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Abstract

Motivated by the paradigm of reservoir comput-
ing, we consider randomly initialized controlled
ResNets defined as Euler-discretizations of neural
controlled differential equations (Neural CDEs),
a unified architecture which enconpasses both
RNNs and ResNets. We show that in the infinite-
width-depth limit and under proper scaling, these
architectures converge weakly to Gaussian pro-
cesses indexed on some spaces of continuous
paths and with kernels satisfying certain partial
differential equations (PDEs) varying according
to the choice of activation function φ, extend-
ing the results of Hayou (2022); Hayou & Yang
(2023) to the controlled and homogeneous case.
In the special, homogeneous, case where φ is
the identity, we show that the equation reduces
to a linear PDE and the limiting kernel agrees
with the signature kernel of Salvi et al. (2021a).
We name this new family of limiting kernels neu-
ral signature kernels. Finally, we show that in
the infinite-depth regime, finite-width controlled
ResNets converge in distribution to Neural CDEs
with random vector fields which, depending on
whether the weights are shared across layers, are
either time-independent and Gaussian or behave
like a matrix-valued Brownian motion.

1. Introduction
The symbiosis between differential equations and deep learn-
ing has become an active research area in recent years, no-
tably through the introduction of hybrid models named neu-
ral differential equations (Kidger, 2022). In fact, many
standard neural network architectures may be interpreted as
approximations to some differential equations.
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This approximation has been treated rigorously for finite-
width ResNets, which in the infinite-depth limit converge
in distribution to zero-drift neural stochastic differential
equations (Neural SDEs) with diffusion depending on the
choice of activation function (Cohen et al., 2021; Hayou,
2022; Marion et al., 2022; Cont et al., 2022).

The “dual” scenario of finite-depth and infinite-width neural
networks has also been the object of many recent studies
(Neal, 2012; Matthews et al., 2018; Novak et al., 2018).
Notably, through the unifying algorithmic language of Ten-
sor Programs designed by Yang (2019), many standard
feedforward, convolutional and recurrent architectures of
finite-depth can be shown to converge to Gaussian processes
(GPs) in the infinite-width limit.

In the context of deep learning for sequential data, finite-
width RNNs have been informally identified as approxi-
mations to neural controlled differential equations (Neural
CDEs) introduced by Kidger et al. (2020); Morrill et al.
(2021) and inspired from the homonymous class of dynami-
cal systems studied in rough analysis, a branch of stochastic
analysis providing a robust solution theory for differential
equations driven by irregular signals (Lyons, 1998; Lyons
et al., 2007; Friz & Hairer, 2020; Friz & Victoir, 2010).

However, contrarily to this widespread interpretation, the
Euler discretization of a Neural CDE with vector fields1 f
produces a recursive relation for the hidden state h in the
form of (1), where the increments of the input signal x enter
the recursion in a multiplicative manner rather than via an
additive interaction typically assumed in RNNs:

hk+1 = hk + f(hk)(xk+1 − xk). (1)

Furthermore, the addition of the previous hidden state hk
on the right-hand side of (1), commonly referred to as a
skip connection, is characteristic of ResNets and absent
in classical RNNs. We will refer to architectures defined
by (1) as homogeneous controlled ResNets. We will also
consider their inhomogenous counterparts where the map
f = f(k, hk) depends on the iteration k.

Dynamical systems in the form of (1) are often called reser-
voirs in the paradigm of reservoir computing (Tanaka et al.,

1Typically f is taken to be a randomly initialized feedforward
neural network with Gaussian weights and biases.
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2019; Lukoševičius & Jaeger, 2009; Verstraeten et al., 2007).
Contrarily to deep learning, in reservoir computing, only
the final readout linear map is trained, while the function f
is randomly sampled but remains untrained.

It is worth noting that Neural CDEs are deep learning mod-
els that map between infinite dimensional spaces of continu-
ous paths. Therefore, if these continuous models converge,
in the infinite-width limit, to some limiting GPs, the latter
should be equipped with kernel functions indexed on the
same spaces of continuous paths. In the sequel we will
demonstrate that controlled ResNet indeed behave like such
GPs in the large width-depth regime.

1.1. Contributions

Our objective here is to provide a rigorous mathematical
analysis of the behavior of controlled ResNets that are ran-
domly initialised with Gaussian weights and biases in the
large width and depth regimes. More specifically:

• We prove that both in the infinite-width-depth limit
these architectures converge weakly to GPs with lim-
iting kernels satisfying certain (possibly non-linear)
partial differential equations varying according to the
(in)homogeneity of the network and to the choice of
activation function φ (see Table 1). Moreover, we show
that under some further conditions on the regularity of
the driving paths the limits commute, i.e. the limiting
GP is unchanged upon reversing the order of the lim-
its. We name this new class of kernel neural signature
kernels.

• In the case where the system is homogeneous and φ
is the identity, we show that the equation reduces to a
linear PDE and the limiting kernel is proportional to
the signature kernel introduced in (Salvi et al., 2021a).

• We then prove that in the infinite-depth regime, finite-
width controlled ResNets converge in distribution to
Neural CDEs with random vector fields. In the inho-
mogeneous case, these fields behave as a matrix-valued
Brownian motion, while for homogeneous networks
they are time-independent and Gaussian.

1.2. Notation

Since we are mainly interested in studying multivariate time-
series, our data space will be a space of continuous paths on
the interval [0, 1]2 and with values in Rd, for some d ∈ N.
More specifically, we consider the space

X := {x ∈ C0([0, 1];Rd) : x(0) = 0,∃ẋ ∈ L2([0, 1];Rd)}
2The choice of the interval [0, 1] is not at all restrictive and has

been made to ease the notation.

of continuous paths with a square integrable derivative.

We denote by xj(t) ∈ R the jth coordinate of a path x ∈ X
for j ∈ {1, ..., d}. Given n paths X = {x1, . . . , xn} ⊂ X
and functions f : X → R, G : X × X → R we will
write f(X ) ∈ Rn for the vector [f(X )]α = f(xα) and
G(X ,X ) ∈ Rn×n for the matrix [G(X ,X )]βα = G(xα, xβ)
for any α, β ∈ {1, .., n}.

We will consider partitions D = {0 = t0 < · · · < tM = 1}
of the interval [0, 1] and write their length as ∥D∥ := M
and their mesh size as |D| := max

i=1,...,∥D∥
|ti − ti−1|.

For an activation function φ : R → R and a positive
semidefinite matrix Σ ∈ R2×2, in the paper we will re-
peatedly make use of the following function

Vφ(Σ) = Ez∼N (0,Σ)[φ(z1)φ(z2)].

The explicit form of Vφ changes significantly depending on
the activation function. We list it for a restricted class of
them in Proposition A.7 in the appendix.

Henceforth, we fix a probability space (Ω,F ,P).

The paper is organized as follows: in Section 2 we discuss
some related work, in Section 3 we study the inhomoge-
neous version and in Section 4 we analyse the homogeneous
version of controlled ResNets. We conclude in Section 5
with numerical results validating our claims. All proofs can
be found in the appendix.

2. Related Work
Results relating infinite-width limits of neural networks
to GPs have been extended from shallow networks (Neal,
2012) to richer architectures of feedforward (Lee et al.,
2018; Matthews et al., 2018), convolutional (Novak et al.,
2018; Garriga-Alonso et al., 2018) and recurrent (Alemo-
hammad et al., 2020) type. This line of work culminated
with the framework of Tensor Programs formulated in Yang
(2019) which offers an algorithmic procedure to systemati-
cally compute the limiting GP kernels for a wide range of
different architectures. One major advantage of this formal-
ism is that it makes it possible to consider weight sharing
between layers, something mostly avoided in previous liter-
ature but central in the types of systems we consider here.

The reverse scenario of infinite-depth limit of finite-width
architectures has mainly been explored for ResNets. In this
regime, appropriately rescaled ResNets have been shown to
behave like stochastic differential equations (SDEs) (Chen
et al., 2018; Cohen et al., 2021; Marion et al., 2022). In
particular, Hayou (2022) considers the simpler setting where
the architecture does not exhibit weight sharing (we refer
to this setting as inhomogeneous) and single out limiting
kernels of exponential type. In what follows, we will show
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that the exponential nature of the limiting kernels is some-
what kept intact even when the ResNets architectures are
controlled by an external stream of information, but that
the limiting kernels have more structure, particularly in the
homogeneous case.

It is natural to investigate the behavior of neural networks
when both the width and the depth are very large. The lit-
erature on the topic has particularly developed around the
infinite-width-then-depth limit, most notably with the deriva-
tion of the Edge of Chaos (Poole et al., 2016; Schoenholz
et al., 2017) which has shown how feedforward networks
suffer from a kind of information dispersal which limits the
propagation of the input signals through their depth. Note-
worthy are also the results in Li et al. (2021), where both
limits are taken together for some fixed depth-to-width ratio
and non-Gaussian behaviour at the limit of a specific kind
of ResNets is discovered, and in Li et al. (2022) where, in
the feedforward setting, stochastic dynamics are given for
the covariance between output layers in the same regime. In
the existing literature, the study most closely aligned with
our work is (Hayou & Yang, 2023) where the commutativity
of the limits is shown for residual Networks corresponding
to the simplest example of controlled ResNets: inhomoge-
neous ones, driven by linear controls. 3

As anticipated in the introduction, ResNets that are con-
trolled by sequential data streams are generalised forms of
RNNs and correspond to Euler discretizations of Neural
CDEs and variants (Kidger et al., 2020; Morrill et al., 2021;
Salvi et al., 2022; Fermanian et al., 2021). These models
offer a memory-efficient way to model functions of poten-
tially irregular signals in continuous-time and have achieved
state-of-the art performance on a wide range of time series
tasks (Singh et al., 2022; Bellot & Van Der Schaar, 2021;
Morrill et al., 2021). They stem from the well-understood
mathematics of controlled differential equations, which are
the central objects studied in rough analysis.

Rough path theory introduced by Lyons (1998) is a modern
mathematical framework focused on making precise the in-
teractions between highly oscillatory signals and non-linear
dynamical systems. The theory provides a deterministic
toolbox to recover many classical results in stochastic anal-
ysis without resorting to specific probabilistic arguments.
Notably, it extends Itô’s theory of SDEs far beyond the semi-
martingale setting and it has had a significant impact in the
development of the theory of regularity structures by Hairer
(2014), providing a mathematically rigorous description of
many stochastic PDEs arising in physics.

More recently, interest has grown rapidly to develop ma-

3To be precise one has to first expand our framework to include
different initial values, of the form Winx0, where x0 ∈ Rd is
the ”classical” model input. The corresponding control is then
xt = x0 + te1. Such richer models will be studied in future work.

chine learning algorithms based on rough path theoretical
tools, particularly in the context of time series analysis
(Kidger et al., 2019; Arribas et al., 2020; Lemercier et al.,
2021b). The signature, a centrepiece of the theory, provides
a top-down description of a stream; it captures crucial infor-
mation such as the order of different events occurring across
different channels, and filters out potentially superfluous
information, such as the sampling rate of the signal.

In reservoir computing, the trajectory of a dynamical system
is described through its interaction with a random dynami-
cal system that is capable of storing information. In rough
path theory the random system is replaced by a determin-
istic system given by the signature. Recently (Cuchiero
et al., 2021a;b) have investigated empirically the idea of a
continuous-time reservoir through the randomization of the
signature yielding controlled residual architectures similar
to the ones of interest to us.

A significant effort has been made to scale methods based
on the signature to high dimensional signals. Signature ker-
nels are defined as inner products of signatures and provide
an elegant solution to this challenge thanks to the recent
development of specific kernel tricks (Király & Oberhauser,
2019). Notably, Salvi et al. (2021a) establish that the signa-
ture kernel can be computed efficiently by solving a linear
PDE. Algorithms based on signature kernels have been used
in a wide range of applications including hypothesis testing
(Salvi et al., 2021b), cybersecurity (Cochrane et al., 2021),
and probabilistic forecasting (Toth & Oberhauser, 2020;
Lemercier et al., 2021a) among others.

3. Inhomogeneous controlled ResNets
We begin by considering the case of inhomogeneous con-
trolled ResNets. Contrarily to what one might expect, al-
though in this setting the residual map changes at each
iteration, the limiting kernels will be governed by simpler
differential equations than their homogeneous counterparts,
as it can be observed in Table 1. At an intuitive level, this
fact can be justified by noting that sharing common random
weights and biases throughout all iterations introduces a
more intricate dependence structure on the dynamics of the
system than if the weights and biases were independently
sampled at each iteration.

3.1. The model

Let DM = {0 = t0 < · · · < tM = 1} be a partition,
N ∈ N be the width, and φ : R → R an activation func-
tion. Define a randomly initialized, 1-layer inhomogeneous
controlled ResNet ΨM,N : X → R as follows

ΨM,N
φ (x) :=

〈
ψ,SM,N

tM (x)
〉
RN

3
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Table 1. PDEs satisfied by the limiting kernels in the infinite-width-depth limit of controlled ResNets. The first row is for the inhomoge-
neous case while the second row for the homogeneous one. The kernel ksig is the signature kernel (Salvi et al., 2021a).

Activation function
General case Identity case

∂tκ
x,y
φ (t) =

[
σ2
AVφ

((
κx,xφ (t) κx,yφ (t)
κx,yφ (t) κy,yφ (t)

))
+ σ2

b

]
⟨ẋt, ẏt⟩ κx,yid (t) =

(
σ2
a +

σ2
b

σ2
A

)
e
∫ t
0
⟨σAẋs,σAẏs⟩ds − σ2

b

σ2
A

∂t∂sKx,y
φ (s, t) =

[
σ2
AVφ

((
Kx,x

φ (s, s) Kx,y
φ (s, t)

Kx,y
φ (s, t) Ky,y

φ (t, t)

))
+ σ2

b

]
⟨ẋs, ẏt⟩ Kx,y

id (s, t) =
(
σ2
a +

σ2
b

σ2
A

)
kσAx,σAy
sig (s, t)− σ2

b

σ2
A

where ⟨·, ·⟩RN is the Euclidean inner product on RN , ψ ∈
RN is a random vector with entries [ψ]α

iid∼ N (0, 1
N ), and

where the random functions SM,N
ti : X → RN satisfy the

following recursive relation

SM,N
ti+1

= SM,N
ti +

d∑
j=1

(
Aj,iφ(SM,N

ti ) + bj,i
)
∆xjti+1

SM,N
t0 = a and ∆xjti = (xjti − xjti−1

)

for i = 0, ...,M , with initial condition [a]α
iid∼ N (0, σ2

a),
and Gaussian weights Ak,l ∈ RN×N and biases bk,l ∈ RN

sampled independently according to

[Aj,i]
β
α

iid∼ N
(
0,

σ2
A

N∆ti

)
, [bj,i]α

iid∼ N
(
0,
σ2
b

∆ti

)

with time step ∆ti = (ti − ti−1) > 0.

Here σa, σA > 0 and σb ≥ 0 are all model hyperparameters.

Remark. The time scaling 1
∆ti

in the random weights and
biases is crucial as it is exactly the scaling one needs to get
an Itô diffusion in the distributional infinite-depth limit, as
we will prove in Theorem 3.3 below.

3.2. The infinite-width-depth regime

The first problem we are interested in studying is that of
characterizing the limiting behavior of these neural networks
in the infinite-width-then-depth regime.

Theorem 3.1 states that in this regime, these architectures
converge weakly to GPs indexed on the path space X with
kernels satisfying a one-parameter differential equation.

Theorem 3.1. Let {DM}M∈N be a sequence of partitions
of [0, 1] such that |DM | → 0. Let the activation function
φ : R → R be linearly bounded, absolutely continuous and
with exponentially bounded derivative. Then the following

weak convergence4 holds

lim
M→∞

lim
N→∞

ΨM,N
φ = GP(0, κφ), (2)

where the positive semidefinite kernel κφ : X× X → R is
defined for any two paths x, y ∈ X as κφ(x, y) = κx,yφ (1),
where κx,yφ : [0, 1] → R is the unique solution of the follow-
ing differential equation

∂tκ
x,y
φ =

[
σ2
AVφ

((
κx,xφ κx,yφ

κx,yφ κy,yφ

))
+ σ2

b

]
⟨ẋt, ẏt⟩Rd (3)

with initial condition κx,yφ (0) = σ2
a.

If moreover φ is Lipschitz with φ(0) = 0 and x ∈ X ∩
C1, 12 , whereC1, 12 denotes the set ofC1 paths with 1

2 -Hölder
derivative, the limits can be exchanged and

lim
N→∞

lim
M→∞

ΨM,N
φ = lim

M→∞
lim

N→∞
ΨM,N

φ = GP(0, κφ).

Idea of proof. We prove the weak convergence (2) in Ap-
pendix B.1. The first step consists in showing, for a fixed
depth M , the existence of an infinite-width distributional
limit using the techniques established in (Yang, 2019); this
limit will be shown to be Gaussian and with covariance ker-
nels κx,yDM

: DM → R satisfying a difference equation. The
second step amounts to prove that given any sequence of
partitions DM with |DM | → 0, the sequence {κx,yDM

}M is
uniformly bounded and uniformly equicontinuous so that by
the Ascoli-Arzelà theorem the sequence admits a uniformly
convergent subsequence. Finally, we prove that the limit of
this subsequence is a solution of the differential equation
(3) and that this solution is actually unique.

The statement about commutativity of limits is proved in
Appendix B.3, after a characterization of the infinite-depth
limit under these more stringent regularity assumptions, by
proving that the distributional limit in depth is uniform in

4By weak convergence we mean that for any subset of paths
X = {x1, . . . , xn} ⊂ X the random vector ΨM,N

φ (X ) converges
in distribution to corresponding evaluations of the RHS limit.
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width. This generalizes the results of (Hayou & Yang, 2023)
in our more complex case.

In some cases we can explicitly characterize the limiting
kernels by solving analytically the differential equation (3),
as stated in the following corollary 5.
Corollary 3.2. With the same notation and assumptions
as in Theorem 3.1, upon taking φ = id the limiting kernel
admits the following explicit expression

κid(x, y) =
(
σ2
a +

σ2
b

σ2
A

)
exp

{
σ2
A

∫ 1

0

⟨ẋt, ẏt⟩Rd dt
}
− σ2

b

σ2
A

.

If φ = ReLU and x = y, then the limiting kernel satisfies

κφ(x, x) =
(
σ2
a +

2σ2
b

σ2
A

)
exp

{σ2
A

2

∫ 1

0

∥ẋt∥2Rd dt
}
− 2σ2

b

σ2
A

Remark. In Lemma B.12 in the appendix we show that in
the kernels governed by the dynamics (3), the parameters
σA and σb satisfy the following path-rescaling symmetry

κx,yφ (t;σA, σb) = κσAx,σAy
φ

(
t; 1,

σb
σA

)
.

Next we show that infinite-depth, finite-width networks are
solutions of SDEs where the vector fields are controlled by
the input stream. We will then specialise to the case φ = id
and identify the limiting kernel with κid from Corollary 3.2

3.3. The finite-width, infinite-depth regime

Our next result states that when their width N is fixed, these
networks converge to a well defined distributional limit as
their depth M tends to infinity. In particular, in this limit,
the random weights behave like white noise, and thanks to
the careful choice of time scaling we have made, the limit
is in fact a zero-drift Itô diffusion with diffusion coefficient
depending on the driving path.
Theorem 3.3. Let {DM}M∈N be a sequence of partitions
of [0, 1] such that |DM | → 0 as M → ∞. Assume the
activation function φ is Lipschitz and linearly bounded.
Let ρM (t) := sup{s ∈ DM : s ≤ t}. For any path
x ∈ X∩C1, 12 , where C1, 12 denotes the set of C1 paths with
1
2 -Hölder derivative, the RN -valued process t 7→ SM,N

ρM (t)(x)

converges in distribution, as M → ∞, to the solution
SN (x) of the following SDE

dSN
t (x) =

d∑
j=1

σA√
N
ẋjtdW

j
t φ(SN

t (x)) + σbẋ
j
tdB

j
t (4)

with SN
0 (x) = a and where W j ∈ RN×N and Bj ∈ RN

are independent Brownian motions for j ∈ {1, ..., d}.
5We note that these characterizations expressed by means of an

exponential are consistent with the results of (Hayou, 2022).

Idea of proof. The idea is proving that the finite difference
scheme defining the inhomogeneous architecture gets closer
and closer, as the mesh size of the partition becomes finer, to
a Euler discretization of Equation (4). One then concludes
with standard results which guarantee the convergence of
Euler discretizations to the relative SDE’s solution.

Remark. Equation (4) can be easily rewritten in more stan-
dard SDE form as follows (see Appendix for more details)

dSN
t (x) = σx(t,SN

t (x))dZt

where Zt ∈ RdN(N+1) is a standard Brownian motion,
independent from a and σx : [0, 1]× RN → RN×dN(N+1)

is an input-dependent matrix valued function.

Passing directly to the infinite-width limit is not as easy as
it could seem, Tensor Program arguments do not apply any
longer since they are built for discrete layers and ”collapse”
in the continuous case we have to now work with. In simpler
cases the limit can be found using McKean-Vlasov argu-
ments as in (Hayou, 2022) and we conjecture that similar
results can be found in this more general setting. We leave
such a study to future work.

In any case it is possible to directly prove this in the simplest
case, when φ = id. The result is proved in Appendix B.2.2.

4. Homogeneous controlled ResNets
In this section we consider the more complex setting of
networks in which the weights are shared across layers. We
will see that this weight-sharing feature will yield limiting
kernels governed by two-parameter, non-local partial dif-
ferential differential equations. We will follow a similar
structure as in the previous section, commenting on the
crucial differences along the way.

4.1. The Model

Define a randomly initialized, 1-layer homogeneous con-
trolled ResNet ΦM,N

φ : X → R as follows

ΦM,N
φ (x) :=

〈
ϕ, SM,N

tM (x)
〉
RN

where ϕ ∈ RN is the random vector [ϕ]α
iid∼ N (0, 1

N ), and
where the random functions SM,N

ti : X → RN satisfy the
following recursive relation

SM,N
ti+1

= SM,N
ti +

d∑
k=1

(
Akφ(S

M,N
ti ) + bk

)
∆xkti+1

with initial condition St0 = a with [a]α
iid∼ N (0, σ2

a), and
Gaussian weights Ak ∈ RN×N and biases bk ∈ RN sam-
pled independently according to

[Ak]
β
α

iid∼ N
(
0,
σ2
A

N

)
, [bk]α

iid∼ N
(
0, σ2

b

)
.
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As done in the homogeneous case, we now study the limiting
behavior of homogeneous controlled ResNets in the infinite-
width-depth limit; as in the in-homogeneous case of the
previous section, we will show that the limits commute.

4.2. The infinite-width-depth regime

Theorem 4.1 states that in this regime, these architectures
converge weakly to GPs indexed on the path space X with
kernels satisfying a two-parameters differential equation.

Theorem 4.1. Let {DM}M∈N be a sequence of partitions
of [0, 1] such that |DM | → 0 asM → ∞. Let the activation
function φ be linearly bounded, absolutely continuous and
with exponentially bounded derivative. Then the following
weak convergence holds

lim
M→∞

lim
N→∞

ΦM,N
φ = GP(0,Kφ) (5)

where the positive semidefinite kernel Kφ : X×X → R is de-
fined for any two paths x, y ∈ X as Kφ(x, y) = Kx,y

φ (1, 1)
where the function Kx,y

φ : [0, 1]× [0, 1] → R is the unique
solution of the following differential equation

∂s∂tKx,y
φ =

[
σ2
AVφ

(
Σx,y

φ (s, t)
)
+ σ2

b

]
⟨ẋs, ẏt⟩ (6)

where

Σx,y
φ (s, t) =

(
Kx,x

φ (s, s) Kx,y
φ (s, t)

Kx,y
φ (s, t) Ky,y

φ (t, t)

)
and with initial conditions for any s, t ∈ [0, 1]

Kx,y
φ (0, 0) = Kx,y

φ (s, 0) = Kx,y
φ (0, t) = σ2

a.

If moreover φ is Lipschitz the limits can be exchanged and

lim
M→∞

lim
N→∞

ΦM,N
φ = lim

N→∞
lim

M→∞
ΦM,N

φ = GP(0, κφ).

Remark. It is non-trivial to show not only that the problem
is well-posed but even that equation (6) is well defined
because the “instantaneous rate of change” ∂s∂tKx,y

φ (s, t)
at times s < t depends on the “past” values Kx,x

φ (s, s), on
the “present” values Kx,y

φ (s, t) and on the “future” values
Ky,y

φ (t, t). The nonlocal nature of these dynamics is such
that it is a priori not clear that the RHS of (6) even has
meaning since the matrix Σx,y

φ (s, t) could be not positive
semidefinite and Vφ is only defined on PSD matrices.

Idea of proof. Similarly to Theorem 3.1, due to the com-
plexity of the arguments, this result is proved in several
steps. In in Appendix C.1. The first step consists of showing
that the infinite width limit is well defined for any choice of
DM . This will be a GP defined by a kernel KDM×DM

found
as the terminal value of a finite difference scheme having the

same form as that of a Euler discretization, on DM ×DM ,
of equation (6). The second step consists in proving that
the kernels {KDM×DM

}M constitute, in a suitable metric,
a Cauchy sequence as |DM | → 0, that the limit is indepen-
dent from the chosen sequence of partitions and that it does
indeed uniquely solve equation (6). The final step, proved
in Appendix C.3, concerns the exchange of limits. After a
characterization of the infinite-depth limits, we will prove
that the distributional limit as depth goes to infinity is uni-
form in the width, thus we will be able to use the classical
Moore-Osgood theorem to justify the exchange.

When the activation function φ is the identity, equation (6)
reduces to a linear hyperbolic PDE. Upon inspection, we
unveil a surprising link with the signature kernel, a well-
studied object in rough analysis corresponding to an inner
product between two path-signatures, and that was shown
by Salvi et al. (2021a) to satisfy a similar PDE. This is the
content of the next corollary.

Corollary 4.2. Using the same notation and assumptions
as in Theorem 4.1, choosing φ = id the limiting kernel
satisfies the following identity

Kx,y
id (s, t) =

(
σ2
a +

σ2
b

σ2
A

)
kσAx,σAy
sig (s, t)− σ2

b

σ2
A

where kx,ysig is the signature kernel from (Salvi et al., 2021a)
which for any two paths x, y ∈ X and s, t ∈ [0, 1] satisfies
the following linear hyperbolic PDE

∂s∂tk
x,y
sig = ⟨ẋs, ẏt⟩kx,ysig (7)

with initial conditions kx,ysig (s, 0) = kx,ysig (0, t) = 1.

In other words we have unveiled a novel family of kernels
indexed on continuous paths which generalizes the signature
kernel in (Salvi et al., 2021a). We name this new class of
kernels neural signature kernels. We note that this gener-
alization is done directly at the level of the driving PDE
unlike the extensions studied in (Cass et al., 2021) which
use a different inner product structure on the space where
signatures live.

Remark. Analogously to the inhomogeneous case, the pa-
rameters σA and σb defining the neural signature kernels
governed by the dynamics in equation (6) satisfy the follow-
ing path-rescaling symmetry

Kx,y
φ (s, t;σA, σb) = KσAx,σAy

φ

(
s, t; 1,

σb
σA

)
as shown in Lemma C.15 in the appendix.

Remark. For non-linear activation functions φ, the neural
signature kernel non-linear PDE (6) and the id-neural sig-
nature kernel linear PDE (7) might in principle admit the
same solution, which would mean essentially that linear and
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Figure 1. Fixed input y(t) := cos(15t) + 3et. Histogram of 700 independent realizations of N−1 ⟨S1(y), S1(y)⟩RN for ReLU-
RandomizedSignatures S(y) ∈ RN , N ∈ {50, 100, 200}, plotted against Closest Gaussian Fit, ReLU-NeuralSigKer and id-NeuralSigKer.

non-linear controlled ResNets behave in the same way in the
infinite-width-depth regime. In in Figure 1 we show empiri-
cally that this is not the case in general, by comparing the
limiting empirical distributions for φ = id and φ = ReLU .

4.3. The finite-width, infinite-depth regime

Our next result states that when their width N is fixed,
homogeneous controlled ResNets converge in distribution,
in [0, 1], to a Neural CDE with random vector fields.

Theorem 4.3. Let {DM}M∈N be a sequence of partitions
of [0, 1] such that |DM | → 0 as M → ∞. Assume the
activation function φ is Lipschitz and linearly bounded.
Let x ∈ X and let ρM (t) := sup{s ∈ DM : s ≤ t}.
Then, the RN -valued process t 7→ SM,N

ρM (t)(x) converges in
distribution6, as M → ∞, to the solution SN (x) of the
following Neural CDE

dSN
t (x) =

d∑
j=1

(
Ajφ(S

N
t (x)) + bj

)
dxjt (8)

where Aj ∈ RN×N and bj ∈ RN are sampled according in
the definition of the homogeneous controlled ResNet.

Idea of proof. If we fix a, the Aks and the bks to be the
same for all DM then we have uniform convergence by
classical results. The rate of convergence can be bounded
with some constants depending on the entries of a, Ak, bk
and which, thanks to Gaussianity, have finite expectation. It
is just a matter of applying the classical portmanteau lemma
to conclude.

Remark. This can be naturally extended in order to take
into consideration the joint distribution for different input
choices.

The solutions to equation (8) have been informally intro-
duced in (Cuchiero et al., 2021b; Akyildirim et al., 2022) as

6As random variables with values in L∞([0, 1];RN ).

lower dimensional approximations of path-signatures, and
have been dubbed by the authors randomized signatures.

Taking directly the infinite width limit is once again far from
trivial, reasoning à la Tensor Program quickly collapse and
there is no clear possible future path corresponding to the
McKean-Vlasov ideas for the inhomogeneous case. The
problem is that the randomness is in the vector fields them-
selves and not in the driving paths, courtesy of the cross-
layer dependencies in the homogeneous networks. This is
why it’s necessary to sidestep the problem by proving the
existence of uniform convergence bounds.

4.4. The infinite-depth-then-width regime: φ = id

As anticipated, contrary to the inhomogeneous case, in the
current homogeneous setting, when φ is the identity, we
are able to prove directly that the limits in Equation (5)
commute as well as explicit convergence bounds.
Theorem 4.4. If φ = id and for any x, y ∈ X

1

N

〈
SN
s (x), SN

t (y)
〉
RN

L2

−−−−→
N→∞

Kx,y
id (s, t)

on [0, 1]2. Moreover the convergence is of order O( 1
N ).

5. Numerics
In this section, we first illustrate theoretical results estab-
lished in Section 4 and then outline numerical considerations
to scale the computation of signature kernels.

5.1. Convergence of homogeneous controlled ResNets

We start by illustrating the convergence in distribution of a
homogeneous controlled ResNet to a GP endowed with neu-
ral signature kernel as per Theorem 4.1. To this aim, we con-
sider a homogeneous ResNet ΦM,N

φ with activation function
φ = ReLU, and (σa, σA, σb) = (0.5, 1., 1.2). For R = 250
realizations of the weights and biases, we run the model on
a 2-dimensional path x : t 7→ (sin(15t), cos(30t) + 3et)
observed at 100 regularly spaced time points in [0, 1]. We

7
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Figure 2. Mean squared error of 1
N

〈
SN
1 (x), SN

1 (y)
〉
RN , the esti-

mator of Kx,y
id (1, 1), as a function of the width N on a logarithmic

scale. Standard deviations were obtained by repeating the experi-
ment 5 times.

then verify that, as N increases, ΦM,N
φ (x) converges to

a Gaussian random variable with mean zero and variance
Kφ(x, x). This limiting variance is computed by solving
Equation (6) on a fine discretization grid. As it can be ob-
served on Figure 3 the Gaussian fit for this one-dimensional
marginal gets better as N increases. Further results can be
found in the appendix.

We then provide empirical evidence for the order of conver-
gence provided in Theorem 4.4. Here, we consider a linear
homogeneous ResNet, controlled by x and y, two sample
paths from a zero-mean GP with RBF kernel rRBF(s, t) =
exp (−5(s− t)2) with 50 observation points in [−2, 2].
Similarly to the previous setup, we run the model with
M = 250 different random initializations to estimate the
mean squared error E[( 1

N ⟨SN
1 (x), SN

1 (y)⟩ − Kid(x, y))
2]

increasing the width N . Our empirical results, as displayed
on Figure 2, align with the theoretical convergence rate.

5.2. Scaling signature kernels

The signature kernel of two paths is typically computed
by approximating the solution of the PDE in (7) on a 2-
dimensional time grid, which scales quadratically with the
discretization step of the solver. Although an efficient nu-
merical scheme leveraging GPU computations to update the
solution at multiple time points on the grid in parallel has
been proposed in Salvi et al. (2021a), the maximum num-
ber of threads in a GPU block imposes a hard limit on the
discretization step of the solver, limiting the applicability of
signature kernel methods to long time series. Theorem 4.4
offers a new way to compute the signature kernel by solving
two CDEs linearly in time instead of one PDE quadrati-
cally in time; one would first run a wide and infinite-depth
ResNet on the two control paths of interest, and then com-

pute the (rescaled) dot-product between the outputs of the
penultimate layer. This approach allows for more flexibility
regarding the choice of path interpolations and numerical
solvers, as several options are made readily available in
dedicated python packages such as torchcde (Kidger et al.,
2020). Next, we describe possible ways to increase further
the scalability of this approach.

Log-ODE method To further improve scalability of Neu-
ral CDEs for long time series Morrill et al. (2021) made use
of the so-called log-ODE scheme to forward-solve the differ-
ential equation on much larger time intervals than the ones
that would be expected given the sampling rate or length
of the data. We leave the investigation of this numerical
scheme for computing signature kernels as future work.

Sparse random matrices The forward pass of a ResNet
involves several (M × d where M is the number of time
steps, and d the dimension of the input path) matrix-vector
multiplications where the entries of each N -by-N matrix
are Gaussian distributed. As remarked in (Dong et al., 2020),
in the context of random RNNs, to speed-up these computa-
tions, the dense weight matrices can be replaced by struc-
tured random matrices given by the products of random
(binary) diagonal matrices and Walsh-Hadamard matrices.
The complexity of the matrix-vector product can be reduced
to O(N logN) leveraging the fast Hadamard transform al-
gorithm (without sampling the Walsh-Hadamard matrices).

Random Fourier features Several machine learning use
cases of the signature kernel have provided empirical ev-
idence that embedding the input paths pointwise in time
in a feature space can be beneficial to increase the perfor-
mance of kernel methods on sequential data. In particular,
when the paths evolve in a Euclidean space, the RBF kernel
often turns out to be a good choice. Although this em-
bedding is infinite-dimensional, random Fourier features
(Rahimi & Recht, 2007) make it possible to approximate
it by a finite-dimensional one. One could then investigate
randomly initialized ResNets, controlled by sequences of
such approximate embeddings.

6. Conclusion and future work
In this paper we considered controlled ResNets defined as
Euler-discretizations of Neural CDEs. We showed that in
both the infinite-depth-then-width and in the infinite-width-
then-depth limit, these converge weakly to the same GP
indexed on path space endowed with neural signature ker-
nels satisfying certain (possibly non-linear) PDEs varying
according to the choice of activation function φ. In the
special case where φ is the identity, we showed that the
equation reduces to a linear PDE and the limiting kernel
agrees with the signature kernel. In this setting, we also pro-
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Figure 3. Empirical quantiles against the theoretical quantiles of N (0,Kx,x
φ (1)) for N ∈ {10, 100, 500} with φ = ReLU

vided explicit convergence rates. Finally, we showed that in
the infinite-depth regime, finite-width controlled ResNets
converge in distribution to Neural CDEs with random vector
fields which are either time-independent and Gaussian, if
the system is homogeneous, or behave like a matrix-valued
Brownian motion, if the system is inhomogeneous.

We believe that a rigorous investigation of the functional
analytic properties of the reproducing kernel Hilbert spaces
(RKHSs) associated to the new family of neural signature
kernels is also a compelling future research direction. In
particular, it would allow to build an understanding of the
expressivity and generalization properties of these kernels.

In the homogeneous setting, the vector fields are constant
functions while in the in-homogeneous setting they are de-
scribed by white noise. Investigating the intermediate regu-
larity cases is an interesting avenue for future research; for
example considering matrices and biases sampled from of
Fractional Brownian Motion increments with Hurst expo-
nent H ∈ [0, 1] (the inhomogeneous case corresponds to
the case H = 0.5 while the homogeneous one to H = 1).

Last but not least, establishing expressions and analyzing
the associated Neural Tangent Kernels (NTK) (Jacot et al.,
2018; Yang, 2020) would provide quantitative insights on
the training mechanism of Neural CDEs by gradient descent.

All the experiments presented in this paper are repro-
ducible following the code at https://github.com/
MucaCirone/NeuralSignatureKernels
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A. Preliminaries
In this section we are going to state some preliminary results and considerations which we are going to refer to through the
entirety of the text.

Throughout the paper we fix a probability space (Ω,F ,P).

A.1. Assumptions on path regularity

Since we are mainly interested in studying time-series, our data space will be a space of paths, more specifically we are
going to consider the space

X := {x ∈ C0([0, 1];Rd) : x(0) = 0,∃ẋ ∈ L2([0, 1];Rd)}

i.e. X is the space of continous paths which have a square integrable derivative. X is the closed subset of the Sobolev space(
W 1,2([0, 1])

)d
made of those functions starting at the origin.

Note that every path x ∈ X can be uniquely written as

xt =

∫ t

0

ẋsds

thus it naturally corresponds to the space L2([0, 1];Rd) trough the identification x 7→ ẋ. This identification gives the space
the natural norm ∥x∥X = ∥ẋ∥L2 .

This norm is equivalent to the induced norm from
(
W 1,2([0, 1])

)d
since

∥ẋ∥2L2 ≤ ∥x∥2W 1,2 =

∫ 1

0

|xs|2ds+ ∥ẋ∥2L2 =

∫ 1

0

|
∫ s

0

ẋrdr|2ds+ ∥ẋ∥2L2

≤
∫ 1

0

∫ 1

0

|ẋr|2drds+ ∥ẋ∥2L2 = 2 ∥ẋ∥2L2

for x ∈ X, hence (X, ∥·∥X) is a Banach space. Moreover one can easily see that every x ∈ X has bounded variation and

∥x∥1−var,[0,1] =

∫ 1

0

|ẋt|dt ≤

√∫ 1

0

|ẋt|2dt = ∥x∥X

Given n paths X = {x1, . . . , xn} ⊂ X and functions f : X → R, G : X× X → R we will write f(X ) ∈ Rn for the vector
[f(X )]α = f(xα) and G(X ,X ) ∈ Rn×n for the matrix [G(X ,X )]βα = G(xα, xβ) for any α, β ∈ {1, .., n}.

A.2. Assumptions on the activation function

Now we are going to state the main assumptions on the activation function φ : R → R and prove some important technical
results of which we will frequently make use in the following sections. We will particularly be interested in how regularity
assumptions made on φ influence the regularity of the expectations of Equation (6) and (3).

Here are the crucial assumptions we make on the activation:

Assumption A.1. The activation function φ : R → R is linearly bounded i.e. such that there exist some M > 0 such that
|φ(x)| ≤M(1 + |x|).
Assumption A.2. The activation function φ : R → R is absolutely continuous and with exponentially bounded derivative.

Lemma A.3. If the activation function φ : R → R is K-Lipschitz then its componentwise extension φ : RN → RN

is K-Lipschitz too. If the activation function φ : R → R is M -linealy-bounded then its componentwise extension is√
2NM -linealy-bounded.

13
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Proof. Regarding the first proposition, for x, y ∈ Rn we have

|φ(x)− φ(y)|2RN =

N∑
i=1

|φ(xi)− φ(yi)|2 ≤
N∑
i=1

K2|xi − yi|2 = K2|x− y|2RN

Concerning the second, notice how

|φ(x)|2RN =

N∑
i=1

|φ(xi)|2 ≤
N∑
i=1

M2(1 + |xi|)2 ≤ 2M2
N∑
i=1

(1 + |xi|2)

= 2M2(N + |x|2Rn) ≤ 2NM2(1 + |x|2RN )

thus |φ(x)|RN ≤
√
2NM(1 + |x|RN ) since

√
1 + ϵ ≤ 1 +

√
ϵ for all ϵ ≥ 0.

Remark. Note how we have proved also that, under the linear boundedness assumption, using the same final bound

|φ(x)|RN ≤
√
2M(

√
N + |x|RN ) (9)

A.3. Positive semidefinite matrices and the map Vφ

Definition A.4. Let PSD2 denote the set of 2× 2 positive semidefinite matrices

PSD2 := {Σ ∈ R2×2 : Σ = ΣT ; ([Σ]21)
2 ≤ [Σ]11[Σ]

2
2; 0 ≤ [Σ]11 ∧ [Σ]22}

For a fixed R > 0 we define the space

PSD2(R) := {Σ ∈ PSD2 :
1

R
≤ [Σ]11, [Σ]

2
2 ≤ R}

Lemma A.5. Under Assumption A.2 and for any R > 0 the function Vφ : PSD2(R) → R defined for any Σ ∈ PSD2(R)
as

Vφ(Σ) = E(Zx,Zy)∼N (0,Σ)[φ(Zx)φ(Zy)]

is κR-Lipschitz for some κR > 0, i.e.
|Vφ(Σ)− Vφ(Σ̃)| ≤ κR∥Σ− Σ̃∥∞

Proof. This is the content of Theorem F.4 in (Novak et al., 2018).

Proposition A.6. Under Assumption A.1, there exists a positive constant M̃ > 0 such that

|Vφ(Σ)| ≤ M̃

(
1 +

√
[Σ]11

)(
1 +

√
[Σ]22

)
Proof. In fact given a PSD matrix Σ ∈ R2×2 we have

Σ = AAT

where

A =

(
α, 0

βγ, β
√

1− γ2

)
with

α =
√
[Σ]11, β =

√
[Σ]22 and γ =

[Σ]21√
[Σ]11[Σ]

2
2

Then it can be easily observed that

E(Zx,Zy)∼N (0,Σ)[φ(Zx)φ(Zy)] = EZ∼N (0,Id)

[
φ(αZ1)φ

(
β
(
γZ1 +

√
1− γ2Z2

))]
14



Neural signature kernels as infinite-width-depth-limits of controlled ResNets

so that

|Vφ(Σ)| =
∣∣∣EZ∼N (0,Id)

[
φ(αZ1)φ

(
β
(
γZ1 +

√
1− γ2Z2

))]∣∣∣
≤ EZ∼N (0,Id)

[
|φ(αZ1)|

∣∣∣φ(β (γZ1 +
√
1− γ2Z2

))∣∣∣]
≤M2EZ∼N (0,Id)

[
(1 + |(αZ1)|)

(
1 +

∣∣∣(β (γZ1 +
√
1− γ2Z2

))∣∣∣)]
=M2

[
1 + αEZ∼N (0,Id)[|Z1|] + βEZ∼N (0,Id)

[∣∣∣γZ1 +
√
1− γ2Z2

∣∣∣]
+ αβEZ∼N (0,Id)

[
|Z1|

∣∣∣γZ1 +
√
1− γ2Z2

∣∣∣] ]
≤M2

[
1 + (α+ β|γ|)EZ∼N (0,Id)[|Z1|] + β

√
1− γ2EZ∼N (0,Id)[|Z2|]

+ αβ|γ|EZ∼N (0,Id)[|Z1|2] + αβ
√
1− γ2EZ∼N (0,Id)[|Z1Z2|]

]
≤ M̄

(
1 + α+ β|γ|+ β

√
1− γ2 + αβ|γ|+ αβ

√
1− γ2

)
where the first inequality follows from Jensen’s inequality, the second from Assumption A.1, the third from the triangle
inequality, and the fourth from the fact that N (0, Id) has finite moments with M̄ a constant incorporating M2 and these
bounds.

Using γ2 ≤ 1, for some constant M̃ one has

|Vφ(Σ)| ≤ M̃(1 + α+ β + αβ) = M̃(1 + α)(1 + β)

We end the section showing the explicit characterization of the maps Vφ for some selected7 activation functions. We write
Vφ with the obvious meaning.

Proposition A.7. Defining γ(Σ) := [Σ]21√
[Σ]11[Σ]22

we have

Vid(Σ) = [Σ]21 = [Σ]12

VReLU (Σ) =
1

2π

(
π +

√
1− γ(Σ)2

γ(Σ)
− arccos(γ(Σ))

)
[Σ]21

Verf (Σ) =
2

π
arcsin

(
[Σ]21√

(0.5 + [Σ]11)(0.5 + [Σ]22)

) (10)

Proof. See (Yang, 2019)[Facts B.2, B.3].

B. Proofs for inhomogeneous controlled ResNets
In this section of the appendix we are going to prove all the results stated for the inhomogeneous case. The section
will be subdivided in three main parts: in the first we consider the infinite-width-then-depth limit, in the second the
infinite-depth-then-width one, in the final one we prove the commutativity of the integrals.

We start by recalling the defintion of the model.

Definition B.1 (Inhomogeneous controlled ResNets). Let DM = {0 = t0 < · · · < tM = 1} be a partition, N ∈ N be the
width, and φ : R → R an activation function. Define a randomly initialised, 1-layer inhomogeneous controlled ResNet
ΨM,N : X → R as follows

ΨM,N
φ (x) :=

〈
ψ,SM,N

tM (x)
〉
RN

7by the availability in the literature.
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where ⟨·, ·⟩RN is the L2 inner product on RN , ψ ∈ RN is a random vector with entries [ψ]α
iid∼ N (0, 1

N ), and where the
random functions SM,N

ti : X → RN satisfy the following recursive relation

SM,N
ti+1

= SM,N
ti +

d∑
j=1

(
Aj,iφ(SM,N

ti ) + bj,i
)
∆xjti+1

SM,N
t0 = a and ∆xjti = (xjti − xjti−1

)

for i = 0, ...,M , with initial condition [a]α
iid∼ N (0, σ2

a), and Gaussian weights Ak,l ∈ RN×N and biases bk,l ∈ RN

sampled independently according to

[Aj,i]
β
α

iid∼ N
(
0,

σ2
A

N∆ti

)
, [bj,i]α

iid∼ N
(
0,
σ2
b

∆ti

)
with time step ∆ti = (ti − ti−1) > 0 and parameters σa, σA > 0 and σb ≥ 0.

B.1. The infinite-width-then-depth regime

The main goal in this subsection is to prove the first part of Theorem 3.1, which we restate here:
Theorem B.2. Let {DM}M∈N be a sequence of partitions of [0, 1] such that |DM | ↓ 0. Let the activation function
φ : R → R be linearly bounded, absolutely continuous and with exponentially bounded derivative. For any subset of paths
X = {x1, . . . , xn} ⊂ X the following convergence in distribution holds

lim
M→∞

lim
N→∞

ΨM,N
φ (X ) = N (0, κφ(X ,X )) (11)

where the positive semidefinite kernel κφ : X× X → R is defined for any two paths x, y ∈ X as κφ(x, y) = κx,yφ (1), where
κx,yφ : [0, 1] → R is the unique solution of the following differential equation

∂tκ
x,y
φ =

[
σ2
AVφ

((
κx,xφ κx,yφ

κx,yφ κy,yφ

))
+ σ2

b

]
⟨ẋt, ẏt⟩Rd (12)

with initial condition κx,yφ (0) = σ2
a.

Remark. As mentioned in the paper, this convergence is equivalent to say that the sequence of random functions ΨM,N
φ :

X → R convergence weakly to a GP with zero mean function and with kernel κφ.

We split the lengthy proof in two parts:

1. The infinite width-convergence of the finite dimensional distributions

ΨM,N
φ (X )

N→∞−−−−→ N (0, κDM
(X ,X ))

for a fixed depth M to those of a Gaussian process GP(0, κDM
) defined by a kernel computed as the final value of a

finite difference scheme on the partition DM . This will be done using Tensor Programs (Yang, 2019), and is the content
of subsection B.1.1.

2. The infinite-depth (uniform) convergence of the discrete kernels κDM
to a limiting kernel κφ which solves the

differential equation (12). This will be done in subsection B.1.2.

B.1.1. INFINITE-WIDTH LIMIT WITH FIXED DEPTH

In the next theorem, we show that finite width inhomogeneous ResNets converge in distribution to GPs with discrete kernels
satisfying some difference equations.
Theorem B.3. Let DM = {0 = t0, . . . , ti, . . . , tM = 1} be a fixed partition of [0, 1]. Let the activation function φ : R → R
be linearly bounded 8. For any subset X = {x1, . . . , xn} ⊂ X the following convergence in distribution holds

lim
N→∞

ΨM,N
φ (X ) = N (0, κDM

(X ,X ))

8in the sense that ∃C > 0. such that |ϕ(x)| ≤ C(1 + |x|).
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where for any two paths x, y ∈ X the discrete kernel κDM
(x, y) := κx,yDM

(1) where κx,yDM
satisfies the following difference

equation

κx,yDM
(ti) = κx,yDM

(ti−1) +
(
σ2
AVφ(Σ

x,y
DM

(ti−1)) + σ2
b

) ⟨∆xti ,∆yti⟩Rd

∆ti
(13)

with κx,yDM
(0) = σ2

a and where

Σx,y
DM

(t) =

(
κx,xDM

(t) κx,yDM
(t)

κx,yDM
(t) κy,yDM

(t)

)
(14)

Proof. We use (Yang, 2019)[Corollary 5.5] applied to the Tensor Program of Algorithm 1 where the input variables are
independently sampled according to

[Aj,i]
β
α ∼ N (0,

σ2
A

N∆ti
), [v]α ∼ N (0, 1), [a]α ∼ N (0, σ2

a), [bj,i]α ∼ N (0,
σ2
b

∆ti
)

The above sampling scheme follows (Yang, 2019)[Assumption 5.1]. Furthermore, linearly bounded functions are controlled
in the sense of (Yang, 2019)[Definition 5.3] since for all x ∈ R one has |ϕ(x)| ≤ C(1 + |x|) ≤ e|x|+log(C). Thus, we are
under the needed assumptions to apply (Yang, 2019)[Corollary 5.5]. This result states that the output vector of the discrete
controlled ResNet in Algorithm 1, on the partition DM converges in law, as N → ∞, to a Gaussian distribution N (0,K)
where for i, j = 1, ..., n

[K]ji = EZ∼N (µ,Σ)

[
ZSxi

M ZS
xj
M

]
= Σ(Sxi

M ,S
xj

M )

with µ,Σ computed according to (Yang, 2019)[Definition 5.2] and defined on the set of all G-vars in the program i.e.

µ(g) =


µin(g) if g is Input G-var∑

k akµ(gk) if g is introduced as
∑

k akgk via LinComb
0 otherwise

Σ(g, g′) =



Σin(g, g′) if both g and g′ are Input G-var∑
k akΣ(gk, g

′) if g is introduced as
∑

k akgk via LinComb∑
k akΣ(g, g

′
k) if g′ is introduced as

∑
k akg

′
k via LinComb

σ2
WEZ∼N (µ,Σ)[ϕ(Z)ϕ

′(Z)] if g =Wh, g′ =Wh′ via MatMul w/ same W
0 otherwise

where h = ϕ((gk)
m
k=1) for some function ϕ and ϕ(Z) := ϕ((Zgk)mk=1), similarly for g′.

In our setting µin ≡ 0 since all Input variables are independent, from which µ ≡ 0; furthermore Σin(g, g′) = 0 except if
g = g′ when it takes values in {σ2

a,
σ2
b

tl−tl−1
, 1} accordingly.

Following the rules of Σ, assuming li, lj ∈ {1, . . . ,M}, we obtain

Σ(Sxi

li
,Sxj

lj
) = Σ(Sxi

li−1,S
xj

lj
) + Σ

(
d∑

k=1

γik,li∆(xi)
k
tli
,Sxj

lj

)

= Σ(Sxi

li−1,S
xj

lj
) + Σ

(
d∑

k=1

γik,li∆(xi)
k
tli
,Sxj

lj−1

)

+Σ

(
d∑

k=1

γik,li∆(xi)
k
tli
,

d∑
l=1

γjm,lj
∆(xj)

l
tlj

)
= Σ(Sxi

li−1,S
xj

lj
) + Σ(Sxi

li
,Sxj

lj−1)− Σ(Sxi

li−1,S
xj

lj−1)

+

d∑
k,m=1

Σ(γik,li , γ
j
m,lj

)∆(xi)
k
tli
∆(xj)

m
tlj

17
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Now

Σ(γik,li , γ
j
m,lj

) = δk,mδi,j
σ2
A

tli − tli−1
E[φ(Z1)φ(Z2)] + Σ(bk,li , bm,lj )

=
δk,mδi,j
tli − tli−1

[
σ2
AE[φ(Z1)φ(Z2)] + σ2

b

]
where [Z1,Z2]

⊤ ∼ N (0, Σ̃li−1
(xi, xj)) with

Σ̃l(xi, xj) =

(
Σ(Sxi

l ,S
xi

l ) Σ(Sxi

l ,S
xj

l )
Σ(Sxi

l ,S
xj

l ) Σ(Sxj

l ,Sxj

l )

)

In particular we see that if li ̸= lj then Σ(Sxi

li
,Sxj

lj
) = Σ(Sxi

li∧j
,Sxj

li∧j
). Thus if we set, for tli ∈ DM ,

κ
xi,xj

DM
(tli) := Σ(Sxi

li
,Sxj

li
)

we get
κ
xi,xj

DM
(tli) = κ

xi,xj

DM
(tli−1)

+

d∑
k=1

(
σ2
AE(Zx,Zy)∼N (0,Σ̃li−1

(xi,xj))
[φ(Zx)φ(Zy)] + σ2

b

)∆(xi)
k
tli
∆(xj)

k
tli

tli − tli−1

which is exactly what Equation 13 states. Then note how

Σ(Sxi
0 ,S

xj

0 ) = σ2
a

Thus finally we can conclude and write the entries of the matrix K̃ as

[K]ji = κ
xi,xj

DM
(1)

Algorithm 1 SM,N
1 as Nestor program

Input: S0 : G(N) ▷ initial value
Input: (b1, . . . , bd) : G(N) ▷ biases
Input: (A1,l, . . . , Ad,l)l=1,··· ,M : A(N,N) ▷ matrices
Input: v : G(N) ▷ readout layer weights
for i = 1, . . . , n do

// Compute SM,N
1 (xi) (here Sxi

0 is to be read as S0)
for l = 1, . . . ,M do

for k = 1, . . . , d do
αi
k,l := φ(Sxi

l−1) : H(N) ▷ by Nonlin;
βi
k,l := Ak,lα

i
k,l : G(N) ▷ by Matmul;

γik,l := βi
k,l + bk,l : G(N) ▷ by LinComb;

end for
Sxi

l := Sxi

l−1 +
∑d

k=1 γ
i
k,l[(xi)

k
tl
− (xi)

k
tl−1

] : G(N) ▷ by LinComb;
end for

end for
Output: (vTSxi

M/
√
N)i=1,...,n

Remark. There are two things to notice, done in the above proof in order to satisfy the required formalism:
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• In the program the output projector v is sampled according to N (0, 1) while the original ϕ ∼ N (0, 1
N ). This does not

pose any problems since the output of the formal programs uses v/
√
N ∼ N (0, 1

N ).

• The input paths xi enter program 1 not as Inputs but as coefficients of LinComb, this means that for any choice of input
paths we must formally consider different algorithms. In any case, for any possible choice, the result has always the
same functional form; hence a posteriori it is legitimate to think about one algorithm.

Actually we have proved the even stronger statement, in the sense that the previous result holds for intermediate times too:

Corollary B.4. For all tm, tn ∈ DM one has the following distributional limit〈
ψN ,SN,M

tm (X )
〉
RN

〈
ψN ,SN,M

tn (X )
〉
RN

−−−−→
N→∞

N (0, κX ,X
DM

(tm ∧ tn))

and the matrices Σx,y
DM

(tn) are always in PSD2.

B.1.2. UNIFORM CONVERGENCE OF DISCRETE KERNELS

We now prove the convergence of the kernels κx,yDM
: DM → R established in the previous section to a unique limiting

kernel κx,yφ : [0, 1] → R as |DM | → 0. We first extend the discrete kernels κx,yDM
to maps defined on [0, 1] in two ways.

Definition B.5. We extend the map κx,yDM
: DM → R to the whole interval [0, 1] in two ways: for any t ∈ [tm, tm+1)

1. (piecewise linear interpolation) using a slight abuse of notation that overwrites the previous one, define the map
κx,yDM

: [0, 1] → R as

κx,yDM
(t) = κx,yDM

(tm) +
(
σ2
AVφ

(
Σx,y

DM
(tm)

)
+ σ2

b

)〈xt − xtm
t− tm

,
yt − ytm
t− tm

〉
Rd

(t− tm)

We extend in a similar way the matrix Σx,y
DM

defined in equation (14).

2. (piecewise constant interpolation) define the map κ̃x,yDM
: [0, 1] → R as

κ̃x,yDM
(t) = κx,yDM

(tm).

and similarly for the matrix Σ̃x,y
DM

.

Remark. It is important to consider both these types of extensions. The piecewise linear, being continuous, is used to
prove uniform convergence to a limiting map in the space of continuous functions C0([0, 1];R). The piecewise constant is
proved to converge to the same object, this time in L∞([0, 1];R) since it’s not continuous, and is well suited to prove how
the positive semidefinitess properties of the discrete kernels pass to the limit.

Theorem B.6. Fix a sequence {DM}M∈N of partitions of [0, 1] with |DM | → 0 as M → ∞. Then, for any two paths
x, y ∈ X, the sequence of functions {κx,yDM

}M converges uniformly on C0([0, 1];R) to the unique solution κx,yφ : [0, 1] → R
of the following differential equation

κx,yφ (t) = σ2
a +

∫ t

0

(σ2
AVφ(Σ

x,y
φ (s)) + σ2

b ) ⟨ẋs, ẏs⟩Rd ds (15)

with

Σx,y
φ (t) =

(
κx,xφ (t), κx,yφ (t)
κx,yφ (t), κy,yφ (t)

)
One of the main difficulties when dealing with Equation (15) is making sure that the matrix Σx,y

φ stays in PSD2 for all times
t ∈ [0, 1], in order to have Vφ(Σx,y(t)) well defined. This is clear if x = y when Σx,x

φ (t) = κx,xφ (t)1, and one can just use
(Friz & Victoir, 2010)[Theorem 3.7] to conclude, but it is not in the general case. One possible way to tackle this problem
would be to consider the triplet (κx,xφ , κx,yφ , κy,yφ ) : [0, 1] → R3 and find it as the solution of (15) on a submanifold of R3.
We decided to employ a more elementary technique which, unlike this ”PDE on manifold” one, extends to the homogeneous
case too, and we will find Σx,y

φ : [0, 1] → R4 as uniform limit of matrices in PSD2.
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The main idea for proving Theorem B.6 will be to show that the sequence {κx,yDM
}M is uniformly bounded and uniformly

equicontinuous so that Ascoli-Arzelà theorem applies. One then proves that the limit of the resulting subsequence is the
unique solution of Equation (15) and that the whole sequence converges to it. Before proving Theorem B.6 we need several
lemmas.

The first step is to establish a uniform lower bound.

Lemma B.7 (Uniform lower bounds). For any x ∈ X, any partition D

∥κx,xD ∥∞,[0,1] := sup
t∈[0,1]

|κx,xD (t)| ≥ σ2
a

and similarly for κ̃x,xD .

Proof. Setting, for any tm ∈ D by definition of the kernel κx,xD

κx,xD (tm) = σ2
a +

∑
0 ≤ l < m

(
σ2
AVφ (Σx,x

D (tl)) + σ2
b

) ∣∣∣∣∆xtl+1

∆tl+1

∣∣∣∣2 ∆tl+1

Recall the definition of the map Vφ in Lemma A.5. For any tl ∈ D we note that Vφ(Σ
x,x
D (tl)) = E[φ(

√
κx,xD (tl))

2]
for Z ∼ N (0, 1) since we have that Σx,x

D (tl) = κx,xD (tl)1 with 1 ∈ R2×2 the matrix with all entries equal to 1. Thus
Vφ(Σ

x,x
D (tl)) ≥ 0 and we can conclude that κ̃x,xD (t) ≥ σ2

a since we are summing to σ2
a only the non-negative terms

(
σ2
AVφ (Σx,x

D (tl)) + σ2
b

) ∣∣∣∣∆xtl+1

∆tl+1

∣∣∣∣2 ∆tl+1

For any t ∈ [0, 1], by definition, we can write

κx,xD (t) = κx,xD (tm) +
(
σ2
AVφ

(
Σ̃x,x

D (tm)
)
+ σ2

b

) ∣∣∣∣xt − xtm
t− tm

∣∣∣∣2
Rd

(t− tm)

thus is the sum of κx,xD (tm) = κ̃x,xD (t) ≥ σ2
a and the quantity

(
σ2
AVφ

(
Σ̃x,x

D (tm)
)
+ σ2

b

) ∣∣∣∣xt − xtm
t− tm

∣∣∣∣2
Rd

(t− tm)

which is ≥ 0 by the same arguments as above.

The second step is to establish a uniform upper bound.

Lemma B.8 (Uniform upper bounds). For any x ∈ X and any partition D there exists a constant Cx > 0 independent of D
such that

∥κ̃x,xD ∥∞,[0,1] ≤ ∥κx,xD ∥∞,[0,1] ≤ Cx

Proof. Note how all the values taken by κ̃x,xD are also taken by κx,xD in the corresponding partition points, thus the first
inequality is trivial. Let us find an upper bound C̃x for κ̃x,xD first, intuitively since κx,xD cannot be far from κ̃x,xD the constant
C̃x should help find the bound Cx.

Let t ∈ [tm, tm+1). Recall the definition of κ̃x,xD

κ̃x,xD (t) = κx,xD (tm)

= σ2
a +

∑
0 ≤ l < m

(
σ2
AVφ (Σx,x

D (tl)) + σ2
b

)〈∆xtl+1

∆tl+1
,
∆xtl+1

∆tl+1

〉
∆tl+1
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We then have 〈
∆xtl+1

∆tl+1
,
∆xtl+1

∆tl+1

〉
∆tl+1 =

∣∣∣∣∆xtl+1

∆tl+1

∣∣∣∣2
Rd

∆tl+1

=

∣∣∣∣ 1

∆tl+1

∫ tl+1

tl

ẋtdt

∣∣∣∣2
Rd

∆tl+1

≤ (
1

∆tl+1

∫ tl+1

tl

|ẋt|Rddt)2∆tl+1

≤ 1

∆tl+1

∫ tl+1

tl

|ẋt|2Rddt∆tl+1

=

∫ tl+1

tl

|ẋt|2Rddt

where the last inequality is by Jensen’s inequality. In addition, by Lemma A.5 there exists a positive constant M̃ such that

|Vφ(Σx,x
D (tl))| ≤ M̃(1 +

√
κx,xD (tl))

2 ≤ 2M̃(1 + κx,xD (tl)).

Thus

κ̃x,xD (t) ≤ σ2
a +

∑
0≤l<m

(2σ2
AM̃(1 + κx,xD (tl)) + σ2

b )

∫ tl+1

tl

|ẋt|2Rddt

= σ2
a +

∫ tm

0

(2σ2
AM̃(1 + κ̃x,xD (t)) + σ2

b )|ẋt|2Rddt

By Gronwall inequality ((Friz & Victoir, 2010), Lemma 3.2) we have

1 + κ̃x,xD (t) ≤ (1 + σ2
a + σ2

b ∥x∥
2
X) exp{2σ

2
AM̃ ∥x∥2X}

hence the statement of this lemma holds for κ̃x,xD with the constant

C̃x = (1 + σ2
a + σ2

b ∥x∥
2
X)e

2σ2
AM̃∥x∥2

X − 1

To prove a similar inequality for κx,xD , consider

κx,xD (t) = κx,xD (tm) +
(
σ2
AVφ (Σx,x

D (tm)) + σ2
b

) ∣∣∣∣xt − xtm
t− tm

∣∣∣∣2 (t− tm)

Then we have

|κx,xD (t)| ≤ |κx,xD (tm)|+ (2σ2
AM̃(1 + C̃x) + σ2

b )

∣∣∣∣xt − xtm
t− tm

∣∣∣∣2 (t− tm)

≤ C̃x + (2σ2
AM̃(1 + C̃x) + σ2

b ) ∥x∥
2
X

Hence the statement follows by setting

Cx = C̃x + (2σ2
AM̃(1 + C̃x) + σ2

b ) ∥x∥
2
X

Remark. Note how Cx only depends on ∥x∥X and is increasing in it, thus this bound is uniform on bounded subsets of X.

The following lemma shows that the kernels are in fact elements of PSD(R).

Lemma B.9. There exists a constant R = Rx ∈ R such that Σ̃x,x
D (t),Σx,x

D (t) ∈ PSD2(R) for every D and t ∈ [0, 1].
Moreover, as before, this Rx only depends on ∥x∥X and is increasing in it.
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Proof. Σ̃x,x
D (t) and Σx,x

D (t) are PSD2 since they are of form a1 for some a > 0. The diagonal elements κ̃x,xD (t), κx,xD (t)
are bounded above by a common constant Cx and below by σ2

a. We thus can simply choose Rx = Cx ∨ σ−2
a .

We now extend the results of Lemma B.8 and Lemma B.9 to the case x ̸= y.

Lemma B.10. Fix a α > 0. There exist a constant Cα such that for all x, y ∈ X with ∥x∥X , ∥y∥X ≤ α and all partitions D
it holds

∥κx,yD ∥∞,[0,1] ≤ Cα

Moreover for Rα := Cα ∨ σ−2
a we get

Σ̃x,y
D (t) ∈ PSD2(Rα)

Proof. Remember how the maps Σ̃x,y
D (t) are PSD2 since their values are found as covariance matrices of Gaussian random

variables with Tensor Program arguments in Theorem B.3 , in particular by positive semidefinitiveness and the previous
bounds

|κ̃x,yD (t)| ≤
√
κ̃x,xD (t)κ̃y,yD (t) ≤

√
C̃xC̃y ≤ C̃x ∨ C̃y

For κx,yD (t) we proceed similarly to before: when t ∈ [tm, tm+1) one has

|κx,yD (t)| ≤ |κx,yD (tm)|

+

∣∣∣∣(σ2
AM̃(1 +

√
κ̃x,xD (t))(1 +

√
κ̃y,yD (t)) + σ2

b )

〈
xt − xtm
t− tm

,
yt − ytm
t− tm

〉
Rd

(t− tm)

∣∣∣∣
≤ C̃x ∨ C̃y

+ (2σ2
AM̃(1 + C̃x ∨ C̃y) + σ2

b )|
〈
xt − xtm
t− tm

,
yt − ytm
t− tm

〉
Rd

|(t− tm)

≤ C̃x ∨ C̃y + (2σ2
AM̃(1 + C̃x ∨ C̃y) + σ2

b )(|
xt − xtm
t− tm

|2 + |yt − ytm
t− tm

|2)(t− tm)

≤ C̃x ∨ C̃y + (2σ2
AM̃(1 + C̃x ∨ C̃y) + σ2

b )(∥x∥X + ∥y∥X) ≤ Cα

where we have used | ⟨a, b⟩ | ≤ |a||b| ≤ (|a|2 + |b|2) for a, b ∈ Rd. The second part follows from the definition of
PSD2(Rα).

We are now ready to prove Theorem B.6.

Proof of Theorem B.6.

Part I (Convergence sup[0,1]×[0,1] |κ
x,y
DM

(t)− κ̃x,yDM
(t)| → 0 as |D| → 0) The set {x, y} is bounded in X, we can thus fix

two constants Cx,y, Rx,y with the properties given in Lemma B.10. We will often, for ease of notation, refer to them as C
and R. We have, for t ∈ [tm, tm+1), that

|κx,yDM
(t)− κ̃x,yDM

(t)|

≤ |(σ2
AM̃(1 +

√
κ̃x,xD (t))(1 +

√
κ̃y,yDM

(t)) + σ2
b )

〈
xt − xtm
t− tm

,
yt − ytm
t− tm

〉
Rd

(t− tm)|

≤ (2σ2
AM̃(1 + Cx,y) + σ2

b )(|
xt − xtm
t− tm

|2 + |yt − ytm
t− tm

|2)(t− tm)

≤ (2σ2
AM̃(1 + Cx,y) + σ2

b )

∫ t

tm

|ẋs|2 + |ẏs|2ds

In particular as |D| → 0 we have
sup

[0,1]×[0,1]

|κx,yDM
(t)− κ̃x,yDM

(t)| → 0
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since, by dominated convergence, one has∫ t

tm

|ẋs|2 + |ẏs|2ds =
∫ 1

0

I[tm,t)(|ẋs|2 + |ẏs|2)ds→ 0

Part II (Ascoli-Arzelà) By Lemma B.10 the sequence of functions {κx,yDM
}M is uniformly bounded. Assume s < t then

one has, with the same bounds just used, that

|κx,yDM
(t)− κx,yDM

(s)| ≤ 2(2σ2
AM̃(1 + Cx,y) + σ2

b )

∫ t

s

|ẋr|2 + |ẏr|2ds

thus the sequence of functions {κx,yDM
}M is also uniformly equicontinuous, in fact the bound is independent from the

partition. We can apply Ascoli-Arzelà to conclude that there exist a subsequence {DMk
} with κx,yDM

uniformly converging to
a limiting κx,y ∈ C0([0, 1];R). Since this must be the uniform limit of κ̃x,yDM

too, by the result of Part I, we obtain that the
corresponding limiting matrices Σx,y

φ (t) ∈ PSD2(Rx,y) for all t ∈ [0, 1] since the Σ̃x,y
φ (t) are and PSD2(Rx,y) is closed 9.

Part III (Uniqueness of solutions to equation (15)) Here we prove that if the PDE (15) admits a solution this must be
unique. Assume the existence of different solutions K = (Kx,x,Kx,y,Ky,y) and G = (Gx,x, Gx,y, Gy,y) with all the ΣK

and ΣG in PSD2 . From Eq (15) it is clear that Kx,x,Ky,y, Gx,x, Gy,y ≥ σ2
a and, by continuity, that they are bounded by

some constant; thus all the ΣK and ΣG are in some in PSD2(R̄). Then by the Lipschitz property of Vφ one sees that

∥Σx,y
K (t)− Σx,y

G (t)∥∞ ≤
∫ t

0

σ2
AkR̄ ∥Σx,y

K (t)− Σx,y
G (t)∥∞ (| ⟨ẋr, ẋr⟩ |+ | ⟨ẋr, ẏr⟩ |+ | ⟨ẏr, ẏr⟩ |)dr

thus ∥Σx,y
K (t)− Σx,y

G (t)∥∞ = 0 by Gronwall for all t ∈ [0, 1] i.e K = G.

Part IV (Limiting kernel solves equation (15)) We now need to prove that the limit κx,yφ of the subsequence {κx,yDM
}k

solves the PDE, it will then follow that any sub-sequence {κx,yDM
} admits a further sub-sequence converging to the same map

κx,yφ , giving us the convergence of the whole sequence. Thus without loss of generality we can assume in the sequel that the
whole sequence converges.

Let us prove that the limit κx,yφ is, in fact, a solution of the PDE. Let t ∈ [tm, tm+1) for some fixed D, then∣∣∣∣κx,yφ (t)− σ2
a +

∫ t

0

(σ2
AVφ(Σ

x,y
φ (s)) + σ2

b ) ⟨ẋs, ẏs⟩Rd ds

∣∣∣∣
≤
∣∣κx,yφ (t)− κx,yDM

(t)
∣∣+ σ2

A

∫ t

0

|Vφ(Σx,y
φ (s))− Vφ(Σ̃

x,y
DM

(s))|| ⟨ẋs, ẏs⟩Rd |ds

+
∑

0≤l<m

∣∣(σ2
AVφ

(
Σx,x

DM
(tl)
)
+ σ2

b

)∣∣ ∣∣∣∣∫ tl+1

tl

⟨ẋs, ẏs⟩Rd ds−
〈
∆xtl+1

∆tl+1
,
∆ytl+1

∆tl+1

〉
∆tl+1

∣∣∣∣
+
∣∣(σ2

AVφ
(
Σx,x

DM
(tm)

)
+ σ2

b

)∣∣ ∣∣∣∣∫ t

tm

⟨ẋs, ẏs⟩Rd ds−
〈
xt − xtm
t− tm

,
yt − ytm
t− tm

〉
(t− tm)

∣∣∣∣
≤|κx,yφ (t)− κx,yDM

(t)|+ σ2
A

∫ t

0

|Vφ(Σx,y
φ (s))− Vφ(Σ̃

x,y
DM

(s))|| ⟨ẋs, ẏs⟩Rd |ds

+
(
2σ2

AM̃(1 + Cx,y) + σ2
b

){ ∑
0≤l<m

∣∣∣∣∫ tl+1

tl

⟨ẋs, ẏs⟩Rd ds−
〈
∆xtl+1

∆tl+1
,
∆ytl+1

∆tl+1

〉
∆tl+1

∣∣∣∣
+

∣∣∣∣∫ t

tm

⟨ẋs, ẏs⟩Rd ds−
〈
xt − xtm
t− tm

,
yt − ytm
t− tm

〉
(t− tm)

∣∣∣∣ }
but

9This is important to have a candidate solution to Equation (15) which otherwise would not be well defined.
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∣∣∣∣∣
∫ b

a

⟨ẋs, ẏs⟩Rd ds−
〈
xb − xa
b− a

,
yb − ya
b− a

〉
(b− a)

∣∣∣∣∣ =
∣∣∣∣∣
∫ b

a

⟨ẋs, ẏs⟩Rd −
〈
xb − xa
b− a

, ẏs

〉
Rd

ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

〈
ẋs −

xb − xa
b− a

, ẏs

〉
Rd

ds

∣∣∣∣∣
≤
∫ b

a

|ẋs −
xb − xa
b− a

||ẏs|ds

hence ∣∣∣∣κx,yφ (t)− σ2
a +

∫ t

0

(σ2
AVφ(Σ

x,y
φ (s)) + σ2

b ) ⟨ẋs, ẏs⟩Rd ds

∣∣∣∣
≤ |κx,yφ (t)− κx,yDM

(t)|+ σ2
A

∫ t

0

|Vφ(Σx,y
φ (s))− Vφ(Σ̃

x,y
DM

(s))|| ⟨ẋs, ẏs⟩Rd |ds

+
(
2σ2

AM̃(1 + Cx,y) + σ2
b

){∫ t

0

(
I[tm,t)|ẋs −

xt − xtm
t− tm

|+
∑

0≤l<m

I[tl,tl+1)|ẋs −
∆xtl+1

∆tl+1
|
)
|ẏs|ds

}

Now, considering the sequence DM , by convergence

|κx,yφ (t)− κx,yDM
(t)| = o(1)

and ∫ t

0

|Vφ(Σx,y(s))− Vφ(Σ̃
x,y
DM

(s))|| ⟨ẋs, ẏs⟩Rd |ds ≤
∫ t

0

kR|Σx,y
φ (s)− Σ̃x,y

DM
(s)|∞| ⟨ẋs, ẏs⟩Rd |ds = o(1)

Moreover, setting mM to be such that t ∈ [tmM
, tmM+1) in DM , we have that by Lebesgue differentiation theorem

(
I
[t

DM
mM

,t)
(s)|ẋs −

xt − x
t
DM
mM

t− tDM
mM

|+
∑

0≤l<mM

I
[t

DM
l ,t

DM
l+1 )

(s)|ẋs −
∆x

t
DM
l+1

∆tDM

l+1

|
)

M→∞−−−−→ 0

almost surely as a function of s, thus using Dominated convergence we conclude that

∫ t

0

(
I
[t

DM
mM

,t)
(s)|ẋs −

xt − x
t
DM
mM

t− tDM
mM

|+
∑

0≤l<mM

I
[t

DM
l ,t

DM
l+1 )

(s)|ẋs −
∆x

t
DM
l+1

∆tDM

l+1

|
)
|ẏs|ds = o(1)

thus ∣∣∣∣κx,yφ (t)− σ2
a +

∫ t

0

(σ2
AVφ(Σ

x,y
φ (s)) + σ2

b ) ⟨ẋs, ẏs⟩Rd ds

∣∣∣∣ = 0

i.e

κx,yφ (t) = σ2
a + σ2

a +

∫ t

0

(σ2
AVφ(Σ

x,y
φ (s)) + σ2

b ) ⟨ẋs, ẏs⟩Rd ds

B.1.3. PROOF OF THEOREM 3.1: PART 1

It is finally time to prove the first part Theorem 3.1 in the main body of the paper, which we restated in the appendix as
Theorem B.2.
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Proof of Theorem B.2. The proof is now just a matter of combining Theorem B.3 and Theorem B.6. Under our hypotheses
Theorem B.3 tells us that, for any subset X = {x1, . . . , xn} ⊂ X, we have in distribution

lim
N→∞

ΨM,N
φ (X ) = N (0, κDM

(X ,X ))

where κDM
(xα, xβ) = κ

xα,xβ

DM
(1) for all α, β = 1, . . . , n. Thus to conclude we just have to prove that, still in distribution,

it holds
lim

M→∞
N (0, κDM

(X ,X )) = N (0, κφ(X ,X ))

or equivalently that
lim

M→∞
κ
xα,xβ

DM
(1) = κ

xα,xβ
φ (1)

This last needed limit follows from Theorem B.6 with the sequence {DM}M∈N.

We can now study some particular cases.

Corollary B.11. If φ = id, then

κx,yid (t) =
(
σ2
a +

σ2
b

σ2
A

)
exp

{
σ2
A

∫ s

η=0

⟨ẋη, ẏη⟩Rd dη

}
− σ2

b

σ2
A

(16)

If φ = ReLu and x = y, then

κx,xReLu(t) =
(
σ2
a +

2σ2
b

σ2
A

)
exp

{
σ2
A

2

∫ s

η=0

∥ẋη∥2Rd dη

}
− 2σ2

b

σ2
A

(17)

Proof. This is just a matter of computation. For the case φ = id one has

EZ∼N (0,Σ)[φ(Z1)φ(Z2)] = EZ∼N (0,Σ)[Z1Z2] = [Σ]21

hence

κx,yid (t) = σ2
a +

∫ t

0

[
σ2
Aκ

x,y
id (s) + σ2

b

]
⟨ẋs, ẏs⟩Rd ds

Notice then that substituting (16) for Kid
s (x, y) in the integral leads to

σ2
a +

∫ t

0

[
σ2
A

{
(σ2

a +
σ2
b

σ2
A

) exp
{
σ2
A

∫ s

η=0

⟨ẋη, ẏη⟩Rd dη
}
− σ2

b

σ2
A

}
+ σ2

b

]
⟨ẋs, ẏs⟩Rd ds

=σ2
a +

∫ t

0

σ2
A

(
σ2
a +

σ2
b

σ2
A

)
exp

{
σ2
A

∫ s

η=0

⟨ẋη, ẏη⟩Rd dη
}
⟨ẋs, ẏs⟩Rd ds

=σ2
a +

∫ t

0

(σ2
a +

σ2
b

σ2
A

)∂T

(
exp

{
σ2
A

∫ T

η=0

⟨ẋη, ẏη⟩Rd dη
})

|T=sds

=σ2
a + (σ2

a +
σ2
b

σ2
A

)

[
exp

{
σ2
A

∫ s

η=0

⟨ẋη, ẏη⟩Rd dη
}
− 1

]

=(σ2
a +

σ2
b

σ2
A

) exp
{
σ2
A

∫ s

η=0

⟨ẋη, ẏη⟩Rd dη
}
− σ2

b

σ2
A

which means, by uniqueness of solutions, that the thesis holds.

For what concerns the case φ = ReLU notice that for one dimensional Gaussian variables centered in the origin one has

EZ∼N (0,σ2)[ReLU(Z)2] =
1

2
EZ∼N (0,σ2)[Z

2] =
1

2
σ2

hence since
EZ∼N (0,κx,x

ReLU (s)1)[ReLU(Z1)ReLU(Z2)] = EZ∼N (0,κx,x
ReLU (s))[ReLU(Z)2]
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one has

κx,xReLu(t) = σ2
a +

∫ t

0

[σ2
A

2
κx,xReLu(s) + σ2

b

]
⟨ẋs, ẋs⟩Rd ds

which equals κx,xid (t;σa,
σA√
2
, σb).

We conclude this section by proving Remark 4.2 about the path scaling symmetry mentioned in the main paper.

Lemma B.12. For all choices (σa, σA, σb) and for all φ as in Theorem 3.1 we have, with abuse of notation and the obvious
meaning, that

κx,yφ (t;σa, σA, σb) = κσAx,σAy
φ (t;σa, 1, σbσ

−1
A )

Proof. We have

κx,yφ (t;σa, σA, σb)

= σ2
a +

∫ s

η=0

[
σ2
AEZ∼N (0,Σx,y

φ (η;σa,σA,σb)[φ(Z1)φ(Z2)] + σ2
b

]
⟨ẋη, ẏη⟩Rd dη

= σ2
a +

∫ s

η=0

σ2
A

[
EZ∼N (0,Σx,y

φ (η;σa,σA,σb)[φ(Z1)φ(Z2)] +
σ2
b

σ2
A

]
⟨ẋη, ẏη⟩Rd dη

= σ2
a +

∫ s

η=0

[
EZ∼N (0,Σx,y

φ (η;σa,σA,σb)[φ(Z1)φ(Z2)] +
σ2
b

σ2
A

]
⟨σAẋη, σAẏη⟩Rd dη

and

κσAx,σAy
φ (t;σa, 1, σbσ

−1
A )

= σ2
a +

∫ s

η=0

[
EZ∼N (0,Σ

σAx,σAy
φ (η;σa,1,

σb
σA

)[φ(Z1)φ(Z2)] +
σ2
b

σ2
A

]
⟨σAẋη, σAẏη⟩Rd dη

Thus the respective triplets solve the same equation and we can conclude by uniqueness.

B.2. The infinite-depth-then-width regime

As mentioned in the paper, it is natural to ask what happens if the order of the width-depth limits in is reversed.

B.2.1. PROOF OF THEOREM 3.3

We begin by proving Theorem 3.3 which we restate for the reader’s convenience. We will follow arguments used in (Hayou,
2022), extending the results obtained therein.

Theorem B.13. Let {DM}M∈N be a sequence of partitions of [0, 1] such that |DM | ↓ 0 as M → ∞. Assume the activation
function φ is Lipschitz and linearly bounded. Let ρM (t) := sup{s ∈ DM : s ≤ t}. For any path x ∈ X ∩ C1, 12 , where
C1, 12 denotes the set of C1 paths with 1

2 -Hölder derivative, the RN -valued process t 7→ SM,N
ρM (t)(x) converges in distribution,

as M → ∞, to the solution SN (x) of the following SDE

dSN
t (x) =

d∑
j=1

σA√
N
ẋjtdW

j
t φ(SN

t (x)) + σbẋ
j
tdB

j
t (18)

with SN
0 (x) = a and where W j ∈ RN×N and Bj ∈ RN are independent Brownian motions for j ∈ {1, ..., d}.

Proof. We will transform Equation (18) in a usual SDE form to then use the classical result (Kloeden & Platen, 1992)[Theo-
rem 10.2.2] to prove the convergence of Euler Discretizations to the unique solution. We first show that Equation (18) can
be re-written as follows

SN
t (x) = σ2

a +

∫ t

0

σx(s,SN
s (x))dZs

for a Brownian Motion Zt ∈ RΓd,N with Γd,N := dN(N + 1).
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Take in fact
Zs := [([W 1

s ]
1)T , ([W 1

s ]
2)T , . . . , ([W 1

s ]
N )T , (B1

s )
T , ([W 2

s ]
1)T , . . . , (Bd

s )
T ]T

or equivalently

[Zs]i =

{
[W k

s ]
m if m = 1, . . . , N

Bk
s if m = N + 1

for i = N(N+1)(k−1)+N(m−1)+1, . . . , N(N+1)(k−1)+Nm 10. In addition, define σx : [0, 1]×RN → RN×Γd,N

as

[σx(s, y)]
j
i =

{
σA√
N
ẋks [φ(y)]mIdN×N if m = 1, . . . , N

σbẋ
k
sIdN×N if m = N + 1

for i = 1, . . . , N and j = N(N + 1)(k − 1) +N(m − 1) + 1, . . . , N(N + 1)(k − 1) +Nm. It is then just a matter of
checking the required conditions to apply (Kloeden & Platen, 1992)[Theorem 10.2.2]:

1. There is a K > 0 such that ∀t ∈ [0, 1].∀y, y′ ∈ RN one has

∥σ(t, y)− σ(t, y′)∥F ≤ K ∥y − y′∥RN

2. There is a K ′ > 0 such that ∀t ∈ [0, 1].∀y ∈ RN one has

∥σ(t, y)∥F ≤ K ′(1 + ∥y∥RN )

3. There is a K ′′ > 0 such that ∀t, s ∈ [0, 1].∀y ∈ RN one has

∥σ(t, y)− σ(s, y)∥F ≤ K ′′(1 + ∥y∥RN )|t− s| 12

As a first step note how

∥σ(t, y)∥2F = N

d∑
k=1

(ẋkt )
2
(
σ2
b +

N∑
m=1

σ2
A

N
([φ(y)]m)2

)
= N ∥ẋt∥2Rd (σ

2
b + σ2

A

∥φ(y)∥2RN

N
)

thus using sublinearity of φ for some M > 0 one has

∥σ(t, y)∥2F ≤ N ∥ẋt∥2Rd (σ
2
b +

σ2
A

N
M(1 + ∥y∥RN )2)

from which we easily get condition (ii).

For condition (i) note that

∥σ(t, y)− σ(t, y′)∥2F = N ∥ẋt∥2Rd σ
2
A

∥φ(y)− φ(y′)∥2RN

N

thus one just uses Lipschitz property of φ with Lemma A.3.

Finally for (iii) one computes just as before

∥σ(t, y)− σ(s, y)∥2F = N ∥ẋt − ẋs∥2Rd (σ
2
b + σ2

A

∥φ(y)∥2RN

N
)

and using Hölder property of x and linear bound on φ one has, for some M̃ > 0

∥σ(t, y)− σ(s, y)∥2F ≤ N(σ2
b +

σ2
A

N
M(1 + ∥y∥RN )2)M̃2|t− s|

hence the concluding inequality

∥σ(t, y)− σ(s, y)∥F ≤ (NM̃(σ2
b +

σ2
A

N
M))(1 + ∥y∥RN )|t− s| 12

10meaning that [Zs]i is considered as the element of RN corresponding to these indices.
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Because in general

∆xk
t
DM
l

∆tDM

l

̸= ẋk
t
DM
l−1

the recursive equation

SM,N

t
DM
l

(x) = SM,N

t
DM
l−1

(x) +

d∑
k=1

∆xk
t
DM
l

∆tDM

l

(
σA√
N

√
∆tDM

l Wk,lφ(SM,N

t
DM
l−1

(x)) + σb

√
∆tMl Bk,l)

is not the Euler discretization of the above SDE. However, after classical though tedious calculations it is easy to show that

lim
M→∞

sup
t∈[0,1]

E[|S̃M,N
t (x)− SM,N

t (x)|2] = 0

where S̃M,N
t (x) is defined as SM,N

t (x) but substituting the difference quotients with the actual derivatives.

Remark. By considering the concatenated system

[SN
t (xi)]xi∈X = [a]xi∈X +

∫ t

0

[σxi(s,SN
s (xi))]xi∈XdZs

we straightforwardly extend the previous result to the case with multiple inputs considered at the same time.

B.2.2. INFINITE-DEPTH-THEN-WIDTH LIMIT: φ = id

Here we directly prove that, in the case φ = id, the covariances of the infinite-depth networks converge to κid as the width
increases without bounds.

Proposition B.14. Let φ = id. For any subset X = {x1, . . . , xn} ⊂ X. Then for all integers N ≥ 1 and for all
k,m = 1, . . . , d that the following convergence holds

lim
M→∞

E
[
ΨM,N

id (X )ΨM,N
id (X )

]
= κid(X ,X )

Proof. To start notice that

E[ΨM,N
id (xk)Ψ

M,N
id (xm)] =

1

N
E
[〈

SM,N
1 (xk),SM,N

1 (xm)
〉]

Thanks to the extension of Theorem B.13 to the multi-input case we have

lim
M→∞

1

N
E
[〈

SM,N
1 (xk),SM,N

1 (xm)
〉]

=
1

N
E
[〈
SN
1 (xk),SN

1 (xm)
〉]
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and for x, y ∈ X
1

N
E
[〈
SN
1 (x),SN

1 (y)
〉]

=
1

N
E

[〈
a+

d∑
i=1

∫ 1

0

σA√
N
ẋitdW

i
tSN

t (x) + σbẋ
i
tdB

i
t,SN

1 (y)

〉]

=
1

N
E
[
∥a∥2RN

]
+

1

N

d∑
i,j=1

σ2
bE
[〈∫ 1

0

ẋitdB
i
t,

∫ 1

0

ẏjtdB
j
t

〉]

+
1

N

d∑
i,j=1

σ2
A

N
E
[〈∫ 1

0

ẋitdW
i
tSN

t (x),

∫ 1

0

ẏjtdW
j
t SN

t (y)

〉]

=
1

N
(Nσ2

a) +

d∑
i,j=1

σ2
b

N

N∑
α=1

E
[∫ 1

0

ẋitd[B
i
t]α ·

∫ 1

0

ẏjtd[B
j
t ]α

]

+
1

N

d∑
i,j=1

σ2
A

N

N∑
α,β,γ=1

E
[∫ 1

0

ẋit[SN
t (x)]αd[W

i
t ]

α
γ ·
∫ 1

0

ẏjt [SN
t (y)]βd[W

j
t ]

β
γ

]

=σ2
a +

σ2
b

N

N∑
l=1

d∑
i=1

E
[∫ 1

0

ẋitẏ
i
tdt

]

+
σ2
A

N2

N∑
α,γ=1

d∑
i=1

E
[∫ 1

0

ẋit[SN
t (x)]αẏ

i
t[SN

t (y)]αdt

]

=σ2
a + σ2

b

∫ 1

0

⟨ẋt, ẏt⟩ dt+ σ2
A

∫ 1

0

E
[
1

N

〈
SN
t (x),SN

t (y)
〉
RN

]
⟨ẋt, ẏt⟩ dt

where the penultimate equality follows from Itô’s isometry. Hence

1

N
E
[〈
SN
1 (xk),SN

1 (xm)
〉]

= σ2
a +

∫ 1

0

(
σ2
A

N
E[
〈
SN
1 (xk),SN

1 (xm)
〉
] + σ2

b

)
⟨(ẋk)s, (ẋm)s⟩Rd ds

DefiningKN
t (xk, xm) := 1

NE[
〈
SN
t (xk),SN

t (xm)
〉

and noticing that we can repeat the previous arguments for all t ∈ [0, 1],
not only for t = 1, by considering for example piecewise constant extensions of the SM,N

· we see that

KN
t (xk, xm) = σ2

a +

∫ t

0

(
σ2
AK

N
s (xk, xm) + σ2

b

)
⟨(ẋk)s, (ẋm)s⟩Rd ds

meaning that KN
t (xk, xm) solves Equation (15).

Since we showed in the proof of Theorem B.6 that the unique solution to the equation is κxk,xm

id (1) we conclude.

Directly proving the convergence in distribution of the infinite-width networks to centered Gaussians with covariance
function κid is difficult since the networks are not Gaussian processes. However we believe that it is possible to employ
McKean-Vlasov arguments to prove that they are at the limit, to then obtain a commmutativity of the limits; we leave the
exploration of this direction to future work.

B.3. Commutativity of Limits

In this section we are going to prove the commutativity of limits in the inhomogeneous case. To do this we are going to
proceed similarly to (Hayou & Yang, 2023) which proves the same result in a much restricted case.

Note that if φ is K-Lip i.e. |φ(x)− φ(y)| ≤ K|x− y| and φ(0) = 0 then

∥φ(x)∥2 =
∑

|φ(xi)|2 ≤
∑

K2|xi|2 ≤ K2 ∥x∥2
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hence
∥φ(x)∥ ≤ K ∥x∥

Assumption B.15. In this subsection φ is considered Lipschitz and with φ(0) = 0.

Recall Theorem B.13 and let S̃M,N
t (x) be the Euler discretization of (18). Then one has (see the proof of (Kloeden & Platen,

1992)[10.2.2])

sup
N≥1

1

N
E

[
sup

t∈[0,1]

∥∥∥S̃M,N
t (x)− SN

t (x)
∥∥∥2] ≤ C|DM | (19)

We can say the same for SM,N
t (x) instead of S̃M,N

t (x) i.e when the derivatives are replaced by difference quotients on the
successive interval.
Proposition B.16. The following inequality holds

sup
N≥1

1

N
sup

t∈[0,1]

E
[∥∥∥SM,N

t (x)− SN
t (x)

∥∥∥2] ≤ C̃|DM |

Proof. The bounding constant in equation (19) depends on the path x only trough ∥ẋ∥∞,[0,1]. In particular the bound is
uniform on bounded sets, with respect to this norm.

In particular we can interpolate {(tm, xtm)}m=0,...,|DM | in such a way to have the resulting map x̄ with

˙̄xtm =
xtm+1

− xtm
tm+1 − tm

=
∆xtm+1

∆tm+1

such that definitely in M ẋ is 1
2 -Holder continuous and

∥ ˙̄x− ẋ∥2∞,[0,1] ≲ |DM |

One can for example interpolate the points with a polynomial close enough to ẋ, being the polynomial defined on the
compact [0, 1] it is Lipschitz on [0, 1] hence 1

2 -Holder continuous. The existence of such a polynomial follows from

|
∆xtm+1

∆tm+1
− ẋtm | ≤ 1

∆tm+1

∫ tm+1

tm

|ẋs − ẋtm |ds ≤ 2

3
C 1

2−Ho

√
∆tm+1

Then SM,N (x) will be exactly the Euler discretisation of SN (x̄) on DM , hence

sup
N≥1

1

N
E

[
sup

t∈[0,1]

∥∥∥SM,N
t (x)− SN

t (x̄)
∥∥∥2] ≤ C|DM |

To conclude we just need to prove

sup
N≥1

1

N
sup

t∈[0,1]

E
[∥∥SN

t (x̄)− SN
t (x)

∥∥2] ≤ C̄|DM |

since

sup
t∈[0,1]

E
[∥∥∥SM,N

t (x)− SN
t (x)

∥∥∥2] ≤
2

(
sup

t∈[0,1]

E
[∥∥∥SM,N

t (x)− SN
t (x̄)

∥∥∥2]+ sup
t∈[0,1]

E
[∥∥SN

t (x̄)− SN
t (x)

∥∥2]) ≤

2

(
E

[
sup

t∈[0,1]

∥∥∥SM,N
t (x)− SN

t (x̄)
∥∥∥2]+ sup

t∈[0,1]

E
[∥∥SN

t (x̄)− SN
t (x)

∥∥2]) ≤

2(C + C̄)|DM |
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Then note how

SN
t (x) = SN

0 (x) +

d∑
k=1

∫ t

0

σA√
N
ẋksdW

k
s φ(SN

s (x)) + σbẋ
k
sdB

k
s

= SN
0 (x) +

d∑
k=1

N∑
j=1

∫ t

0

ẋks

(
σA√
N
φ([SN

s (x)]j)d[W
k]js + σbdB

k
s

)
thus

SN
t (x̄)− SN

t (x) =

d∑
k=1

N∑
j=1

∫ t

0

( ˙̄xks − ẋks)

(
σA√
N
φ([SN

s (x̄)]j)d[W
k]js + σbdB

k
s

)

+

d∑
k=1

N∑
j=1

∫ t

0

ẋks
σA√
N

(
φ([SN

s (x̄)]j)− φ([SN
s (x)]j)

)
d[W k]js

which leads to

E
[∥∥SN

t (x̄)− SN
t (x)

∥∥2] = N
d∑

k=1

∫ t

0

( ˙̄xks − ẋks)
2

(
σ2
A

N
E[
∥∥φ(SN

s (x̄))
∥∥2] + σ2

b

)
ds

+N

d∑
k=1

∫ t

0

(ẋks)
2σ

2
A

N

∥∥E[φ(SN
s (x̄))− φ(SN

s (x))
∥∥2]ds

≤ NK

d∑
k=1

∫ t

0

( ˙̄xks − ẋks)
2

(
σ2
A

N
E[
∥∥SN

s (x̄)
∥∥2] + σ2

b

)
ds

+NK

d∑
k=1

∫ t

0

(ẋks)
2σ

2
A

N
E[
∥∥SN

s (x̄)− SN
s (x)

∥∥2]ds
≤ NK ∥ ˙̄x− ẋ∥2∞,[0,1]

d∑
k=1

∫ t

0

(
σ2
A

N
E[
∥∥SN

s (x̄)
∥∥2] + σ2

b

)
ds

+NK ∥ẋ∥2∞,[0,1]

d∑
k=1

∫ t

0

σ2
A

N
E[
∥∥SN

s (x̄)− SN
s (x)

∥∥2]ds
Using the fact that, again (Kloeden & Platen, 1992)[10.2.2],

1

N
E[
∥∥SN

s (x̄)
∥∥2] ≤ K̃x̄

with K̃x̄ only depending on ∥ ˙̄x∥∞ we obtain, via Gronwall, a bound of type

E
[∥∥SN

t (x̄)− SN
t (x)

∥∥2] ≤ ∥ ˙̄x− ẋ∥2∞,[0,1] K̄ (20)

where K̄ only depends on ∥ ˙̄x∥∞ + ∥ẋ∥∞. By our choice of x̄ we conclude.

We can finally state the main result:

Theorem B.17. If the activation function is Lipschitz and φ(0) = 0 then there is a constant C depending only on ∥ẋ∥∞,[0,1]

in an increasing fashion such that:

sup
N≥1

sup
t∈[0,1]

W1(µ
M,N
t (x), µN

t (x)) ≤ C̄
√
|DM |

where µM,N
t is the distribution of any coordinate of SM,N

t (x) and µN
t (x) that of any coordinate of SN

t (x) (they are
identically distributed).
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Proof. Let G : R → R be 1-Lipschitz, we have

E[|G([SM,N
t (x)]1)−G([SN

t (x)]1)|] ≤ E
[
|[SM,N

t (x)]1 − [SN
t (x)]1|

]
≤(

E
[
|[SM,N

t (x)]1 − [S̃M,N
t (x)]1|2

]) 1
2

=(
1

N

N∑
α=1

E
[
|[SM,N

t (x)]α − [SN
t (x)]α|2

]) 1
2

≤

(
1

N
E
[∥∥∥SM,N

t (x)− SN
t (x)

∥∥∥2]) 1
2

≤(
1

N
sup

t∈[0,1]

E
[∥∥∥SM,N

t (x)− SN
t (x)

∥∥∥2]) 1
2

≤
√
C|DM |

hence
W1(µ

M,N
t (x), µN

t (x)) ≤
√
C|DM |

Note that the entries have the same distribution as the normal projections since for t ∈ R

E[exp{it
〈
vN ,SM,N

〉
}] = E

[
E[exp{it

〈
vN ,SM,N

〉
}|SM,N ]

]
= E

[
E[exp{i

〈
vN , tSM,N

〉
}|SM,N ]

]
= E

[
exp{− t2

2N

∥∥SM,N
∥∥2}]

and

E[exp{it[SM,N ]1}] = E
[
E[exp{it

〈
vN ,SM,N

〉
}|SM,N ]

]
= E

[
E[exp{i

〈
vN , tSM,N

〉
}|SM,N ]

]
= E

[
exp{− t2

2N

∥∥SM,N
∥∥2}]

thus giving us

Theorem B.18. If the activation function is Lipschitz and φ(0) = 0 then there is a constant C depending only on ∥ẋ∥∞,[0,1]

in an increasing fashion such that:

sup
N≥1

sup
t∈[0,1]

W1(µ
M,N
t (x), µN

t (x)) ≤ C̄
√
|DM |

where µM,N
t is the distribution of

〈
vN ,SM,N

t (x)
〉

and µN
t (x) that of

〈
vN ,SN

t (x)
〉

for some independent vector with iid

entries [vN ]α ∼ N (0, 1
N ).

Remark. With the same proof we have also the convergence of the laws of the rescaled processes 1√
N
SM,N
t (x).

Remark. Note that the exact arguments, being of L2 type, can be repeated for the ”stacked” vector
(SN,M (x1), . . . ,SN,M (xN )) extending (qualitatively) the bounds to the multi-input case.

B.3.1. PROOF OF THEOREM 3.1: PART 2

Corollary B.19 (Thm. 3.1). If the activation function is Lipschitz and φ(0) = 0 then the limits in Thm. B.2 commute.

Proof. By the classical Moore-Osgood theorem we need to prove that one of the two limits is uniform in the other, for
example that the limit in distribution asM → ∞ is uniform inN in some metric which describes convergence in distribution.
But this is just the content of the previous results, extended to the multi-input case.
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C. Proofs for homogeneous controlled ResNets
In this section we prove all the results for the homogeneous case. Recall that a randomly initialised, 1-layer homogeneous
controlled ResNet ΦM,N

φ : X → R is defined as follows

ΦM,N
φ (x) :=

〈
ϕ, SM,N

tM (x)
〉
RN

where ϕ ∈ RN is the random vector [ϕ]α
iid∼ N (0, 1

N ), and where the random functions SM,N
ti : X → RN satisfy the

following recursive relation

SM,N
ti+1

= SM,N
ti +

d∑
k=1

(
Akφ(S

M,N
ti ) + bk

)
∆xkti+1

with initial condition St0 = a with [a]α
iid∼ N (0, σ2

a), and Gaussian weights Ak ∈ RN×N and biases bk ∈ RN sampled
independently according to

[Ak]
β
α

iid∼ N
(
0,
σ2
A

N

)
, [bk]α

iid∼ N
(
0, σ2

b

)
This section too will be subdivided in three main parts: in the first we consider the infinite-width-then-depth limit, in the
second we reverse the order and consider the infinite-depth-then-width limit and in the third one we prove that the limits can
be exchanged.

C.1. The infinite-width-then-depth regime

The main goal is that of proving the first part of Theorem 4.1, which we restate here:

Theorem C.1. Let {DM}M∈N be a sequence of partitions of [0, 1] such that |DM | → 0 as M → ∞. Let the activation
function φ be linearly bounded, absolutely continuous and with exponentially bounded derivative. For any subset X =
{x1, . . . , xn} ⊂ X of paths the following convergence in distribution holds

lim
M→∞

lim
N→∞

ΦM,N
φ (X ) = N (0,Kφ(X ,X )) (21)

where the positive semidefinite kernel Kφ : X× X → R is defined for any two paths x, y ∈ X as Kφ(x, y) = Kx,y
φ (1, 1),

where Kx,y
φ : [0, 1]2 → R is the unique solution of the following differential equation

∂s∂tKx,y
φ =

[
σ2
AVφ

(
Σx,y

φ

)
+ σ2

b

]
⟨ẋs, ẏt⟩ (22)

where

Σx,y
φ (s, t) =

(
Kx,x

φ (s, s),Kx,y
φ (s, t)

Kx,y
φ (s, t),Ky,y

φ (t, t)

)
and with initial conditions for any s, t ∈ [0, 1]

Kx,y
φ (0, 0) = Kx,y

φ (s, 0) = Kx,y
φ (0, t) = σ2

a

Once again, it is clearer to subdivide the proof of this result in two parts:

1. The infinite width-convergence of the finite dimensional distributions

ΦM,N
φ (X )

N→∞−−−−→ N (0,KDM×DM
(X ,X ))

to those of a Gaussian process GP(0,KDM×DM
) defined by a Kernel computed as the final value of a difference

equation on the partition DM ×DM of [0, 1]× [0, 1]. This will be done using Tensor Programs (Yang, 2019) in C.1.1.

2. The infinite-depth convergence of the discrete kernels KDM×DM
to a limiting Kernel Kφ which solves the differential

equation 22. This will be done in C.1.2.
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C.1.1. INFINITE-WIDTH LIMIT WITH FIXED-DEPTH

We prove convergence in the finite-depth, infinite-width limit to a GP endowed with discrete kernels. using the formalism of
Tensor Programs.

Theorem C.2. Let φ : R → R be linearly bounded 11. For any subset X = {x1, . . . , xn} ⊂ X the following convergence
in distribution holds

lim
N→∞

ΦM,N
φ (X ) = N (0,KDM×DM

(X ,X ))

where the map KD×D′ : X × X → R is, given any two partitions D,D′ of [0, 1], defined for any two paths x, y ∈ X as
KD×D′(x, y) = Kx,y

D×D′(1, 1) where Kx,y
D×D′ : D ×D′ → R solves the following difference equation

KD×D′(sm, tn) = KD×D′(sm−1, tn) +KD×D′(sm, tn−1)−KD×D′(sm−1, tn−1)

+
(
σ2
AVφ

(
Σx,y

D×D′(sm−1, tn−1)
)
+ σ2

b

)
⟨∆xsm ,∆ytn⟩Rd (23)

with initial conditions
Kx,y

D×D′(0, 0) = Kx,y
D×D′(0, tn) = Kx,y

D×D′(sm, 0) = σ2
a

and where

Σx,y
D×D′(s, t) =

(
Kx,x

D×D(s, s) Kx,y
D×D′(s, t)

Kx,y
D×D′(s, t) Ky,y

D′×D′(s, s)

)
Proof. We use (Yang, 2019)[Corollary 5.5] applied to the Tensor Program of Algorithm 2 where the input variables are
independently sampled according to

[Ak]
β
α ∼ N (0,

σ2
A

N
), [v]α ∼ N (0, 1), [S0]α ∼ N (0, σ2

a) and [bk]α ∼ N (0, σ2
b )

Note how the sampling scheme follows (Yang, 2019)[Assumption 5.1] and how linearly bounded functions are controlled
in the sense of (Yang, 2019)[Definition 5.3] since for all x ∈ R one has |ϕ(x)| ≤ C(1 + |x|) ≤ e|x|+log(C). Thus we are
under the needed assumptions to apply (Yang, 2019)[Corollary 5.5].

There are two things to notice, done in order to satisfy the required formalism:

• In the program the output projector v is sampled according to N (0, 1) while the original ϕ ∼ N (0, 1
N ). This does not

pose any problems since the output of the formal programs uses v/
√
N ∼ N (0, 1

N ).

• The input paths xi enter program 2 not as Inputs but as coefficients of LinComb, this means that for any choice of input
paths we must formally consider different algorithms. In any case, for any possible choice, the result has always the
same functional form; hence a posteriori it is legitimate to think about one algorithm.

Note that Sx
m stands for the formal variable in program 2, not for SM,N

t
DM
m

(x) even thogh this is the value which it ”stores” for
a fixed hidden dimension N .

The result in (Yang, 2019)[Corollary 5.5] tells us that the output vector converges in law, as N → ∞, to a Gaussian
distribution N (0, K̃M ) where

[K̃M ]ji = EZ∼N (µ,Σ)

[
Z

S
xi

∥DM∥Z
S

xj

∥DM∥
]
= Σ(Sxi

∥DM∥, S
xj

∥DM∥)

with µ,Σ computed according to (Yang, 2019)[Definition 5.2] and defined on the set of all G-vars in the program i.e.

µ(g) =


µin(g) if g is Input G-var∑

k akµ(gk) if g is introduced as
∑

k akgk via LinComb
0 otherwise

11in the sense that ∃C > 0. such that |ϕ(x)| ≤ C(1 + |x|).
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Σ(g, g′) =



Σin(g, g′) if both g and g′ are Input G-var∑
k akΣ(gk, g

′) if g is introduced as
∑

k akgk via LinComb∑
k akΣ(g, g

′
k) if g′ is introduced as

∑
k akg

′
k via LinComb

σ2
WEZ∼N (µ,Σ)[ϕ(Z)ϕ

′(Z)] if g =Wh, g′ =Wh′ via MatMul w/ same W
0 otherwise

where h = ϕ((gk)
m
k=1) for some function ϕ and ϕ(Z) := ϕ((Zgk)mk=1), similarly for g′.

In our setting µin ≡ 0 since all Input variables are independent, from which µ ≡ 0; furthermore Σin(g, g′) = 0 except if
g = g′ when it takes values in {σ2

a, σ
2
b , σ

2
A} accordingly.

Following the rules of Σ, assuming mi,mj ∈ {1, . . . , ∥DM∥}, we obtain

Σ(Sxi
mi
, Sxj

mj
) = Σ(Sxi

mi−1, S
xj
mj

) + Σ

(
d∑

k=1

γimi,k∆(xi)
k
tmi

, Sxj
mj

)

= Σ(Sxi
mi−1, S

xj
mj

) + Σ

(
d∑

k=1

γimi,k∆(xi)
k
tmi

, S
xj

mj−1

)

+Σ

(
d∑

k=1

γimi,k∆(xi)
k
tmi

,

d∑
l=1

γjmj ,l
∆(xj)

l
tmj

)
= Σ(Sxi

mi−1, S
xj
mj

) + Σ(Sxi
mi
, S

xj

mj−1)− Σ(Sxi
mi−1, S

xj

mj−1)

+

d∑
k,l=1

Σ(γimi,k, γ
j
mj ,l

)∆(xi)
k
tmi

∆(xj)
l
tmj

Now
Σ(γimi,k, γ

j
mj ,l

) = δk,lσ
2
AE[φ(Z1)φ(Z2)] + Σ(bk, bl) = δkl

[
σ2
AE[φ(Z1)φ(Z2)] + σ2

b

]
where [Z1,Z2]

⊤ ∼ N (0, Σ̃mi−1,mj−1(xi, xj)) with

Σ̃m,m′(xi, xj) =

(
Σ(Sxi

m , S
xi
m ) Σ(Sxi

m , S
xj

m′)
Σ(Sxi

m , S
xj

m′) Σ(S
xj

m′ , S
xj

m′)

)

thus if we set, for tmi
, tmj

∈ DM , Kxi,xj

DM×DM
(tmi

, tmj
) := Σ(Sxi

mi
, S

xj
mj ) then we get

Kxi,xj

DM×DM
(tmi

, tmj
) = Kxi,xj

DM×DM
(tmi−1, tmj

) +Kxi,xj

DM×DM
((tmi

, tmj−1)

−Kxi,xj

DM×DM
((tmi−1, tmj−1)

+

d∑
k=1

(
σ2
AVφ

(
Σ̃mi−1,mj−1

(xi, xj)
)
+ σ2

b

)
∆(xi)

k
tmi

∆(xj)
k
tmj

which is exactly what Equation (23) states. Then note how

Σ(Sxi
mi
, S

xj

0 ) = Σ(Sxi
mi−1, S

xj

0 ) = · · · = Σ(Sxi
0 , S

xj

0 ) = σ2
a

Thus finally we can conclude and write the entries of the matrix K̃M as

[K̃M ]ji = Kxi,xj

DM×DM
(1, 1)
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Algorithm 2 SM,N
1 as Nestor program

Input: S0 : G(N) ▷ initial value
Input: b1, . . . , bd : G(N) ▷ biases
Input: A1, . . . , Ad : A(N,N) ▷ matrices
Input: v : G(N) ▷ readout layer weights
for i = 1, . . . , n do

// Compute SDM ,N
1 (xi) (here Sxi

0 is to be read as S0)
for m = 1, . . . , ∥DM∥ do

for k = 1, . . . , d do
αi
m,k := φ(Sxi

m−1) : H(N) ▷ by Nonlin;
βi
m,k := Akα

i
m,k : G(N) ▷ by Matmul;

γim,k := βi
m,k + bk : G(N) ▷ by LinComb;

end for
Sxi
m := Sxi

m−1 +
∑d

k=1 γ
i
m,k[(xi)

k
tm − (xi)

k
tm−1

] : G(N) ▷ by LinComb;
end for

end for
Output: (vTSxi

∥DM∥/
√
N)i=1,...,n

Actually we have proved the even stronger statement that

Corollary C.3. For all t, s ∈ DM one has the following distributional limit〈
ϕN , SM,N

t (X )
〉 〈
ϕN , SM,N

s (X )
〉
−−−−→
N→∞

N (0,KX ,X
DM×DM

(t, s))

where [ϕN ]α ∼ N (0, 1
N ) are independently sampled.

Moreover with the same proof but considering different partitions, D and D′, for different paths x, y ∈ X in the algorithm
we see that:

Proposition C.4. For all t ∈ D, for all s ∈ D′, with a clear abouse of notation, one has the following distributional limit〈
ϕN , SD,N

t (x)
〉〈

ϕN , SD′,N
s (y)

〉
−−−−→
N→∞

N (0,Kx,y
D×D′(t, s))

where [ϕN ]α ∼ N (0, 1
N ) are independently sampled and the matrices Σx,y

D×D′(t, s) are always in PSD2.

Remark. The fact that the matrices Σx,y
D×D′(t, s) are always in PSD2 will be crucial in the following.

C.1.2. UNIFORM CONVERGENCE TO NEURAL SIGNATURE KERNELS

We now prove that the sequence of discrete kernels convergence uniformly to our neural signature kernels. First we need
definitions for extending the discrete kernels to [0, 1]2 similarly to the previous section.

Definition C.5. Fix two partitions D := {0 = s0 < · · · < sM = 1} and D′ := {0 = t0 < · · · < tM ′ = 1}. For any
x, y ∈ X define

Kx,y
D×D′ : D ×D′ → R

as the map satisfying the following recursion

Kx,y
D×D′(sm, tn)

=Kx,y
D×D′(sm−1, tn) +Kx,y

D×D′(sm, tn−1)−Kx,y
D×D′(sm, tn−1)

+

d∑
k=1

(
σ2
AVφ

(
Σx,y

D×D′(sm−1, tn−1)
)
+ σ2

b

)
∆xksm∆yktn

=σ2
a +

∑
0 ≤ k1 < m
0 ≤ k2 < n

d∑
k=1

(
σ2
AVφ

(
Σx,y

D×D′(sk1
, tk2

)
)
+ σ2

b

)
∆xksk1+1

∆yktk2+1
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where
Kx,y

D×D′(0, tn) = KD×D′(sm, 0) = σ2
a

and

Σx,y
D×D′(sm, tn) =

(
Kx,x

D×D′(sm, sm),Kx,y
D×D′(sm, tn)

Kx,y
D×D′(sm, tn),Ky,y

D×D′(tn, tn)

)
Definition C.6. We extend the map Kx,y

D×D′ : D × D′ → R to the whole square [0, 1] × [0, 1] in two ways: for any
(s, t) ∈ [sm−1, sm)× [tn−1, tn)

1. (integral interpolation) using a slight abuse of notation that overwrites the previous one, define the map Kx,y
D×D′ :

[0, 1]× [0, 1] → R as

Kx,y
D×D′(s, t) = Kx,y

D×D′(sm−1, tn) +Kx,y
D×D′(sm, tn−1)−Kx,y

D×D′(sm, tn−1)

+

∫ s

η=sm−1

∫ t

τ=tn−1

(
σ2
AVφ

(
Σx,y

D×D′(sm−1, tn−1)
)
+ σ2

b

)
⟨ẋη, ẏτ ⟩Rd dηdτ

We extend in a similar way the matrix Σx,y
D×D′ .

2. (piecewise constant interpolation) define the map K̃x,y
D×D′ : [0, 1]× [0, 1] → R as

K̃x,y
D×D′(s, t) =


Kx,y

D×D′(sm, tn) if (s, t) ∈ [sm, sm+1)× [tn, tn+1)
Kx,y

D×D′(1, tn) if (s, t) ∈ {1} × [tn, tn+1)
Kx,y

D×D′(sm, 1) if (s, t) ∈ [sm, sm+1)× {1}
Kx,y

D×D′(1, 1) if (s, t) = (1, 1)

and similarly for the matrix Σ̃x,y
D×D′ .

Next we prove that the discrete kernels converge in distribution to a limiting kernel that satisfies a two-parameters differential
equation.

Theorem C.7. Let {DM}M∈N be a sequence of partitions [0, 1] with |DM | → 0. Then we have the following convergence
in (C0([0, 1]× [0, 1];R), ∥·∥∞)

Kx,y
DM×DM

(s, t) → Kx,y
φ (s, t)

where Kx,y(s, t) satisfies the following differential equation

∂s∂tKx,y
φ =

[
σ2
AVφ

(
Σx,y

φ

)
+ σ2

b

]
⟨ẋs, ẏt⟩ (24)

where

Σx,y
φ (s, t) =

(
Kx,x

φ (s, s),Kx,y
φ (s, t)

Kx,y
φ (s, t),Ky,y

φ (t, t)

)
and with initial conditions for any s, t ∈ [0, 1]

Kx,y
φ (0, 0) = Kx,y

φ (s, 0) = Kx,y
φ (0, t) = σ2

a

The limit is independent of the chosen sequence and the convergence is, in x, y, uniform on bounded sets of X.

The proof will rely on classic arguments used to prove convergence of Euler schemes to CDE solutions (see (Friz & Victoir,
2010) and (Huang & Tsai, 2004)). However, our setting is more complex than the ones we found in the literature; this is
due to the presence of two ”independent” driving signals and on the unique nature of the driving fields, which not only
depend on the ”present” but also on ”past” and ”future”. This complex dependency structure of the driving fields makes
them completely non-local and requires more involved arguments for the solution to be made sense of. Note that due to their
definition as limiting kernels the Σ̃x,y

DM×DM
are always PSD. However we are going to need a more quantitative result, in the

form of a uniform membership in some PSD(R), in order to later leverage Lemma A.5. We first prove such a result for the
case x = y and D = D′, the general case will follow easily. The first ”ingredient” is a uniform, in x ∈ X, bound from below
of the kernels for t = s.
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Lemma C.8. ∀x ∈ X.∀t ∈ D. K̃x,x
D×D(t, t) ≥ σ2

a for any choice of D.

Proof. We have

Kx,x
D×D(tm, tm) = σ2

a +
∑

0 ≤ k1 < m
0 ≤ k2 < m

d∑
k=1

(
σ2
AVφ

(
Σx, x

D×D(tk1
, tk2

)
)
+ σ2

b

)
∆xktk1+1

∆xktk2+1

and by Tensor Programs we know that

∑
0 ≤ k1 < m
0 ≤ k2 < m

d∑
k=1

(
σ2
AVφ

(
Σx, x

D×D(tk1
, tk2

)
)
+ σ2

b

)
∆xktk1+1

∆xktk2+1
= lim

N→∞
E

[
⟨SD,N

tm (x)− SN
0 , S

D,N
tm (x)− SN

0 ⟩
N

]
≥ 0

The second step is another bound, this time from above, which will be uniform on bounded subsets of X.

Lemma C.9. There is a constant Cx > 0 independent of D such that

∥Kx,x
D×D∥∞,[0,1]×[0,1] := sup

(s,t)∈[0,1]2
|Kx,x

D×D(s, t)| ≤ Cx

Moreover Cx only depends on ∥x∥1−var and is increasing in it, thus there is a uniform bound on bounded subsets of X.

Proof. Let us prove this result for K̃x,x first. Wlog (s, t) ∈ [sm, sm+1)× [tn, tn+1). Remember how

K̃x,x
D×D(s, t) = Kx,x

D×D(sm, tn)

= σ2
a +

∫ sm

η=0

∫ tn

τ=0

(
σ2
AVφ

(
Σ̃x, x

D×D(η, τ)
)
+ σ2

b

)
⟨ẋη, ẋτ ⟩Rd dηdτ

thus

|K̃s,t| ≤ σ2
a +

∫ sm

η=0

∫ tn

τ=0

|σ2
AVφ(Σ̃η,τ )|| ⟨ẋη, ẋτ ⟩Rd |dηdτ +

∫ sm

η=0

∫ tn

τ=0

|σ2
b || ⟨ẋη, ẋτ ⟩Rd |dηdτ

= σ2
a + σ2

b ∥x∥1−var,[0,sm] ∥x∥1−var,[0,sn]
+ σ2

A

∫ sm

η=0

∫ tn

τ=0

|Vφ(Σ̃η,τ )|| ⟨ẋη, ẋτ ⟩Rd |dηdτ

≤ σ2
a + σ2

b∥x∥21−var,[0,1] + σ2
A

∫ sm

η=0

∫ tn

τ=0

M̃
(
1 +

√
K̃η,η

)(
1 +

√
K̃τ,τ

)
| ⟨ẋη, ẋτ ⟩Rd |dηdτ

= σ2
a + σ2

b∥x∥21−var,[0,1] + σ2
AM̃

(∫ sm

η=0

(
1 +

√
K̃η,η

)
|ẋη|dη

)(∫ tn

τ=0

(
1 +

√
K̃τ,τ

)
|ẋτ |dτ

)

In particular

K̃s,s = |K̃s,s| ≤ σ2
a + σ2

b∥x∥21−var,[0,1] + σ2
AM̃

∣∣∣∣∫ sm

η=0

(
1 +

√
K̃η,η

)
|ẋη|dη

∣∣∣∣2
≤ σ2

a + σ2
b∥x∥21−var,[0,1] + σ2

AM̃∥x∥1−var,[0,tm]

(∫ sm

η=0

(
1 +

√
K̃η,η

)2

|ẋη|dη
)

≤ σ2
a + σ2

b∥x∥21−var,[0,1] + 2σ2
AM̃∥x∥1−var,[0,1]

∫ sm

η=0

(1 + K̃η,η)|ẋη|dη

≤ σ2
a + σ2

b∥x∥21−var,[0,1] + 2σ2
AM̃∥x∥1−var,[0,1]

∫ s

η=0

(1 + K̃η,η)|ẋη|dη
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and we can use Gronwall Inequality ((Friz & Victoir, 2010), Lemma 3.2) to obtain

1 + K̃s,s ≤ (1 + σ2
a + σ2

b∥x∥21−var,[0,1]) exp{2σ
2
AM̃∥x∥21−var,[0,1]}

hence the thesis with

C̃x = (1 + σ2
a + σ2

b∥x∥21−var,[0,1])e
2σ2

AM̃∥x∥2
1−var,[0,1] − 1

In order to extend the bound to Kx,x notice that

|Kx,x
D×D(s, t)| = |σ2

a +

∫ s

η=0

∫ t

τ=0

(
σ2
AVφ

(
Σ̃x, x

D×D(η, τ)
)
+ σ2

b

)
⟨ẋη, ẋτ ⟩Rd dηdτ |

≤σ2
a +

(
2σ2

AM̃(1 + C̃x) + σ2
b

)∫ s

η=0

∫ t

τ=0

| ⟨ẋη, ẋτ ⟩Rd |dηdτ

≤σ2
a +

(
2σ2

AM̃(1 + C̃x) + σ2
b

)
∥x∥21−var,[0,1] =: Cx

Thus finally we can conclude, as promised, that

Lemma C.10. There is an R = Rx ∈ R such that Σ̃x,x
D×D ∈ PSD2(R) for every D. Moreover, as before, this Rx only

depends on ∥x∥1−var and is increasing in it.

Proof. The diagonal elements K̃x,x
D×D(s, s) are bounded above by a common constant Cx and below by σ2

a We thus can
simply choose Rx = Cx ∨ σ−2

a .

We are ready to extend the result to the general case.

Proposition C.11. Fix a α > 0. There exist a constant Cα such that for all x, y ∈ X with ∥x∥1−var , ∥y∥1−var ≤ α and
partitions D,D′ it holds

sup
0≤t,s≤1

|Kx,y
D×D′(s, t)| ≤ Cα

Moreover for Rα := Cα ∨ σ−2
a we get

Σ̃x,y
D×D′(s, t) ∈ PSD(Rα)

Proof. Remember how the maps Σ̃x,y
D×D′ are PSD2 since they arise as such from Tensor limiting arguments, in particular

by positive semidefinitiveness and the previous bounds

|K̃x,y
D×D′(s, t)| ≤

√
K̃x,x

D×D(s, s)K̃
y,y
D′×D′(t, t) ≤

√
C̃xC̃y ≤ C̃x ∨ C̃y

For Kx,y(t) we proceed similarly to before:

|Kx,y
D×D′(s, t)| = |σ2

a +

∫ s

η=0

∫ t

τ=0

(
σ2
AVφ

(
Σ̃x, y

D×D′(η, τ)
)
+ σ2

b

)
⟨ẋη, ẏτ ⟩Rd dηdτ |

≤σ2
a +

(
2σ2

AM̃(1 + C̃x ∨ C̃y) + σ2
b

)∫ s

η=0

∫ t

τ=0

| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤σ2
a +

(
2σ2

AM̃(1 + C̃x ∨ C̃y) + σ2
b

)
∥x∥1−var,[0,1] ∥y∥1−var,[0,1] ≤ Cα

The second part follows from the definition of PSD(Rα).
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Proof of Theorem C.7.

The central idea will be proving that, given any sequence Dn × D′
n with |Dn| ∨ |D′

n| ↓ 0, the maps {Kx,y
DM×D′

n
}n form

a Cauchy sequence in the Banach space (C0([0, 1]× [0, 1];R), ∥ · ∥∞). By completeness of this space the sequence will
admit a limit Kx,y , which we will prove to be independent from the chosen sequence. Finally we will prove that this limit is
the sought after kernel.

Note that trivially the set {x, y} is bounded in X, we can thus fix two constants Cx,y, Rx,y with the properties given in
Proposition C.11. We will often, for ease of notation, refer to them as C and R.

Part I: how close are KD×D′ and K̃D×D′ ?

We have

|Kx,y
D×D′(s, t)− K̃x,y

D×D′(s, t)|

=|
∫ s

η=0

∫ t

τ=0

(σ2
AVφ(Σ̃

x,y
D×D′(η, τ)) + σ2

b ) ⟨ẋη, ẏτ ⟩Rd dηdτ

−
∫ sm

η=0

∫ tn

τ=0

(σ2
AVφ(Σ̃

x,y
D×D′(η, τ)) + σ2

b ) ⟨ẋη, ẏτ ⟩Rd dηdτ |

=

∣∣∣∣∣
∫
Ωs,t

(σ2
AVφ(Σ̃

x,y
D×D′(η, τ)) + σ2

b ) ⟨ẋη, ẏτ ⟩Rd dηdτ

∣∣∣∣∣
with

Ωs,t := [0, s]× [0, t] \ [0, sm]× [0, tn]

Note that
Ωs,t ⊆ ([sm,sm+1]× [0, 1]) ∪ ([0, 1]× [tn, tn+1])

thus
L2(Ωs,t) ≤ |D|+ |D′| ≤ 2(|D| ∨ |D′|)

hence

|Kx,y
D×D′(s, t)− K̃x,y

D×D′(s, t)| ≤
∫
Ωs,t

|σ2
AVφ(Σ̃

x,y
D×D′(η, τ)) + σ2

b || ⟨ẋη, ẋτ ⟩Rd |dηdτ

≤σ2
A

∫
Ωs,t

M̃
(
1 +

√
Kx,x

D×D(η,η)
)(

1 +
√

Ky,y

D′×D′ (τ,τ)
)
| ⟨ẋη, ẏτ ⟩Rd |dηdτ

+ σ2
b

∫
Ωs,t

| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤σ2
AM̃

(
1 +

√
Cx,y

)2 ∫
Ωs,t

| ⟨ẋη, ẏτ ⟩Rd |dηdτ + σ2
b

∫
Ωs,t

| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤(2σ2
AM̃(1 + Cx,y) + σ2

b )

∫
[0,1]×[0,1]

IΩs,t
(η, τ)| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤(2σ2
AM̃(1 + Cx,y) + σ2

b )
√
L2(Ωs,t)

√∫
[0,1]×[0,1]

| ⟨ẋη, ẏτ ⟩Rd |2dηdτ

≤(2σ2
AM̃(1 + Cx,y) + σ2

b )
√
L2(Ωs,t)

√∫
[0,1]×[0,1]

|ẋη|2|ẏτ |2dηdτ

≤(2σ2
AM̃(1 + Cx,y) + σ2

b )
√
L2(Ωs,t)

√
∥x∥2X ∥y∥2X

≤2(2σ2
AM̃(1 + Cx,y) + σ2

b )
√

|D| ∨ |D′|
√
∥x∥2X ∥y∥2X
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In particular as (|D| ∨ |D′|) → 0 we have

sup
[0,1]×[0,1]

|Kx,y
D×D′(s, t)− K̃x,y

D×D′(s, t)| ≤

2(2σ2
AM̃(1 + Cx,y) + σ2

b )
√

|D| ∨ |D′|
√
∥x∥2X ∥y∥2X → 0

Notice that, since we can repeat the argument for Kx,x
D×D and Ky,y

D′×D′ , we have

sup
[0,1]×[0,1]

|Σx,y
D×D′(s, t)− Σ̃x,y

D×D′(s, t)|∞ ≤

2(2σ2
AM̃(1 + Cx,y) + σ2

b )
√
|D| ∨ |D′|(∥x∥2X ∨ ∥y∥2X) =: Γx,y

√
|D| ∨ |D′|

Part II : Cauchy Bounds
Consider now another partition Ď × Ď′, we have

|Kx,y

Ď×Ď′(s, t)−Kx,y
D×D′(s, t)|

=

∣∣∣∣σ2
A

∫ s

η=0

∫ t

τ=0

[Vφ(Σ̃
x,y

Ď×Ď′(η, τ))− Vφ(Σ̃
x,y
D×D′(η, τ))] ⟨ẋη, ẏτ ⟩Rd dηdτ

∣∣∣∣
≤σ2

A

∫ s

η=0

∫ t

τ=0

|Vφ(Σ̃x,y

Ď×Ď′(η, τ))− Vφ(Σ̃
x,y
D×D′(η, τ))|| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤σ2
A

∫ s

η=0

∫ t

τ=0

kR|Σ̃x,y

Ď×Ď′(η, τ)− Σ̃x,y
D×D′(η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤σ2
AkR

∫ s

η=0

∫ t

τ=0

|Σ̃Ď×Ď′(η, τ)− ΣĎ×Ď′(η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

+ σ2
AkR

∫ s

η=0

∫ t

τ=0

|ΣĎ×Ď′(η, τ)− ΣD×D′(η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

+ σ2
AkR

∫ s

η=0

∫ t

τ=0

|ΣD×D′(η, τ)− Σ̃D×D′(η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤σ2
AΓx,y

√
|Ď| ∨ |Ď′|

∫ s

η=0

∫ t

τ=0

| ⟨ẋη, ẏτ ⟩Rd |dηdτ

+ σ2
AkR

∫ s

η=0

∫ t

τ=0

|ΣĎ×Ď′(η, τ)− ΣD×D′(η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

+ σ2
AΓx,y

√
|D| ∨ |D′|

∫ s

η=0

∫ t

τ=0

| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤σ2
A2Γx,y

√
|D| ∨ |D′| ∨ |Ď| ∨ |Ď′|(∥x∥21−var,[0,1] ∨ ∥y∥21−var,[0,1])

+ σ2
AkR

∫ s

η=0

∫ t

τ=0

|Σx,y

Ď×Ď′(η, τ)− Σx,y
D×D′(η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

Assume to be in the case x = y, D = D′, Ď = Ď′ and define the following quantity:

Ξt := sup
0≤η,τ≤t

|Σx,x

Ď×Ď(η, τ)− Σx,x
D×D(η, τ)|∞ = sup

0≤η,τ≤t
|Kx,x

Ď×Ď(η, τ)−Kx,x
D×D(η, τ)|

One has, from the previous inequality, that

Ξt ≤ σ2
A2Γx,x

√
|Ď| ∨ |D|∥x∥21−var,[0,1]

+σ2
AkR

∫ s

η=0

∫ t

τ=0

|ΣĎ×Ď(η, τ)− ΣD×D(η, τ)|∞| ⟨ẋη, ẋτ ⟩Rd |dηdτ
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and since ∫ s

η=0

∫ t

τ=0

|ΣĎ×Ď(η, τ)− ΣD×D(η, τ)|∞| ⟨ẋη, ẋτ ⟩Rd |dηdτ

≤
∫ s

η=0

∫ t

τ=0

Ξη∨τ | ⟨ẋη, ẋτ ⟩Rd |dηdτ

=

∫ s

η=0

∫ η

τ=0

Ξη| ⟨ẋη, ẋτ ⟩Rd |dηdτ +
∫ s

η=0

∫ t

τ=η

Ξτ | ⟨ẋη, ẋτ ⟩Rd |dηdτ

≤
∫ s

η=0

∥x∥1−var,[0,η]Ξη|ẋη|dη +
∫ t

τ=0

∫ σ

η=0

Ξτ |ẋη||ẋτ |dηdτ

=

∫ s

η=0

∥x∥1−var,[0,η]Ξη|ẋη|dη +
∫ t

τ=0

∥x∥1−var,[0,τ ]Ξτ |ẋτ |dτ

≤2∥x∥1−var,[0,1]

∫ s

η=0

Ξη|ẋη|dη

we get

Ξt ≤ σ2
A2Γx,x∥x∥21−var,[0,1]

√
|Ď| ∨ |D|

+2σ2
AkR∥x∥1−var,[0,1]

∫ s

η=0

Ξη|ẋη|dη

thus, by Gronwall,

Ξt ≤ 2σ2
AΓx,x∥x∥21−var,[0,1]

√
|Ď| ∨ |D| · e2σ

2
AkR∥x∥2

1−var,[0,1]

Coming back to the general case and setting

Λx,y := ∥x∥21−var,[0,1] ∨ ∥y∥21−var,[0,1]

we can now say that

Ξx,y
t := sup

0≤η,τ≤t
|ΣĎ×Ď′(η, τ)− ΣD×D′(η, τ)|∞

≤ 2σ2
AΓx,y

√
|Ď| ∨ |Ď′| ∨ |D| ∨ |D′|Λx,y(1 + e2σ

2
AkRΛx,y )

+σ2
AkR

∫ s

η=0

∫ t

τ=0

|ΣĎ×Ď′(η, τ)− ΣD×D′(η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

and since ∫ s

η=0

∫ t

τ=0

|ΣĎ×Ď′(η, τ)− ΣD×D′(η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤
∫ s

η=0

∫ t

τ=0

Ξx,y
η∨τ | ⟨ẋη, ẏτ ⟩Rd |dηdτ

=

∫ s

η=0

∫ η

τ=0

Ξx,y
η | ⟨ẋη, ẏτ ⟩Rd |dηdτ +

∫ s

η=0

∫ t

τ=η

Ξx,y
τ | ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤
∫ s

η=0

∥y∥1−var,[0,η]Ξ
x,y
η |ẋη|dη +

∫ t

τ=0

∫ σ

η=0

Ξx,y
τ |ẋη||ẏτ |dηdτ

=

∫ s

η=0

∥y∥1−var,[0,η]Ξ
x,y
η |ẋη|dη +

∫ t

τ=0

∥x∥1−var,[0,τ ]Ξ
x,y
τ |ẏτ |dτ

≤(∥x∥1−var,[0,1] ∨ ∥y∥1−var,[0,1])

∫ s

η=0

Ξx,y
η (|ẋη|+ |ẏη|)dη
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we get

Ξx,y
t ≤ 2σ2

AΓx,yΛx,y

√
|Ď| ∨ |Ď′| ∨ |D| ∨ |D′|(1 + e2σ

2
AkRΛx,y )

+2σ2
AkR(∥x∥1−var,[0,1] ∨ ∥y∥1−var,[0,1])

∫ s

η=0

Ξx,y
η (|ẋη|+ |ẏη|)dη

thus, by Gronwall,

Ξt ≤ 2σ2
AΓx,yΛx,y

√
|Ď| ∨ |Ď′| ∨ |D| ∨ |D′|(1 + e2σ

2
AkRΛx,y )

·e2σ
2
AkR(∥x∥1−var,[0,1]∨∥y∥1−var,[0,1])(∥x∥1−var,[0,t]+∥y∥1−var,[0,t])

hence
∥Kx,y

Ď×Ď′(s, t)−Kx,y
D×D′(s, t)∥∞,[0,1]2 ≤

2σ2
AΓx,yΛx,y

√
|Ď| ∨ |Ď′| ∨ |D| ∨ |D′| · (1 + e2σ

2
AkRΛx,y ) · e2σ

2
AkRΛx,y

Part III : Existence and Uniqueness of limit Given any sequence of partitions {Dn ×D′
n} with |Dn| ∨ |D′

n| → 0, due
to the bounds we have just proven we have

{Kx,y
DM×D′

n
}is a Cauchy sequence in (C0([0, 1]× [0, 1];R), ∥ · ∥∞)

and the limit Kx,y
φ does not depend on the sequence (i.e. the limit exists and is unique).

The limit is indeed unique: assume Kx,y and Gx,y are limits along two different sequences of partitions {Dn ×D′
n} and

{Gn ×G′
n}; then the sequence {Pn ×P ′

n} such that P2n ×P ′
2n := Dn ×D′

n and P2n+1 ×P ′
2n+1 := Gn ×G′

n is still such
that |Pn| ∨ |P ′

n| → 0 hence the associated kernels have a limit which must be equal to both Kx,y and Gx,y .

Since PSD matrices form a closed set we moreover have that the matrices Σx,y
φ (s, t) obtained as limits using the previous

result are all PSD. We can actually say more: they belong to PSD(R).

Part IV : Limit Kernel solves Equation (22) We can finally conclude by proving that Kx,y
φ is, in fact, a solution of the

PDE: ∣∣∣∣Kx,y
φ (s, t)− σ2

a +

∫ s

η=0

∫ t

τ=0

(σ2
AVφ(Σ

x,y
φ (η, τ)) + σ2

b ) ⟨ẋη, ẏτ ⟩Rd dηdτ

∣∣∣∣
≤|Kx,y

φ (s, t)−Kx,y
D×D′(s, t)|

+ σ2
A

∫ s

η=0

∫ t

τ=0

|Vφ(Σ̃x,y
D×D′(η, τ))− Vφ(Σ

x,y
φ (η, τ))|| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤o(1) + σ2
AkR

∫ s

η=0

∫ t

τ=0

|Σ̃x,y
D×D′(η, τ)− Σx,y

φ (η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤o(1) + σ2
AkR

∫ s

η=0

∫ t

τ=0

|Σ̃x,y
D×D′(η, τ)− Σx,y

D×D′(η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

+ σ2
AkR

∫ s

η=0

∫ t

τ=0

|Σx,y
D×D′(η, τ)− Σx,y

φ (η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

=o(1) + o(1) + o(1) = o(1)

thus ∣∣∣∣Kx,y
φ (s, t)− σ2

a +

∫ s

η=0

∫ s

τ=0

(σ2
AVφ(Σ

x,y
φ (η, τ)) + σ2

b ) ⟨ẋη, ẏτ ⟩Rd dηdτ

∣∣∣∣ = 0

i.e

Kx,y
φ (s, t) = σ2

a +

∫ s

η=0

∫ t

τ=0

(σ2
AVφ(Σ

x,y
φ (η, τ)) + σ2

b ) ⟨ẋη, ẏτ ⟩Rd dηdτ

- Part V : Uniformity in x, y on bounded sets
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Note that, once again, the bounds we have just proven only depend on the norms ∥·∥1−var,[0,1] and ∥·∥X of the paths,and
they do so in an increasing manner. Since ∥·∥1−var,[0,1] ≤ ∥·∥X this means that we have uniform convergence rates on
bounded sets on X.

Remark. We could have stated this result for x ∈ W 1,1([0, 1];Rd) thus requiring the derivative to only be in L1, this is
done in an analogous way to the proof of Theorem (3.1) using Ascoli-Arzela. The cost to pay for the decreased regularity of
the driving path is the loss of uniform convergence bounds.
Remark. Being careful one could maintain uniform bounds, at the cost of slower convergence, and state the result for
x ∈W 1,1+ϵ([0, 1];Rd) for any ϵ > 0. More specifically the bound would be proportional to |D|

ϵ
1+ϵ .

Proposition C.12 (Uniqueness). Under the previous assumptions on the activation function, fix x, y ∈ X. Then any two
triples

K(s, t) := (Kx,x(s, t),Kx,y(s, t),Ky,y(s, t))

G(s, t) := (Gx,x(s, t), Gx,y(s, t), Gy,y(s, t))

defined on [0, 1]× [0, 1],satisfying Equation (22) and such that

Kx,x(s, s),Ky,y(t, t), Gx,x(s, s), Gy,y(t, t) > 0

for all t ∈ [0, 1] must be equal.

Proof. We will write |K|∞ := |Kx,x| ∨ |Kx,y| ∨ |Ky,y|. To satisfy equation (22) the associated covariance matrices
ΣK(η, τ),ΣG(η, τ) must be always PSD2. Using the assumed bound from below the one from above given by continuity
we can assume that they uniformly in time are contained in some PSD2(R̄). This true for all choices (x, x), (x, y), (y, y).

|Kx,y(s, t)−Gx,y(s, t)|

=|
∫ s

η=0

∫ t

τ=0

σ2
A(Vφ(Σ

x,y
K (η, τ))− Vφ(Σ

x,y
G (η, τ))) ⟨ẋη, ẏτ ⟩Rd dηdτ |

≤
∫ s

η=0

∫ t

τ=0

σ2
A|Vφ(Σ

x,y
K (η, τ))− Vφ(Σ

x,y
G (η, τ))|| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤
∫ s

η=0

∫ t

τ=0

σ2
AkR̄|Σ

x,y
K (η, τ)− Σx,y

G (η, τ)|∞| ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤σ2
AkR̄

∫ s

η=0

∫ t

τ=0

( sup
0≤t1,s1≤η∨τ

|K(t1, s1)−G(t1, s1)|∞)| ⟨ẋη, ẏτ ⟩Rd |dηdτ

Moreover this holds substituting (x, y) with (x, x) and (y, y).

Let Ξt := sup0≤t1,s1≤ηt |K(t1, s1)−G(t1, s1)|∞) then

|K(s, t)−G(s, t)|∞ ≤ σ2
AkR̄

∫ s

η=0

∫ t

τ=0

Ξη∨τ | ⟨ẋη, ẏτ ⟩Rd |dηdτ

≤
∫ s

η=0

∫ t

τ=0

Ξη∨τ |ẋη||ẏτ |dηdτ

thus

Ξt ≤
∫ s

η=0

∫ t

τ=0

Ξη∨τ |ẋη||ẏτ |dηdτ

≤
∫ s

η=0

∫ η

τ=0

Ξη|ẋη||ẏτ |dηdτ +
∫ s

η=0

∫ t

τ=η

Ξτ |ẋη||ẏτ |dηdτ

≤∥y∥1−var,[0,1]

∫ s

η=0

Ξη|ẋη|dη + ∥x∥1−var,[0,1]

∫ t

τ=0

Ξτ |ẏτ |dτ

≤(∥x∥1−var,[0,1] ∨ ∥y∥1−var,[0,1])

∫ s

η=0

Ξη(|ẋη|+ |ẏη|)dη
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By Gronwall we finally conclude that Ξt = 0 for all t, which concludes the proof.z

C.1.3. PROOF OF THEOREM 4.1: PART 1

It is finally time to prove the first part of the main result of the paper, which we restate below for the reader’s convenience.

Fix partitions {DM}M∈N of [0, 1] with |DM | ↓ 0. Write ΦDM ,N
φ (·) =

〈
vN , SDM ,N

1 (·)
〉

for the ResNet initialized with the
time-homogeneous scheme.

Theorem C.13. Let the activation function φ : R → R be a linearly bounded, absolutely continuous map with exponentially
bounded derivative. For any subset X = {x1, . . . , xn} ⊂ X the following convergence in distribution holds

lim
M→∞

lim
N→∞

ΦM,N
φ (X ) = N (0,Kφ(X ,X ))

where the map Kφ : X× X → R is given by the unique final values Kx,y
φ (1, 1) of the following integro-differential equation

Kx,y
φ (s, t) = σ2

a +

∫ s

η=0

∫ t

τ=0

[
σ2
AEZ∼N (0,Σx,y

η,τ )[φ(Z1)φ(Z2)] + σ2
b

]
⟨ẋη, ẏτ ⟩Rd dηdτ (25)

with

Σx,y
s,t =

(
Kx,x

φ (s, s),Kx,y
φ (s, t)

Kx,y
φ (s, t),Ky,y

φ (t, t)

)

Proof. The proof is now just a matter of combining Theorem C.2 and Theorem C.7.

Under our hypotheses Theorem C.2 tells us that, for any subset X = {x1, . . . , xn} ⊂ X, we have in distribution

lim
N→∞

ΦDM ,N
φ (X ) = N (0,KDM×DM

(X ,X ))

thus to conclude we just have to prove that, still in distribution, it holds

lim
M→∞

N (0,KDM×DM
(X ,X )) = N (0,Kφ(X ,X ))

or, equivalently, that in Rn×n it holds limM→∞ KDM×DM
(X ,X ) = Kφ(X ,X ).

This last needed limit follows from Theorem C.7 with the sequence {DM × DM}M∈N. The uniqueness follows from
Proposition C.12.

Like in the inhomogeneous case we can explicitly write the Kernel for the simplest case:

Corollary C.14. If σ = id, then

Kx,y
id (s, t) =

(
σ2
a +

σ2
b

σ2
A

)
kσAx,σAy
sig (s, t)− σ2

b

σ2
A

(26)

Proof. We readily see that

Kx,y
id (s, t) = σ2

a +

∫ s

η=0

∫ t

τ=0

[
σ2
AK

x,y
id (η, τ) + σ2

b

]
⟨ẋη, ẏτ ⟩Rd dηdτ (27)
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By substituting (26) for Kx,y
id (η, τ) in the integral and using (Salvi et al., 2021a)[Theorem 2.5] we have

σ2
a +

∫ s

η=0

∫ t

τ=0

[
σ2
A

{(
σ2
a +

σ2
b

σ2
A

)
kσAx,σAy
sig (η, σ)− σ2

b

σ2
A

}
+ σ2

b

]
⟨ẋη, ẏτ ⟩Rd dηdτ

=σ2
a +

∫ s

η=0

∫ t

τ=0

σ2
A

(
σ2
a +

σ2
b

σ2
A

)
kσAx,σAy
sig (η, σ) ⟨ẋη, ẏτ ⟩Rd dηdτ

=σ2
a +

(
σ2
a +

σ2
b

σ2
A

) ∫ s

η=0

∫ t

τ=0

kσAx,σAy
sig (η, σ) ⟨σAẋη, σAẏτ ⟩Rd dηdτ

=σ2
a +

(
σ2
a +

σ2
b

σ2
A

)
(kσAx,σAy

sig (s, t)− 1)

=
(
σ2
a +

σ2
b

σ2
A

)
kσAx,σAy
sig (s, t)− σ2

b

σ2
A

which means, by uniqueness of solutions (Proposition C.12), that the thesis holds.

Remark. A proof similar to that given in the inhomogeneous case for φ = ReLU does not work now since the covariance
matrix is not, in general, degenerate for x = y as in that case.
Lemma C.15. For all choices (σa, σA, σb) and for all φ as in Theorem 3.1 we have, with abuse of notation and the obvious
meaning, that

Kx,y
φ (s, t;σa, σA, σb) = KσAx,σAy

φ (s, t;σa, 1, σbσ
−1
A )

Proof. Follow the exact same steps and arguments of B.12.

C.2. The infinite-depth-then-width regime

C.2.1. THE INFINITE-DEPTH LIMIT WITH FINITE-WIDTH

Proposition C.16. Let {DM}M∈N be a sequence of partitions of [0, 1] such that |DM | → 0 as M → ∞. Assume the
activation function φ is Lipschitz and linearly bounded. Let x ∈ X and let ρM (t) := sup{s ∈ DM : s ≤ t}. Then, the the
RN -valued process t 7→ SM,N

ρM (t)(x) converges in distribution, as M → ∞, to the solution SN (x) of the following Neural
CDE

SN
t (x) = a+

∫ t

0

d∑
j=1

(
Ajφ(S

N
s (x)) + bj

)
dxjs (28)

where Aj ∈ RN×N and bj ∈ RN are sampled according in the definition of the homogeneous controlled ResNet.

Proof. Assume the Ak and bk to be fixed for all choices of DM . The system has unique solution by (Friz & Victoir,
2010)[Theorems 3.7, 3.8] with

Vi(x) = Aiφ(x) + bk

noting that these are Lipschitz since composition of Lipschitz and linearly bounded.

By reasoning as in the proof of Theorem 4.1 one gets that

∥∥SM,N (x)− SN (x)
∥∥
∞,[0,1]

≤
√
|DM | exp

{
K∥x∥X

(∥a∥RN +

d∑
k=1

∥Ak∥F + ∥bk∥F )

}
for some constant K∥x∥X

depending in an increasing fashion on the norm of the input path.

Taking the expectation over Ak,bk and the initial condition leads to

E[
∥∥SM,N (x)− SN (x)

∥∥
∞,[0,1]

] ≤ K̃∥x∥X

√
|DM |

for some other constant K̃∥x∥X
since the matrices and vectors are all distributed as Gaussians. One then concludes by

portmanteau lemma considering Lipschitz functions on C0([0, 1];RN ).
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Remark. Since the bounds K̃∥x∥X
depend increasingly on the norm of the input path they are uniform on bounded sets of X

and this result can be extended to arbitrary finite sets of paths X ⊆ X with exactly the same portmanteau arguments.

Definition C.17 (Randomized Signatures). We call Randomized Signatures the solutions to

SN
t (x) = a+

d∑
k=1

∫ t

0

(
Ak[φ(S

N
τ (x))] + bk

)
dxkτ

These are the same objects defined in (Cuchiero et al., 2021b).

C.2.2. INFINITE-DEPTH-THEN-WIDTH LIMIT: φ = id

Theorem C.18. In the case φ = id

1

N

〈
SN
s (X ), SN

t (X )
〉
RN

L2

−−−−→
N→∞

KX ,X
id (s, t)

moreover the convergence is of order O( 1
N )

Proof. This is proved in Appendix C.4.

C.3. Commutativity of Limits

In this section we are going to prove the commutativity of limits in the homogeneous case. The core arguments are the same
as those employed for the inhomogeneous counterpart, this time however we won’t be able to take advantage of ready-made
results from stochastic analysis, thus we are going to carefully obtain bounds in more direct ways.

Let {DM}M∈N be a sequence of partitions of [0, 1] such that |DM | → 0 as M → ∞. Fix N and the matrices S0, Ak, bk
for all partitions. For any x ∈ X let SM,N (x) : DM → RN be the homogeneous cResNet corresponding to the above
quantities.

Definition C.19. Given x ∈ X and a partition DM define

ρM (t) := sup{s ∈ DM : s ≤ t}

Then define the piecewise constant extension ZM,N (x) : [0, 1] → RN

ZM,N
t (x) := SM,N

ρM (t)(x) (29)

and the integral extension SM,N (x) : [0, 1] → RN

SM,N (x) = SN
0 +

d∑
k=1

∫ t

0

(
Akφ(Z

M,N
s (x)) + bk

)
dxks (30)

Note how the two extensions coincide on DM .

Proposition C.20. Assume the activation function φ is Lipschitz and linearly bounded. There is a constant Kx > 0
independent of N,M and increasing in ∥x∥1−var such that

E
[∥∥∥ZN,M

t (x)
∥∥∥2
∞,[0,1]

]
≤ NKx

where the expectation is taken over the joint distribution of S0, {Ak, bk}k=1,...,d
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Proof. Let t ∈ [tm, tm+1) then

|ZN,M
t (x)| = |SN,M

tm (x)| ≤

|SN
0 |+

d∑
i=1

|
∫ t

0

AN
i φ(Z

N,M
r (x)) + bNi dx

i
r| ≤

|SN
0 |+

d∑
i=1

∫ t

0

|AN
i φ(Z

N,M
r (x)) + bNi ||dxir| ≤

|SN
0 |+

d∑
i=1

∫ t

0

( ∥∥AN
i

∥∥
op

|φ(ZN,M
r (x))|+ |bNi |

)
|dxir| ≤

|SN
0 |+

d∑
i=1

∫ t

0

( ∥∥AN
i

∥∥
op

√
2C(

√
N +

∥∥ZN,M
r (x)

∥∥) + |bNi |
)
|dxir| ≤[

|SN
0 |+ (

d∑
i=1

√
2NC

∥∥AN
i

∥∥
op

+ |bNi |) ∥x∥1−var,[0,1]

]
+

√
2C(

d∑
i=1

∥∥AN
i

∥∥
op
)

d∑
i=1

∫ t

0

|ZN,M
r (x)||dxir|

thus by Lemma 3.2 of (Friz & Victoir, 2010) we obtain

|ZN,M
t (x)| ≤

[
|SN

0 |+ (

d∑
i=1

√
2NC

∥∥AN
i

∥∥
op

+ |bNi |) ∥x∥1−var,[0,1]

]
exp

{√
2C(

d∑
i=1

∥∥AN
i

∥∥
op
) ∥x∥1−var,[0,t]

}
≤

[
|SN

0 |+ (
√
2NC +

d∑
i=1

|bNi |) ∥x∥1−var,[0,1]

]
exp

{
(

d∑
i=1

∥∥AN
i

∥∥
op
)(1 +

√
2C ∥x∥1−var,[0,t])

}
≤

[
|SN

0 |+ (
√
2NC +

d∑
i=1

|bNi |) ∥x∥1−var,[0,1]

]
d∏

i=1

exp
{
(1 +

√
2C ∥x∥1−var,[0,1])

∥∥AN
i

∥∥
op

}
Hence using independence

E[ sup
t∈[0,1]

|ZN,M
t (x)|2] ≤

2E

[
|SN

0 |2 + (2NC2 +

d∑
i=1

|bNi |2) ∥x∥21−var,[0,1]

]
d∏

i=1

E
[
exp

{
2(1 +

√
2C ∥x∥1−var,[0,1])

∥∥AN
i

∥∥
op

}]

Note that
∥∥AN

i

∥∥
op

=
√
ρ((AN

i )TAN
i ) is the square root of the biggest eigenvalue lN of (AN

i )TAN
i . The distribution

of eigenvalues 1
σ2
A
(AN

i )TAN
i is well understood as converging to the Marchenko–Pastur distribution (a classical distri-

bution supported on the interval [0, 4]), and lN converges almost surely to 4σ2
A (Geman, 1980; Johnstone, 2001) with

fluctuations around this limit having exponential tails (Majumdar & Vergassola, 2009; Johansson, 2000). It follows that
E[exp{λ

∥∥AN
i

∥∥
op
}] is uniformly bounded in N , with the bound depending on σA and λ.

Moreover by Hölder

E[|SN
0 |2] = E[

N∑
i=1

|[SN
0 ]i|2] = σ2

aN

and similarly E[|bNi |2] ≤ σ2
bi
N .

Hence
E[ sup

t∈[0,1]

|ZN,M
t (x)|2] ≤

2N

(
σ2
a + (2C2 +

d∑
i=1

σ2
bi) ∥x∥

2
1−var,[0,1]

)
E
[
exp

{
2(1 +

√
2C ∥x∥1−var,[0,1])

∥∥AN
1

∥∥
op

}]d
=: NKx
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Proposition C.21. Assume the activation function φ is Lipschitz and linearly bounded.

E
[∥∥∥SN,M

t (x)− ZN,M
t (x)

∥∥∥2
∞,[0,1]

]
≤ N |DM |K̃x

where K̃x is a universal constant depending only on ∥x∥X in an increasing manner.

Proof. Let t ∈ [tm, tm+1) then, using the bound in Remark A.2,

|SN,M
t (x)− ZN,M

t (x)| = |
d∑

i=1

∫ t

tm

(
AN

i φ(S
N,M
tm (x)) + bNi

)
dxir| ≤

d∑
i=1

∫ t

tm

( ∥∥AN
i

∥∥
op

|φ(SN,M
tm (x))|+ |bNi |

)
|dxir| ≤

d∑
i=1

∫ t

tm

( ∥∥AN
i

∥∥
op

√
2C(

√
N + |SN,M

tm (x)|) + |bNi |
)
|dxir| ≤

[ d∑
i=1

∥∥AN
i

∥∥
op

√
2C(

√
N + |ZN,M

tm (x)|) + |bNi |
]
∥x∥1−var,[tm,t] ≤

[ d∑
i=1

∥∥AN
i

∥∥
op

√
2C(

√
N + |ZN,M

tm (x)|) + |bNi |
]
∥x∥X

√
|DM |

where we have used

∥x∥1−var,[s,t] =

∫ t

s

|ẋr|dr ≤

√∫ 1

0

|ẋr||t− s|dr ≤ ∥x∥X
√
t− s

thus

E

[
sup

t∈[0,1]

|SN,M
t (x)− ZN,M

t (x)|2
]
≤

2E

[
sup

tm∈DM

[ d∑
i=1

∥∥AN
i

∥∥2
op

2C2(N + |ZN,M
tm (x)|2) + |bNi |2

]
∥x∥2X |DM |

]
≤ NK̄x ∥x∥2X |DM |

Proposition C.22. Assume the activation function φ is Lipschitz and linearly bounded.

E
[∥∥∥SN,M

t (x)− SN,M ′

t (x)
∥∥∥2
∞,[0,1]

]
≤ NK̃x(|DM | ∨ |DM ′ |)

where K̃x is a universal constant depending only on ∥x∥X in an increasing manner.
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Proof. Let t ∈ [tm, tm+1) then

|SN,M
t (x)− SN,M ′

t (x)| ≤ |
d∑

i=1

∫ t

0

|AN
i

(
φ(ZN,M

t (x))− φ(ZN,M ′

t (x))
)
||dxir| ≤

d∑
i=1

∫ t

0

( ∥∥AN
i

∥∥
op

|φ(ZN,M
t (x))− φ(ZN,M ′

t (x))|
)
|dxir| ≤

d∑
i=1

∫ t

0

∥∥AN
i

∥∥
op
K|ZN,M

t (x)− ZN,M ′

t (x)||dxir| =

K

d∑
i=1

∥∥AN
i

∥∥
op

∫ t

0

|ZN,M
t (x)− ZN,M ′

t (x)||dxir|

Using triangle inequality we obtain

|SN,M
t (x)− SN,M ′

t (x)| ≤

K

d∑
i=1

∥∥AN
i

∥∥
op

∫ t

0

|ZN,M
t (x)− SN,M

t (x)||dxir|+

K

d∑
i=1

∥∥AN
i

∥∥
op

∫ t

0

|SN,M
t (x)− SN,M ′

t (x)||dxir|+

K

d∑
i=1

∥∥AN
i

∥∥
op

∫ t

0

|SN,M ′

t (x)− ZN,M ′

t (x)||dxir|

Note how

K

d∑
i=1

∥∥AN
i

∥∥
op

∫ t

0

|ZN,M
t (x)− SN,M

t (x)||dxir| ≤

K

d∑
i=1

∥∥AN
i

∥∥
op

∫ t

0

[ d∑
k=1

∥∥AN
k

∥∥
op

√
2C(

√
N + |ZN,M

tm (x)|) + |bNk |
]
∥x∥X

√
|DM ||dxir| ≤

K(

d∑
i=1

∥∥AN
i

∥∥
op
)
[ d∑
i=k

∥∥AN
k

∥∥
op

√
2C(

√
N + Γx) + |bNk |

]
∥x∥1−var ∥x∥X

√
|DM | =: Λx

√
|DM |

with

Γx =

[
|SN

0 |+ (
√
2NC +

d∑
i=1

|bNi |) ∥x∥1−var,[0,1]

]
d∏

i=1

exp
{
(1 +

√
2C ∥x∥1−var,[0,1])

∥∥AN
i

∥∥
op

}
Hence it follows that

|SN,M
t (x)− SN,M ′

t (x)| ≤

(
√

|DM |+
√

|DM ′ |)Λx +K

d∑
i=1

∥∥AN
i

∥∥
op

∫ t

0

|SN,M
t (x)− SN,M ′

t (x)||dxir|

and with Gronwall∥∥∥SN,M
t (x)− SN,M ′

t (x)
∥∥∥
∞

≤ 2
√
|DM | ∨ |DM ′ |Λx exp{K

( d∑
i=1

∥∥AN
i

∥∥
op

)
∥x∥1−var}

Taking expectations of the squares and proceeding as before we have the thesis.
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We can finally prove the main bound which will allow the exchange of limits:

Theorem C.23. Let {DM}M∈N be a sequence of partitions of [0, 1] such that |DM | → 0 asM → ∞. Assume the activation
function φ is Lipschitz and linearly bounded. Fix the matrices S0, Ak, bk for all partitions. Let SN (x) be the solution of the
following Neural CDE

SN
t (x) = SN

0 +

d∑
k=1

∫ t

0

(
Akφ(S

N
s (x)) + bk

)
dxks (31)

Then there exist a constant Kx independent of N,M and increasing function of ∥x∥X such that

E[ sup
t∈[0,1]

∥∥∥SM,N
t (x)− SN

t (x)
∥∥∥2
RN

] ≤ N |DM |Kx (32)

Proof. Note first that SN (x) is well defined since the system has unique solution by (Friz & Victoir, 2010)[Theorems 3.7,
3.8] with

Vk(x) = Akφ(x) + bk

noting that these are Lipschitz since composition of Lipschitz and linearly bounded.

Moreover the proof tells us that SN,M
t (x) is a cauchy sequence in C0([0, 1];RN ) hence for any M > 0, eventually in M ′ it

holds
sup

t∈[0,1]

∥∥∥SM,N
t (x)− SN

t (x)
∥∥∥
RN

≤ 2 sup
t∈[0,1]

∥∥∥SM,N
t (x)− SM ′,N

t (x)
∥∥∥
RN

Proposition (C.22) then gives the sought after bound.

Theorem C.24. Assume the activation function φ is Lipschitz and linearly bounded. There is a constant C depending only
on ∥x∥X in an increasing fashion such that:

sup
N≥1

sup
t∈[0,1]

W1(µ
M,N
t (x), µN

t (x)) ≤ K̄x

√
|DM |

where µM,N
t is the distribution of

〈
vN , SM,N

t (x)
〉

and µN
t (x) that of

〈
vN , SN

t (x)
〉

for some independent vector with iid

entries [vN ]α ∼ N (0, 1
N ).

Proof. Let G : R → R be 1-Lipschitz, we have

E[|G(
〈
vN , SM,N

t (x)
〉
)−G(

〈
vN , SN

t (x)
〉
)|] ≤ E

[
|
〈
vN , SM,N

t (x)
〉
−
〈
vN , SN

t (x)
〉
|
]

which leads to

E
[
|
〈
vN , SM,N

t (x)
〉
−
〈
vN , SN

t (x)
〉
|
]
= E

[
|
〈
vN , SM,N

t (x)− SN
t (x)

〉
|
]

≤
(
E
[
|
〈
vN , SM,N

t (x)− SN
t (x)

〉
|2
]) 1

2

=

(
1

N
E
[∥∥∥SM,N

t (x)− SN
t (x)

∥∥∥2]) 1
2

≤

(
1

N
E

[
sup

t∈[0,1]

∥∥∥SN
t (x)− SM,N

t (x)
∥∥∥2]) 1

2

≤
√

Kx|DM |

hence
W1(µ

M,N
t (x), µN

t (x)) ≤
√
Kx|DM |
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Remark. Note that the exact arguments, being of L2 type, can be repeated for the ”stacked” vector
(SN,M (x1), . . . , S

N,M (xN )) extending (qualitatively) the bounds to the multi-input case.
Corollary C.25 (Thm. 4.1). The limits in Thm. C.7 commute.

Proof. By the classical Moore-Osgood theorem we need to prove that one of the two limits is uniform in the other, for
example that the limit in distribution asM → ∞ is uniform inN in some metric which describes convergence in distribution.
But this is just the content of the previous result, extended to the multi-input case.

C.4. An alternative proof for the case φ = id

In this last section we prove Theorem C.18. between Randomized Signature Kernels and the original Signature Kernel.

We are going to consider words I = (i1, · · · , ik) ∈ Ak
d in the alphabet Ad := {1, . . . , d}; the space of all words will be

denoted by Wd, the length of a word by |I| = k and the sum of its elements by ∥I∥ =
∑k

m=1 im.

Recall we consider randomized Signatures

SN
t (x) = S0 +

d∑
k=1

∫ t

0

(
AkS

N
τ (x) + bk

)
dxkτ

where x ∈ X and

[Ak]
β
α ∼ N (0,

σ2
A

N
) [S0]α ∼ N (0, σ2

S0
) [bk]α ∼ N (0, σ2

b )

Our goal is that of proving the following result:
Theorem C.26. In the assumptions stated above

lim
N→∞

E
[ 1
N

⟨SN
s (x), SN

t (y)⟩RN

]
=
(
σ2
S0

+
σ2
b

σ2
A

)
kσAx,σAy
sig (s, t)− σ2

b

σ2
A

and the variance around the limit is of order O( 1
N ).

We know, see (Baudoin & Zhang, 2012)[Remark 2.10], that it is possible to write a closed form for SN
t (x) which decouples

the effects of the vector fields and those of the driving control using the Signature:

SN
t (x) =

∑
I∈Wd

VI(S
N
0 ) SigI0,s(x) (33)

where Wd is the set of words in the alphabet {1, . . . , d} and if I = (i1, . . . , ik) then [VI(z)]α := Vi1 · · ·Vik⟨eα, ·⟩(z) with
Vi(z) := Aiz + bi and V f(z) =:= dfz[Vj(z)] for f ∈ C∞(RN ;R). Notice that VI(SN

0 ) ∈ RN and SigI0,s(x) ∈ R.

In fact the ”Taylor expansion” with respect of the signature of f(SN
t (x)) for f ∈ C∞(RN ;R) is

f(SN
t (x)) =

∑
I∈Wd

VIf(S
N
0 ) SigI0,s(x)

where, with I as above, VIf(x) := Vi1(Vi2 · · · (Vikf) · · · )(x) with

Vjf(x) := dfx[Vj(x)]

From Equation 33 we also get

⟨SN
s (x), SN

t (y)⟩RN =
∑
I∈Wd

∑
J∈Wd

⟨VIf(SN
0 ), VJf(S

N
0 )⟩RN SigI0,s(x)Sig

J
0,t(y)
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where y is another control. If we could exchange expectation with the series we would thus get

E[⟨SN
s (x), SN

t (y)⟩RN ] =
∑
I∈Wd

∑
J∈Wd

E[⟨VIf(SN
0 ), VJf(S

N
0 )⟩RN ] SigI0,s(x)Sig

J
0,t(y)

Thus we have to study the expectations E[⟨VIf(SN
0 ), VJf(S

N
0 )⟩RN ].

Note that if I = (), the empty word, then VIf(SN
0 ) = SN

0 .

C.4.1. PRODUCTS OF GAUSSIAN MATRICES

The most important result which will make our plan succeed is the following classical theorem:

Theorem C.27 (Isserlis). Let (X1, . . . , XN ) be a zero mean multivariate normal vector, then

E[X1 · · ·XN ] =
∑
p∈P 2

n

∏
{i,j}∈p

E[XiXj ]

where the sum is over all distinct ways of partitioning {1, . . . , N} into pairs {i, j}, and the product is over the pairs
contained in p.

Proposition C.28. Assume I, J ∈ Wd such that |I|+ |J | > 0. In the hypotheses stated above

1

N
E[⟨VIf(SN

0 ), VJf(S
N
0 )⟩RN ] = (σ2

S0
+
σ2
b

σ2
A

)σ
|I|+|J|
A

[
δJI +O(

1

N
)
]

Proof. Let us first consider the case σb = 0.

Taking f(z) = ⟨v, z⟩RN for some v ∈ RN and Vj(z) := Ajz we get

Vjf(x) := d(⟨v, ·⟩RN )x[Ajx] = vTAjx = ⟨AT
j v, x⟩RN

hence by induction
VIf(x) = ⟨AT

i1 · · ·A
T
ik
v, x⟩RN = ⟨v,Aik · · ·Ai1x⟩RN

and in our notation
VI(x) = AIx = Aik · · ·Ai1x

We are thus interested in the quantities E[(SN
0 )TAT

I AJS
N
0 ].

Let α, β ∈ {1, . . . , N} and given a matrix M ∈ RN×N write [M ]βα for its component in row α and column β. Remember
how

[M1M2]
β
α =

N∑
γ=1

[M1]
γ
α[M2]

β
γ

Thus we have

E
[
(SN

0 )TAT
I AJS

N
0

]
=

N∑
n=1

N∑
m=1

E
[
[SN

0 ]n[S
N
0 ]m[AT

I AJ ]
m
n

]
=

N∑
n=1

N∑
m=1

E
[
[SN

0 ]n[S
N
0 ]m

]
E
[
[AT

I AJ ]
m
n

]
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Moreover, for I = (i1, . . . , ik), we obtain

[AI ]
β
α =

N∑
δ1=1

[A(i2,...,ik)]
δ1
α [Ai1 ]

β
δ1

=

N∑
δk−1=1

· · ·
N∑

δ1=1

[Aik ]
δk−1
α [Ail−1

]
δk−2

δk−1
· · · [Ai2 ]

δ1
δ2
[Ai1 ]

β
δ1

=
∑

δ̄∈ΛN,k
α,β

k∏
n=1

[Ain ]
δn−1

δn

where ΛN,k
α,β := {(δ0, . . . , δk) ∈ {1, . . . , N}k+1 : δk = α and δ0 = β}. With this notation we can write

[AT
I AJ ]

β
α =

N∑
γ=1

[AT
I ]

γ
α[AJ ]

β
γ =

N∑
γ=1

[AI ]
α
γ [AJ ]

β
γ

=

N∑
γ=1

∑
δ̄∈Λ

N,|I|
γ,α

∑
ϵ̄∈Λ

N,|J|
γ,β

|I|∏
n=1

|J|∏
m=1

[Ain ]
δn−1

δn
[Ajm ]ϵm−1

ϵm

thus

E
[
[AT

I AJ ]
β
α

]
=

N∑
γ=1

∑
δ̄∈Λ

N,|I|
γ,α

∑
ϵ̄∈Λ

N,|J|
γ,β

E
[ |I|∏
n=1

|J|∏
m=1

[Ain ]
δn−1

δn
[Ajm ]ϵm−1

ϵm

]
(34)

The time is ripe for the application of Isserlis’ Theorem.

First of all notice how the sum in Isserlis runs over the possible pairings of the index set which in our case is the set of
elements of the concatenation

I ∗ J = (i ∗ j1, . . . , i ∗ j|I|+|J|) = (i1, . . . , i|I|, j1, . . . , j|J|)

of I and J . Then

E
[
[AT

I AJ ]
β
α

]
=

N∑
γ=1

∑
δ̄∈Λ

N,|I|
γ,α

∑
ϵ̄∈Λ

N,|J|
γ,β

∑
p∈P 2

|I|+|J|

∏
{a,b}∈p

E
[
[A(i∗j)a ]

(δ∗ϵ)′a
(δ∗ϵ)a [A(i∗j)b ]

(δ∗ϵ)′b
(δ∗ϵ)b

]

=
∑

p∈P 2
|I|+|J|

N∑
γ=1

∑
δ̄∈Λ

N,|I|
γ,α

∑
ϵ̄∈Λ

N,|J|
γ,β

∏
{a,b}∈p

E
[
[A(i∗j)a ]

(δ∗ϵ)′a
(δ∗ϵ)a [A(i∗j)b ]

(δ∗ϵ)′b
(δ∗ϵ)b

]

where
(δ ∗ ϵ) = (δ1, . . . , δ|I|, ϵ1, . . . , ϵ|J|)

and
(δ ∗ ϵ)′ = (δ0, . . . , δ|I|−1, ϵ0, . . . , ϵ|J|−1)
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In particular this sum is 0 by default if I ∗ J has an odd number of elements. This means that

E
[
[AT

I AJ ]
β
α

]
= 0

whenever |I|+ |J | is odd.

Moreover, even if |I|+ |J | is even, the pairings must be in such a way that no factor of the product vanishes; since we are
working with matrices with independent normal entries this is equivalent to requiring for each {a, b} ∈ p ∈ P 2

|I|+|J| that
(i ∗ j)a = (i ∗ j)b, (δ ∗ ϵ)a = (δ ∗ ϵ)b, and (δ ∗ ϵ)′a = (δ ∗ ϵ)′b.

Evidently then I ∗ J must be at least ”pairable” with pairs of identical indices! In this case we will say that I ∗ J is twinable
and we will get a factor σ2

AN
−1 out of every E

[
[A(i∗j)a ]

(δ∗ϵ)′a
(δ∗ϵ)a [A(i∗j)b ]

(δ∗ϵ)′b
(δ∗ϵ)b

]
thus

E
[
[AT

I AJ ]
β
α

]
=
(σ2

A

N

) |I|+|J|
2

Ξ(I, J,N, α, β)

where
Ξ(I, J,N, α, β)

= |{(p, γ, δ̄, ϵ̄) : ∀{a, b} ∈ p. E
[
[A(i∗j)a ]

(δ∗ϵ)′a
(δ∗ϵ)a [A(i∗j)b ]

(δ∗ϵ)′b
(δ∗ϵ)b

]
̸= 0}|

Define, given p ∈ P 2
|I|+|J|,

ω(p, I, J,N, α, β)

= |{(γ, δ̄, ϵ̄) : ∀{a, b} ∈ p. E
[
[A(i∗j)a ]

(δ∗ϵ)′a
(δ∗ϵ)a [A(i∗j)b ]

(δ∗ϵ)′b
(δ∗ϵ)b

]
̸= 0}|

so that
Ξ(I, J,N, α, β) =

∑
p∈P 2

|I|+|J|

ω(p, I, J,N, α, β)

First of all notice how
ω(p, I, J,N, α, β) ≤ N

|I|+|J|
2

in fact considering only the constraints given by α and β we have N |I| ways to choose δ̄ ∈ {1, . . . , N}|I|+1 and N |J|

ways to choose ϵ̄ ∈ {1, . . . , N}|J|+1, but since they must come in pairs as dictated by p we actually have N
|I|+|J|

2 possible
choices i.e. N per pair.

Notice however how we have equality if and only if I = J , α = β and the pairings are such that p ∋ {a, b} = {a, |I|+ a}
for a ∈ {1, . . . , |I|} i.e. every element in I is paired to the corresponding one in J = I .

The if part is easy to see: the full constraints are just δ|I| = ϵ|I| = γ, δa = ϵa for every 1 < a ≤ |I| and α = δ0 = ϵ0 = β
thus there are

N ×N |I|−1 × 1 = N |I| = N
|I|+|J|

2

choices to make.

The only if is more complicated and follows from the constraint δ|I| = ϵ|J|. Fix γ and assume i|I| is not paired with
j|J|, then the choices for (δ ∗ ϵ)a = (δ ∗ ϵ)b for 2 out of the |I|+|J|

2 pairs are constrained to be γ, all in all we have N

choices for γ and at most N
|I|+|J|

2 −2 for the other entries, thus at most N
|I|+|J|

2 −1 in total. But then we must require
i|I| and j|J| to be paired. The same argument can now be repeated with i|I|−1 and j|I|−1 since we have established that
{|I|, |I|+ |J |} ∈ p, thus not only δ|I| = (δ∗ϵ)|I| = (δ∗ϵ)|I|+|J| = ϵ|J| but also δ|I|−1 = (δ∗ϵ)′|I| = (δ∗ϵ)′|I|+|J| = ϵ|J|−1.
This goes on until, without loss of generality, we run out of elements in I . If the same happens for J (i.e. |I| = |J |) we
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are done since we have proved that ∀a ∈ 1, . . . , |I| we have ia = ja and α = (δ ∗ ϵ)′1 = (δ ∗ ϵ)′|I|+1 = β. Otherwise
|J | ≥ 2 + |I| and (j|J|−|I|, . . . , j1) are paired between themselves. But since {1, |I| + (|J | − |I| + 1)} ∈ p we have
α = (δ ∗ ϵ)′1 = (δ ∗ ϵ)′|I|+(|J|−|I|+1) = (δ ∗ ϵ)|I|+(|J|−|I|+1)−1 = (δ ∗ ϵ)|I|+(|J|−|I|) = ϵ|J|−|I|. Which means that there
is no free choice one of the remaining couples (i.e. the one containing |I| + (|J | − |I|) corresponding to j|J|−|I|) thus,
reasoning just as before, we cut the number of choices of at least a factor N .

We have just shown that, given a pairing p,(σ2
A

N

) |I|+|J|
2

ω(p, I, J,N, α, β) ≤
(σ2

A

N

) |I|+|J|
2

N
|I|+|J|

2 −1 =
σ
|I|+|J|
A

N

except when I = J , α = β and the pairings are such that p ∋ {a, b} = {a, |I|+ a} for a ∈ {1, . . . , |I|}, in which case(σ2
A

N

) |I|+|J|
2

ω(p, I, J,N, α, β) =
(σ2

A

N

) |I|+|J|
2

N
|I|+|J|

2 = σ
|I|+|J|
A

This means that

E
[
[AT

I AJ ]
β
α

]
=
(σ2

A

N

) |I|+|J|
2

Ξ(I, J,N, α, β) = σ
|I|+|J|
A

[
δβαδ

J
I +

1

N
ψ(I, J,N, α, β)

]
where 0 < ψ(I, J,N, α, β) ≤ (|I|+ |J |)!! i.e. ψ(I, J,N) is a positive constant bounded above by the maximal number of
pairings (which occur only when I and J are made up of the same one index). Notice how this bound depends only on |I|
and |J | and not on N !

Finally, if SN
0 is normally distributed then

E
[
(SN

0 )TAT
I AJS

N
0

]
=

N∑
n=1

N∑
m=1

E
[
[SN

0 ]n[S
N
0 ]m

]
E
[
[AT

I AJ ]
m
n

]
=

N∑
n=1

σ2
S0
E
[
[AT

I AJ ]
n
n

]
= Nσ2

S0
σ
|I|+|J|
A

[
δJI +

1

N
ψ(I, J,N)

]
= Nσ2

S0
σ
|I|+|J|
A

[
δJI +O(

1

N
)
]

with 0 ≤ ψ(I, J,N) := 1
N

∑N
n=1 ψ(I, J,N, n, n) ≤ (|I|+ |J |)!!.

Let us now look at the case with σb > 0.

Let Vj(x) := Ajx+ bj Take f(x) = ⟨v, x⟩RN for some v ∈ RN . Then

Vjf(x) = d(⟨v, ·⟩RN )x[Ajx+ bj ] = vT (Ajx+ bj) = ⟨AT
j v, x⟩RN + ⟨v, bj⟩RN

hence by induction
VIf(x) = ⟨v,Aik · · ·Ai2(Ai1x+ bi1)⟩RN

now we have to study, with Î := (i2, . . . , i|I|), the terms

E
[
⟨AIS

N
0 +AÎbi1 , AJS

N
0 +AĴbj1⟩RN

]
= E

[
⟨AIS

N
0 , AJS

N
0 ⟩RN

]
+ E

[
⟨AÎbi1 , AĴbj1⟩RN

]
+E
[
⟨AÎbi1 , AJS

N
0 ⟩RN

]
+ E

[
⟨AIS

N
0 , AĴbj1⟩RN

]
= E

[
(SN

0 )TAT
I AJS

N
0

]
+ E

[
bTi1A

T
Î
AĴbj1

]
+E
[
bTi1A

T
Î
AJS

N
0

]
+ E

[
(SN

0 )TAT
I AĴbj1

]
= E

[
(SN

0 )TAT
I AJS

N
0

]
+ E

[
bTi1A

T
Î
AĴbj1

]
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where in the last equality we have used the independence of the terms and their 0 mean.

We already know that the first term is

E
[
(SN

0 )TAT
I AJS

N
0

]
= Nσ2

S0
σ
|I|+|J|
A

[
δJI +O(

1

N
)
]

Concerning the second term: using independence we readily see how we must have i1 = j1, then

E
[
bTi1A

T
Î
AĴbj1

]
= σ2

bδ
j1
i1

·
N∑

n=1

E
[
[AT

Î
AĴ ]

n
n

]
= σ2

bδ
j1
i1

·
N∑

n=1

σ
|Î|+|Ĵ|
A

(
δĴ
Î
+

1

N
ψ(I, J,N, n, n)

)
= Nσ2

bσ
|Î|+|Ĵ|
A

[
δJI +O(

1

N
)
]

Hence

E
[
⟨AIS

N
0 +AÎbi1 , AJS

N
0 +AĴbj1⟩RN

]
= N(σ2

S0
+
σ2
b

σ2
A

)σ
|I|+|J|
A

[
δJI +O(

1

N
)
]

C.4.2. CONVERGENCE TO THE SIGNATURE KERNEL

Assume now that the exchange of series with limits and expectation are justified, which we will prove later, then we would
like to study the variance of the expected signature kernels around their limits.

Proposition C.29. The coefficients in the expansion of the variance

E
[( ⟨SN

s (x), SN
t (y)⟩RN

N
− σ2

S0
⟨Sig(σAx)0,s, Sig(σAy)0,t⟩T ((Rd))

)2]

are all O( 1
N ) when σb = 0.

Proof. We have

⟨SN
s (x), SN

t (y)⟩RN

N
− σ2

S0
⟨Sig(σAx)0,s, Sig(σAy)0,t⟩T ((Rd))

=
∑

I,J∈Wd

[ 1
N

(SN
0 )TAT

I AJS
N
0 − σ2

S0
σ
|I|+|J|
A δJI

]
SigI0,s(x)Sig

J
0,t(y)

thus ( ⟨SN
s (x), SN

t (y)⟩RN

N
− σ2

S0
⟨Sig(σAx)0,s, Sig(σAy)0,t⟩T ((Rd))

)2
=∑

I,J,K,L∈Wd

[ 1
N

(SN
0 )TAT

I AJS
N
0 − σ2

S0
σ
|I|+|J|
A δJI

]
·

·
[ 1
N

(SN
0 )TAT

KALS
N
0 − σ2

S0
σ
|L|+|K|
A δLK

]
SigI0,s(x)Sig

J
0,t(y)Sig

K
0,s(x)Sig

K
0,t(y)
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Let us study

E
[[ 1
N

(SN
0 )TAT

I AJS
N
0 − σ2

S0
σ
|I|+|J|
A δJI

][ 1
N

(SN
0 )TAT

KALS
N
0 − σ2

S0
σ
|L|+|K|
A δLK

]]
=

1

N2
E
[
(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
KALS

N
0

]
−
σ2
S0
σ
2|I|
A

N
δJI E

[
(SN

0 )TAT
KALS

N
0

]
−
σ2
S0
σ
2|L|
A

N
δLKE

[
(SN

0 )TAT
I AJS

N
0

]
+ (σ2

S0
σ
|L|+|I|
A )2δJI δ

L
K

=
1

N2
E
[
(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
KALS

N
0

]
−
σ2
S0
σ
2|I|
A

N
δJI Nσ

2
S0
σ
|K|+|L|
A

[
δLK +O(

1

N
)
]
−
σ2
S0
σ
2|L|
A

N
δKJ Nσ

2
S0
σ
|I|+|J|
A

[
δJI +O(

1

N
)
]
+ (σ2

S0
σ
|L|+|I|
A )2δJI δ

L
K

=
1

N2
E
[
(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
KALS

N
0

]
− (σ2

S0
σ
|L|+|I|
A )2δJI δ

L
K +O(

1

N
)

from our previous results.

We have
(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
KALS

N
0 =

N∑
α=1

[SN
0 ]α[A

T
I AJS

N
0 (SN

0 )TAT
KALS

N
0 ]α =

N∑
α,δ=1

[SN
0 ]α[A

T
I AJS

N
0 (SN

0 )TAT
KAL]

δ
α[S

N
0 ]δ =

N∑
α,β,γ,δ=1

[SN
0 ]α[A

T
I AJ ]

β
α[S

N
0 (SN

0 )T ]γβ [A
T
KAL]

δ
γ [S

N
0 ]δ =

N∑
α,β,γ,δ=1

[SN
0 ]α[A

T
I AJ ]

β
α[S

N
0 ]β [S

N
0 ]γ [A

T
KAL]

δ
γ [S

N
0 ]δ =

N∑
α,β,γ,δ=1

[SN
0 ]α[S

N
0 ]β [S

N
0 ]γ [S

N
0 ]δ[A

T
I AJ ]

β
α[A

T
KAL]

δ
γ

hence by independence

E
[
(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
KALS

N
0

]
=

N∑
α,β,γ,δ=1

E
[
[SN

0 ]α[S
N
0 ]β [S

N
0 ]γ [S

N
0 ]δ

]
E
[
[AT

I AJ ]
β
α[A

T
KAL]

δ
γ

]

If SN
0 is sampled from a Normal distribution as before then

E
[
[SN

0 ]α[S
N
0 ]β [S

N
0 ]γ [S

N
0 ]δ

]
is equal to σ4

S0
if |{α, β, γ, δ}| = 2, to 3σ4

S0
if |{α, β, γ, δ}| = 1 and to 0 otherwise.

Remember how

[AT
I AJ ]

β
α =

N∑
γ=1

∑
δ̄∈Λ

N,|I|
γ,α

∑
ϵ̄∈Λ

N,|J|
γ,β

|I|∏
i=1

|J|∏
j=1

[AIi ]
δi−1

δi
[AJj

]ϵj−1
ϵj
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thus

[AT
I AJ ]

β
α[A

T
KAL]

δ
γ =

N∑
ϵ,ϕ=1

∑
ῑ∈Λ

N,|I|
ϵ,α

∑
ζ̄∈Λ

N,|J|
ϵ,β

∑
κ̄∈Λ

N,|K|
ϕ,γ

∑
λ̄∈Λ

N,|L|
ϕ,δ

|I|∏
i=1

|J|∏
j=1

|K|∏
k=1

|L|∏
l=1

[AIi ]
ιi−1
ιi [AJj

]
ζj−1

ζj
[AKk

]κk−1
κk

[ALl
]
λl−1

λl

Let us then define T = I ∗J ∗K ∗L, θ = (ι∗ζ ∗κ∗λ) and θ′ = (ι∗ζ ∗κ∗λ)′ just like before, setting P := P 2
|I|+|J|+|K|+|L|

we get

E
[
[AT

I AJ ]
β
α[A

T
KAL]

δ
γ

]
=

∑
p∈P

N∑
ϵ,ϕ=1

∑
ῑ∈Λ

N,|I|
ϵ,α

∑
ζ̄∈Λ

N,|J|
ϵ,β

∑
κ̄∈Λ

N,|K|
ϕ,γ

∑
λ̄∈Λ

N,|L|
ϕ,δ

∏
a,b∈p

E
[
[ATa

]
θ′
a

θa
[ATb

]
θ′
b

θb

]

=
(σ2

A

N

) |I|+|J|+|K|+|L|
2

∑
p∈P

ω(p, I, J,K,L, α, β, γ, δ)

and once again we need to analyze these ωs which, just as before, must satisfy the constraint

ω(p, I, J,K,L, α, β, γ, δ) ≤ N
|I|+|J|+|K|+|L|

2

Since we are interested in the behavior forN → ∞ and |P| is independent fromN we just need to discover when the previous
inequality is an equality. This happens, as we have previously discovered, when we the pairing does not add to the possible
choices of ῑ, ζ̄, κ̄, λ̄ any more constraints than the unavoidable ones i.e. θ|I| = θ|I|+|J|, θ|I|+|J|+|K| = θ|I|+|J|+|K|+|L|,
θ′1 = α, θ′|I|+1 = β, θ′|I|+|J|+1 = γ and θ′|I|+|J|+|K|+1 = δ.

Reasoning exactly as before this can happen if and only if I = J , α = β, K = L, γ = δ, θa = θ|I|+a for a = 1, . . . , |I|
and θ2|I|+a = θ2|I|+|K|+a for a = 1, . . . , |K|.

This means that

E
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β
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T
KAL]

δ
γ

]
= (σA)
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1
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]
where σ(I, J,K,L) is a positive constant corresponding to the maximal number of non zero pairings.

Since
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=
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]
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we end up with
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1

N
) + (N2 −N)O(

1

N
)
}

= σ4
S0
(σA)

|I|+|J|+|K|+|L|N2
[
δJI δ

L
K +O(

1

N
)
]
= (σ2

S0
σ
|L|+|I|
A )2N2

[
δJI δ

L
K +O(

1

N
)
]

In the end

E
[[ 1
N

(SN
0 )TAT

I AJS
N
0 − σ2

S0
σ
|I|+|J|
A δJI

][ 1
N

(SN
0 )TAT

KALS
N
0 − σ2

S0
σ
|L|+|K|
A δLK

]]
=

1

N2
E
[
(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
KALS

N
0

]
− (σ2

S0
σ
|L|+|I|
A )2δJI δ

L
K +O(

1

N
) =

(σ2
S0
σ
|L|+|I|
A )2

[
δJI δ

L
K +O(

1

N
)
]
− (σ2

S0
σ
|L|+|I|
A )2δJI δ

L
K +O(

1

N
) = O(

1

N
)

Proposition C.30. The coefficients in the expansion of the variance

E
[( ⟨SN

s (x), SN
t (y)⟩RN

N
−
(
σ2
S0

+
σ2
b

σ2
A

)
⟨Sig(σAx)0,s, Sig(σAy)0,t⟩T ((Rd)) +

σ2
b

σ2
A

)2]

are all O( 1
N ) with σb > 0.

Proof. Now

⟨SN
s (x), SN

t (y)⟩RN =∑
I,J∈Wd

[
(SN

0 )TAT
I AJS

N
0 + (bI1)

TAT
Î
AJS

N
0 + (SN

0 )TAT
I AĴbJ1

+ (bI1)
TAT

Î
AĴbJ1

]
·

·SigI0,s(x)SigJ0,t(y)

Thus to study

E
[( ⟨SN

s (x), SN
t (y)⟩RN

N
−
(
σ2
S0

+
σ2
b

σ2
A

)
⟨Sig(σAx)0,s, Sig(σAy)0,t⟩T ((Rd)) +

σ2
b

σ2
A

)2]
we need to study the terms

1

N2
E
[[
(SN

0 )TAT
I AJS

N
0 + (bI1)

TAT
Î
AJS

N
0 + (SN

0 )TAT
I AĴbJ1

+ (bI1)
TAT

Î
AĴbJ1

−N
(
σ2
S0

+
σ2
b

σ2
A

)
σ
|I|+|J|
A δJI

]
·

·
[
(SN

0 )TAT
KALS

N
0 + (bK1)

TAT
K̂
ALS

N
0 + (SN

0 )TAT
KAL̂bL1 + (bK1)

TAT
K̂
AL̂bL1 −N

(
σ2
S0

+
σ2
b

σ2
A

)
σ
|K|+|L|
A δLK

]]

To ease the notation let us write i, j, k and l instead of, respectively, I1, J1,K1 and L1.
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We have

E
{[

(SN
0 )TAT

I AJS
N
0

]
·

·
[
(SN

0 )TAT
KALS

N
0 + (bk)

TAT
K̂
ALS

N
0 + (SN

0 )TAT
KAL̂bl + (bk)

TAT
K̂
AL̂bl −N

(
σ2
S0

+
σ2
b

σ2
A

)
σ
|K|+|L|
A δLK

]}
= E

[
(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
KALS

N
0

]
+E
[
(SN

0 )TAT
I AJS

N
0 (bk)

TAT
K̂
ALS

N
0

]
+E
[
(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
KAL̂bl

]
+E
[
(SN

0 )TAT
I AJS

N
0 (bk)

TAT
K̂
AL̂bl

]
−N

(
σ2
S0

+
σ2
b

σ2
A

)
σ
|K|+|L|
A δLKE

[
(SN

0 )TAT
I AJS

N
0

]

which by previous results is equal to

(σ2
S0
σ
|L|+|I|
A )2N2

[
δJI δ

L
K +O(

1

N
)
]

+E
[
(SN

0 )TAT
I AJS

N
0 (bk)

TAT
K̂
ALS

N
0

]
+E
[
(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
KAL̂bl

]
+E
[
(SN

0 )TAT
I AJS

N
0 (bk)

TAT
K̂
AL̂bl

]
−
(
σ2
S0

+
σ2
b

σ2
A

)
σ
|K|+|L|
A δLKσ

2
S0
σ
|I|+|J|
A N2

[
δJI +O(

1

N
)
]

Note then how

E
[
(SN

0 )TAT
I AJS

N
0 (bk)

TAT
K̂
ALS

N
0

]
=

N∑
α,β,γ,δ=1

E
[
[SN

0 ]α[S
N
0 ]β [bk]γ [S

N
0 ]δ

]
E
[
[AT

I AJ ]
β
α[A

T
KAL]

δ
γ

]

=

N∑
α,β,γ,δ=1

E
[
[SN

0 ]α[S
N
0 ]β [S

N
0 ]δ

]
E
[
[bk]γ

]
E
[
[AT

I AJ ]
β
α[A

T
KAL]

δ
γ

]
= 0

given that E
[
[bk]γ

]
= 0. Analogously we have

E
[
(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
KAL̂bl

]
= 0
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Finally

E
[
(SN

0 )TAT
I AJS

N
0 (bk)

TAT
K̂
AL̂bl

]
=

N∑
α,β,γ,δ=1

E
[
[SN

0 ]α[S
N
0 ]β [bk]γ [bl]δ

]
E
[
[AT

I AJ ]
β
α[A

T
K̂
AL̂]

δ
γ

]

=

N∑
α,β,γ,δ=1

E
[
[SN

0 ]α[S
N
0 ]β

]
E
[
[bk]γ [bl]δ

]
E
[
[AT

I AJ ]
β
α[A

T
K̂
AL̂]

δ
γ

]

= σ2
S0
σ2
bσ

|I|+|J|+|K̂|+|L̂|
A

N∑
α,β,γ,δ=1

δβαδ
δ
γδ

l
k(δ

J
I δ

L̂
K̂
δβαδ

δ
γ +O(

1

N
))

= σ2
S0
σ2
bσ

|I|+|J|+|K̂|+|L̂|
A

N∑
α,β,γ,δ=1

δβαδ
δ
γ

(
δlkδ

J
I δ

L̂
K̂
+O(

1

N
)
)

= σ2
S0
σ2
bσ

|I|+|J|+|K̂|+|L̂|
A

N∑
α,β,γ,δ=1

δβαδ
δ
γ

(
δJI δ

L
K +O(

1

N
)
)

= σ2
S0
σ2
bσ

|I|+|J|+|K̂|+|L̂|
A

N∑
α,γ=1

(
δJI δ

L
K +O(

1

N
)
)
= σ2

S0
σ2
bσ

|I|+|J|+|K̂|+|L̂|
A N2

[
δJI δ

L
K +O(

1

N
)
]

where once again we use the fact that all the O( 1
N ) are uniformly bounded above by some O( 1

N ).

Putting everything together

E
{[

(SN
0 )TAT

I AJS
N
0

]
·

·
[
(SN

0 )TAT
KALS

N
0 + (bk)

TAT
K̂
ALS

N
0 + (SN

0 )TAT
KAL̂bl + (bk)

TAT
K̂
AL̂bl −N

(
σ2
S0

+
σ2
b

σ2
A

)
σ
|K|+|L|
A δLK

]}
= (σ2

S0
σ
|L|+|I|
A )2N2

[
δJI δ

L
K +O(

1

N
)
]
+ 0 + 0 + σ2

S0
σ2
bσ

|I|+|J|+|K̂|+|L̂|
A N2

[
δJI δ

L
K +O(

1

N
)
]

−
(
σ2
S0

+
σ2
b

σ2
A

)
σ
|K|+|L|
A δLKσ

2
S0
σ
|I|+|J|
A N2

[
δJI +O(

1

N
)
]
= N2O(

1

N
)

With analogous arguments we obtain

E
[[
(bi)

TAT
Î
AJS

N
0

]
·

·
[
(SN

0 )TAT
KALS

N
0 + (bk)

TAT
K̂
ALS

N
0 + (SN

0 )TAT
KAL̂bl + (bk)

TAT
K̂
AL̂bl −N

(
σ2
S0

+
σ2
b

σ2
A

)
σ
|K|+|L|
A δLK

]]
= 0 + E

[
((bi)

TAT
Î
AJS

N
0 (bk)

TAT
K̂
ALS

N
0

]
+ E

[
(bi)

TAT
Î
AJS

N
0 (SN

0 )TAT
KAL̂bl

]
+ 0−N

(
σ2
S0

+
σ2
b

σ2
A

)
σ
|K|+|L|
A δLK · 0
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and since
E
[
(bi)

TAT
Î
AJS

N
0 (bk)

TAT
K̂
ALS

N
0

]
=

N∑
α,β,γ,δ=1

E
[
[SN

0 ]β [S
N
0 ]δ

]
E
[
[bi]α[bk]γ

]
E
[
[AT

Î
AJ ]

β
α[A

T
K̂
AL]

δ
γ

]

= σ2
S0
σ2
bσ

|Î|+|J|+|K̂|+|L|
A

N∑
α,β,γ,δ=1

δδβδ
γ
αδ

k
i (δ

J
Î
δL
K̂
δβαδ

δ
γ +O(

1

N
))

= σ2
S0
σ2
bσ

|Î|+|J|+|K̂|+|L|
A

[ N∑
α,β,γ,δ=1

δδβδ
γ
αδ

k
i δ

J
Î
δL
K̂
δβαδ

δ
γ +

N∑
α,β,γ,δ=1

δδβδ
γ
αδ

k
i O(

1

N
)
]

= σ2
S0
σ2
bσ

|Î|+|J|+|K̂|+|L|
A

[ N∑
α=1

δki δ
J
Î
δL
K̂
+

N∑
α,β=1

δki O(
1

N
)
]

σ2
S0
σ2
bσ

|Î|+|J|+|K̂|+|L|
A

[
Nδki δ

J
Î
δL
K̂
+N2δki O(

1

N
)
]
= N2O(

1

N
)

and similarly

E
[
(bi)

TAT
Î
AJS

N
0 (SN

0 )TAT
KAL̂bl

]
= N2O(

1

N
)

we finally obtain

E
{[

(bi)
TAT

Î
AJS

N
0

]
·

·
[
(SN

0 )TAT
KALS

N
0 + (bk)

TAT
K̂
ALS

N
0 + (SN

0 )TAT
KAL̂bl + (bk)

TAT
K̂
AL̂bl −N

(
σ2
S0

+
σ2
b

σ2
A

)
σ
|K|+|L|
A δLK

]}
= N2O(

1

N
)

Using the same arguments developed up to here all other terms in the product end up as being N2O( 1
N ) thus dividing finally

by N2 we have the thesis.

We will just do the case (σS0
, σA, σB) = (1, 1, 0). The arguments for the general case are the same.

Proposition C.31.

lim
N→∞

∑
I∈Wd

∑
J∈Wd

1

N
E[(SN

0 )TAT
I AJS

N
0 ]SigI0,s(x)Sig

J
0,t(y)

=
∑
I∈Wd

∑
J∈Wd

lim
N→∞

1

N
E[(SN

0 )TAT
I AJS

N
0 ]SigI0,s(x)Sig

J
0,t(y)

Proof. First of all, to be thoroughly rigorous, we need to define a probability space over which we take all the expectations,
everything is numerable thus there is no issues with this.

To justify the exchange of sum and limit we want to use Lebesgue dominated convergence, we thus need to bound the

| 1
N

E[(SN
0 )TAT

I AJS
N
0 ]SigI0,s(x)Sig

J
0,t(y)|

from above.

We know, from previous considerations, that

1

N
E[(SN

0 )TAT
I AJS

N
0 ] =

N∑
n=1

1

N
E
[
[AT

I AJ ]
n
n

]
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and that

E
[
[AT

I AJ ]
n
n

]
=
( 1

N

) |I|+|J|
2

∑
p∈P 2

|I|+|J|

ω(p, I, J,N, n, n)

thus, since ω(p, I, J,N, α, β) ≤ N
|I|+|J|

2 , we obtain

E
[
[AT

I AJ ]
n
n

]
≤ |P 2

|I|+|J|| ≤ (|I|+ |J |)!!

We have also seen that E
[
[AT

I AJ ]
n
n

]
= 0 if |I|+ |J | is odd, thus we can consider |I|+ |J | to be even; then, writing i, j

instead of |I|, |J | for ease of reading, we get

(|I|+ |J |)!! =
(
2(
i+ j

2
)
)
!! = 2

i+j
2

( i+ j

2

)
!

Putting everything together we have found

| 1
N

E[(SN
0 )TAT

I AJS
N
0 ]| ≤ 2

i+j
2

( i+ j

2

)
!

and
2 ∤ i+ j =⇒ 1

N
E[(SN

0 )TAT
I AJS

N
0 ] = 0

Finally remember how, by factorial decay,

|SigI0,s(x)| ≤
∥x∥|I|1−var

|I|!

We have now to prove, by (Tao, 2016)[8.2.1 and 8.2.2], that

∑
I∈Wd

∑
J∈Wd

2
|I|+|J|

2

( |I|+ |J |
2

)
! I2||I|+|J|

∥x∥|I|

|I|!
∥y∥|J|

|J |!

=
∑
i∈N

∑
j∈N

didj2
i+j
2

( i+ j

2

)
! I2|i+j

∥x∥i

i!

∥y∥j

j!
<∞

Once again by (Tao, 2016)[8.2.1 and 8.2.2] we have to find a bijection ϕ : N → N× N such that, if

f(i, j) = didj2
i+j
2

( i+ j

2

)
! I2|i+j

∥x∥i

i!

∥y∥j

j!

then ∑
k∈N

f(ϕ(k)) <∞

As a first step assume 2|i+ j and, writing i ∧ j := min{i, j} and i ∨ j := max{i, j}, note how

f(i, j) = f(i ∧ j, i ∨ j)

≤
(d ∥x∥)i(d ∥y∥)j2

i+j
2

(
i+j
2

)
!

(i ∧ j)!(i ∨ j)!
=

(d ∥x∥)i(d ∥y∥)j2
i+j
2

(
i+j
2

)
· · · (i ∧ j + 1)

(i ∨ j)!
=

(d ∥x∥)i(d ∥y∥)j2
i+j
2

(i ∨ j) · · ·
(
i+j
2 + 1

)
· (i ∧ j)!

≤ di+j ∥x∥i ∥y∥j 2
i+j
2(

i+j
2

)
!

≤
di+j

[
(1 + ∥x∥)(1 + ∥y∥)

]i+j
2

i+j
2(

i+j
2

)
!
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Consider then ϕ as the inverse of the map (i, j) 7→ 1
2 (i+ j)(i+ j +1)+ j i.e. ϕ is the map enumerating pairs (i, j) starting

from (0, 0) and proceeding with diagonal motions of the form

(m, 0) → (m− 1, 1) → · · · → (0,m)

and then (0,m) → (m+1, 0). Notice that such diagonal strides have length m+1 and comprise all couples (i, j) such that
i+ j = m.

Since there are exactly 2k+1 choices of (i, j) such that i+j
2 = k, corresponding to the couples (i, 2k− i) for i = 0, . . . , 2k,

using the above ϕ it suffices to prove

∑
k∈N

(2k + 1)

[
d(1 + ∥x∥)(1 + ∥y∥)

]2k
2k

k
=
∑
k∈N

(2k + 1)

[
2d2(1 + ∥x∥)2(1 + ∥y∥)2

]k
k!

<∞

Since ∑
k∈N

(2k + 1)

[
2d2(1 + ∥x∥)2(1 + ∥y∥)2

]k
k!

≤
∑
k∈N

2k+1

[
2d2(1 + ∥x∥)2(1 + ∥y∥)2

]k
k!

= 2e

[
2d(1+∥x∥)(1+∥y∥)

]2
<∞

we are done.

Proposition C.32. The exchange of sums and expectations has always been justified.

Proof. For the case with just two indices I, J we need to use Fubini-Tonelli and prove that

E

[ ∑
I∈Wd

∑
J∈Wd

1

N
|(SN

0 )TAT
I AJS

N
0 Sig

I
0,s(x)Sig

J
0,t(y)|

]

=
∑
I∈Wd

∑
J∈Wd

E[
1

N
|(SN

0 )TAT
I AJS

N
0 |]|SigI0,s(x)SigJ0,t(y)| <∞

We have
1

N
E[|(SN

0 )TAT
I AJS

N
0 |] ≤

√
1

N2
E[((SN

0 )TAT
I AJSN

0 )2]

Remember how
1

N2
E[(SN

0 )TAT
I AJS

N
0 (SN

0 )TAT
I AJS

N
0 ]

=

N∑
α=1

3

N2
E
[
[AT

I AJ ]
α
α[A

T
I AJ ]

α
α

]
+

N∑
α,β=1
α̸=β

1

N2
E
[
[AT

I AJ ]
α
α[A

T
I AJ ]

β
β

]

+

N∑
α,β=1
α̸=β

1

N2
E
[
[AT

I AJ ]
β
α[A

T
I AJ ]

β
α

]
+

N∑
α,β=1
α̸=β

1

N2
E
[
[AT

I AJ ]
β
α[A

T
I AJ ]

α
β

]

and how
E
[
[AT

I AJ ]
β
α[A

T
KAL]

δ
γ

]
=

=
1

N
|I|+|J|+|K|+|L|

2

∑
p∈P

ω(p, I, J,K,L, α, β, γ, δ)
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where
ω(p, I, J,K,L, α, β, γ, δ) ≤ N

|I|+|J|+|K|+|L|
2

thus
E
[
[AT

I AJ ]
β
α[A

T
KAL]

δ
γ

]
≤ |P 2

|I|+|J|+|K|+|L|| ≤ (|I|+ |J |+ |K|+ |L|)!!

In our case K = I and J = L, hence

(|I|+ |J |+ |K|+ |L|)!! = (2|I|+ 2|J |)!! ≤ 2|I|+|J|(|I|+ |J |)!

Putting all together
1

N
E[|(SN

0 )TAT
I AJS

N
0 |] ≤

√
1

N2
E[((SN

0 )TAT
I AJSN

0 )2]

≤
√
6 · 2|I|+|J|(|I|+ |J |)! ≤

√
6 · 2

|I|+|J|
2 (|I|+ |J |)!!

where we have used
(|I|+ |J |)! = (|I|+ |J |)!!(|I|+ |J | − 1)!! ≤ [(|I|+ |J |)!!]2

Finally

∑
I∈Wd

∑
J∈Wd

1

N
E[|(SN

0 )TAT
I AJS

N
0 |]|SigI0,s(x)SigJ0,t(y)|

≤
∑
I∈Wd

∑
J∈Wd

√
6 · 2

|I|+|J|
2 (|I|+ |J |)!!∥x∥

|I|

|I|!
∥y∥|J|

|J |!

which is proved to be <∞ exactly as in the previous proof, this time taking care to consider also the case |I|+ |J | not even.

The case with 4 words, i.e. the variance case, goes similarly.

Putting all of this together we have finally proved the theorem:

Theorem C.33. Consider randomized Signatures of the type

SN
t (x) = S0 +

d∑
k=1

∫ t

0

(
AkS

N
τ (x) + bk

)
dxkτ

where x ∈ X and

[Ak]
β
α ∼ N (0,

σ2
A

N
) [Y0]α ∼ N (0, σ2

S0
) [bk]α ∼ N (0, σ2

b )

Then

lim
N→∞

E
[ 1
N

⟨SN
s (x), SN

t (y)⟩RN

]
=
(
σ2
S0

+
σ2
b

σ2
A

)
kσAx,σAy
sig (s, t)− σ2

b

σ2
A

and the variance around the limit is of order O( 1
N ).

C.4.3. CONVERGENCE TO A GAUSSIAN PROCESS

Fix X := {x1, . . . , xm} ⊆ X. Let moreover ϕ ∈ RN be sampled from N (0, 1
N ). Define the vectors

ΦN
X := [

〈
ϕ, SN

1 (xj)
〉
RN ]j=1,...,m

Proposition C.34. ΦN
X converge in distribution to a N (0,KX

id).
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Proof. By Lévy’s continuity theorem it suffices to study the limiting behavior of the characteristic functions

φN (u) := E[exp
{
iuTΦN

X
}
]

=E[exp
{
i

m∑
j=1

uj [Φ
N
X ]j
}
] = E[exp

{
i

m∑
j=1

uj
〈
ϕ, SN

1 (xj)
〉 }

]

=E[exp
{
i

〈
m∑
j=1

ujS
N
1 (xj), ϕ

〉}
]

=E[E[exp
{
i

〈
m∑
j=1

ujS
N
1 (xj), ϕ

〉}
|A1, b1, . . . , Ad, bd, S0]]

But if we know S0 and the Ak, bk the randomized signatures are deterministic objects, and ϕ is normally distributed; thus

φN (u) = E[E[exp
{
i

〈
m∑
j=1

ujS
N
1 (xj), ϕ

〉}
|A1, b1, . . . , Ad, bd, S0]]

=E[exp
{
− 1

2N

〈
m∑
j=1

ujS
N
1 (xj),

m∑
j=1

ujS
N
1 (xj)

〉}
]

=E[exp
{
− 1

2

m∑
i,j=1

uiuj
1

N

〈
SN
1 (xi), S

N
1 (xj)

〉 }
]

=E[exp
{
− 1

2

〈
u,

1

N
GN

X u

〉}
]

where
[GN

X ]ji :=
〈
SN
1 (xi), S

N
1 (xj)

〉
Now, since we have proven that

1

N

〈
SN
1 (xi), S

N
1 (xj)

〉 L2

−−−−→
N→∞

[KX
id]

j
i

we have
1

N
GN

X
L2

−−−−→
N→∞

KX
id := Σ

Thus, since L2 convergence implies convergence in distribution, by the classical Portmanteau theorem we must have

E[h(
1

N
GN

X )] −−−−→
N→∞

E[h(Σ)] = h(Σ)

for every continuous and bounded h : Rm×m → R

Fix u ∈ Rm and consider

fu : Rm×m → R s.t. A 7→ exp
{
−1

2
⟨u,Au⟩

}
We would like to take h = fu, unfortunately if u ̸= 0 then fu is not bounded: taking A = −Im×m we have

f(kA) = exp{k
2
∥u∥22} −−−−→

k→∞
+∞
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Fortunately we are only interested in evaluating fu on the GN
X which are all positive semidefinite matrices:

GN
X = (WN

X )TWN
X

where WN
X ∈ RN×m is defined by

[WN
X ]ji := [SN (xj)]i

thus for any u ∈ Rm it holds that

uT
1

N
GN

X u = uT
1

N
(WN

X )TWN
X u = (

1√
N
WN

X u)
T 1√

N
WN

X u =

∥∥∥∥ 1√
N
WN

X u

∥∥∥∥2
2

≥ 0

Since the GN
X are semidefinite we have

0 < fu(G
N
X ) ≤ 1

for any u, hence we always have
fu(G

N
X ) = ψ ◦ fu(GN

X )

where ψ : R → R is defined by ψ(x) := min{x, 2}.

To end notice how ψ ◦ fu : Rm×m → R is continuous, being composition of continuous functions, and bounded, since

0 < ψ ◦ fu(A) ≤ 2

Then we have, for every u ∈ Rm, that

E[fu(GN
X )] = E[(ψ ◦ fu)(

1

N
GN

X )] −−−−→
N→∞

(ψ ◦ fu)(Σ) = fu(Σ)

where we have used the semidefinitiveness of Σ. With this we finally conclude that

φN (u) −−−−→
N→∞

exp
{
−1

2
⟨u,Σu⟩

}

We have just proved

Proposition C.35. Let φ = id. For any subset X = {x1, . . . , xn} ⊂ X the following convergence in distribution holds

lim
N→∞

lim
M→∞

ΨM,N
id (X ) = lim

M→∞
lim

N→∞
ΨM,N

id (X )
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