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Abstract

Identifying a small molecule from its mass spec-
trum is the primary open problem in computa-
tional metabolomics. This is typically cast as
information retrieval: an unknown spectrum is
matched against spectra predicted computation-
ally from a large database of chemical structures.
However, current approaches to spectrum predic-
tion model the output space in ways that force a
tradeoff between capturing high resolution mass
information and tractable learning. We resolve
this tradeoff by casting spectrum prediction as
a mapping from an input molecular graph to a
probability distribution over chemical formulas.
We further discover that a large corpus of mass
spectra can be closely approximated using a fixed
vocabulary constituting only 2% of all observed
formulas. This enables efficient spectrum predic-
tion using an architecture similar to graph classi-
fication – GRAFF-MS – achieving significantly
lower prediction error and greater retrieval accu-
racy than previous approaches.

1. Introduction
The identification of unknown small molecules in complex
mixtures is a primary challenge in many areas of chemi-
cal and biological science. The standard high-throughput
approach to small molecule identification is tandem mass
spectrometry (MS/MS), with diverse applications includ-
ing metabolomics (Dettmer et al., 2006), drug discovery
(Atanasov et al., 2021), clinical diagnostics (Evans et al.,
2020), forensics (Brown et al., 2020), and environmental
monitoring (Hernández et al., 2012).
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MS/MS generates an experimental signature – a mass spec-
trum – of an unknown molecule by breaking it into frag-
ments. The spectrum contains a (mass-to-charge ratio,
height) tuple for each resulting fragment, reflecting its ele-
mental composition, electric charge, and tendency to form.
The problem of inferring the 2D structure of a molecule
from its spectrum is known as structural elucidation. Struc-
tural elucidation is the primary computational bottleneck
in MS/MS, and is far from solved: typically only 2−4%
of spectra are identified in untargeted metabolomics ex-
periments (da Silva et al., 2015). A recent competition –
the 2022 Critical Analysis of Small Molecule Identifica-
tion (CASMI) challenge (Fiehn, 2022) – saw no more than
30% accuracy, with algorithmic approaches only marginally
outperforming manual annotation by expert chemists.

Because MS/MS is a lossy measurement, and available
training sets are small, direct prediction of structures from
spectra is particularly challenging. The approach for small
molecule identification preferred in practice by most users
of mass spectrometry is spectral library search, which casts
the problem as information retrieval (Stein, 2012): an ob-
served spectrum is queried against a library of spectra with
known structures. This provides an informative prior, and
has the advantage of easy interpretability. But as there are
relatively few (104) small molecules with publicly known
experimental mass spectra, in spectral library search it is
necessary to augment libraries with spectra predicted from
large databases (106 − 109) of molecular graphs. This mo-
tivates the problem of spectrum prediction: the ability to
predict higher-quality spectra from large chemical structure
databases could greatly increase compound identification
rates in real experimental settings.

Spectrum prediction is actively studied in metabolomics and
quantum chemistry (Krettler & Thallinger, 2021), yet has
historically received little attention from the machine learn-
ing community. A major challenge in spectrum prediction
is modelling the output space: a mass spectrum is a variable-
length set of real-valued tuples, which is not straightforward
to represent as an output of a machine learning model. The
mass-to-charge (m/z) coordinate poses particular difficulty:
it must be predicted with high precision, as a key strength
of MS/MS is the ability to distinguish small fractional m/z
differences (on the order of 10−6) representative of different
elemental composition.
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Previous approaches to spectrum prediction force a trade-
off between capturing high resolution m/z information and
tractability of the learning problem. Mass-binning meth-
ods (Wei et al., 2019; Zhu et al., 2020; Young et al., 2021)
represent a spectrum as a fixed-length vector by discretiz-
ing the m/z axis at regular intervals, discarding fine-scale
information in favor of tractable learning. Bond-breaking
methods (Wang et al., 2021; Ruttkies et al., 2019) achieve
perfect m/z resolution, but use expensive combinatorial
enumeration of substructures.

Our work presents a novel formulation that exploits the
many-to-one relationship between molecular graphs and
chemical formulas. Specifically, we make the following
contributions:

• We formulate spectrum prediction as a mapping from
a molecular graph to a probability distribution over
chemical formulas, allowing full resolution predictions
without enumerating substructures;

• We discover most mass spectra can be effectively ap-
proximated with a small fixed vocabulary of chemical
formulas, bypassing the tradeoff between m/z resolu-
tion and tractable learning; and

• We implement an efficient graph neural network archi-
tecture, GRAFF-MS, that outperforms state-of-the-art
in both prediction error and runtime on canonical mass
spectrometry datasets, and yields superior accuracy on
a large-scale structure retrieval task.

2. Background
We denote vectors x in bold lowercase and matrices X in
bold uppercase.

A molecular graph G = (V,E,a, b) is a minimal descrip-
tion of the 2D structure of a molecule: it comprises an
undirected graph with nodes V representing atoms, and
edges E ⊂ V × V representing bonds. Each node i is la-
belled with a chemical element ai ∈ {C, H, N, O, P, S . . . },
and each edge (i, j) with a bond order bij ∈ {1, 1.5, 2, 3}.

A chemical formula f (e.g. C8H10N4O2) describes a mul-
tiset of atoms, which we encode as a nonnegative integer
vector of atom counts in F∗ .

= Z{C, H, N, O, P, S . . .}
+ . Formulas

may be added and subtracted from one another, and inequal-
ities between formulas are taken to hold elementwise. The
subformulas of f are the set F(f) .

= {f ′ ∈ F∗ : f ′ ≤ f}.

⟨µ, f⟩ ∈ R+ is the theoretical mass of formula f , in units
of daltons (Da): this is a weighted sum of the monoiso-
topic masses of the elements of the periodic table, µ ∈
R{C, H, N, O, P, S . . .}

+ , with multiplicities given by f .

A mass spectrum S is a variable-length set of peaks, each

of which is a (m/z, intensity) tuple (mi, yi) ∈ R2
+. We

use the notation i ∈ S to index peaks in a spectrum. We
assume spectra are normalized, permitting us to treat them
as probability distributions:

∑
i∈S yi = 1. A mass spectrum

is implicitly always accompanied by a precursor formula
P . We always assume charge z = 1, as it is rare for small
molecules to acquire more than a single charge.

2.1. Tandem mass spectrometry

A tandem mass spectrometer is a scientific instrument that
generates high-throughput experimental signatures of the
molecules present in a complex mixture. It operates by
ionizing a chemical sample into a jet of electrically-charged
gas. This gas is electromagnetically filtered to select a
population of precursor ions of a specific mass-to-charge
ratio (m/z) representing a unique molecular structure. Each
precursor ion is fragmented by collision with molecules of
an inert gas. If a collision occurs with sufficient energy,
one or more bonds in the precursor will break, yielding a
charged product ion and one or more uncharged neutral loss
molecules. The product ion is measured by a detector, which
records its m/z up to a small error proportional to m/z
times the instrument resolution ϵ, typically on the order of
10−6. This process is repeated for large numbers of identical
precursor ions, building up a histogram indexed by m/z.
Local maxima in this histogram are termed peaks: ideally,
each peak represents a unique product ion, with intensity
reflecting its probability of formation. This set of peaks
constitutes the mass spectrum. A typical mass spectrometry
experiment acquires mass spectra for tens of thousands of
distinct precursors in this manner. We depict this process
in Figure 1A, and the relationship between precursor ion,
product ion and neutral loss in Figure 1B.

2.2. Mass decomposition

Modern mass spectrometry achieves sufficiently high res-
olution to detect small deviations in m/z from integrality
that are characteristic of different chemical elements. This
property is a key strength of the technology, because it
permits annotating peaks with formulas through mass de-
composition (Dührkop et al., 2013). Given a product ion of
m/z = m, a precursor formula P , and an instrument resolu-
tion ϵ, product mass decomposition yields a set F(P,m, ϵ)
of chemically plausible subformulas of P whose theoretical
masses lie within the (multiplicative) measurement error ϵm
of m. This can be cast as the following integer program, in
which all solutions with cost ≤ ϵm are enumerated:

min
f∈F∗

|⟨µ, f⟩ −m| (1)

s.t. f ≤ P, f ∈ Ω (2)

where Ω describes a general set of constraints that exclude
unrealistic chemical formulas (Kind & Fiehn, 2007). For
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Figure 1. (A) The workflow of tandem mass spectrometry. A chem-
ical mixture is ionized and filtered to isolate precursor ions of
m/z = M ; these are fragmented into product ions (red) and neu-
tral losses (blue), and a detector yields a histogram of product ions
indexed by m/z, with measurement error proportional to m/z.
(B) An example fragmentation of a precursor ion with formula
C8H11N4O2. Fragmentation breaks bonds, cutting the molecu-
lar graph into connected components. The component retaining
the charge is the product ion; its complement is the neutral loss.
The peak at m/z = m represents the product ion; given the pre-
cursor formula, we can equally specify this peak by its formula
C3H4NO2, or the formula of its neutral loss C5H7N3.

modern instruments, ϵ is sufficiently small for there to typi-
cally be only one or a few valid solutions. This allows us to
later rely on product mass decomposition as a black-box to
generate useful formula annotations at training time.

3. Related work
Bond-breaking is the most studied approach to spectrum
prediction (Allen et al., 2014; Wang et al., 2021; Ruttkies
et al., 2019; Cao et al., 2021). This solves the problem of
representing the output space by enumerating the structures
of all probable product ions: these are taken to be con-
nected subgraphs of the precursor, generated by sequences
of edge removals. Each product ion structure is scored
for its probability of formation, and a spectrum is gener-
ated by associating this probability with each structure’s
theoretical m/z. Bond-breaking therefore achieves perfect
m/z resolution, but suffers from two major weaknesses:
first, enumerating substructures scales poorly with molecule
size, and is not conducive to massively-parallel implementa-
tion on a GPU. We found a state-of-the-art method (Wang
et al., 2021) takes ∼5s on average to predict a single mass
spectrum, which precludes training on the largest available
datasets: using the same settings as its authors, training
(Wang et al., 2021) on ∼300k spectra in NIST-20 would
take an estimated three months on a 64-core machine. It also

poses serious limitations at test time, as inference with a
large-scale structure database like ChEMBL (Gaulton et al.,
2016) requires predicting millions of spectra. The other
weakness of bond-breaking arises from a restrictive mod-
elling assumption: rearrangement reactions (McLafferty,
1959) frequently yield product ions that are not reachable
from the precursor by sequences of edge removals.1

Mass-binning is used for spectrum prediction by (Wei et al.,
2019), and subsequently employed in recent preprints (Zhu
et al., 2020; Young et al., 2021). This approach represents
a mass spectrum as a fixed-length vector via discretization:
the m/z axis is partitioned into narrow regularly-spaced bins,
and each bin is assigned the sum of the intensities of all
peaks falling within its endpoints. Spectrum prediction
then becomes a vector-valued regression problem, which is
conducive to GPU implementation and scales better than
bond-breaking. But because a target space with millions
of mass bins is too large, realistic bin counts lose essential
high resolution information about the chemical formulas of
the peaks: discarding a key strength of MS/MS analysis in
favor of a tractable learning problem. Such models are also
susceptible to edge effects, where m/z measurement error
of the instrument can cause peaks of the same product ion
to cross bin boundaries from spectrum to spectrum.

Other approaches include molecular dynamics simulation
(Koopman & Grimme, 2021), which has extremely high
computational costs; and NLP-inspired models for peptides
(Zhou et al., 2017; Gessulat et al., 2019), which are effective
but inapplicable to other types of molecules.

While this manuscript was under review, two GNN-based
approaches to modelling mass spectra as distributions over
subformulas were also published. Rather than the fixed
vocabulary approximation we discover here, Zhu & Jonas
(2023) use an exhaustive enumeration scheme to generate
subformulas, which are then used in a formula-to-atom at-
tention operation to predict a peak height for each. Goldman
et al. (2023) decode a prefix-tree of plausible subformulas
from the molecular graph and predict intensities for these
using a set-to-set transformer.

4. GRAFF-MS
Our approach comprises three major components: first, we
represent the output space of spectrum prediction as a space
of probability distributions over chemical formulas. We
then introduce a constant-sized approximation of this out-
put space using a fixed vocabulary of formulas, which we
can generate from our training data; we later show this in-

1While engineered rules are used in bond-breaking to account
for certain well-studied rearrangements, we found the state-of-the-
art method CFM-ID still fails to assign a formula annotation within
10ppm to 42% of monoisotopic peaks in the NIST-20 dataset.
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troduces only minor approximation cost, as most formulas
occur with low probability. Finally, we derive a loss function
that takes into account data-specific ambiguities introduced
by our model of the output space. These components to-
gether allow us to efficiently predict spectra using a standard
graph neural network architecture.

We call our approach GRAFF-MS: (Gr)aph neural net-
work for (A)pproximation via (F)ixed (F)ormulas of (M)ass
(S)pectra.

4.1. Modelling spectra as probability distributions over
chemical subformulas of the precursor

Our aim is to predict a mass spectrum from a molecular
graph. To do so, we must determine how to best represent
the output space: a spectrum consists of a variable-length
set of peaks located at continuous m/z positions, whose
heights sum to one. We notice that peaks are not located
arbitrarily: the set of m/zs is structured, as the m/z of a
peak is determined (up to measurement error) by the chemi-
cal formula of its corresponding product ion. This formula
is sufficient to determine the m/z; in particular, we do not
need to know the product ion’s full 2D structure. We there-
fore model a mass spectrum as a probability distribution
over chemical subformulas F(P ) of the precursor P :

S = {(mf , yf ) : f ∈ F(P )} (3)

where mf
.
= ⟨µ, f⟩ is the theoretical mass of formula f .

This is more efficient in principle than bond-breaking, which
models a spectrum as a distribution over at worst expo-
nentially many substructures of the precursor. In contrast,
the number of subformulas is only polynomial in the co-
efficients of the precursor formula – and the majority of
subformulas can be ruled out a priori as chemically infea-
sible (Kind & Fiehn, 2007). It is also less restrictive than
bond-breaking, which relies on hand-engineered rules to
capture rearrangement reactions: enumerating subformulas
is guaranteed to cover all possible peaks, irrespective of
whether the structure of their product ion is reachable by
edge removals or not. Yet our approach preserves the core
advantage of bond-breaking over mass-binning: predicting
a height for each subformula yields spectra with perfect
m/z resolution.

4.2. Fixed vocabulary approximation of formula space

In practice, enumerating subformulas is still a costly opera-
tion for larger molecules. One way to avoid this would be to
sequentially decode formulas of nonzero probability one at
a time: we opt not to do so, as this requires a more complex,
data-hungrier model, and necessitates a linear ordering of
formulas, for which there is not an obvious correct choice.
Instead, we exploit a property of small molecule mass spec-
tra that we discovered in this work and illustrate in Figure

2: almost all of the signal in small molecule mass spectra
lies in peaks that can be explained by a relatively small
number (∼2%) of product ion and neutral loss formulas
that frequently recur across spectra.

Inspired by this finding, we approximateF(P ) via the union
F̂(P ) = P̂ ∪ (P − L̂) of a fixed set of frequent product ion
formulas P̂ and a variable set of ‘precursor-specific’ formu-
las P − L̂ obtained by subtracting a fixed set of frequent
neutral loss formulas L̂ from the precursor P . This greatly
simplifies the spectrum prediction problem: we now only
need to predict a probability for each of the formulas in P̂
and L̂, which we can accomplish with time constant in the
size of the precursor.

Stated explicitly, we approximate the spectrum as:

S ≈ {(mf , yf ) : f ∈ F̂(P )} (4)

where a height of zero is implicitly assigned to any formula
not in F̂(P ).

The fact that we can equally represent a product ion by ei-
ther its own formula or a neutral loss formula relative to its
precursor ion is crucial to generalization, as also noted by
Wei et al. (2019). If we only included frequent product ion
formulas, we would explain peaks of low mass well, which
typically correspond to small charged functional groups.
But as formula space becomes larger with increasing mass,
it becomes increasingly unlikely that every significant peak
of higher mass in an unseen compound will be explained.
However, such peaks do not represent arbitrary subformulas
of the precursor: they tend to arise from losses of small un-
charged functional groups and combinations thereof, which
we capture by including frequent neutral losses.

Our algorithm to generate P̂ and L̂ involves listing all prod-
uct ion and neutral loss formulas yielded by mass decom-
position of the training set, and ranking them by the sum of
the heights of all peaks to which each formula is assigned;
we select the top K highest ranked among either type. The
algorithm is provided in appendix A.

4.3. Peak-marginal cross entropy

To train our approach, we must rely on formula annotations
generated by mass decomposition. Because mass spectrom-
eters have limited resolution, often more than one valid
subformula has a mass within measurement error of a peak.
These are considered equiprobable a priori, and need not be
mutually exclusive: it is possible for a compound to contain
two distinct substructures with m/z difference smaller than
the measurement error. As we cannot pick a single formula
in such cases, we approximate the full cross entropy loss by
marginalizing over compatible formulas: we term this the
peak-marginal cross entropy. We minimize this loss with
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respect to the parameters of a neural network ŷ(·; θ):

min
θ
−

N∑
n=1

∑
i∈Sn

yni log
∑
f∈F̂n

i

ŷf (Gn; θ) (5)

using F̂n
i

.
= F̂(Pn)∩F(Pn,m

n
i , ϵ) to indicate the intersec-

tion of our fixed vocabulary with the formula annotations
for peak i of spectrum n. We provide a derivation from first
principles in appendix B.

In this formulation, given a molecular graph G of a precursor
with formula P , our model predicts a probability ŷf for
every formula f in the fixed vocabulary. This produces a
spectrum Ŝ = {(mf , ŷf ) : f ∈ F̂(P )}. These per-formula
probabilities are summed within each observed peak across
its compatible formulas to yield a predicted peak height, and
the cross-entropy between the observed and predicted peak
heights across the entire spectrum is minimized.

4.4. Model architecture

Formulating spectrum prediction as graph classification per-
mits applying a typical GNN architecture. GRAFF-MS
uses a graph isomorphism network with edge and graph
Laplacian features (Xu et al., 2019; Hu et al., 2020; Lim
et al., 2022). This encodes the molecular graph by a dense
vector representation, which is then conditioned on mass-
spectral covariates and passed through a feed-forward net-
work that decodes a logit for each formula in the vocabulary.

We start with the graph of the 2D structure G = (V,E),
to which we add a virtual node (Gilmer et al., 2017) and
four classes of features: node features ai ∈ Rdatom , edge
features bij ∈ Rdbond , covariate features c ∈ Rdcov , and
the top eigenvectors and eigenvalues of the graph Laplacian
vi ∈ Rdeig ,λ ∈ Rdeig . We use the canonical atom and
bond featurizers from DGL-LifeSci (Li et al., 2021) to
generate a and b. Since a mass spectrum is not fully de-
termined by the molecular graph, c includes a number of
necessary experimental parameters: normalized collision en-
ergy, precursor ion type, instrument model, and presence of
isotopic peaks. Further details are provided in Table 3 in the
appendix; there we also provide hyperparameter settings.

We first embed the node, edge, and covariate features into
Rdenc , reusing the following MLP block:

MLP(·) = LayerNorm(Dropout(SiLU(Linear(·))))

and transform the Laplacian features into node posi-
tional encodings in Rdenc using a SignNet (Lim et al., 2022)
with ϕ and ρ both implemented as 2-layer stacked MLPs:

xatom
i = MLPatom(ai) (6)

xeig
i = SignNet(vi,λ) (7)

xbond
ij = MLPbond(bij) (8)

xcov = MLPcov(c) (9)

taking i ∈ V and (i, j) ∈ E. We sum the embedded atom
features and node positional encodings, and pass these along
with embedded bond features into a stack of alternating L
message-passing layers to update the node representations,
and L MLP layers to update the edge representations.

x
(0)
i = xatom

i + xeig
i (10)

e
(0)
ij = xbond

ij (11)

X(l+1) = X(l) + GINEConv(l)(G,X(l),E(l)) (12)

e
(l+1)
ij = e

(l)
ij + MLP(l)

edge(e
(l)
ij ∥x

(l+1)
i ∥x(l+1)

j ) (13)

where ∥ denotes concatenation. The message-passing layer
uses the GINEConv operation implemented in (Fey &
Lenssen, 2019): for its internal feed-forward network, we
use two stacked MLP blocks with GraphNorm (Cai et al.,
2021) in place of layer normalization. We similarly replace
layer normalization with GraphNorm in the MLPedge blocks.
Both node and edge updates use residual connections, which
we found greatly accelerate training.

We generate a dense representation of the molecule by at-
tention pooling over nodes (Er et al., 2016), to which we
add the embedded covariate features. An MLP decodes this
into a spectrum representation xspec ∈ Rddec :

ai = Softmaxi∈V (Linear(xi)) (14)

xmol =
∑

i∈V
aix

(L)
i (15)

xspec = MLPspec(x
mol + xcov), (16)

where MLPspec is a stack of L′ MLP blocks with residual
connections. In principle, we may now project this represen-
tation via a linear layer (wk, bk) into a logit zk for each of
the K product ion or neutral loss formulas in the vocabulary.

4.5. Domain-specific modifications

We must now introduce some corrections motivated by do-
main knowledge to produce realistic mass spectra.

Depending on instrument parameters, tandem mass spectra
can display small peaks arising from higher isotopic states
of the precursor ion, at integral m/z shifts relative to the
monoisotopic peak. We model this as a source of noise:
rather than expanding our vocabulary, we apply to all pre-
dictions a scalar offset for each isotopic state δ ∈ {0, 1, 2},
which we parameterize as a linear function of xspec.

As our vocabulary includes both product ions and neutral
losses, we also face occasional double-counting: depending
on the precursor P , there are cases where the same subfor-
mula f will be predicted both as a product ion (f ∈ P̂)
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and a neutral loss (P − f ∈ L̂). In such cases we subtract
a log(2) correction factor from both logits: this way the
innermost summation in Equation (5) takes the average of
their contributions instead of their sum.

Applying these corrections and softmaxing yields the final
heights of the predicted mass spectrum ŷ:

zkδ = wkx
spec +wδx

spec + bk (17)
− I[k is double-counted] log(2)

ŷkδ = Softmaxkδ(zkδ) (18)

where the subscript k is an index into our fixed vocabulary.

5. Experiments
5.1. Datasets

5.1.1. NIST-20

We train our model on the NIST-20 tandem MS library (Na-
tional Institute of Standards and Technology, 2020). This is
the largest commercial dataset of high resolution mass spec-
tra of small molecules, curated by expert chemists, and is
available for a modest fee.2 For each measured compound,
NIST-20 provides typically several spectra acquired across
a range of collision energies. Each spectrum is represented
as a list of (m/z, intensity, annotation) peak tuples, in ad-
dition to metadata describing instrumental parameters and
compound identity. The annotation field includes a list of
formula hypotheses per peak that were computed by NIST
using mass decomposition and verified by expert chemists.

We restrict NIST-20 to HCD Orbitrap spectra with [M +
H]+ or [M−H]− precursor ions. We exclude structures that
are annotated as glycans or peptides or exceed 1000Da in
mass (as these are not typically considered small molecules)
or have atoms other than {C, H, N, O, P, S, F, Cl, Br, I}.

We use an 80/10/10 structure-disjoint train/validation/test
split, which we generate by grouping spectra according to
the connectivity substring of their InChIKey (Heller et al.,
2015), and assigning groups of spectra to splits. As the base-
line CFM-ID only predicts monoisotopic spectra at quali-
tative energy levels {low, medium, high}, we restrict the
test set to spectra with corresponding energies {20, 35, 50}
in which no peaks were annotated as higher isotopes. This
yields 287,995 (18,665) training, 36,265 (2,346) validation,
and 4,424 (1,632) test spectra (structures).

2Open data is not the norm in small molecule mass spectrom-
etry, as large-scale annotated data has commercial value and re-
quires substantial time commitment from teams of highly-trained
human experts. No public-domain dataset comparable to NIST-
20 therefore exists. However, NIST-20 and its predecessors are
commonplace in academic mass spectrometry, and have been used
in ML research (Wei et al., 2019; Dührkop, 2022).

5.1.2. CASMI-16

It is well known that uniform train-test splitting can over-
estimate generalization in molecular machine learning (Wu
et al., 2018). To address this issue, we employ an inde-
pendent test set: the spectra of the 2016 CASMI challenge
(Schymanski et al., 2017). This is a small public-domain
mass spectrometry dataset, constructed by domain experts
specifically for benchmarking algorithms, and comprises
structures selected as representative of those encountered
‘in the wild’ when performing mass spectrometry of small
molecules.

We use [M+H]+ and [M−H]− spectra from the combined
‘Training’ and ‘Challenge’ splits from Categories 2 and 3
of the challenge. We exclude any structures from CASMI-
16 with an InChIKey connectivity match to any in NIST-
20, yielding 166 spectra of 151 structures. CASMI-16
spectra are acquired with collision energy stepping, which
generates a mixed spectrum from energies of {20, 35, 50};
for all methods we approximate this by predicting only the
middle energy.

5.1.3. GNPS

To simulate performance in a real experimental setting, we
extracted a subset of spectra from GNPS (Wang et al., 2016)
that represent natural product molecules not found in NIST-
20. This is a challenging dataset, as GNPS spectra are
contributed by the community in an uncurated manner, and
often are missing key covariates for spectrum prediction.
To exclude obvious poor-quality spectra, we only consider
[M +H]+ and [M −H]− Orbitrap spectra, with reported
precursor m/z matching the theoretical mass. GNPS does
not report collision energy; we assume energy = 35, and
only include spectra with a (number of peaks) to (precursor
m/z) ratio between the 10th and 90th percentiles of that
quantity for NIST-20 spectra acquired at that energy. This
results in 677 mass spectra of 606 structures.

5.2. Baselines

5.2.1. CFM-ID

CFM-ID (Wang et al., 2021) is a bond-breaking method,
viewed by the mass spectrometry community as the state-
of-the-art in spectrum prediction (Krettler & Thallinger,
2021). We found CFM-ID prohibitively expensive to train
on NIST-20 (one parallelized EM iterate on a subset of
∼60k spectra took 10 hours on a 64-core machine) so we
use trained weights provided by its authors, learned from
18,282 spectra in the commercial METLIN dataset (Guijas
et al., 2018). Domain experts consider spectra acquired
under METLIN’s conditions interchangeable with those of
NIST-20 (Leoz et al., 2018) so it is reasonable to evaluate
their model on our data.
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5.2.2. NEIMS

NEIMS (Wei et al., 2019) is a feed-forward network that
inputs a precomputed molecular fingerprint and outputs
a mass-binned spectrum, which is postprocessed using
a domain-specific gating operation (“bidirectional predic-
tion”). As NEIMS was originally developed for electron-
impact mass spectra, we retrained NEIMS on NIST-20,
which necessitated two modifications: (1) we concatenate a
vector of covariates to the fingerprint vector, without which
NIST-20 spectra are not fully determined; and (2) we bin
at 0.1Da intervals instead of 1Da intervals, to account for
finer instrument resolution in NIST-20. We otherwise use
the same hyperparameter settings as the original paper, and
early-stop on validation loss.

5.3. Evaluation

5.3.1. COSINE SIMILARITY

We evaluate predictive accuracy against ground truth spectra
via mass-spectral cosine similarity (Stein & Scott, 1994).
This modifies the standard cosine similarity to allow for
inexact matches in the m/z coordinates between two spectra.
For two spectra S and Ŝ, mass-spectral cosine similarity
CS,Ŝ is the maximal cosine similarity between vectors of
peak heights taken over all peak matchings within a mass
tolerance window τ . It is computed by solving a linear sum
assignment problem:

CS,Ŝ

.
= max

xij∈{0,1}

∑
i∈S, j∈Ŝ:

|mi−m̂j |≤τ

xij
yi
∥y∥2

ŷj
∥ŷ∥2

(19)

s.t.
∑

i∈S xij ≤ 1 (20)∑
j∈Ŝ xij ≤ 1 (21)

We use the CosineHungarian implementation from
matchms (Huber et al., 2020), with tolerance τ = 0.1Da.

5.3.2. TIME COMPLEXITY

We also empirically compare dependence of runtime on
input size between GRAFF-MS and the bond-breaking
method CFM-ID. For fair comparison, we time a forward
pass for each structure in the NIST-20 test split using only
the CPU, without any batching. We include time spent in
preprocessing: our input is a SMILES string and experimen-
tal covariates, and our output is a spectrum. As collision
energy affects the number of fragments that CFM-ID gener-
ates, we predict spectra at low, medium, and high energies
and use the average runtime of the three.

5.3.3. SPECTRAL LIBRARY SEARCH

We characterize retrieval performance on a large-scale spec-
tral library search task. For each method, we predict a

library of mass spectra from the structures in NIST-20,
which we augment with 200k decoy structures sampled
from ChEMBL within ±0.1Da of any NIST-20 structure.
[M +H]+ and [M −H]− spectra are predicted at collision
energies {20, 35, 50}, resulting in a library of 1,262,025
spectra of 221,502 structures. We query each of the 4,424
experimental spectra from the NIST-20 test split against
this library, restricting comparisons to spectra with the same
ionization mode and collision energy, of theoretical m/z
within 0.1Da of the query. We rank the resulting matches
by mass-spectral cosine similarity, and compute recall-at-k:
both of the correct 2D structure, and of any 2D structure
with the correct chemical formula.

6. Results
6.1. A fixed vocabulary of products and losses captures

the vast majority of fragmentation events

Figure 2. Generalization of different heuristics for fixed-size vo-
cabulary selection. For a given vocabulary size on the x-axis, the
y-axis indicates the sum of all explained peaks’ heights within a
given spectrum, averaged over all spectra.

Figure 2 illustrates the fraction of ion counts explained on
average across mass spectra as the vocabulary size is varied.
We observe most signal lies within peaks explainable by a
relatively small number of product ion and neutral loss for-
mulas. In particular, the vocabulary of K = 104 formulas
we select from the NIST-20 training split (which contains
188,349 unique product ion and 351,165 unique neutral loss
formulas) is sufficient to explain 98% of ion counts in the
structure-disjoint test split. This vocabulary generalizes
beyond NIST-20 to both CASMI-16 and GNPS, suggest-
ing this ‘formula sparsity’ is a general property of small
molecule mass spectra.

We also compare alternative strategies of picking only the
top product ions or top neutral losses: our approach of using
both types of formulas explains more signal for a fixed K
than either type alone.
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6.2. GRAFF-MS outperforms bond-breaking and
mass-binning on standard MS/MS datasets

Table 1 shows GRAFF-MS produces spectra with greater
cosine similarity to ground-truth than either baseline. These
results hold for our test split of NIST-20 and for the inde-
pendent test sets CASMI-16 and GNPS. We see all meth-
ods perform better on CASMI-16 than NIST-20: this is
likely because NIST-20 includes a minority of substantially
larger molecules (max weight 995Da) than CASMI-16
(max weight 539Da), with which all three methods strug-
gle. Conversely, the poorer performance of all methods on
GNPS likely reflects the difficulty of predicting the noisier
spectra acquired in real-world biological experiments, as
compared to curated spectra generated from libraries of pure
chemical standards.

Table 1. Mean cosine similarity between predicted and true spectra
on the NIST-20 test split, CASMI-16, and GNPS. 95% confi-
dence intervals are computed via nonparametric bootstrap.

NIST-20 TEST
(N = 4424)

CASMI-16
(N = 166)

GNPS
(N = 677)

CFM-ID 0.53± .01 0.71± .04 0.26± .02
NEIMS 0.60± .01 0.57± .06 0.29± .02
GRAFF-MS 0.71± .01 0.78± .05 0.41± .03

To further characterize out-of-distribution performance, in
Figure 3 we show how each method’s performance on the
NIST-20 test split decays as test examples decrease in simi-
larity to the method’s respective training set. Specifically,
we compute, for each structure in the test set, the maximum
Tanimoto similarity between its radius-2 Morgan fingerprint
and that of any training structure. While all methods suffer
out-of-distribution, GRAFF-MS maintains its edge over the
other methods at all but the very highest levels of dissimilar-
ity from NIST-20, where it approaches CFM-ID. CFM-ID’s
more gradual decay compared to the deep learning methods
likely reflects the strong inductive bias of bond-breaking.

6.3. Representing peaks as subformulas scales better
with molecular weight than substructures

Figure 4 shows how our approach to modelling high resolu-
tion spectra scales better with input size than bond-breaking.
CFM-ID, which is written in optimized C++ code, takes
on average 4.9 seconds per structure in the NIST-20 test
split, and scales quadratically (R2 = 0.78) with input size.
(We believe this is because larger molecules in NIST-20
tend to be approximately path graphs – e.g. long hydrocar-
bon chains – with only quadratically many connected sub-
graphs.) In comparison, running our research implementa-
tion of GRAFF-MS on the CPU takes 1.3 core-seconds per
spectrum, and scales approximately linearly (R2 = 0.65).
This pays off at larger molecular weight: for molecules

Figure 3. Relationship between predictive accuracy on NIST-20
test structures and structural similarity to the training set. Note
that CFM-ID uses a different training set (METLIN).

> 500Da, our model is 16× faster on average. Realistically,
large-scale library prediction will use the GPU: on a single
GPU with batch size 512, predicting all of the NIST-20
test spectra averages to 2.8ms per spectrum (mostly spent
in CPU-bound preprocessing).

Figure 4. Empirical time complexity on NIST-20 structures with
respect to molecular weight. Each dot is a structure. Solid lines
are quadratic (blue) and linear (red) fits; dotted line indicates an
average over all spectra computed using shuffled minibatches.

6.4. GRAFF-MS yields more accurate and faster
structure retrieval against a large spectral library

In Table 2 we report recall at k = {1, 5, 10} of experimental
spectra from the NIST-20 test split on our spectral library
search task. We see the superior performance of our ap-
proach in the spectrum prediction task extends to better
downstream retrieval accuracy, in terms of both correct 2D
structures and correct chemical formulas. Here the impor-
tance of speed at inference time becomes apparent: while
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both deep learning methods took only a few minutes on
a single GPU, CFM-ID required more than 5 node-days
of compute time on 8 96-core nodes of an HPC cluster to
generate this library.

Table 2. Recall-at-k of NIST-20 test spectra against synthetic li-
braries predicted from NIST-20 and ChEMBL structures. We
report retrieval accuracy of both the correct 2D structure and of
any structure with the correct chemical formula, as well as time
taken to generate the 1.2 million spectra in the library.

CFM-ID NEIMS GRAFF-MS

STRUCTURE, k=1 0.28±.01 0.27±.01 0.37±.01
5 0.56±.02 0.53±.02 0.67±.01

10 0.66±.01 0.61±.01 0.75±.01

FORMULA, k=1 0.34±.02 0.43±.01 0.52±.02
5 0.64±.02 0.65±.01 0.76±.01

10 0.74±.01 0.73±.01 0.83±.01

INFERENCE TIME 126H7M 7M32S 18M52S

6.5. GRAFF-MS distinguishes very similar compounds
and makes human-like mistakes

In Figure 5 we show some particularly challenging exam-
ples of mass spectra. The top and middle panels show two
structurally similar compounds, differing only by the order
of one carbon-carbon bond. Our approach correctly predicts
distinct spectra for each (CSŜ = 0.90, top; CSŜ = 0.97,
middle). The third molecule is an example where we fail to
predict a realistic spectrum (CSŜ = 0.04), but in a manner
in which a human expert would also fail. This molecule is a
member of the phthalate class, which chemists recognize
by a characteristic dominant peak at 149Da (Jeilani et al.,
2011). Our model predicts this same peak, correctly recog-
nizing a phthalate. But in this case that peak is unusually
minor – potentially reflecting a long-range dependency in
the graph that our approach failed to capture.

7. Discussion
In this work, we develop GRAFF-MS, a graph neural net-
work for predicting high resolution mass spectra of small
molecules. Unlike previous approaches that force a trade-
off between m/z resolution and a tractable learning prob-
lem, GRAFF-MS is both computationally efficient and
capable of modelling the high resolution m/z information
essential to modern mass spectrometry. This is made possi-
ble by our discovery that mass spectra of small molecules
can be closely approximated as distributions over a fixed
vocabulary of chemical formulas, highlighting the value
that domain-aware modelling can add to molecular ma-
chine learning. Particularly surprising was that we out-
perform CFM-ID, which trades model expressivity for an
even stronger scientific prior that we expected would con-

Figure 5. Three compounds from CASMI-16, with spectra pre-
dicted by our model (blue) against negated ground-truth (red).
Oxygens are shaded red by convention.

tribute to better generalization. However, this prior incurs a
heavy cost in time complexity, making it impractical to train
CFM-ID on hundreds of thousands of spectra as we did.

While a fixed vocabulary of fragments yields an architecture
that is simple to train and fast at inference time, it is possi-
ble that this can at times sacrifice flexibility: we may fail to
capture fragments of intermediate size that can arise from
complex small molecules such as natural products. We be-
lieve dynamic generation of this vocabulary, and the related
problem of learning generalizable formula representations,
to be promising avenues for future work.

Overall we anticipate GRAFF-MS will both accelerate sci-
entific discovery and demonstrate mass spectrometry as a
compelling domain for further machine learning research.

Software and Data
We provide code, data, and trained models at https://
github.com/murphy17/graff-ms. The NIST-20
license agreement prohibits including spectra from it; we
therefore provide instructions on how to obtain it.

Acknowledgements
The authors thank the reviewers for their constructive sug-
gestions, and members of the Jegelka and Fraenkel labs,
Gennady Voronov, Sam Goldman, and Connor Coley for
helpful conversations. The authors acknowledge the MIT
SuperCloud and Lincoln Laboratory Supercomputing Cen-
ter for providing HPC resources that have contributed to the
research results reported in this paper. M.M. thanks Enveda
Biosciences, the Natural Sciences and Engineering Research
Council of Canada, and the Chan-Zuckerberg Initiative for
financial support.

9

https://github.com/murphy17/graff-ms
https://github.com/murphy17/graff-ms


Efficiently predicting high resolution mass spectra with graph neural networks

References
Allen, F., Greiner, R., and Wishart, D. Compet-

itive fragmentation modeling of ESI-MS/MS
spectra for putative metabolite identification.
Metabolomics, 11(1):98–110, June 2014. doi:
10.1007/s11306-014-0676-4. URL https:
//doi.org/10.1007/s11306-014-0676-4.

Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., and Supuran,
C. T. Natural products in drug discovery: advances and
opportunities. Nature reviews Drug discovery, 20(3):
200–216, 2021.

Brown, H. M., McDaniel, T. J., Fedick, P. W., and Mulligan,
C. C. The current role of mass spectrometry in forensics
and future prospects. Analytical Methods, 12(32):3974–
3997, 2020. doi: 10.1039/d0ay01113d. URL https:
//doi.org/10.1039/d0ay01113d.

Cai, T., Luo, S., Xu, K., He, D., Liu, T., and Wang, L.
Graphnorm: A principled approach to accelerating graph
neural network training. In Meila, M. and Zhang, T.
(eds.), Proceedings of the 38th International Confer-
ence on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Ma-
chine Learning Research, pp. 1204–1215. PMLR, 2021.
URL http://proceedings.mlr.press/v139/
cai21e.html.

Cao, L., Guler, M., Tagirdzhanov, A., Lee, Y.-Y., Gurevich,
A., and Mohimani, H. Moldiscovery: learning mass
spectrometry fragmentation of small molecules. Nature
Communications, 12(1):1–13, 2021.

da Silva, R. R., Dorrestein, P. C., and Quinn, R. A. Illuminat-
ing the dark matter in metabolomics. Proceedings of the
National Academy of Sciences, 112(41):12549–12550,
2015.

Dettmer, K., Aronov, P. A., and Hammock, B. D. Mass
spectrometry-based metabolomics. Mass Spectrometry
Reviews, 26(1):51–78, August 2006. doi: 10.1002/mas.
20108. URL https://doi.org/10.1002/mas.
20108.
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A. Fixed vocabulary selection
Algorithm 1 describes our procedure for selecting the prod-
uct ions P̂ and neutral losses L̂. We use the shorthand
Fn

i = F(Pn,mi, ϵ) to indicate the set of formulas com-
puted by product mass decomposition. When this yields
more than one formula annotation for a peak, here we split
the peak height uniformly among all annotations.

Algorithm 1 Fixed vocabulary selection
Input: training spectra and precursors {(Sn, Pn)}Nn=1,
vocabulary size K, tolerance ϵ
Output: product vocabulary P̂ , loss vocabulary L̂
Initialize hash-tables Π,Λ : Π(·) = 0,Λ(·) = 0
Initialize sets P̂ = ∅, L̂ = ∅
for n = 1 . . . N do

for (mi, yi) ∈ Sn do
Compute mass decomposition Fn

i = F(Pn,mi, ϵ)
for f ∈ Fn

i do
l = Pn − f
Π(f)← Π(f) + yi/|Fn

i |
Λ(l)← Λ(l) + yi/|Fn

i |
end for

end for
end for
Sort Π and Λ in descending value order
while |P̂|+ |L̂| ≤ K do
f = first element of Π
l = first element of Λ
if Π(f) > Λ(l) then

Add f to P̂
Remove f from Π

else
Add l to L̂
Remove l from Λ

end if
end while

(In our implementation, we do not actually compute the
mass decomposition in the loop: we instead simply read off
the annotations provided already by NIST.)

B. Derivation of peak-marginal cross entropy
We derive our loss function from physical first principles,
making a number of minor modelling assumptions:

• The number of precursor ions accumulated in a spec-
trum is Poisson with rate λ.

• Each individual precursor ion is independently con-
verted into fragment j with probability pj .

• The instrument resolution parameter ϵ is sufficiently
small that separate peaks do not overlap: there exists

exactly one peak i(j) for every j : pj > 0 satisfy-
ing |⟨µ, fj⟩ − mi| ≤ ϵmi (where fj is the chemical
formula of fragment j).

By the splitting property, the number of ions of each frag-
ment are independently Poisson with rate λj = λpj . By
the merging property, the height of peak i is also a Poisson
r.v. Ki with rate λi =

∑
j∈Ji

λj , where Ji denotes the
set of fragments whose theoretical masses fall within the
measurement error ϵmi of peak i. The log-likelihood of
peak height is (taking equality up to constants C w.r.t. pj):

logP (Ki = ki) (22)
= ki log λi − λi − log ki! (23)

= ki log

∑
j∈Ji

λj

−
∑

j∈Ji

λj

+ C (24)

= ki log

∑
j∈Ji

λpj

−
∑

j∈Ji

λpj

 (25)

= ki log λ+ ki log

∑
j∈Ji

pj

− λ
∑
j∈Ji

pj (26)

= C + ki log

∑
j∈Ji

pj

− λ
∑
j∈Ji

pj (27)

where (24) uses merging, and (25) uses splitting. Because
each product ion is assigned to exactly one peak (no overlap),
the peak heights {Ki : i ∈ S} are independent. Let the total
number of accumulated ions K =

∑
i∈S ki in spectrum S.

Defining yi = ki/K:

logP ({Ki = ki : i ∈ S}) (28)

=
∑
i∈S

logP (Ki = ki) (29)

=
∑
i∈S

ki log

∑
j∈Ji

pj

− λ
∑
j∈Ji

pj

 (30)

=
∑
i∈S

(Kyi) log

∑
j∈Ji

pj

− λ
∑
i∈S

∑
j∈Ji

pj (31)

= K
∑
i∈S

yi log

∑
j∈Ji

pj

− λ · 1 (32)

= C
∑
i∈S

yi log

∑
j∈Ji

pj

+ C ′ (33)

where (32) again uses our assumption that every fragment
is assigned to exactly one peak. Dropping the constants
and negating the final term yields the peak-marginal cross-
entropy loss for a single spectrum.
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C. Model hyperparameters
We use a vocabulary of K = 10,000 formulas. We train
an L = 6-layer encoder and L′ = 2-layer decoder with
denc = 512 and ddec = 1024, resulting in 24.1 million
trainable parameters. We use the deig = 8 lowest-frequency
eigenvalues, truncating or padding with zeros. Dropout is
applied at rate 0.1. We use a batch size of 512 and the Adam
optimizer (Kingma & Ba, 2015) with learning rate 5×10−4

and weight decay 10−5. We train for 100 epochs and use the
model from the epoch with the lowest validation loss. All
models are trained using PyTorch Lightning with automatic
mixed precision on 2 Tesla V100 GPUs.

D. Mass spectral covariates

Table 3. Mass spectral covariates used in our model.

Feature Range Comment

Collision energy [0, 200]
Thermo Scientific PSB104,
“Normalized Collision Energy Technology”

Precursor type [M +H]+, [M −H]− Includes ionization mode & adduct composition

Instrument model
Orbitrap Fusion Lumos,
Thermo Finnigan Elite Orbitrap,
Thermo Finnigan Velos Orbitrap

Different limits of detection

Has isotopic peaks False, True Proxy for width setting of precursor mass filter
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