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Abstract
Designing machine learning architectures for pro-
cessing neural networks in their raw weight ma-
trix form is a newly introduced research direction.
Unfortunately, the unique symmetry structure of
deep weight spaces makes this design very chal-
lenging. If successful, such architectures would
be capable of performing a wide range of intrigu-
ing tasks, from adapting a pre-trained network to a
new domain to editing objects represented as func-
tions (INRs or NeRFs). As a first step towards
this goal, we present here a novel network archi-
tecture for learning in deep weight spaces. It takes
as input a concatenation of weights and biases of
a pre-trained MLP and processes it using a com-
position of layers that are equivariant to the natu-
ral permutation symmetry of the MLP’s weights:
Changing the order of neurons in intermediate
layers of the MLP does not affect the function it
represents. We provide a full characterization of
all affine equivariant and invariant layers for these
symmetries and show how these layers can be im-
plemented using three basic operations: pooling,
broadcasting, and fully connected layers applied
to the input in an appropriate manner. We demon-
strate the effectiveness of our architecture and its
advantages over natural baselines in a variety of
learning tasks.

1. Introduction
Deep neural networks are the primary model for learning
functions from data, from classification to generation. Re-
cently, they also became a primary model for representing
data samples, for example, INRs for representing images,
3D objects, or scenes (Park et al., 2019; Sitzmann et al.,
2020; Tancik et al., 2020; Mildenhall et al., 2021). In these
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two cases, representing functions or data, it is often desir-
able to operate directly over the weights of a pre-trained
deep model. For instance, given a trained deep network
that performs visual object recognition, one may want to
change its weights so it matches a new data distribution. In
another example, given a dataset of INRs or NeRFs repre-
senting 3D objects, we may wish to analyze its shape space
by directly applying machine learning to the raw network
representation, namely the weights and biases.

In this paper, we seek a principled approach for learning over
neural weight spaces. We ask: ”What neural architectures
can effectively learn and process neural models that are
represented as sequences of weights and biases?”

The study of learning in neural weight spaces is still in
its infancy. Few pioneering studies (Eilertsen et al., 2020;
Unterthiner et al., 2020; Schürholt et al., 2021) used generic
architectures such as fully connected networks and attention
mechanisms to predict model accuracy or hyperparameters.
Even more recently, three papers have partially addressed
the question in the context of INRs (Dupont et al., 2022; Xu
et al., 2022; Luigi et al., 2023). Unfortunately, it is unclear if
and how these approaches could be applied to other types of
neural networks since they make strong assumptions about
the dimension of the input domain or the training procedure.

It remains an open problem to characterize the principles for
designing deep architectures that can process the weights of
other deep models. Traditional deep models were designed
to process data with well-understood structures like fixed-
sized tensors or sequences. In contrast, the weights of deep
models live in spaces with a very different structure, which
is still not fully understood (Hecht-Nielsen, 1990; Chen
et al., 1993; Brea et al., 2019; Entezari et al., 2021).

Our approach. This paper takes a step forward toward
learning in deep-weight spaces by developing architectures
that account for the unique structure of these spaces in a
principled manner. More concretely, we address learning in
spaces that represent a concatenation of weight (and bias)
matrices of Multilayer Perceptrons (MLPs). Motivated by
the recent surge of studies that incorporate symmetry into
neural architectures (Cohen & Welling, 2016; Zaheer et al.,
2017; Ravanbakhsh et al., 2017; Kondor & Trivedi, 2018;
Maron et al., 2019b; Esteves et al., 2018; Bronstein et al.,
2021), we analyze the symmetry structure of neural weight
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spaces and then use this analysis to design architectures
that are equivariant to these symmetries. Specifically, we
focus on the main type of symmetry found in the weights
of MLPs; We follow a key observation, made more than 30
years ago (Hecht-Nielsen, 1990), which states that for any
two consecutive internal layers of an MLP, simultaneously
permuting the rows of the first layer and the columns of
the second layer generates a new sequence of weight ma-
trices that represent exactly the same underlying function.
To illustrate this, consider a two-layer MLP of the form
W2σ(W1x). Permuting the rows and columns of the weight
matrices using a permutation matrix P in the following way:
W1 7→ PTW1,W2 7→W2P will, in general, result in differ-
ent weight matrices that represent exactly the same function.
More generally, any sequence of weight matrices and bias
vectors can be transformed by applying permutations to
their rows and columns in a similar way, while representing
the same function, see Figure 1.

After characterizing the symmetries of deep weight spaces,
we define the architecture of Deep Weight-Space Networks
(DWSNets) - deep networks that process other deep net-
works. As with many other equivariant architectures, e.g.,
Zaheer et al. (2017); Hartford et al. (2018); Maron et al.
(2019b), DWSNets are composed of simple affine equiv-
ariant layers interleaved with pointwise non-linearities. A
key contribution of this work is that it provides the first
characterization of the space of affine equivariant layers for
the symmetries of weight spaces discussed above. Interest-
ingly, our characterization relies on the fact that the weight
space is a direct sum of vector spaces corresponding to the
different weights and biases in the network. Using this fact
we show that our linear equivariant layers, which we call
DWS-layers, have a block matrix structure where each block
maps between specific weight and bias spaces of the input
network. Furthermore, we show that these blocks can be
implemented using three basic operations: broadcasting,
pooling, or standard dense linear layers. This allows us
to implement DWS-layers efficiently, significantly reduc-
ing the number of parameters compared to fully connected
networks.

Finally, we analyze the expressive power of DWS networks
and prove that this architecture is capable of approximating
a forward pass of an input network. Our findings provide
a basis for further exploration of these networks and their
capabilities. We demonstrate this by proving that DWS
networks can approximate certain functions defined on the
space of functions represented by the input MLPs. In ad-
dition, while this work focuses on MLPs, we discuss other
types of input architectures, such as convolutional networks
or transformers, as possible extensions.

We demonstrate the efficacy of DWSNets on two types of
tasks: (1) processing INRs; and (2) processing standard

neural networks. The results indicate that our architecture
performs significantly better than natural baselines based on
data augmentation and weight-space alignment.

Contributions. This paper makes the following contri-
butions: (1) It introduces a symmetry-based approach for
designing neural architectures that operate in deep weight
spaces; (2) It provides the first characterization of the space
of affine equivariant layers between deep weight spaces;
(3) It analyzes aspects of the expressive power of the pro-
posed architecture; and (4) It demonstrates the benefits of
the approach in a series of applications from INR classifica-
tion to the adaptation of networks to new domains, showing
advantages over natural and recent baselines.

2. Previous Work
In recent years several studies suggested operating directly
on the parameters of NNs. In both Eilertsen et al. (2020);
Unterthiner et al. (2020) the weights of trained NNs were
used to predict properties of networks. Eilertsen et al. (2020)
suggested to predict the hyper-parameters used to train the
network, and Unterthiner et al. (2020) proposed to predict
the network generalization capabilities. Both of these stud-
ies use standard NNs on the flattened weights or on some
statistics of them. Dupont et al. (2022) suggested applying
deep learning tasks, like generative modeling, to a dataset
of INRs fitted from the original data. To obtain useful
representations of the data, the authors used meta-learning
techniques to learn low dimensional vectors, termed mod-
ulations, which were used in normalization layers. Unlike
this approach, our method can work on any MLP and is
agnostic to the way it was trained. In Schürholt et al. (2021)
the authors suggested methods to learn representations of
NNs using self-supervised methods, and in Schürholt et al.
(2022a) this approach was leveraged for NN model genera-
tion. Xu et al. (2022) proposed to process neural networks
by applying an NN to a concatenation of their high-order
spatial derivatives. Peebles et al. (2022) proposed a genera-
tive approach to output an NN based on an initial network
and a target metric such as the loss value or return. Finally,
in a recent work, Luigi et al. (2023) proposed a method for
processing INRs using a set-like architecture (Zaheer et al.,
2017). See Appendix A for more related work.

3. Preliminaries
Notation. we use [n] = {1, ..., n} and [k,m] = {k, k +
1, . . . ,m}. we use Πd for the set of d × d permutation
matrices (bi-stochastic matrices with entries in {0, 1}). Sd

is the symmetric group of d elements. 1 is an all ones vector.

Group representations and equivariance. Given a vec-
tor space V and a group G, a representation is a group
homomorphism ρ that maps a group element g ∈ G to an
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invertible matrix ρ(g) ∈ GL(V). Given two vector spaces
V,W and corresponding representations ρ1, ρ2 a function
L : V → W is called equivariant (or a G-linear map) if
it commutes with the group action, namely L(ρ1(g)v) =
ρ2(g)L(v) for all v ∈ V, g ∈ G. When ρ2 is trivial, namely
the output is the same for all input transformations, L is
called an invariant function. A sub-representation of a rep-
resentation (V, ρ) is a subspaceW ⊆ V for which ρ(g)w ∈
W for all g ∈ G,w ∈ W . A direct sum of representations
(W, ρ′), (U , ρ′′) is a new group representation (V, ρ) where
V =W ⊕U and ρ(g)((w, u)) = (ρ′(g)w, ρ′′(g)u). A per-
mutation representation of a permutation group G ≤ Sn

maps a permutation τ to its corresponding permutation ma-
trix. An orthogonal representation maps elements of G to
orthogonal matrices. For an introduction to group represen-
tations, refer to Fulton & Harris (2013).

MultiLayer Perceptrons. MLPs are sequential neural net-
works with fully connected layers. Formally, an M -layer
MLP f is a function of the following form:

f(x) = xM , xm+1 = σ(Wm+1xm + bm+1), x0 = x
(1)

Here, Wm ∈ Rdm×dm−1 and bm ∈ Rdm , [Wm, bm]m∈[M ]

is a concatenation of all the weight matrices and bias vectors,
and σ is a pointwise non-linearity like a ReLU or a sigmoid.
dm is the dimension of xm, m = 0, . . . ,M .

Equivariant neural networks. Given a group representa-
tion (ρ,V), there are several ways to design G-equivariant
neural networks. In this paper, we follow a popular ap-
proach (Zaheer et al., 2017; Hartford et al., 2018; Maron
et al., 2019b) where, in a similar fashion to Convolutional
Neural Networks (CNNs), affine equivariant layers are inter-
leaved with pointwise nonlinearities, namely, the network is
of the form

Fequi(x) = Lk ◦ σ ◦ . . . ◦ σ ◦ L1(x). (2)

Here, Li, i ∈ [k] are affine layers of the form L(x) =
Ax + b, where A : V → V is a linear G-equivaraint func-
tion and b : V → V is a constant G-equivaraint function. For
invariant tasks, we define an invariant network by compos-
ing Fequi with an invariant suffix: Finv(x) = h ◦ Linv ◦ Fequi
where Linv is a linear invariant function and h is an MLP.

4. Permutation Symmetries of Neural
Networks

In a pioneering work, Hecht-Nielsen (1990) observed that
MLPs have permutation symmetries: swapping the order of
the activations in an intermediate layer does not change the
underlying function. Motivated by previous works (Hecht-
Nielsen, 1990; Brea et al., 2019; Ainsworth et al., 2022), we

Figure 1. Symmetries of deep weight spaces, shown here on a 3-
layer MLP. For any pointwise nonlinearity σ, the permutations
τ1, τ2 can be applied to rows and columns of successive weight
matrices of the MLP, without changing the function it represents.

define the weight-space of an M -layer MLP as:

V =

M⊕
m=1

(
Rdm×dm−1 ⊕ Rdm

)
:=

M⊕
m=1

(Wm ⊕ Bm) ,

(3)
where Wm := Rdm×dm−1 and Bm := Rdm . Each sum-
mand in the direct sum corresponds to a weight matrix
and bias vector of a specific layer in the MLP, i.e., Wm ∈
Wm, bm ∈ Bm. As we can independently apply any permu-
tation to any intermediate layer of the MLP, we define the
symmetry group of the weight space to be the direct product
of symmetric groups for all the intermediate dimensions
m ∈ [1,M − 1]:

G := Sd1
× · · · × SdM−1

. (4)

Let v ∈ V , v = [Wm, bm]m∈[M ], then a group element
g = (τ1, . . . , τM−1) acts on v as follows1:

ρ(g)v := [W ′
m, b′m]m∈[M ], (5a)

W ′
1 = PT

τ1W1, b
′
1 = PT

τ1b1, (5b)

W ′
m = PT

τmWmPτm−1 , b
′
m = PT

τmbm, m ∈ [2,M − 1]
(5c)

W ′
M = WmPτM−1

, bM ′ = bM . (5d)

Here, Pτm ∈ Πdm
is the permutation matrix of τm ∈ Sdm

.

Figure 1 illustrates these symmetries for an MLP with three
layers. It is straightforward to show that for any pointwise
nonlinearity σ, the transformed set of parameters represents

1We note that a similar formulation first appeared in (Ainsworth
et al., 2022)
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the same function as the initial set. Another simple, yet use-
ful observation, is that all the vector spaces in Equation (3),
namelyWm,Bℓ, are invariant to the action we just defined,
i.e., the vector space is mapped to itself under the action of g.
This implies that V is a direct sum of these representations.

The symmetries described in Equation (5) were used in sev-
eral studies in the last few years, mainly to investigate the
loss landscape of neural networks (Brea et al., 2019; Tatro
et al., 2020; Arjevani & Field, 2021; Entezari et al., 2021;
Simsek et al., 2021; Ainsworth et al., 2022; Peña et al.,
2022), but also in (Schürholt et al., 2021) as a motivation
for a data augmentation scheme. It should be noted that
there are other symmetries of weight spaces that are not
considered in this work (Godfrey et al., 2022; Bui Thi Mai
& Lampert, 2020). One such example is scaling transforma-
tions (Neyshabur et al., 2015; Badrinarayanan et al., 2015;
Bui Thi Mai & Lampert, 2020). Incorporating these sym-
metries into DWSNets architectures is left for future work.

5. A Characterization of Linear Invariant and
Equivariant Layers for Weight-Spaces

In this section, we describe the main building blocks of
DWSNets, namely the DWS-layers. The first subsection
provides an overview of the section and its main results. In
the following subsections, we discuss the finer details.

5.1. Overview and Main Results

As explained in Equation (2) to completely specify our
architecture we need to characterize all affine equivariant
and invariant maps for the weight space V . This requires
finding bases for three linear spaces: (1) the space of linear
equivariant maps between the weight space V to itself; (2)
the space of constant equivariant functions (biases) on the
weight space; and (3) the space of linear invariant maps
on the weight space. As we show in Appendix B, we can
readily adapt previous results for characterizing (2)-(3), and
the main challenge is (1), which will be our main focus.

To find a basis for the space of equivariant layers, we will
use a strategy based on a decomposition of the weight space
V into multiple sub-representations, corresponding to the
weight and bias spaces. This is based on the classic result
that states that any linear equivariant map between direct
sums of representations can be represented in block matrix
form, with each block mapping between two constituent
representations in an equivariant manner. A formal state-
ment can be found in Section 5.2. Importantly, this strategy
simplifies our characterization and enables us to implement
each block independently.

First, we introduce a coarse decomposition of V into two
sub-representations V =W ⊕B. Here,W :=

⊕M
m=1Wm

is a direct sum of the spaces that represent weight matrices,

and B :=
⊕M

m=1 Bm is a direct sum of spaces that represent
biases. Based on this decomposition, we divide the layer L
into four linear maps that cover all equivariant linear maps
between the weightsW and the biases B: Lww :W →W ,
Lwb : W → B, Lbw : B → W , Lbb : B → B. Figure 2
(left) illustrates this decomposition.

Our next step is constructing equivariant layers between
W,B, namely finding bases for the following linear spaces:
{Lww}, {Lwb}, {Lbw}, {Lbb}. This is done by splitting
W,B into the sub-representations from Equation (3), i.e.,
{Wm,Bℓ}m,ℓ∈[M ], and characterizing all the equivariant
maps between these representations. We show that all these
maps are either previously characterized linear equivariant
layers on sets (Zaheer et al., 2017; Hartford et al., 2018), or
simple extensions of these layers that can be implemented
using pooling, broadcast, and fully connected linear lay-
ers. This topic is discussed in detail in Section 5.3. Figure
2 illustrates the block matrix structure of each linear map
Lww, Lwb, Lbw, Lbb according to the decomposition to sub-
representations {Wm,Bℓ}m,ℓ∈[M ]. Each color represents a
different layer type as specified in Tables 5-8.

Formally, our result can be stated as follows:
Theorem 5.1 (A characterization of linear equivariant lay-
ers between weight spaces). A linear equivariant layer be-
tween the weight space V to itself can be written in block
matrix form according to the decomposition of V to sub-
representations {Wm,Bℓ}m,ℓ∈[M ]. Moreover, each block
can be implemented using a composition of pooling, broad-
cast, or fully connected linear layers. Tables 5-8 summarize
the block structure, number of parameters, and implementa-
tion of all these blocks.

As mentioned in the introduction, we call the layers from
Theorem 5.1 DWS-layers and the architectures that use them
(interleaved with pointwise nonlinearities), DWSNets.

Implementing equivariant layers. The layer L : V → V
is implemented by executing all the blocks independently
and then summing the outputs according to the output sub-
representations. To illustrate how these equivariant layers
are implemented, we write an update equation for the m-th
weight for 3 ≤ m ≤ M − 2. For simplicity, we disregard
input bias terms here and discuss only the weight-weight
matrix presented in Figure 2. For an input v ∈ V , v =
[Wm, bm]m∈[M ] the update equation takes the form:

F (v)m =Hself(Wm)+

Hadjacent (Wm−1,Wm+1)+

Hsum (W2, . . . ,Wm−2,Wm+2, . . . ,WM−1)+

Hboundary(W1,WM ).

Here, F (v)m is the m-th weight matrix in F ′s output. As
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Figure 2. Block matrix structure for linear equivariant maps between weight spaces. Left: an equivariant layer for the weight space V
to itself can be written as four blocks that map between the general weight space W and general bias space B. Right: Each such block
can be further written as a block matrix between specific weight and bias spaces Wm,Bℓ. Each color in each block matrix represents a
different type of linear equivariant function between the sub-representations Wm,Bℓ. Blocks of the same type have different parameters.
Repeating colors in different matrices are not related. See Tables 5-8 for a specification of the layers.

can be seen, there are four different functions that are ap-
plied to the input weights according to their position in
the weight sequence W1, . . . ,WM w.r.t. the output weight
m: (1) Hself updates the m-th output by applying the linear
equivariant layer from (Hartford et al., 2018) 2 to the m-th in-
put (red blocks in Figure 2 weight-weight panel) (2) Hadjacent
updates the m-th output by processing the m − 1,m + 1
weight matrices. These layers are implemented using linear
equivariant DeepSets layers (Zaheer et al., 2017) (gray and
yellow blocks in Figure 2 weight-weight panel); (3) Hsum
is a linear function that multiplies by a learnable scalar the
sums of each weight matrix that is neither m − 1,m + 1
nor the first or last layer (dark green and orange blocks in
Figure 2 weight-weight panel), and (4) Hboundary are layers
that are applied to the first and last weights (pink and lighter
green blocks in Figure 2 weight-weight panel). These blocks
are implemented by using fully connected linear layers and
pooling/broadcasting operations.

We note that there are some small differences in the update
rules for other m values (i.e., m ∈ {1, 2,M − 1,M}). For
a full description of these layers, please refer to Appendix
C. Readers who are not interested in the technical details
can continue reading in Section 6.

5.2. Linear Equivariant Maps for Direct Sums

As mentioned above, a key property we leverage is the fact
that every equivariant linear operator between direct sums of
representations can be written in a block matrix form; Each
block is a linear equivariant map between the corresponding
sub-representations in the sum. This property is summarized
in the following classical result:

Proposition 5.2 (A characterisation of linear equivari-
ant maps between direct sums of representations). Let
(Vm, ρm),m ∈ [M ], (V ′

ℓ, ρ
′
ℓ), ℓ ∈ [M ′] be orthogonal

2See Appendix A for a full description of this layers

representations of a permutation group G of dimensions
dm, d′ℓ respectively. Let (V, ρ) :=

⊕M
m=1 Vm, (V ′, ρ′) :=⊕M ′

ℓ=1 V ′
ℓ be direct sums of the representations above. Let

Bmℓ be a basis for the space of linear equivariant functions
between (Vm, ρm) to (V ′

ℓ, ρ
′
ℓ). Let BP

mℓ be zero-padded
versions of Bmℓ: every element of BP

mℓ is an all zero ma-
trix in Rd′×d for d =

∑
m dm, d′ =

∑
ℓ d

′
ℓ except for the

(m, ℓ) block that contains a basis element from Bmℓ. Then
B = ∪mℓB

P
mℓ is a basis for the space of linear equivariant

functions from V to V ′.

We refer readers to Appendix E for the proof.
Intuitively, Proposition 5.2 re-
duces the problem of character-
izing equivariant maps between
direct sums of representations
to multiple simpler problems of
characterizing equivariant maps
between the constituent sub-
representations (see inset for an
illustration). A similar observa-
tion was made in the context of irreducible representations
in Cohen & Welling (2017).

5.3. Linear Equivariant Layers for Deep Weight-Spaces

In this subsection, we explain how to construct a basis for
the space of linear equivariant functions between a weight-
space to itself: L : V → V .

Methodology. As mentioned in Section 5.1, each linear
function L can be split into four maps: Lww, Lwb, Lbw, Lbb,
which themselves map a direct sum of representations to
another direct sum of representations. To find a basis for
all such linear equivariant maps, we use Proposition 5.2
and find bases for the linear equivariant maps between all
the sub-representations Wm,Bℓ. For simplicity, here we
assume a single feature dimension and no bias terms for
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the DWS-layer. In Appendix B, we discuss a simple way
to extend our results to allow for multiple features and bias
terms for the different DWS blocks.

To characterize the linear equivariant layers between the
subrepresentations {Wm,Bℓ}m,ℓ∈[M ], we first show how to
construct layers that respect the symmetries by composing
a few basic building blocks like pooling, broadcasting, and
dense linear layers. We then count the number of parameters
in each layer, calculated using a simple theoretical result
(see Appendix E), to show that the layers we suggested
include all linear equivariant layers.

Bias-to-bias layers. we begin by discussing the bias-to-
bias part Lbb : B → B which is the simplest case. Lbb is
composed of blocks that map between bias spaces that are
of the form T : Rdj → Rdi . Importantly, the indices i, j
determine how the map T is constructed. Let us review
three examples: (i) When i = j = M , G acts trivially on
both spaces and the most general equivariant map is a fully
connected linear layer. Formally, this block can be written
as bnew

i = Abold
i for a parameter matrix A ∈ RdM×dM . (ii)

When i = j < M , G acts jointly on the input and output
by permuting them using the same permutation. It is well
known that the most general permutation equivariant layer
in this case is a DeepSets layer (Zaheer et al., 2017). Hence,
this block can be written as bnew

i = a1b
old
i + a211

T bold
i for

two scalar parameters a1, a2 ∈ R. (iii) When i ̸= j < M
we have two dimensions on which G acts by independent
permutations. We show that the most general linear equiv-
ariant layer first sums on the dj dimension then multiplies
the result by a learnable scalar, and finally broadcasts the
result on the di dimension. This block can be written as
bnew
i = a11T bold

j for a single scalar parameter a ∈ R. We
refer the readers to Table 6 for the characterization of the
remaining bias-to-bias layers. The block structure of Lbb
is illustrated in the rightmost panel of Figure 2 where the
single block of type (i) is colored in blue, blocks of type
(ii) are colored in red, and blocks of type (iii) are colored
in gray and cyan. Note that blocks of the same type have
different parameters.

Basic operations for constructing layers between sub-
representations. In general, implementing linear equiv-
ariant maps between the sub-representations Wm,Bℓ re-
quires three basic operations: Pooling, Broadcast, and fully-
connected linear maps. They will now be defined in more
detail. (1) Pooling: A function that takes an input ten-
sor with one or more dimensions and sums over a specific
dimension. For example, for x ∈ Rd1×d2 , POOL(di) per-
forms summation over the i-th dimension; (2) Broadcast:
A function that adds a new dimension to a vector by copy-
ing information along a particular axis. BC(di) broadcasts
information along the i -th dimension; (3) Linear: A fully
connected linear map that can be applied to either vectors or

matrices. LIN(d, d′) is a linear transformation represented
by a d′ × d matrix. Two additional operations that can be
implemented using operations (1)-(3) 3 which will be use-
ful for us are: (i) DeepSets (Zaheer et al., 2017): the most
general linear layer between sets; and (ii) Equivariant layers
for a product of two sets as defined in Hartford et al. (2018)
(See a formal definition in Appendix A).

Definition of layers between Wm, Bℓ. Let T : U →
U ′ be a map between sub-representations, i.e., U ,U ′ ∈
{Wm,Bℓ}m,ℓ∈[M ] represent a specific weight or bias space
associated with one or two indices reflecting the layers in
the input MLP they represent. For example, one such map is
between U = Rd1×d0 and U ′ = Rd1 . We define three useful
terms that will help us define a set of rules for constructing
layers between these spaces; We call an index m ∈ [0,M ],
a set index (or dimension), if G acts on it by permutation,
otherwise, we call it free index. From the definition, it
is clear that 0,M are free indices while all other indices,
namely m ∈ [1,M − 1] are set indices. Additionally, if
indices in the domain and codomain are the same, we call
them shared indices.

Based on the basic operations described above, the follow-
ing rules are used to define equivariant layers between sub-
representationsWm,Bℓ. (1) In the case of two shared set in-
dices, which happens when mappingWm, m ∈ [2,M − 1]
to itself, we use Hartford et al. (2018). (2) In the case
of a single shared set index, for example, when mapping
Bm, m ∈ [1,M−1] to itself we use DeepSets (Zaheer et al.,
2017). (3) When both the domain and the codomain have
free indices, we use a dense linear layer. For example when
mapping BM to itself. (4) We use pooling to contract un-
shared set input dimensions and linear layers to contract free
input dimensions and, (5) We use broadcasting to extend
output set dimensions, and linear layers to extend output free
dimensions. Tables 5-8 provide a complete specification
of linear equivariant layers between all sub-representations
{Bm,Wℓ}m,ℓ∈[M ].

Proving that these layers form a basis. At this point,
we have created a list of equivariant layers between all
sub-representations. We still have to prove that these trans-
formations are linearly independent and that they span the
space of linear equivariant maps between the corresponding
representations. First, by using Proposition 5.2, we only
need to demonstrate that the parameters in each block are
independent. Hence, the linear independence results can be
directly obtained from previous works (Zaheer et al., 2017;
Hartford et al., 2018), or easily derived by writing the block
operators as vectors. Finally, to show the proposed layers
span the space of linear equivariant maps between the corre-
sponding representations, we employ a dimension-counting

3See (Albooyeh et al., 2019) for a general discussion on imple-
menting permutation equivariant functions with these primitives.
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Figure 3. Sine wave regression. Test MSE (log scale) for a varying
number of training examples.

argument: we calculate the dimension of the space of linear
equivariant maps for each pair of representations and show
that the number of independent parameters in each proposed
layer is equal to this dimension. See proof in Appendix D.

Extension to nonlinear aggregation mechanisms. Simi-
larly to previous works that considered equivariance to per-
mutations (Qi et al., 2017; Zaheer et al., 2017; Velickovic
et al., 2018; Lee et al., 2019) we can replace any summa-
tion term in our layers with either a non-linear aggregation
function like max, or more complex attention mechanisms.

Multiple channels, invariant layers and biases. We re-
fer the reader to Appendix B for a characterization of the
bias terms (of DWSNets), linear invariant layers, and a gen-
eralization of Theorem 5.1 to multiple input and output
channels.

5.4. Extension to Other Input Architectures

In this paper, we primarily focus on MLP architectures as
the input for DWSNets. However, the characterization can
be extended to additional architectures. Here we discuss the
extension to two additional architectures, namely convolu-
tional neural networks (CNNs) and Transformers (Vaswani
et al., 2017). Convolution layers consist of weight matri-
ces Wi ∈ Rk1

i×k2
i×di−1×di and biases bi ∈ Rdi , where

di−1 and di represents the input and output channel dimen-
sions, respectively. As with MLPs, simultaneously permut-
ing the channel dimensions of adjacent layers would not
change the function represented by the CNN. Concretely,
consider a 2-layers CNN with weights W1,W2, b1, b2 and
let τ ∈ Sd1 . Applying τ to the d1 dimension of W1,W2

and b1 will not change the function represented by the CNN.
Transformers consist of self-attention layers followed by
feed-forward layers applied independently to each position.
Let WV

i ,WK
i ,WQ

i ∈ Rd×d′
denote the value, key, and

query weight matrices and let P ∈ Πd′ . One symmetry in
this setup can be described by setting WQ

i 7→ WQ
i P and

Table 1. INR classification: The class of an INR is defined by the
image that it represents. We report the average test accuracy.

MNIST INR Fashion-MNIST INR

MLP 17.55± 0.01 19.91± 0.47
MLP + Perm. aug 29.26± 0.18 22.76± 0.13
MLP + Alignment 58.98± 0.52 47.79± 1.03
INR2Vec (Arch.) 23.69± 0.10 22.33± 0.41
Transformer 26.57± 0.18 26.97± 0.33

DWSNets (ours) 85.71± 0.57 67.06± 0.29

WK
i 7→WK

i P which would not change the function.

6. Expressive Power
The expressive power of equivariant networks is an impor-
tant concern since by restricting our hypothesis class we
might unintentionally impair its function approximation ca-
pabilities. For example, this is the case with Graph neural
networks (Morris et al., 2019; Xu et al., 2019; Morris et al.,
2021). Here, we provide a first step towards understanding
the expressive power of DWSNets by demonstrating that
these networks are capable of approximating feed-forward
procedures on input networks.

Proposition 6.1 (DWSNets can approximate a feed-forward
pass). Let M,d0, . . . , dM specify an MLP architecture with
ReLU nonlinearities. Let K ⊂ V , K ′ ⊂ Rd0 be compact
sets. DWSNets with ReLU nonlinearities are capable of
uniformly approximating a feed-forward procedure on an
input MLP represented as a weight vector v ∈ K and an
input to the MLP, x ∈ K ′.

The proof can be found in Appendix F. Importantly, this in-
herent ability of DWSNets to evaluate input networks could
be a very useful tool, for example, in order to separate MLPs
that represent different functions. As another example, be-
low, we show that DWSNets can approximate any “nice”
function defined on the space of functions represented by
MLPs with weights in some compact subset of V .

Proposition 6.2. (informal) Let g : FV → R be a function
defined on the space of functions represented by M -layer
ReLU MLPs with dimensions d0, ..., dM , whose weights
are in a compact subset of V and their input domain is a
compact subset of Rd0 . Assume that g is L-Lipshitz w.r.t
|| · ||∞ (on functions), then under some additional mild
assumptions specified in Appendix G, DWSNets with ReLU
nonlinearities are capable of uniformly approximating g.

The proof can be found in Appendix G. We note that Propo-
sition 6.2 differs from most universality theorems in the
relevant literature (Maron et al., 2019c; Keriven & Peyré,
2019) since we do not prove that we can approximate any
G-equivariant function on V . In contrast, we show that

7
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Figure 4. Dense representation: 2D TSNE of the resulting low-
dimensional space. We present the results for DWSNets and the
second best performing baseline, INR2Vec (architecture). See
Appendix K.2 for full results.

DWSNets are powerful enough to approximate functions on
the function space defined by the input MLPs, that is, func-
tions that give the same result to all weights that represent
the same functions.

7. Experiments
We evaluate DWSNets in two families of tasks. (1) First,
taking input networks that represent data, like INRs (Park
et al., 2019; Sitzmann et al., 2020). Specifically, we train a
model to classify INRs based on the class of the image they
represent or predict continuous properties of the objects they
represent. (2) Second, taking input networks that represent
standard input-output mappings such as image classifiers.
We train a model to operate on these mappings and adapting
them to new domains. We also perform additional exper-
iments, for example predicting the generalization perfor-
mance of an image classifier in Appendix K. Full experi-
mental and technical details are discussed in Appendix J. To
support future research and the reproducibility of our results,
we made our source code and datasets publicly available at:
https://github.com/AvivNavon/DWSNets.

Baselines. Our objective in this section is to compare dif-
ferent architectures that operate directly on weight spaces,
using the same data, loss function, and training procedures.
As learning on weight spaces is a relatively new problem,
we consider five natural and recent baselines. (i) MLP :
A standard MLP is applied to a vectorized version of the
weight space. (ii) MLP + augmentations:, apply the MLP
from (i) but with permutation-based data augmentations
sampled randomly from the symmetry group G. (iii) MLP +
weight alignment: We perform a weight alignment proce-
dure prior to training using the algorithm recently suggested
in (Ainsworth et al., 2022), see full details in Appendix J.
(iv) INR2Vec: The architecture suggested in (Luigi et al.,
2023) (see Appendix A for a discussion). Note we do not
use their pre-training since we are interested in comparing
only the architectures. (v) Transformer: The architecture
of (Schürholt et al., 2021). It adapts the transformer encoder

Table 2. Dense representation of sine wave INRs: MSE of a linear
regressor that predicts frequency and amplitude.

MSE

MLP 7.39± 0.19
MLP + Perm. aug 5.65± 0.01
MLP + Alignment 4.47± 0.15
INR2Vec (Arch.) 3.86± 0.32
Transformer 5.11± 0.12

DWSNets (ours) 1.39± 0.06

architecture and attends between different rows in weight
and bias matrices to form a global representation of the
input network.

Data preparation. We train all input networks indepen-
dently, each starting with a different random seed, in order
to test our architecture on diverse data obtained from multi-
ple independent sources. Unless stated otherwise, we train a
single copy for each network, e.g., a single INR per image.

7.1. Results

Regression of sine wave frequency. To first illustrate the
operation of DWSNets, we look into a regression problem.
We train INRs to fit sine waves on [−π, π], with different fre-
quencies sampled from U(0.5, 10). The task is to have the
DWSNet predict the frequency of a given test INR network.
To illustrate the generalization capabilities of the architec-
tures, we repeat the experiment by training with a varying
number of training examples (INRs). Figure 3 shows that
DWSNets performs significantly better than baseline meth-
ods even with a small number of training examples.

Classification of images represented as INRs. Here, INRs
were trained to represent images from MNIST (LeCun et al.,
1998) and Fashion-MNIST (Xiao et al., 2017). The task is to
recognize the image class, like the digit in MNIST, by using
the weights of input INR. Table 1 shows that DWSNets
outperforms all baseline methods by a large margin.

Self-supervised learning for dense representation. Here
we wish to embed neural networks into a semantic coherent
low dimensional space, similar to Schürholt et al. (2022a).
To that end, we fit INRs on sine waves of the form a sin(bx)
on [−π, π]. Here a, b ∼ U(0, 10) and x is a grid of size
2000. We use a SimCLR-like training procedure and objec-
tive (Chen et al., 2020): Following Schürholt et al. (2022a),
we generate random views from each INR by adding Gaus-
sian noise (with a standard deviation of 0.2) and random
masking (with a probability of 0.5). We evaluate the differ-
ent methods in two ways. First, we qualitatively observe a
2D TSNE of the resulting space. The results are presented
in Figures 4 and 8. For quantitative evaluation, we train a
(linear) regressor for predicting a, b on top of the embedding
space obtained by each method. See results in Table 2.
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Table 3. Adapting a network to a new domain. Test accuracy of
CIFAR-10-Corrupted models adapted from CIFAR-10 models.

CIFAR10 → CIFAR10-Corrupted

No adaptation 60.92± 0.41

MLP 64.33± 0.36
MLP + Perm. aug 64.69± 0.56
MLP + Alignment 67.66± 0.90
INR2Vec (Arch.) 65.69± 0.41
Transformer 61.37± 0.13

DWSNets (ours) 71.36± 0.38

Learning to adapt networks to new domains. Here we
train a model to adapt a classification model to a new do-
main. Specifically, given an input weight vector v, we wish
to output residual weights ∆v such that a classification net-
work parametrized using v −∆v performs well on the new
domain. It is natural to require that ∆v will be permuted
if v is permuted, and hence a G-equivariant architecture is
appropriate. At test time, our model can adapt an unseen
classifier to the new domain using a single forward pass.
Using the CIFAR10 (Krizhevsky et al., 2009) dataset as
the source domain, we train multiple image classifiers. To
increase the diversity of the input classifiers, we train each
classifier on the binary classification task of distinguishing
between two randomly sampled classes. For the target do-
main, we use a version of CIFAR10 corrupted with random
rotation, flipping, Gaussian noise, and color jittering. The
results are presented in Table 3. Note that in test time the
model should generalize to unseen image classifiers, as well
as unseen images.

Multiple INR views as data augmentation. We inves-
tigate the impact of training with multiple INR views
(copies) for each image on the performance of our model.

Table 4. Fashion-MNIST multi-
view INR classification: Test
results for training with a varying
number of INR views per image.

# INRs Acc.

1 67.06± 0.29
2 70.22± 0.38
4 70.31± 0.09
6 73.32± 0.11
8 74.87± 0.18

10 75.12± 0.05

We return to the
Fashion-MNIST INR
classification task, using
a varying number of
copies k ∈ {1, . . . , 10}.
The results, presented
in Table 4, show that
incorporating a diverse
set of INRs per image
through random initial-
izations significantly
improves the model’s
generalization capabil-
ities (by ∼ 8%). Our results highlight the importance of
establishing an adequate evaluation protocol for DWS
models and experiments (e.g., by using the same number of
INR copies for training each model).

7.2. Analysis of the Results

In this section, we evaluated DWSNets on several learning
tasks and showed that it outperforms all other methods, usu-
ally by a large margin. Also, compared to the most natural
baseline of network alignment, DWSNets scale significantly
better with the data. In reality, it is challenging to use this
baseline since the weight-space alignment problem is hard
(Ainsworth et al., 2022). The problem is further amplified
when having large input NNs or large (networks) datasets.

8. Conclusion and Future Work
This paper considers the problem of applying neural net-
works directly on neural weight spaces. We present a princi-
pled approach and propose an architecture for the network
that is equivariant to a large group of natural symmetries of
weight spaces. We hope this paper will be one of the first
steps towards neural models capable of processing weight
spaces efficiently in the future.

Limitations. One limitation of our method is that an equiv-
alent layer structure is currently tailored to a specific MLP
architecture. However, this can be alleviated in the future,
for example by sharing the parameters of the equivariant
blocks between inner layers. Also, we found it difficult to
train DWSNets on some learning tasks, presumably because
finding a suitable weight initialization scheme for DWSNets
was hard. See Appendix K.5 for a discussion on these cases.
Finally, the implementation of our DWSNets is somewhat
complicated. We made our code and data publicly available
so that others can build on it and improve it.

Future work. Several potential directions for future re-
search could be explored, including modeling other weight
space symmetries in architectures, understanding how to
initialize the weights of DWSNets, and studying the approx-
imation power of DWSNets. Other worthwhile directions
are finding efficient data augmentation schemes for training
on weight spaces, extend DWSNets to allow heterogeneous
input networks, and incorporating permutation symmetries
for other types of input architectures.
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Keriven, N. and Peyré, G. Universal invariant and equivari-
ant graph neural networks. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

Knyazev, B., Drozdzal, M., Taylor, G. W., and Romero So-
riano, A. Parameter prediction for unseen deep archi-
tectures. Advances in Neural Information Processing
Systems, 34:29433–29448, 2021.

Kondor, R. and Trivedi, S. On the generalization of equivari-
ance and convolution in neural networks to the action of
compact groups. In International Conference on Machine
Learning, pp. 2747–2755. PMLR, 2018.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. Technical report, University
of Toronto, 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and Teh,
Y. W. Set transformer: A framework for attention-based
permutation-invariant neural networks. In International
conference on machine learning, pp. 3744–3753. PMLR,
2019.

Lim, D., Robinson, J., Zhao, L., Smidt, T., Sra, S., Maron,
H., and Jegelka, S. Sign and basis invariant networks
for spectral graph representation learning. arXiv preprint
arXiv:2202.13013, 2022.

Litany, O., Maron, H., Acuna, D., Kautz, J., Chechik, G.,
and Fidler, S. Federated learning with heterogeneous
architectures using graph hypernetworks. arXiv preprint
arXiv:2201.08459, 2022.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In 7th International Conference on Learning
Representations, ICLR, 2019.

Lu, J. and Kumar, M. P. Neural network branching for
neural network verification. In International Conference
on Learning Representations, 2019.

Luigi, L. D., Cardace, A., Spezialetti, R., Ramirez, P. Z.,
Salti, S., and di Stefano, L. Deep learning on implicit
neural representations of shapes. In The Eleventh In-
ternational Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=OoOIW-3uadi.

Maron, H., Ben-Hamu, H., Serviansky, H., and Lipman, Y.
Provably powerful graph networks. Advances in neural
information processing systems, 32, 2019a.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y.
Invariant and equivariant graph networks. In 7th Inter-
national Conference on Learning Representations, ICLR,
2019b.

Maron, H., Fetaya, E., Segol, N., and Lipman, Y. On the
universality of invariant networks. In International con-
ference on machine learning, pp. 4363–4371. PMLR,
2019c.

Maron, H., Litany, O., Chechik, G., and Fetaya, E. On learn-
ing sets of symmetric elements. In International Con-
ference on Machine Learning, pp. 6734–6744. PMLR,
2020.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. Communica-
tions of the ACM, 65(1):99–106, 2021.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 4602–4609, 2019.

Morris, C., Lipman, Y., Maron, H., Rieck, B., Kriege, N. M.,
Grohe, M., Fey, M., and Borgwardt, K. Weisfeiler and
leman go machine learning: The story so far. arXiv
preprint arXiv:2112.09992, 2021.

Neyshabur, B., Salakhutdinov, R. R., and Srebro, N. Path-
sgd: Path-normalized optimization in deep neural net-
works. Advances in neural information processing sys-
tems, 28, 2015.

11

https://openreview.net/forum?id=OoOIW-3uadi
https://openreview.net/forum?id=OoOIW-3uadi


Equivariant Architectures for Learning in Deep Weight Spaces

Park, J. J., Florence, P., Straub, J., Newcombe, R., and Love-
grove, S. Deepsdf: Learning continuous signed distance
functions for shape representation. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 165–174, 2019.

Peebles, W., Radosavovic, I., Brooks, T., Efros, A. A.,
and Malik, J. Learning to learn with generative mod-
els of neural network checkpoints. arXiv preprint
arXiv:2209.12892, 2022.

Peña, F. A. G., Medeiros, H. R., Dubail, T., Aminbei-
dokhti, M., Granger, E., and Pedersoli, M. Re-basin
via implicit sinkhorn differentiation. arXiv preprint
arXiv:2212.12042, 2022.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017.

Ravanbakhsh, S., Schneider, J., and Poczos, B. Equivariance
through parameter-sharing. In International conference
on machine learning, pp. 2892–2901. PMLR, 2017.

Schürholt, K., Kostadinov, D., and Borth, D. Self-supervised
representation learning on neural network weights for
model characteristic prediction. Advances in Neural In-
formation Processing Systems, 34:16481–16493, 2021.

Schürholt, K., Knyazev, B., Giró-i Nieto, X., and Borth,
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A. Related Work
Processing neural networks. In recent years several studies suggested using the parameters of NNs for learning tasks.
Baker et al. (2018) tries to infer the final performance of a model based on plain statistics such as the network architecture,
validation accuracy at different checkpoints, and hyper-parameters. In a similar vein, both (Eilertsen et al., 2020; Unterthiner
et al., 2020) attempt to predict properties of trained NNs based on their weights. (Eilertsen et al., 2020) tries to predict
the hyper-parameters used to train the network, and (Unterthiner et al., 2020) tries to predict the network generalization
capabilities. Both of these studies use standard NNs on the flattened weights or on some statistics of them. Our approach, on
the other hand, introduces useful inductive biases for these learning tasks and is not limited to the scope of these studies. In
(Xu et al., 2022), it was proposed that neural networks can be processed by applying a neural network to a concatenation
of their high-order spatial derivatives. The method focuses on INRs, for which derivative information is relevant, and
depends on the ability to sample the input space efficiently. The ability of these networks to handle more general tasks is
still not well understood. Furthermore, these architectures may require high-order derivatives, which result in a substantial
computational burden. Dupont et al. (2022) suggested applying deep learning tasks, such as generative modeling, to a
dataset of INRs fitted from the original data. To obtain useful representations of the data, the authors suggest to meta-learn
low dimensional vectors, termed modulations, which are embedded in a NN with shared parameters across all training
examples. Unlike this approach, our method can work on any network and is agnostic to the way that it was trained. Several
studies (Lu & Kumar, 2019; Jaeckle & Kumar, 2021; Knyazev et al., 2021; Litany et al., 2022) treated the NNs as graphs for
formal verification, generating adversarial examples, and parameter prediction respectively. Peebles et al. (2022) proposed
a generative approach to output a target network based on an initial network and a target metric such as the loss value or
return. Schürholt et al. (2022b) published a dataset of vectorized trained neural networks, referred to as model-zoo, to
encourage research on NN models. Since these models have a CNN architecture, they are not suitable for us. In (Schürholt
et al., 2021) the authors suggest methods to learn representations of trained NNs using self-supervised methods, and in
(Schürholt et al., 2022a) this approach is leveraged for NN model generation. The empirical evaluation in the paper shows
that our method compares favorably to this baselines. Similar modeling was utilized in a recent submission by Luigi et al.
(2023). In this study, the authors propose a methodology for processing of INRs that combines two components: (1) a neural
architecture that operates on stacks of weights and bias vectors assuming a set structure, and (2) a pre-training procedure
based on task ensuring that the output of this network is capable of reconstructing the INR. It should be noted that this work
(1) relies on the ability to evaluate the INR as a function, which is feasible only in low dimensional spaces; and (2) assumes
all data was generated using a meta-learning algorithm so that their representations would be aligned. Moreover, from a
symmetry and equivariance perspective, their formulation assumes that the rows of all weight matrices and all biases have
a global set structure, which implies that their networks are invariant to permutations of rows and biases across weight
matrices. Unfortunately, in general, such permutations could result in a change in the underlying function. Therefore, from a
symmetry and equivariance perspective, their work improperly models the symmetry group. Finally, in recent years several
studies inspected the problem of aligning the weights of NNs (Ashmore & Gashler, 2015; Yurochkin et al., 2019; Wang
et al., 2019; Singh & Jaggi, 2020; Tatro et al., 2020; Entezari et al., 2021; Ainsworth et al., 2022; Wang et al., 2022). As
stated in the main text, solving the alignment tasks is hard and these strategies suffer from scaling issues to large datasets.

Equivariant architectures. Complex data types, such as graphs and images, are often associated with groups of transforma-
tions that change data representation without changing the underlying data. These groups are known as symmetry groups,
and they are commonly formulated through group representations. Functions defined on these objects are often invariant
or equivariant to these symmetry transformations. A good example of this would be a graph classification function that is
node-permutation invariant, or an image segmentation function that is translation equivariant. When trying to learn such
functions, a wide range of studies have demonstrated that constraining learning models to be equivariant or invariant to these
transformations has many advantages, including smaller parameter space, efficient implementation, and better generalization
abilities (Cohen et al., 2018; Kondor & Trivedi, 2018; Esteves et al., 2018; Zaheer et al., 2017; Hartford et al., 2018; Maron
et al., 2019b; Elesedy & Zaidi, 2021). The majority of equivariant and invariant models are constructed in the same manner:
first, a simple equivariant function is identified. In many cases, these are linear (Zaheer et al., 2017; Hartford et al., 2018;
Maron et al., 2019b), although they may also be non-linear (Maron et al., 2019a; Thomas et al., 2018; Azizian & Lelarge,
2021). The network is then constructed by composing these simple functions interleaved with pointwise nonlinear functions.
This paradigm was successfully applied to a multitude of data types, from graphs and sets (Zaheer et al., 2017; Maron et al.,
2019b), through 3D data (Esteves et al., 2018) and spherical functions (Cohen et al., 2018) to images (Cohen & Welling,
2016).

Spaces of linear equivariant layers. For a group G and representation (V, ρ), (W, ρ′), solving for the space of linear
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equivariant layers L : V → W amounts to solving a system of linear equations of the form Lρ(g) = ρ′(g)L for all g ∈ G,
where L is our unknown equivariant layer. Wood & Shawe-Taylor (1996); Ravanbakhsh et al. (2017); Maron et al. (2019b)
showed that if G is a finite permutation group, and ρ, ρ′ are permutation representations, then a basis for the space of
equivariant maps is spanned by indicator tensors for certain orbits of the group action. Alternatively, (Finzi et al., 2021)
derived numerical algorithms for solving these systems of equations.

Learning on set-structured data. Among the most prominent examples of equivariant architectures are those designed to
process set-structured data, where the input represents a set of elements and the learning tasks are invariant or equivariant
to their order. The pioneering works in this area were DeepSets (Zaheer et al., 2017) and PointNet (Qi et al., 2017). In
subsequent work, the linear sum aggregation has been replaced with attention mechanisms (Lee et al., 2019) and the layer
characterization has been extended to multiple sets (Hartford et al., 2018) and sets with structured elements (Maron et al.,
2020; Wang et al., 2020). As shown in Section 4, our weight-space symmetry group is a product of symmetric groups acting
by permuting the weight spaces. A key observation we make in Section 5 is that our basic linear layer can be broken up into
multiple linear blocks that implement previously characterized equivariant layers for sets.

Here we define the layers from (Zaheer et al., 2017; Hartford et al., 2018) as they play a significant role in our DWS-layers.
DeepSets (Zaheer et al., 2017): For an input X ∈ Rn×d, that represents a set of n elements, the DeepSets layer is the most
general Sn-equivariant linear layer and is defined as LDS(X)i = W1Xi+W2

∑
j Xj , where W1,W2 ∈ Rd′×d are learnable

linear transformations. (ii) Equivariant layers for multiple sets: these are layers for cases where the input involves two or
more set dimensions. Formally, let X ∈ Rn×m×d where m,n represent set dimensions, meaning we don’t care about the
order of the elements in these dimensions, and d is the number of feature channels. Hartford et al. (2018) showed that the most
general Sn × Sm-equivariant linear layer is of the form LHar(X)ij = W1Xij +W2

∑
i Xij +W3

∑
j Xij +W4

∑
ij Xij ,

where, again W1,W2,W3,W4 ∈ Rd′×d.

B. Multiple Channels, Invariant Layers and Biases for Equivariant Maps
Here we discuss equivariant maps between weight spaces with multiple features and bias terms.

Layers with multiple feature channels. It is common for deep networks to represent their input objects using multiple
feature channels. Equivariant layers for multiple input and output channels can be obtained by using Proposition 5.2.
Formally, let L be a space of linear G-equivariant maps from U to U ′. A higher dimensional feature space for U ,U ′ can be
formulated as a direct sum of multiple copies of these spaces. A general linear equivariant map L : Uf → U ′f ′

, where f, f ′

are the feature dimensions, can be written as L(X)j =
∑f

i=1 Lij(xi), where xi refers to the i-th representation in the direct
sum and Lij ∈ L 4.

Biases. One typically adds a constant bias term to each output channel of the linear equivariant maps derived in Theorem
5.1 to create affine transformations. As mentioned in (Maron et al., 2019b), these bias terms have to obey a set of equations
to make sure they are equivariant: if L(X) = b ∈ V is a constant map then we have b = L(ρ(g)x) = ρ(g)L(x) = ρ(g)b.
When ρ is a permutation representation, this means that the bias vector is constant on the orbits of the permutation group
acting on the indices of the vector, leading to the following characterization:

Proposition B.1. Let G ≤ Sn be a permutation group and P its permutation representation on Rn. Any vector b ∈ Rn

with the property b = P (g)b for all g ∈ G is of the form b =
∑O

i=1 wiai where wi are scalars, ai ∈ Rn, are indicators of
the orbits of the action of G on [n] and O is the number of such orbits.

In our case, we can think of G as a subgroup of the permutation group on the indices of V , i.e., all the entries of the weights
and biases of an input network. The orbits of G, in that case, are subsets of the indices associated with specific weight and
bias spaces, {Wm, Bℓ}, and we can list them separately for each bias of weight space. Table 9 lists these orbits. As an
example, the bias term corresponds to Wi for i ∈ [2,M − 1] is constant matrix w · 11T for a learnable scalar w; The bias
term that corresponds to W1 is constant along the columns, and the bias term that corresponds to WM is constant along the
rows. Effectively, the complete bias term for V is a concatenation of the bias terms for all weights and biases spaces.

Linear Invariant Maps for Weight-Spaces. Here, we provide a characterization of linear G-invariant maps L : V → R.
Invariant layers (which are often followed by fully connected networks) are typically placed after a composition of several
equivariant layers when the task at hand requires a single output, e.g., when the input network represents an INR of a 3D

4See (Maron et al., 2019b) for a different way of deriving that.

15



Equivariant Architectures for Learning in Deep Weight Spaces

Figure 5. Block matrix structure for linear equivariant maps between weight spaces (same as in the main paper). Left: an equivariant
layer for the weight space V to itself can be written as four blocks that map between the general weight space W and general bias space
B. Right: Each such block can be further written as a block matrix between specific weight and bias spaces Wm,Bℓ. Each color in
each block matrix represents a different type of linear equivariant function between the sub-representations Wm,Bℓ. Repeating colors in
different matrices are not related. See Tables 5-8 for a specification of the layers.

shape and the task is to classify the shapes. We use the following characterization of linear invariant maps from Maron et al.
(2019b):

Proposition B.2. Let G ≤ Sn be a permutation group and P its permutation representation on Rn. Every linear G-invariant
map L : Rn → R is of the form L(x) =

∑O
i=1 wia

T
i x where wi are learnable scalars, ai ∈ Rn are indicator vectors for

the orbits of the action of G on [n] and O is the number of such orbits.

This proposition follows directly from the fact that a weight vector w has to obey the equation w = ρ(g)w for all group
elements g ∈ G. In our case, G is a permutation group acting on the index space of V , i.e., the indices of all the weights and
biases of an input network. In order to apply Proposition B.2, we need to find the orbits of this action on the indices of V .
Importantly, each such orbit is a subset of the indices that correspond to a specific weight or bias vector. These orbits are
summarized in Table 9. It follows that every linear invariant map defined on V can be written as a summation of the maps
listed below: (1) a distinct learnable scalar times the sum of Wm for m ∈ [2,M − 1] and the sum of bm for m ∈ [1,M − 1];
(2) a sum of columns of W1, and the sum of rows of WM weighted by distinct learnable scalars for each such column and
row (3) an inner product of bM with a learnable vector of size dM .

C. Specification of All Affine Equivariant Layers Between Sub-Representations
Tables 5, 6, 7, 8 specify the implementation and dimensionality of all the types of equivariant maps between the sub-
representations {Wm,Bℓ}m,ℓ∈[M ].The indices i, j represent the indices of the blocks. Dimensions in LIN,LDS , LHar

layers specify input and output dimensions. LDS , LHar are formally defined in Appendix A. Layers marked with an asterisk
symbol (*) have the same layer type at a different position in the block matrix.

Table 5. Specification of layers in the weight-to-weight block.

color condition sub condition from space to space (Wj → Wi) implementation # params

Diagonal
1 j = i i = j = 1 d1 × d0 → d1 × d0 LDS(d0, d0) 2d20
2 i = j = M dM × dM−1 → dM × dM−1 LDS(dM , dM ) 2d2M
3 1 < i = j < M di × di−1 → di × di−1 LHar(di, di−1) 4

One above diagonal
4 j = i + 1 i = 1 d2 × d1 → d1 × d0 POOL(d2) → LDS(1, d0) 2d0
5 i = M − 1 dM × dM−1 → dM−1 × dM−2 LDS(dM , 1) → BC(dM−2) 2dM
6 1 < i < M − 1 di+1 × di → di × di−1 POOL(di+1) → LDS(1, 1) → BC(di−1) 2

One below diagonal
7 j = i − 1 i = 1 d1 × d0 → d2 × d1 LDS(d0, 1) → BC(d2) 2d0
8 i = M − 1 dM−1 × dM−2 → dM × dM−1 POOL(dm−2) → LDS(1, dM ) 2dM
9 1 < i < M − 1 di−1 × di−2 → di × di−1 POOL(di−2) → LDS(1, 1) → BC(di) 2

Upper triangular

10 j > i + 1 i = 1 and j < M dj × dj−1 → d1 × d0 POOL(dj , dj−1) → LIN(1, d0) → BC(d1) d0
11 i = 1 and j = M dM × dM−1 → d1 × d0 POOL(dm − 1) → LIN(dM , d0) → BC(d1) d0dM
12 i > 1 and j = M dM × dM−1 → di × di−1 POOL(dM−1) → LIN(dM , 1) → BC(di, di−1) dM
13* i > 1 and j < M dj × dj−1 → di × di−1 POOL(dj , dj−1) → LIN(1, 1) → BC(di, di−1) 1

Lower triangular

14 j < i − 1 j = 1 and i < M d1 × d0 → di × di−1 POOL(d1) → LIN(d0, 1) → BC(di−1, di) d0
15 j = 1 and i = M d1 × d0 → dM × dM−1 POOL(d1) → LIN(d0, dM ) → BC(dM−1) d0dM
16 j > 1 and i = M dj × dj−1 → dM × dM−1 POOL(dj , dj−1) → LIN(1, dM ) → BC(dM−1) dM
17* j > 1 and i < M dj × dj−1 → di × di−1 POOL(dj , dj−1) → LIN(1, 1) → BC(di, di−1) 1
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Table 6. Specification of layers in the bias-to-bias block.

color condition sub condition from space to space (Bj → Bi) implementation # params

Diagonal 1 i = j i = j < M di → di LDS(1, 1) 2

2 i = j = M dM → dM LIN(dM , dM ) d2M

Upper triangular 3 i < j j = M dj → di LIN(dM , 1) → BC(di) dM
4* j < M dj → di POOL(dj) → LIN(1, 1) → BC(di) 1

Lower triangular 5 i > j i = M dj → di POOL(dj) → LIN(1, dM ) dM
6* i < M dj → di POOL(dj) → LIN(1, 1) → BC(di) 1

Table 7. Specification of layers in the weight-to-bias block.

color condition sub condition from space to space (Wj → Bi) implementation # params

Diagonal
1 i = j i = j = 1 d1 × d0 → d1 LDS(d0, 1) 2d0
2 1 < i = j < M di × di−1 → di POOL(di−1) → LDS(1, 1) 2

3 i = j = M dM × dM−1 → dM POOL(dM−1) → LIN(dM , dM ) d2M

One above diagonal 4 j = i + 1 j < M dj × dj−1 → dj−1 POOL(dj) → LDS(1, 1) 2
5 j = M dM × dM−1 → dM−1 LDS(dM , 1) 2dM

Upper triangular 6* j > i + 1 j < M dj × dj−1 → di POOL(dj−1, dj) → LIN(1, 1) → BC(d1) 1
7 j = M dM × dM−1 → di POOL(dM−1) → LIN(dM , 1) → BC(di) dM

Lower triangular 8 j = i − 1 j = 1 and i < M d1 × d0 → di POOL(d1) + LIN(d0, 1) → BC(di) d0
9 j < i − 1 j = 1 and i = M d1 × d0 → dM POOL(d1) + LIN(d0, dM ) d0dM
10 j > 1 and i = M dj × dj−1 → dM POOL(dj−1, dj) → LIN(1, dM ) dM
11* j > 1 and i < M dj × dj−1 → di POOL(dj−1, dj) → LIN(1, 1) → BC(di) 1

Table 8. Specification of layers in the bias-to-weight block.

color condition sub condition from space to space Bj → Wi implementation # params

Diagonal
1 i = j i = j = 1 d1 → d1 × d0 LDS(1, d0) 2d0
2 1 < i = j < M di → di × di−1 LDS(1, 1) → BC(di−1) 2

3 i = j = M dM → dM × dM−1 LIN(dM , dM ) → BC(dM−1) d2M

One below diagonal 4 i = j + 1 i < M di → di+1 × di LDS(1, 1) → BC(di+1) 2
5 i = M dM−1 → dM × dM−1 LDS(1, dM ) 2dM

Lower triangular 6* j < i − 1 i < M dj → di × di−1 POOL(dj) → LIN(1, 1) → BC(di−1, di) 1
7 i = M dj → dM × dM−1 POOL(dj) → LIN(1, dM ) → BC(dM−1) dM

Upper triangular

8 j > i i = 1 and j < M dj → d1 × d0 POOL(dj) → LIN(1, d0) → BC(d1) d0
9 i = 1 and j = M dM → d1 × d0 LIN(dM , d0) → BC(d1) dMd0
10 i > 1 and j = M dM → di × di−1 LIN(dM , 1) → BC(di−1, di) dM
11* i > 1 and j < M dj → di × di−1 POOL(dj) → LIN(1, 1) → BC(di−1, di) 1

D. Linear Maps Between Specific Weight and Bias Spaces
Proof of Theorem 5.1. As mentioned in the main text, by using proposition 5.2, all we have to do in order to find a basis
for the space of G-equivariant maps L : V → V is to find bases for linear G-equivariant maps between specific weight
and bias spaces {Bm,Wℓ}m,ℓ∈[M ]. To that end, we first use the rules specified in Section 5 to create a list of layer types
and their implementation. Then, one has to show that the layers in Tables 5-6 are linear, G-equivariant and that their
parameters are linearly independent. This is straightforward. For example, the mappings between subspaces (e.g.,Wj → Bi)
are clearly equivariant, as the composition of G-equivariant maps is G-equivariant. Finally and most importantly, we
show that the number of parameters in the layers matches the dimension of the space of G-equivariant maps between the
sub-representations, which can be calculated using Lemma E.1. Following are some general comments before we go over
all layer types:

• We use the fact that 1
|Sn|

∑
σ∈Sn

tr(P (σ))k = bell(k) (Maron et al., 2019b) (for the case k = 1, 2) where for a
permutation σ ∈ Sd, P (σ) ∈ Rd×d is its permutation representation. bell(k) is the number of possible partitions of a
set with k elements.

• An index on which G acts by permutation is called a set index (or dimension). Other indices are called free indices.

• Calculations of the dimensions of the equivariant maps spaces are presented below for the most complex weight-to-
weight case. We omit the other cases (e.g., weight-to-bias) since they are very similar and can be obtained using the
same methodology.

• Generally, shared set dimensions add a multiplicative factor of bell(2) = 2 to the dimension of the space of equivariant
layers, and free dimensions add a multiplicative factor equal to their dimensionality. Unsahred set dimensions add a
multiplicative factor of bell(1) = 1 so they do not affect the dimension of the equivariant layer space.
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Table 9. Orbits for the action of G on the indices of V . These orbits define linear invariant layers and equivariant bias layers.

subspace dimensionality orbits number of orbits
W1 d1 × d0 O

W1
j = {(i, j) | i ∈ [d1]} d0

Wm, 1 < m < M dm × dm−1 OWm
1 = {(i, j) | i ∈ [dm], j ∈ [dm−1]} 1

WM dM × dM−1 O
WM
i = {(i, j) | j ∈ [dM−1]} dM

bi, 1 < m < M dm Obm
1 = [di] 1

bM dM O
bM
i = {i} dM

• In all cases below, G is defined as in Equation 4, but the representations ρ, ρ′ of the input and output spaces, respectively,
differ according to the involved sub-representations

G-equivariant linear functions between weight matrices. A map between one weight matrix to another weight matrix is
of the form L : Rd×d′ → Rs×s′ . We will split into cases that cover all types of maps as appears in Table 5, and compute the
dimensions of the spaces of the equivariant layer below:

1. (Two shared set indices). In that case, the layer is 4-dimensional (bell(2)2 = 4) as we use the linear layers and
dimension counting from (Hartford et al., 2018).

2. (Two shared indices, one set and one free) Assume s = d are set indices, s′ = d′ are free indices ρ(g) = ρ′(g) =
Id′ ⊗ P (σ) for σ ∈ Sd and

1

|G|
∑
g∈G

tr(ρ(g)) · tr(ρ′(g)) = 1

|G|
∑
g∈G

tr(P (σ))2d′2 = bell(2)d′2 = 2d′2

We note that the summation over G includes groups in the direct product that are trivially represented. This extra
summation cancels the corresponding terms in 1

|G|

3. (One shared index, two set indices mapped to one shared set index, and one unshared free index). Assume s = d are
shared set indices, d′ is another set index and s′ is free. ρ(g) = P (σ)⊗P (τ), ρ2(g) = P (σ)⊗ Is′ for σ ∈ Sd, τ ∈ Sd′ .

1

|G|
∑
g∈G

tr(ρ(g)) · tr(ρ′(g)) = 1

|G|
∑
g∈G

tr(P (σ))2tr(P (τ))tr(Is′) = bell(2)s′ = 2s′

4. (One shared set index and unshared free index mapped to one shared set index, and one unshared set index). Assume
s = d are shared set indices, s′ is another set index and d′ is free. ρ(g) = P (σ) ⊗ Id′ , ρ′(g) = P (σ) ⊗ P (τ) for
σ ∈ Sd, τ ∈ Ss′ .

1

|G|
∑
g∈G

tr(ρ(g)) · tr(ρ′(g)) = 1

|G|
∑
g∈G

tr(P (σ))2tr(P (τ))tr(Id′) = bell(2)s′ = 2d′

5. (One shared index, two set indices mapped to one shared set index, and one unshared set index) Assume s = d are set
indices, d′, s′ are other set indices ρ(g) = P (σ)⊗ P (τ) . ρ′(g) = P (σ)⊗ P (π) for σ ∈ Sd, τ ∈ Sd′ , π ∈ ss′ .

1

|G|
∑
g∈G

tr(ρ(g)) · tr(ρ′(g)) = 1

|G|
∑
g∈G

tr(P (σ))2tr(P (τ))tr(P (π)) = bell(2)bell(1)2 = 2

6. (One shared set index and unshared free index mapped to one shared set index and one unshared free index)5. Assume
s = d are set indices, d′, s′ are other free indices ρ(g) = P (σ)⊗ Id′ . ρ′(g) = P (σ)⊗ Is′ for σ ∈ Sd.

1

|G|
∑
g∈G

tr(ρ(g)) · tr(ρ′(g)) = 1

|G|
∑
g∈G

tr(P (σ))2tr(Is′)tr(Id′)) = bell(2)bell(1)2 = 2d′s′

5special case for M = 2, not shown in Table 5.
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7. (No shared indices, two set indices to one set and one free). Assume d, d′, s are unshared set indices, and s′ is a free
index. ρ(g) = P (σ)⊗ P (τ). ρ′(g) = P (π)⊗ Is′ for σ ∈ Sd, τ ∈ Sd′ , π ∈ Ss.

1

|G|
∑
g∈G

tr(ρ(g)) · tr(ρ′(g)) = 1

|G|
∑
g∈G

tr(P (σ))tr(P (τ))tr(P (π))tr(Is′) = bell(1)3s′ = s′

8. (No shared indices, one set and one free indices map to other set and free indices). Assume d, s are unshared set indices,
and d′, s′ are free index. ρ(g) = P (σ)⊗ Id′ . ρ′(g) = P (τ)⊗ Is′ for σ ∈ Sd, τ ∈ Sd′ .

1

|G|
∑
g∈G

tr(ρ(g)) · tr(ρ′(g)) = 1

|G|
∑
g∈G

tr(P (σ))tr(P (τ))tr(P (Id′))tr(Is′) = bell(1)2d′s′ = d′s′

9. (No shared indices, one set one free map to two set indices). The calculation is the same as (7).

10. (No shared indices, two sets map to two sets). Assume d, d′, s, s′ are set indices ρ(g) = P (σ) ⊗ P (τ). ρ′(g) =
P (ω)⊗ P (π) for σ ∈ Sd, τ ∈ Sd′ , π ∈ Ss, ω ∈ Ss′ .

1

|G|
∑
g∈G

tr(ρ(g)) · tr(ρ′(g)) = 1

|G|
∑
g∈G

tr(P (σ))tr(P (τ))tr(P (π))tr(P (ω)) = bell(1)4 = 1

E. More Proofs for Section 5
Proof of Proposition 5.2. The elements in B are clearly linear as they are represented as matrices. It is also clear that they
are linearly independent: equating a linear sum of these basis elements to zero implies that each block is zero since there
are no overlaps between blocks. To end the argument we use the assumption that Bmℓ are bases. Equivariance is also
straightforward: take a vector v = ⊕vm, vm ∈ Vm and a zero padded element LP ∈ BP

kℓ that corresponds to an element
L ∈ Bkℓ, then LP ρ(g)v a zero-padded version of Lρk(g)vk. On the other hand ρ′(g)LP v is a zero-padded version of
ρ′ℓ(G)Lvk and we get equality from the assumption that L is equivariant.

We now turn to prove that B is a basis. We do that by showing that the number of elements B is equal to the dimension of
the space of linear maps between (V, ρ) and (V ′, ρ′). We start by calculating the size of B. Clearly, |B| =

∑
mℓ |Bmℓ| =∑

mℓ dim(E(ρm, ρℓ)) where E(ρm, ρ′m) is the space of linear equivariant maps from ρm to ρm′ . On the other hand, using
Lemma E.1 we get:

dim(E(ρ, ρ′)) =
1

|G|
∑
g∈G

tr(ρ(g)) · tr(ρ′(g)) (6)

=
1

|G|
∑
g∈G

(∑
m

tr(ρm(g))

)
·

(∑
ℓ

tr(ρ′ℓ(g))

)
(7)

=
1

|G|
∑
g∈G

∑
mℓ

tr(ρm(g)) · tr(ρ′ℓ(g)) (8)

=
∑
mℓ

 1

|G|
∑
g∈G

tr(ρm(g)) · tr(ρ′ℓ(g))

 (9)

=
∑
mℓ

dim(E(ρm, ρ′ℓ)) (10)

Where we used the fact that the trace of a direct sum representation is the sum of the traces of the constituent sub-
representations, and Lemma E.1 again in the final transition.
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Lemma E.1 (Dimension of space of equivariant functions between representations). Let G be a permutation group, and let
(V, ρ) and (V ′, ρ′) be orthogonal representations of G, then the dimension of the space of equivariant maps from (V, ρ) and
(V ′, ρ′) is 1

|G|
∑

g∈G tr(ρ(g)) · tr(ρ′(g))

Proof. We generalize similar propositions from (Maron et al., 2019b; 2020). Every equivariant map L is in the null space of
the following set of linear equations: Lρ(g) = ρ′(g)L. Since ρ′(g) is orthogonal we can write ρ′(g)TLρ(g) = L which in
turn can be written as ρ(g)⊗ ρ′(g)vec(L) = vec(L) for all g ∈ G. The last equations define the space of linear functions L
that are fixed by multiplication with ρ(g)⊗ ρ′(g). A projection onto this space is given by π = 1

|G|
∑

g∈G ρ(g)⊗ ρ′(g), and
its dimension is given by the trace of the projection, namely tr(π) = 1

|G|
∑

g∈G tr(ρ(g)) · tr(ρ′(g)) using the multiplicative
law of the trace operator and Kronecker products.

F. Proofs of Proposition 6.1
Proof of Proposition 6.1. Given input v ∈ V , representing the weights of an MLP f with a fixed number of layers and
feature dimensions, and x ∈ Rd0 which is an input to this MLP, we wish to design a network F , composed of our affine
equivariant layers, such that F ([x, v]) approximates f(x; v) in uniform convergence sense (∥ · ∥∞). We note that F is
G-invariant. We assume the input to our network is both v and x and that these inputs are in some compact domain.
Furthermore, we assume that the non-linearity function, σ is a ReLU function for both f and F for simplicity, although this
is not needed in general.

Throughout the proof we will use the following basic operations: (1) Identity transformation: Directly supported by our
framework since it can be implemented using pointwise operations supported by our networks. (2) Summation over di
dimensions: Directly supported by our framework since it is a linear equivariant operation, (3) Broadcasting over di
dimensions: Directly supported by our framework, (4) feature-wise Hadamard product: this is not directly supported in our
framework. However, since Hadamard product is a pointwise continuous operation, we can implement an approximating
MLP (in uniform convergence sense) on a compact domain using the universal approximation theorem (Hornik, 1991), (4)
Non-linearity: From our assumption, we can directly simulate the input networks non-linearities (otherwise, given another
non-polynomial continuous activation, we can use the universal approximation theorem to uniformly approximate it).

Let f̂ denote our current approximation for f(x; v). To form the input to the equivariant network, we concatenate a
broadcasted version of x, X ∈ Rd1×d0 to W1 to form a tensor in Rd0×d1×2. Our plan is to define a sequence of equivariant
layers that will mimic a propagation of x through the MLP f(·; v). Our current approximation f̂ will be stored in an extra
channel dimension.

We first wish to simulate W1 ⊙ X where ⊙ denotes the Hadamard product. Let fm1
denote a K1-layers MLP which

approximate fm1
(x, y) ≈ x · y sufficiently well. We use K1 consecutive mappingW1 →W1 to simulate fm1

. Concretely,
the mapping W1 → W1 is a DeepSets layer, L(Z)i = L1(zi) + L2(

∑
j ̸=i zj). We set L1 to the corresponding linear

transformation from fm1
and L2 = 0. We now have f̂ ≈W1 ⊙X at the location corresponding toW1. Next we use the

layerW1 → B1 perform summation over the d0 dimension to obtain f̂ ≈W1x as a second feature channel at location B1.
Note thatW1 → B1 is again a DeepSets layer that supports summation. We now have [b1, f̂ ] ∈ R2×d1 at location B1. Next
we use the DeepSets mapping B1 → B1 to perform summation over the feature dimension to obtain f̂ ≈W1x+ b1. Finally
we apply non-linearity using the activation function of the equivariant network to obtain f̂ ≈ σ(W1x+ b1).

We proceed in a similar manner. First broadcast f̂ to a second feature dimension at location W2 using the DeepSets +
Broadcasting layer B1 →W2. The mappingW2 →W2 is a LHar layer, so we can use a similar approach for simulating an
MLP to approximate f̂ ≈W2σ(W1x+ b). Following the same procedure described above we can simulate the first M − 1

layers of F , obtaining f̂ ≈ xM−1 at the position corresponds to BM−1.

Next, we use the DeepSets mapping BM−1 → WM to broadcast f̂ to a second feature dimension where WM is in the
first feature dimension. SinceWM →WM is a DeepSets layer, we can simulate the Hadamard product of the two feature
dimensions to obtain f̂ ≈WM ⊙xM−1. Next we useWM → BM to perform summation over dM−1 and map it to a second
feature dimension at location BM , with BM at the first dimension. Finally, we use the linear mapping BM → BM to sum
the two feature dimensions to obtain f̂ ≈ f(x; v) = xM .

We have constructed a sequence of DWSNets-layers that mimics a feed-forward procedure of an input x on an MLP defined
by a weight vector v. Importantly, all the operations we used are directly supported by our architecture, with the exception
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of the Hadamard product which was replaced by an approximation using the universal approximation theorem. To end
the proof, we point out that uniform approximation is preserved by the composition of continuous functions on compact
domains (see Lemma 6 in (Lim et al., 2022) for a proof).

G. Proof of Proposition 6.2
Our assumptions are listed below:

1. The inputs to the MLPs are in a compact domain C1 ⊂ Rd0

2. Weights v are in a compact domain C2 ⊂ V

3. We can map each weight v to the function (MLPs) space FV of functions represented by the weight, fv = f(·; v). All
such functions are L1-Lipschitz w.r.t || · ||∞.

4. Given x(1), ..., x(N) ∈ C1 we define volσ(y
(1), ..., y(N)) = vol({v ∈ C2 : ||(f(x(1); v), ..., f(x(N); v)) −

(y(1), ..., y(N))||∞ ≤ σ}). We assume that for all σ > 0 (i) volσ(y(1), ..., y(N)) is continuous in both y(1), ..., y(N)

and in σ (ii) There exists λ > 0 that for all (y(1), ..., y(N)) in the range of f(·; v) for some v ∈ C2 we have
volσ(y

(1), ..., y(N)) > λ > 0.

5. Given a function g defined on functions represented by our weights g : FV → R, we assume it is L2-Lipschitz w.r.t the
|| · ||∞ norm on the function space.

Below is a formal statement of Proposition 6.2.

Proposition G.1. Let g : FV → R be a L2-Lipschitz function defined on the space of functions represented by M-layer
MLPs with dimensions d0, ..., dM , domain C1, ReLU nonlinearity, and weights in v ∈ C2 ⊂ V . Assuming that all of the
previous assumptions hold, then there exists a DWSNet with ReLU nonlinearities F that approximates it up to ϵ accuracy,
i.e. maxv∈C2 |g(fv)− F (v)| ≤ ϵ.

We split the proof into two parts, each stated and proved as a separate lemma.

Lemma G.2. Let M,d0, . . . , dM specify an MLP architecture. Let C1 ⊂ Rd0 , C2 ⊂ V be compact sets. For any
x(1), ..., x(N) ∈ C1 there exists a DWSNet F with ReLU nonlinearities that for any v ∈ C2 outputs F (v) with the following
property ||F (v)− (f(x(1); v), ..., f(x(N); v))||∞ ≤ ϵ.

Proof. Given input v ∈ C2, representing the weights of an MLP f with a fixed number of layers and feature dimensions,
and x(1), ..., x(N) ∈ C1 which are fixed inputs to the MLP, we wish to design a DWSNet F , composed of our linear
equivariant layers, such that F (v) approximates (f(x(1); v), ..., f(x(N); v)). We do that in two steps. First, using the
bias terms, our first layer concatenates a broadcasted version of (x(1), ..., x(N)), X ∈ Rd1×d0×N to W1 to form a tensor
in Rd1×d0×(N+1). We then use a similar construction to the one in the proof of Proposition 6.1 to find a network that
approximates f(x(i)), i = 1 . . . N in parallel.

Lemma G.3. Under all previously stated assumptions, if x(1), ..., x(N) are an ϵ-net on the input domain C1 w.r.t the infinity
norm, i.e. maxx∈C1

mini∈[N ] ||x− x(i)|| ≤ ϵ then there exists an MLP h such that for all weights v ∈ C2 we have:

||h(fv(x1), ..., fv(xN ))− g(fv)|| ≤ 4L1L2ϵ

Proof. We define R(C2) = {(y(1), ..., y(N)) : ∃v ∈ C2 s.t.∀ i : f(x(i); v) = y(i)}. As the values
(f(x(1); v), ..., f(x(N); v)) are not enough to uniquely define g(fv) we will define a continuous approximation using
smoothing. We define for all (y(1), ..., y(N)) ∈ R(C2) the function ḡσ(y

(1), ..., y(N)) as the average of of g(fv) over

Aσ(y
(1), ..., y(N)) = {v ∈ C2 : ||(y(1), ..., y(N))− (f(x(1); v), ..., f(x(N); v))||∞ ≤ σ},

i.e.,

ḡσ(y
(1), ..., y(N)) =

1

volσ(y(1), ..., y(N))

∫
Aσ(y(1),...,y(N))

g(fv)dv.
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We claim that ḡσ is a continuous function of y(1), ..., y(N) due to the smoothing done: Define y = (y(1), ..., y(N)) and
ỹ = (ỹ(1), ..., ỹ(N)) with ||y − ỹ|| ≤ δ. We can look at ḡσ(y) − ḡσ(ỹ) as two integrals, one over Aσ(y) ∩ Aσ(ỹ) and
one over Aσ(y)△Aσ(ỹ). The first part is equal to

∫
Aσ(y)∩Aσ(ỹ)

g(fv)dv
(

volσ(ỹ)−volσ(y)
volσ(y)volσ(ỹ)

)
which goes to zero as δ goes

to zero as the volume is continuous, bounded away from zero, and the integrand g is also bounded. The integral on the
symmetric difference is bounded by C · (volσ+δ(y)− volσ(y)) + C · (volσ+δ(ỹ)− volσ(ỹ)) where C is a bound on the
integrand. This is because each point in the symmetric difference needs to be more than σ away from ỹ or y, but no more
than σ + δ away. This also goes to zero as the volume is continuous in σ proving that ḡσ is continuous.

Now that we showed that ḡσ is continuous, we will show it is a good approximation to g. If v ∈ V and f(x(i); v) = y(i)

then ḡσ(y
(1), . . . , y(n)) is an average of g(fv′) over a set of v′ that differ on the ϵ-net by at most σ. Let x ∈ C1 and x(i) be

its closest element of the net then

|f(x; v)− f(x; v′)| ≤ |f(x; v)− f(x(i); v)|+ |f(x(i); v)− f(x(i); v′)|+ |f(x(i); v′)− f(x; v′)| ≤ 2L1ϵ+ σ

i.e., ||fv − fv′ ||∞ ≤ 2L1ϵ+ σ. We can set σ = L1ϵ and by the Lipschitz property of g we get that the difference in the g
values of all averaged weights we average in ḡσ is at most 3L1L2ϵ. This means that ||g(fv)− ḡσ(y0, ..., yN )|| ≤ 3L1L2ϵ.

Finally, we note that since ḡσ is a continuous function over R(C2), which is compact as the image of a compact set by a
continuous function, it can be approximated by an MLP h such that |h(y(1), ..., y(N)) − ḡσ(y

(1), ..., y(N))| ≤ L1L2ϵ to
conclude the proof.

Proof of Proposition G.1. From compactness of C1 we have a finite ϵ1-net x(1), ..., x(N). From Lemma G.2 there exists an
invariant DWSNet F̄ such that F̄ (v) = (y(1), ..., y(N)) such that ||y(i) − f(x(i); v)|| ≤ ϵ2. From Lemma G.3 there exists
an MLP h such that ||h(f(x(1); v), ..., f(x(N); v))− g(fv)|| ≤ 4L1L2ϵ1. We note that as h is a ReLU MLP on a compact
domain it is L3-Lipshitz for some constant L3. Now F = h ◦ F̄ is a DWSNet that has

|F (v)− g(fv)| = |h(F̄ (v))− g(fv)| ≤ |h(F̄ (v))− h(f(x(1); v), ..., f(x(N); v))|
+ |h(f(x(1); v), ..., f(x(N); v))− g(fv)| ≤ L3ϵ2 + 4L1L2ϵ1

The first we bound by the Lipschitz property of h and the fact that F̄ is an ϵ2 approximation and the second from lemma
G.3. We note that while h depends on x(1), ..., x(N), and as such so does L3, it does not depend on F̄ or ϵ2, so we are free
to pick ϵ2 based on the value of L3 which concludes the proof.

H. Alternative Characterization Strategies
We chose to work directly with the direct sum of the weight and bias spaces since it allows us to easily derive simple
implementations for the layers. It should be noted that other strategies can be employed to characterize spaces of linear
equivariant layers, including decomposing V into irreducible representations (as done on many previous works, e.g., Cohen
& Welling (2017); Thomas et al. (2018)). An advantage of this strategy is that it simplifies the structure of the blocks
discussed above: one can use a classic result called Schur’s Lemma (Fulton & Harris, 2013), which states that linear
equivariant maps between irreducible representations are either zero or a scaled identity map. On the other hand, one might
need to translate such a characterization back to the original weight and bias decomposition in order to implement the maps.

I. Computational and Memory Requirements
Like other equivariant architectures, such as CNNs and DeepSets (Zaheer et al., 2017), DWS-layers have fewer parameters
and are more computationally efficient than fully connected layers. In this section, we provide a brief comparison of DWS
layers with fully connected layers in terms of parameter space and the time complexity of a feedforward pass.

To simplify our analysis, we do not consider parallel computations in our comparison. Let M denote the number of layers in
the input MLP as M , and assume for simplicity that all feature dimensions (input, hidden, and output dimensions) of the
MLP are equal, i.e., di = d. Under this setup, a DWS-layer requires O((M + d)2) parameters. This is because all the inner
blocks of a DWS-layer have a constant number of parameters (see Tables 5-8). In contrast, an FC layer requires O((Md2)2)
parameters.
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The time complexity of a feedforward pass is estimated under the assumption that DWS and FC layers are computed
by independently performing the block operations and then aggregating them. It is worth noting that within each block,
DWS-layers implement a specific parameter-sharing scheme that can be implemented efficiently. For example, one of the
basic building blocks of a DWS-layer is the layer suggested by Hartford et al. (2018), which parameterizes maps from an
d× d dimensional matrix into another d× d dimensional matrix. In this case, an FC layer would require O(d4) operations,
whereas the Hartford layer (Hartford et al., 2018) can be implemented efficiently using broadcast and pooling operations
that require only O(d2) operations. This argument can be extended to other block types as well. As a result, DWS-layers
have asymptotically lower time complexity than fully connected layers.

J. Experimental and Technical Details
Data preparation. In order to test our architecture on diverse data obtained from multiple independent sources, we
train all input networks independently starting from different random seed (initialization). As preprocessing step, the
networks are normalized as follows: let vi denote the ith weight vector in our dataset and let vij the jth entry in vi. Let
m(v) denote the average vector over the dataset and s(v) the vector of standard deviations. We normalize each entry as
vij ← (vij −m(v)ij)/s(v)ij . We empirically found this normalization to be beneficial and aid training. We split each
dataset into three data splits, namely train, test and validation sets.

Datasets. We provide details for the network datasets used in this work. For INRs, we use the SIREN (Sitzmann et al.,
2020) architecture, i.e., MLP with sine activation, otherwise, we use ReLU activation (Agarap, 2018).

Sine waves INRs for regression. We generate dataset of 1000 INRs with three layers and 32 hidden features, i.e., 1→ 32→
32→ 1. The input to the INR is a grid of size 2000 in [−π, π]. We train the INRs using the Adam optimizer for 1000 steps
with learning-rate 1e− 4. We use 800 INRs for training and 100, 100 INRs for testing and validation.

MNIST and Fashion-MNIST INRs. We fit an INR to each image in the original dataset. We split the INR dataset into train,
validation and test sets of sizes 55K, 5K, 10K respectively. We train the INRs using the Adam optimizer for 1K steps with
learning-rate 5e − 4. When the PSNR of the reconstructed image from the learned INR is greater than 40, we use early
stopping to reduce the generation time. Each INR consists of three layers with 32 hidden features, i.e., 2→ 32→ 32→ 1.

CIFAR10 image classifiers. The data consists of 5000 image classifiers. We use 4000 networks for training and the
remaining divided evenly between validation and testing sets. Each classifier consists of 5 layers with 64 hidden features,
i.e., 3 · 322 = 3072→ 64→ 64→ 64→ 64→ 10. To increase the diversity of the input classifiers, we train each classifier
on the binary classification task of distinguishing between two randomly sampled classes. We fit the classifiers using the
Adam optimizer for 2 epochs with learning-rate 5e− 3 and batch-size 128.

Fashion-MNIST image classifiers. We fit 200 image classifiers to the Fashion-MNIST dataset with 10 classes. Each classifier
consists of 4 layers with 128 hidden features, i.e., 282 = 784 → 128 → 128 → 128 → 10. We fit the classifiers using
the Adam optimizer for 5 epochs with learning-rate 5e − 3 and batch-size 1024. To generate classifiers with diverse
generalization performance, we save a checkpoint of the classifier’s weights along with its generalization performance every
2 steps throughout the optimization process. We use 150 optimization trajectories for training, and the rest are divided
evenly between validation and testing sets.

Sine waves INRs for SSL. We fit 5000 INRs to sine waves of the form a sin(bx) on [−π, π]. Here a, b ∼ U(0, 10) and x is a
grid of size 2000. We use 4000 samples for training and the remaining INRs divided evenly between validation and testing
sets. We train the INRs using the Adam optimizer with a learning-rate of 1e− 3 for 1500 steps. Each INR consists of three
layers and 32 hidden features, i.e., 1→ 32→ 32→ 1.

Hyperparameter optimization and early stopping. For each learning setup and each method we search over the learning
rate in {5e− 3, 1e− 3, 5e− 4, 1e− 4}. We select the best learning rate using the validation set. Additionally, we utilize the
validation set for early stopping, i.e., select the best model w.r.t. validation metric.

Data augmentation. We employ data augmentation in all experiments and for all methods. For non-INR input networks, we
augment the weight vector with Gaussian and dropout noise. For INRs we can apply a wider range of augmentations: For
example consider an INR for an image f : R2 → R3. Let x denote a grid in [0, 1]2 which is the input to the INR. We can
apply data augmentation to the weight vector to simulate augmentation on the image it represents. As a concrete example let
R ∈ R2×2 denote a rotation matrix. By multiplying W1 with R we are rotating the image represented by the INR. Similarly,
we can translate the image, or change its scale. For INRs, we apply rotation, translation, and scaling augmentations, along
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Figure 6. INR reconstruction for Fashion-MNIST: INR reconstruction for Fashion-MNIST images (left) and INR reconstruction of the
same images after (weight) data augmentation (right).

with Gaussian and dropout noise. See Figure 6 (right) for an example of data augmentations.

Initialization. We found that appropriate initialization is important when the output of the model is used to parametrize a
network, e.g., in the domain adaptation experiment. Similar observations where made in the Hypernetwork literature (Chang
et al., 2019; Litany et al., 2022). We use a similar initialization to that used in Litany et al. (2022). Specifically, for weight
matrices we use Xavier-normal initialization multiplied µ

√
2din/dout. For invariant tasks we set µ = 1. For tasks where

the output parameterize a network we set µ = 1e− 3.

Methods to control the complexity of DWSNets. Since our network complexity is controlled by d0 and dM , the number of
parameters can grow large when the input and/or output dimensions are large. To control the number of parameters we first
apply a linear transformation to the input/output dimension to map it to a lower dimension space, e.g., LIN(d0, d

′
0) with

d′0 ≪ d0. We can then apply another linear transformation (if needed) LIN(d′0, d0) to map the output back to the original
space. We note that since d0, dM are free indices, it can be modified between layers while still maintaining G-equivariance.

Approximation for model alignment. In the literature several studies suggested methods to align the weights/neurons of
NNs (e.g., (Ashmore & Gashler, 2015; Singh & Jaggi, 2020; Ainsworth et al., 2022)). Here, we chose the method presented
in (Ainsworth et al., 2022). Ainsworth et al. (2022) suggested an iterative approach for aligning many models termed
MergeMany. The basic idea is to run the alignment algorithm at each iteration between one of the models and an average of
all the other models. This algorithm is guaranteed to converge. However, the convergence time depends on both the number
of models and the allowed alignment error. For instance, on the MNIST classification task, we waited more than 24 hours
before stopping the algorithm and it still didn’t finish even one iteration with an error of 1e− 12 (the default error in the
official GitHub repository). Therefore, we ran this method according to the following scheme; we first fixed the error to
1e− 3, then we randomly chose a sub-sample of 1000 models and ran the MergeMany algorithm on them only. The result
from this process was a new model (the average of the aligned models) which we used for aligning the remaining training
models and the test models to get a training set and test set of aligned models.

Additional experimental details. Unless stated otherwise, we use DWSNets with 4 hidden equivariant layers, and a
final invariant layer, when appropriate. Additionally, we use max-pooling (as the POOL components) in all experiments.
The baseline methods are constructed to match the depth of the DWSNets, with feature dimensions chosen to match the
capacity (number of parameters) of the DWSNets, for a fair comparison. We train all methods with ReLU activations and
Batch-Normalization (BN) layers. We found BN layers to be beneficial in terms of generalization performance and smoother
optimization process. We train all methods using the AdamW (Loshchilov & Hutter, 2019) optimizer with a weight-decay
of 5e− 4. We use the validation split to select the best learning rate in {5e− 3, 1e− 3, 5e− 4, 1e− 4} for each method.
Additionally, we use the validation split to select the best model (i.e., early stopping). We repeat all experiments using 3
random seeds and report the average performance along with the standard deviation for the relevant metric.

Regression of sine waves. We train a DWSNets with two hidden layers and 8 hidden features. All networks consist of ∼ 15K
parameters. We use a batch size of 32 and train the models for 100 epochs.

Classification on INRs. We train all methods for 100 epochs. All networks consist of ∼ 550K parameters. We use a batch
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Figure 7. Predicting the generalization performance of NNs: Given the weight vector v the task is to predict the performance of f(·; v) on
the test set. We report 100×MSE averaged over 3 random seeds. Black lines illustrate a linear fit to the predicted-vs-actual data points.

size of 512.

Predicting the generalization error of neural networks. We train all methods for 15 epochs (∼ 15K steps). For DWSNets we
map d0 = 784 to d′0 = 16, and use a 4-hidden layers network with 16 features. All networks consist of ∼ 4M parameters.
We use a batch size of 32.

Learning to adapt networks to new domains. We train all methods for 10K steps. For DWSNets we map d0 = 3072 to
d′0 = 16, and use a 4-hidden layers network with 16 features. All networks consist of ∼ 4M parameters. At each training
step, we sample a batch of input classifiers and a batch of images from the source domain. We map each weight vector v to
a residual weight vector ∆v. We then pass the image batch through all networks parametrized by v −∆v and update our
model according to the obtained classification (cross-entropy) loss. We use a batch size of 32 for input networks and 128 for
images.

Self-supervised learning for dense representation. We train the different methods for 500 epochs with batch-size of 512. The
DWSNets is consists of 4-hidden layers with 16 features. We set the dense representation dimension to 16. All networks
consist of ∼ 100K parameters. We use a temperature of 0.1 to scale the NT-Xent loss (Chen et al., 2020).

K. Additional Experiments
K.1. Predicting the Generalization Error of Neural Networks.

Given an MLP classifier, we train a DWSNet to predict its generalization performance, defined as the test error on a held-out
set (see also (Schürholt et al., 2022a)). To create a dataset for this problem, we train 200 MLP image classifiers on the
Fashion-MNIST dataset. We save checkpoints with the classifier’s weights throughout the optimization process, together
with its generalization error. Then, we train a DWSNet to predict the generalization performance from the classifier’s
weights. Figure 7 shows that DWSNet achieves the lowest error, significantly outperforming most baselines.

K.2. Dense Representation

Here we give the full results for learning a dense representation that was presented in Section 7. Figure 8 shows that
DWSNets generates an embedding with a clear and intuitive 2D structure. That is, we can notice a representation that groups
models with similar frequencies and amplitudes together and a gradual change between the different regions. On the other
hand, other baselines don’t seem to have this nice explainable property.

K.3. Ablation Study

Table 10. Ablation on the DWSNet’s blocks using the MNIST INRs dataset.

Test Acc. # params

B2B 65.87± 0.37 65K
W2W 84.75± 1.11 235K
W2W + B2B 85.23± 0.01 300K
Diagonal 85.68± 0.42 460K
DWSNets 85.71± 0.57 550K
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Figure 8. Dense representation: 2D TSNE of the resulting low-dimensional space.

Here we investigate the effect of using only part of the blocks in our proposed architecture, using the classification task
of MNIST INRs. We compare the bias-to-bias (B2B), weight-to-weight (W2W) and a “diagonal” version of DWSNets
consists only of internal blocks which maps joint set dimensions. For example, for the B2B block, these internal blocks
form the main diagonal. The results are presented in Table 10. Not surprisingly, the W2W block is the most contributing
factor to the overall performance as it conveys most of the information. Nevertheless, adding the other blocks increase the
overall performance. Interestingly, the diagonal DWSNet achieves performance similar to those obtained with all blocks.

K.4. The importance of data augmentation and batch normalization

Table 11. The effect of BN and DA: Performance improvement through Data Augmentation and Batch Normalization on the MNIST INRs
classification task.

Test Acc.

DWSNet 77.20± 0.41
DWSNet + DA 80.20± 0.28
DWSNet + BN 83.05± 1.35
DWSNet + DA + BN 85.71± 0.57

Throughout our experiments, we have consistently found data augmentation (DA) and batch normalization (BN) to be highly
beneficial techniques in improving model performance. In this subsection, we present the results obtained by applying these
techniques to the MNIST INRs classification task. Here we apply the data augmentation techniques for INRs described
in Appendix J. Our findings highlight the importance of data augmentation and batch normalization in improving the
performance of DWSNets. The results are presented in Table 11.

K.5. Challenging cases

Here we discuss two challenging cases that we encountered while experimenting with our method.

Learning to prune. One possible application of DWSNets is to learn how to prune a network. Namely, given an input
network it learns to output a mask that dictates which parameters from the input network to drop and which ones to keep. To
evaluate our method on this task we used INRs generated based on the div2k dataset (Agustsson & Timofte, 2017). The loss
function was to reconstruct the original image while regularizing the mask to be as sparse as possible. We tried different
techniques to learn such a mask inspired by common solutions in the literature (e.g., (Hubara et al., 2016)). Unfortunately,
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DWSNets showed a tendency to prune many parameters of the same layers while keeping other layers untouched. We
believe that this issue can be solved by a proper initialization and we see this avenue as a promising research direction for
leveraging DWSNets.

Working with INRs. In some cases, we found it challenging to process INRs. Consider the problem of classifying CIFAR10
INRs to the original ten classes. In our experiments, we found that while significantly outperforming baseline methods,
DWSNets achieve unsatisfactory results in this task. A possible reason for that is that the INR, as a function from R2 to R3

is only informative on [0, 1]2. Hence, it is possible that when processing these functions (parameterized with the weight
vectors), with no additional information on the input domain, the network relies on the underlying, implicit noise signal
originating from outside the training domain, i.e., R \ [0, 1]2. If that is indeed the case, one potential solution would be to
encourage the INR’s output to be constant on R \ [0, 1]2.
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