt) → σ2

2θ
=

ης2

2λi
(1 + ρλi). (142)

Additionally, using the Fokker–Planck equation, see Section 5.3 of (Risken, 1996), we have the following formula for the
stationary distribution of each eigendirection. Indeed, let us recall that for D := σ2

2 , the probability density function is

P (x, t | x′, t′, ρ) =

√
θ

2πD
(
1− e−2θ(t−t′)

) exp
− θ

2D

(
x− x′e−θ(t−t′)

)2
1− e−2θ(t−t′)

 . (143)

Therefore, the stationary distribution is

P (x,∞ | ρ) =
√

θ

2πD
exp

[
− θ

2D
x2

]
=

√
θ

πσ2
exp

[
− θ

σ2
x2

]
=

√
λi

πης2
1

1 + ρλi
exp

[
− λi

ης2
1

1 + ρλi
x2

]
. (144)

To conclude,

Yi,∞ ∼ N
(
0,

ης2

λi
(1 + ρλi)

)
. (145)

Since all of the eigenvalues are positive, this distribution has more variance than SGD on each direction.

Since the proof of Theorem C.4 is perfectly similar to that of Theorem C.3, we skip it. Additionally, a very analogous result
holds true even if all the eigenvalues are strictly negative and thus the quadratic has a single maximum as a critical point.
From these results, we understand that under certain circumstances, USAM might be attracted not only by the minimum but
possibly also by a saddle or a maximum. This is fully consistent with the results derived for the ODE of USAM in Lemma
C.1 and Lemma C.2.
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Observation C.5 (Suboptimality under the Stationary Distribution – comparison to SGD). In the special case
where the stochastic process has reached stationarity, one can approximate the loss landscape with a quadratic
loss (Jastrzebski et al., 2018). By further assuming that ΣSGD(x) = H (see e.g.(Sagun et al., 2018; Zhu et al.,
2019)), Theorem (A.4) implies that for USAM

dXt = −H (Id + ρH)Xtdt+
[
(Id + ρH)

√
η
√
H
]
dWt. (146)

Up to a change of variable, we assume H to be diagonal and therefore

EUSAM [f ] =
1

2

d∑
i=1

λiE[X2
i ] =

η

4

d∑
i=1

λi(1 + ρλi)
2 =

η

4

(
Tr(H) + 2ρTr(H2) + ρ2Tr(H3)

)
≫ ESGD [f ] ,

(147)
where subscripts indicate that f is being optimized with SGD and USAM, respectively.
Regarding DNSAM, Theorem (A.9) implies that

dXt = −H

(
Id +

ρH

∥HXt∥

)
Xtdt+

√
η
√
H

(
Id +

ρH

∥HXt∥

)
dWt. (148)

Therefore, we argue that DNSAM has to have a suboptimality with respect to SGD which is even larger than that
of USAM. Intuitively, when ∥HXt∥ < 1, the variance of DNSAM is larger than that of USAM. Therefore, its
suboptimality has to be larger as well. Finally, the behavior of SAM is close to that of DNSAM, but less pronounced
because the denominator can never get too close to 0 due to the noise injection.

C.3. ODE SAM

W.l.o.g, we take H to be diagonal and if it has negative eigenvalues, we denote the largest negative eigenvalue with λ∗. Let
us recall that the ODE of SAM for the quadratic loss is given by

dXt = −H

(
Id +

ρH

∥HXt∥

)
Xtdt (149)

Lemma C.6. For all ρ > 0, if H is PSD, the origin is (locally) asymptotically stable. Additionally, if H is not PSD,
if ∥HXt∥ ≤ −ρλ∗, then the origin is still (locally) asymptotically stable.

Proof of Lemma C.6. Let V (x) := x⊤Kx
2 be the Lyapunov function, where K is a diagonal matrix with positive eigenvalues

(k1, · · · , kd). Therefore, we have

V (Xt) =
1

2

d∑
i=1

ki
(
Xi

t

)2
> 0 (150)

and

V̇ (Xt) =

d∑
i=1

kiX
i
tẊ

i
t =

d∑
i=1

ki(−λi)

(
1 +

ρλi

∥HXt∥

)
Xi

tX
i
tdt = −

d∑
i=1

kiλi

(
1 +

ρλi

∥HXt∥

)(
Xi

t

)2
dt. (151)

Let us analyze the terms

kiλi

(
1 +

ρλi

∥HXt∥

)(
Xi

t

)2
.

When λi > 0, these quantities are all positive and the proof is concluded. However, if there exists λi < 0, these quantities
are positive only if

(
1 + ρλi

∥HXt∥

)
≤ 0, that is if ∥HXt∥ ≤ −ρλi. Therefore, a sufficient condition for V̇ (Xt) ≤ 0 is that

∥HXt∥ ≤ −ρλi, ∀i s.t. λi < 0.
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Based on Theorem 1.1 of (Mao, 2007), we conclude that if ∥HXt∥ ≤ −ρ where λ∗ is the largest negative eigenvalue
of H, V (Xt) > 0 and V̇ (Xt) ≤ 0, and that therefore the dynamics of Xt is bounded inside this compact set and cannot
diverge.

From this result, we understand that the dynamics of the ODE of USAM might converge to a saddle or even a maximum if it
gets too close to it.

C.4. SDE DNSAM

W.l.o.g, we take H to be diagonal and if it has negative eigenvalues, we denote the largest negative eigenvalue with λ∗.
Based on Eq. (152) and in the case where ΣSGD = ς2Id, the SDE of DNSAM for the quadratic loss is given by

dXt = −H

(
Id +

ρH

∥HXt∥

)
Xtdt+

√
ης

(
Id +

ρH

∥HXt∥

)
dWt (152)

Observation C.7. For all ρ > 0, there exists an ϵ > 0 such that if ∥HXt∥ ∈ (ϵ,−ρλ∗), the dynamics of Xt is
attracted towards the origin. If the eigenvalues are all positive, the condition is ∥HXt∥ ∈ (ϵ,∞). On the contrary, if
∥HXt∥ < ϵ, then the dynamics is pushed away from the origin.

Formal calculations to support Observation C.7. Let V (t, x) := e−t x⊤Kx
2 be the Lyapunov function, where K is a diago-

nal matrix with strictly positive eigenvalues (h1, · · · , hd). Therefore, we have

V (Xt) = e−t 1

2

d∑
i=1

ki
(
Xi

t

)2
> 0 (153)

and

LV (t,Xt) = −e−t 1

2

d∑
i=1

ki
(
Xi

t

)2
+ e−t

d∑
i=1

ki(−λi)

(
1 +

ρλi

∥HXt∥

)(
Xi

t

)2
+ e−t ης

2

2

d∑
i=1

ki

(
1 +

ρλi

∥HXt∥

)2

= −e−t

(
1

2

d∑
i=1

ki
(
Xi

t

)2
+

d∑
i=1

kiλi

(
1 +

ρλi

∥HXt∥

)(
Xi

t

)2 − ης2

2

d∑
i=1

ki

(
1 +

ρλi

∥HXt∥

)2
)

(154)

Let us analyze the terms

kiλi

(
1 +

ρλi

∥HXt∥

)(
Xi

t

)2
.

When λi > 0, these quantities are all positive. When λi < 0, these quantities are positive only if
(
1 + ρλi

∥HXt∥

)
≤ 0, that is

if ∥HXt∥ ≤ −ρλi. Let us now assume that

∥HXt∥ ≤ −ρλi, ∀i s.t. λi < 0.

that is, ∥HXt∥ ≤ −ρλ∗ such that λ∗. Then, we observe that

• If ∥HXt∥ → 0, LV (t,Xt) ≥ 0

• If ς is small enough, for ∥HXt∥ ≈ −ρλ∗, LV (t,Xt) ≤ 0

Given that all functions and functionals involved are continuous, there exists ϵ > 0 such that

• If ∥HXt∥ < ϵ, LV (t,Xt) ≥ 0

• If ς is small enough, for ∥HXt∥ ∈ (ϵ,−ρλ∗), LV (t,Xt) ≤ 0
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Based on Theorem 2.2 of (Mao, 2007), we understand that if the dynamics is sufficiently close to the origin, it gets pulled
towards it, but if gets too close, it gets repulsed from it. If there is no negative eigenvalue, the same happens but the dynamics
can never get close to the minimum.

D. Experiments
In this section, we provide additional details regarding the validation that the SDEs we proposed indeed weakly approximate
the respective algorithms. We do so on a quadratic landscape, on a classification task with a deep linear model, a binary
classification task with a deep nonlinear model, and a gregression task with a teacher-student model. Since our SDEs
prescribe the calculation of the Hessian of the whole neural network at each iteration step, this precludes us from testing our
theory on large-scale models.

D.1. SDE Validation

Quadratic In this paragraph, we provide the details of the Quadratic experiment. We optimize the loss function
f(x) = 1

2x
⊤Hx of dimension d = 20. The Hessian H is a random SPD matrix generated using the standard Gaussian

matrix A ∈ Rd×2d as H = AA⊤/(2d). The noise used to perturb the gradients is Z ∼ N (0,Σ) where Σ = σId and
σ = 0.01. We use η = 0.01, ρ ∈ {0.001, 0.01, 0.1, 0.5}. The results are averaged over 3 experiments.

Deep Linear Classification In this paragraph, we provide the details of the Deep Linear Classification experiment. This is
a classification task on the Iris Database (Dua & Graff, 2017). The model is a Linear MLP with 1 hidden layer with a width
equal to the number of features and we optimize the cross-entropy loss function. The noise used to perturb the gradients is
Z ∼ N (0,Σ) where Σ = σId and σ = 0.01. We use η = 0.01, ρ ∈ {0.001, 0.01, 0.1, 0.2}. The results are averaged over 3
experiments.

Deep Nonlinear Classification In this paragraph, we provide the details of the Deep Nonlinear Classification experiment.
This is a binary classification task on the Breast Cancer Database (Dua & Graff, 2017). The model is a Nonlinear MLP with
1 hidden layer with a width equal to the number of features, sigmoid activation function, and we optimize the ℓ2-regularized
logistic loss with parameter λ = 0.1. The noise used to perturb the gradients is Z ∼ N (0,Σ) where Σ = σId and σ = 0.01.
We use η = 0.01, ρ ∈ {0.001, 0.01, 0.1, 0.5}. The results are averaged over 3 experiments.

Deep Teacher-Student Model In this paragraph, we provide the details of the Teacher-Student experiment. This is a
regression task where the database is generated by the Teacher model based on random inputs in R5 and output in R. The
Teacher model is a deep linear MLP with 20 hidden layers with 10 nodes, while the Student is a deep nonlinear MLP with
20 hidden layers and 10 nodes. We optimize the MSE loss. The noise used to perturb the gradients is Z ∼ N (0,Σ) where
Σ = σId and σ = 0.001. We use η = 0.001, ρ ∈ {0.0001, 0.001, 0.03, 0.05}. The results are averaged over 3 experiments.

D.1.1. IMPORTANCE OF THE ADDITIONAL NOISE.

In this section, we empirically test the importance of using the correct diffusion terms the USAM SDE Eq. (9) and the
DNSAM SDE Eq. (10). Let us introduce two new SDEs where the diffusion term is the one of the SGD SDE in Eq. (18)
rather than that from the correct SDEs:

dXt = −∇f̃USAM(Xt)dt+
√
η (ΣSGD(Xt))dWt, where f̃USAM(x) := f(x) +

ρ

2
∥∇f(x)∥22. (155)

dXt = −∇f̃DNSAM(Xt)dt+
√

η (ΣSGD(Xt))dWt, where f̃DNSAM(x) := f(x) + ρ∥∇f(x)∥2. (156)

In Figure 6 we observe how approximating USAM with the SGD SDE (Eq. (18)) brings a large error in all four cases.
Introducing the correct drift but excluding the correct covariance, i.e. using Eq. (155), reduces the error, but the best
performer is the complete USAM SDE Eq. (7). From Figure 7, the same observations hold for DNSAM.
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Figure 6. USAM - Comparison in terms of g1(x) with respect to ρ - Quadratic (left); Teacher-Student (center-left); Deep linear class
(center-right); Deep Nonlinear class (right).
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Figure 7. DNSAM - Comparison in terms of g1(x) with respect to ρ - Quadratic (left); Teacher-Student (center-left); Deep linear class
(center-right); Deep Nonlinear class (right).

From these experiments, we understand that naively adding noise to the ODEs of USAM and SAM does not provide SDEs
with sufficient approximation power. This is consistent with our proofs.

D.2. Quadratic Landscape

Interplay Between Hessian, ρ, and the Noise. In this paragraph, we provide additional details regarding the interplay
between the Hessian, ρ, and the noise. In the first experiment represented in Figure 8, we fix ρ =

√
η, where η = 0.001 is

the learning rate. Then, we fix the Hessian H ∈ R100×100 to be diagonal with random positive eigenvalues. Then, we select
the scaling factors σ ∈ {1, 2, 4}. For each value of σ, we optimize the quadratic loss with SGD and DNSAM where the
hessian is scaled up by a factor σ. The starting point is x0 = (0.02, · · · , 0.02) and the number of iterations is 20000. The
results are averaged over 5 runs.

In the second experiment represented in Figure 11, we fix the Hessian H with random positive eigenvalues. then, we select
ρ =

√
η, where η = 0.001 is the learning rate. Then, we select the scaling factors σ ∈ {1, 2, 4}. For each value of σ, we

optimize the quadratic loss with SGD and DNSAM where the hessian is fixed and ρ is scaled up by a factor σ. The starting
point is x0 = (0.02, · · · , 0.02) and the number of iterations is 20000. The results are averaged over 5 runs.

The very same setup holds for the experiments carried out for USAM and is represented in Figure 9 and Figure 13.

The very same setup holds for the experiments carried out for SAM and is represented in Figure 10 and Figure 12.

Stationary Distribution Convex Case In this paragraph, we provide the details of the experiment about the dynamics of
the SDE of DNSAM in the quadratic convex case of dimension 2. The hessian is diagonal with both eigenvalues equal to 1.
We select ρ =

√
η, where η = 0.001 is the learning rate. In the first image on the left of Figure 14, we show the distribution

of 105 trajectories all starting at (0.02, 0.02) after 5 · 104 iterations. In the second image, we plot the number of trajectories
that at a certain time are inside a ball of radius 0.007, e.g. close to the origin. As we can see in greater detail in the third
image, all of them are initialized outside such a ball, then they get attracted inside, and around the 600-th iteration they
get repulsed out of it. We highlight that the proportion of points inside/outside the ball is relatively stable. In the fourth
image, we count the number of trajectories that are jumping in or out of such a ball. All of the trajectories enter the ball
between the 400-th and 500-th iteration, and then they start jumping in and out after the iteration 600. We conclude that this
experimental evidence are supporting the claim that the origin attracts the dynamics, but repulses it at the moment that the
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Figure 8. Role of the Hessian - Left: Comparison between SGD and DNSAM for fixed rho and larger Hessians. Right: Ratio between the
Loss of DNSAM for different scaling of the Hessian by the loss of the unscaled case of SGD.
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Figure 9. Role of the Hessian - Left: Comparison between SGD and USAM for fixed rho and larger Hessians. Right: Ratio between the
Loss of USAM for different scaling of the Hessian by the loss of the unscaled case of SGD.
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Figure 10. Role of the Hessian - Left: Comparison between SGD and SAM for fixed rho and larger Hessians. Right: Ratio between the
Loss of PSAM for different scaling of the Hessian by the loss of the unscaled case of SGD.
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Figure 11. Role of ρ - Left: Comparison between SGD and DNSAM for fixed hessian and larger ρ values. Center: Zoom at convergence.
Right: Ratio between the Loss of DNSAM for different scaling of the Hessian by the loss of the unscaled case of DNSAM.
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Figure 12. Role of ρ - Left: Comparison between SGD and PSAM for fixed hessian and larger ρ values. Center: Zoom at convergence.
Right: Ratio between the Loss of PSAM for different scaling of the Hessian by the loss of the unscaled case of PSAM.
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Figure 13. Role of ρ - Left: Comparison between SGD and USAM for fixed hessian and larger ρ values. Center: Zoom at convergence.
Right: Ratio between the Loss of USAM for different scaling of the Hessian by the loss of the unscaled case of USAM.
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Figure 14. Convex Quadratic - Left: Distribution points around the origin is scarcer near to the origin; Center-Left: Number of trajectories
outside a small ball around the origin increases over time; Center-Right: All the trajectories eventually enter the ball and then start exiting
it; Right: There is a constant oscillation of points in and out of the ball.

trajectories get too close to it.

Stationary Distribution Saddle Case In this paragraph, we provide the details of the experiment about the dynamics
of the SDE of DNSAM in the quadratic saddle case of dimension 2. The hessian is diagonal with eigenvalues equal to 1
and −1. We select ρ =

√
η, where η = 0.001 is the learning rate. In the first image on the left of Figure 4, we show the

distribution of 105 trajectories all starting at (0.02, 0.02) after 5 · 104 iterations. In the second image, we plot the number of
trajectories that at a certain time are inside a ball of radius 0.007, e.g. close to the origin. As we can see in greater detail in
the third image, all of them are initialized outside such a ball, then they get attracted inside, and around the 1200-th iteration
they get repulsed out of it. We highlight that the proportion of points outside the ball is stably increasing, meaning that the
trajectories are slowly escaping from the saddle. In the fourth image, we count the number of trajectories that are jumping
in or out of such a ball. All of the trajectories enter the ball between the 950-th and 1000-th iteration, and then they start
jumping in and out after the iteration 1200. We conclude that this experimental evidence are supporting the claim that the
origin attracts the dynamics, but repulses it at the moment that the trajectories get too close to it, even when this is a saddle.

Escaping the Saddle - Low Dimensional In this paragraph, we provide details for the Escaping the Saddle experiment
in dimension d = 2. As in the previous experiment, the saddle is a quadratic of dimension 2 and its hessian is diagonal
with eigenvalues equal to 1 and −1. We select ρ =

√
η, where η = 0.001 is the learning rate. We initialize the GD, USAM,

SAM, SGD, PUSAM, DNSAM, and PSAM in the point x0 = (0, 0.01), e.g. in the direction of the fastest escape from the
saddle. In the left of Figure 15, we observe that GD and USAM manage to escape the saddle while SAM remains stuck. We
highlight that running for more iterations would not change this as SAM is oscillating across the origin. In the second figure,
we observe that the stochastic optimizers escape the saddle quicker than their deterministic counterpart and even PSAM and
DNSAM manage to escape. Results are averaged over 3 runs.

Escaping the Saddle - High Dimensional In this paragraph, we provide details for the Escaping the Saddle experiment in
dimension d = 400. We fix the Hessian H ∈ R400×400 to be diagonal with random positive eigenvalues. To simulate a
saddle, we flip the sign of the smallest 10 eigenvalues. We select ρ =

√
η, where η = 0.001 is the learning rate. We study

the optimization dynamics of SAM, PSAM, and DNPSAM as we initialize the process closer and closer to the saddle in the
origin. The starting point x0 = (1, · · · , 1) is scaled with factors σ ∈ {100, 10−4, 10−8} and we notice that the one scaled
with σ = 1 escapes slowly from the saddle. The one scaled with σ = 10−8 experiences a sharp spike in volatility and jumps
away from the origin and ends up escaping the saddle faster than the previous case. Finally, the one scaled with σ = 10−4

stays trapped in the saddle. Results are represented in Figure 15. Results are averaged over 3 runs.

D.3. Linear Autoencoder

In this paragraph, we provide additional details regarding the Linear Autoencoder experiment. In this experiment, we
approximate the Identity matrix of dimension 20 as the product of two square matrices W1 and W2. As described in (Kunin
et al., 2019), there is a saddle of the loss function around the origin. Inspired by the results obtained for the quadratic
landscape, we test if SAM and its variants struggle to escape this saddle as well. To do this, we initialize the two matrices
with entries normally distributed. We select ρ =

√
η, where η = 0.001 is the learning rate. Then, we study the dynamics

of the optimization process in case we scale the matrices by a factor σ ∈ {10−2, 10−3, 5 · 10−3, 10−4, 10−5}. As we can
see from the first image of Figure 5, initializing SAM far from the origin, that is σ = 0.01, allows SAM to optimize the
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Figure 15. Escaping the Saddle - Top-Left: Comparison between GD, SAM, and USAM at escaping from a quadratic saddle. Top-Center-
Left: Comparison between PGD, PSAM, DNSAM, and PUSAM at escaping from a quadratic saddle. Top-Center-Right: If close enough
to the origin, DNSAM escapes from the origin immediately due to a volatility spike. Top-Right: The DNSAM initialized far from the
origin starts escaping from it and the PSAM which jumped away from it efficiently escapes the saddle.
Bottom: Both SAM and PSAM get stuck in the origin if initialized too close to it.
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Figure 16. Embedded Saddle - Left: SAM does not escape the saddle if it is too close to it. Center-Left: DNSAM always escapes it, but
more slowly if initialized closer to the origin. If extremely close, it recovers speed thanks to a volatility spike. Center-Right: Similarly to
SAM, PSAM gets progressively slower the closer it gets initialized to the origin. Right: SAM is stuck while the other optimizers manage
to escape.

loss. Decreasing σ implies that SAM becomes slower and slower at escaping the loss up to not being able to escape it
anymore. The second image shows that the very same happens if we use DNSAM. However, if the process is initialized
extremely close to the origin, that is σ = 10−5, then the process enjoys a volatility spike that pushes it away from the origin.
This allows the process to escape the saddle quickly and effectively. In the third image, we observe that similarly to SAM,
PSAM becomes slower at escaping if σ is lower. In the fourth image, we compare the behavior of GD, USAM, SAM, PGD,
PUSAM, DNSAM, and PSAM where σ = 10−5. We observe that DNSAM is the fastest algorithm to escape the saddle,
followed by the others. As expected, SAM does not escape. Results are averaged over 3 runs.

D.4. Embedded Saddle

In this paragraph, we provide additional details regarding the Embedded Saddle experiment. In this experiment, we optimize
a regularized quadratic d-dimensional landscape L(x) = 1

2x
⊤Hx+ λ

∑d
i=1 x

4
i . As described in (Lucchi et al., 2022), if

H is not PSD, there is a saddle of the loss function around the origin and local minima away from it. We fix the Hessian
H ∈ R400×400 to be diagonal with random positive eigenvalues. To simulate a saddle, we flip the sign of the smallest 10
eigenvalues. The regularization parameter is fixed at λ = 0.001. We use η = 0.005, ρ =

√
η, run for 200000 and average

over 3 runs. In Figure 16 we see the very same observations we had for the Autoencoder.
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Name Algorithm Theorem for SDE
SGD xk+1 = xk − η∇fγk

(xk) Theorem 1 (Li et al., 2017)

SAM xk+1 = xk − η∇fγk

(
xk + ρ

∇fγk (xk)

∥∇fγk (xk)∥

)
Theorem 3.5

USAM xk+1 = xk − η∇fγk
(xk + ρ∇fγk

(xk)) Theorem 3.2

DNSAM xk+1 = xk − η∇fγk

(
xk + ρ

∇fγk (xk)

∥∇fγk (xk)∥

)
Not Available

PGD xk+1 = xk − η∇f(xk) + ηZ Theorem 1 (Li et al., 2017)

PSAM xk+1 = xk − η∇f
(
xk + ρ ∇f(xk)+Z

∥∇f(xk)+Z∥

)
+ ηZ Theorem 3.6

PUSAM xk+1 = xk − η∇f (xk + ρ∇f(xk) + Z) + ηZ Theorem 3.3

PDNSAM xk+1 = xk − η∇f
(
xk + ρ∇f(xk)+Z

∥∇f(xk)∥

)
+ ηZ Theorem 3.4

Table 1. Comparison of algorithms for methods analyzed in the paper. The learning rate is η, the radius is ρ, and Z ∼ N (0,Σ) is the
injected noise.

Name Drift Term
SGD −∇f(x)
SAM −∇ (f(x) + ρE [∥∇fγ(x)∥2])
USAM −∇

(
f(x) + ρ

2E
[
∥∇fγ(x)∥22

])
PGD −∇f(x)
PSAM −∇ (f(x) + ρE [∥∇fγ(x)∥2])
PUSAM −∇

(
f(x) + ρ

2∥∇f(x)∥22
)

(P)DNSAM −∇ (f(x) + ρ∥∇f(x)∥2)

Table 2. Comparison of the drift terms of the SDEs for methods analyzed in the paper.

Name Diffusion Term Σ̃(x)

SGD
√
η (Σ(x))

1
2

SAM
√
η
(
Σ(x) + ρ

(
Σ̃(x) + Σ̃(x)⊤

))
E
[
(∇f (x)−∇fγ (x)) ·

(
E
[
Hγ(x)∇fγ(x)
∥∇fγ(x)∥2

]
− Hγ(x)∇fγ(x)

∥∇fγ(x)∥2

)⊤]
USAM

√
η
(
Σ(x) + ρ

(
Σ̃(x) + Σ̃(x)⊤

))
E
[
(∇f (x)−∇fγ (x)) (E [Hγ(x)∇fγ(x)]−Hγ(x)∇fγ(x))

⊤
]

PGD
√
ηΣ(x)

PSAM
√
η
(
Σ(x) + ρ

(
Σ̄(x) + Σ̄(x)⊤

))
H(x)E

[
(∇f (x)−∇fγ (x)) ·

(
E
[

∇fγ(x)
∥∇fγ(x)∥2

]
− ∇fγ(x)

∥∇fγ(x)∥2

)⊤]
PUSAM (Id + ρH(x)) (ηΣ (x))

1/2

(P)DNSAM
(
Id + ρ H(x)

∥∇f(x)∥2

)
(ηΣ(x))

1
2

Table 3. Comparison of the diffusion terms of SDEs for methods analyzed in the paper. The matrix Σ(x) is equal to Σ(x)SGD and
H(x) = ∇2f(x).
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