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Abstract

Exploration remains a key challenge in deep re-
inforcement learning (RL). Optimism in the face
of uncertainty is a well-known heuristic with the-
oretical guarantees in the tabular setting, but how
best to translate the principle to deep reinforce-
ment learning, which involves online stochas-
tic gradients and deep network function approx-
imators, is not fully understood. In this pa-
per we propose a new, differentiable optimistic
objective that when optimized yields a policy
that provably explores efficiently, with guaran-
tees even under function approximation. Our
new objective is a zero-sum two-player game de-
rived from endowing the agent with an epistemic-
risk-seeking utility function, which converts un-
certainty into value and encourages the agent to
explore uncertain states. We show that the so-
lution to this game minimizes an upper bound
on the regret, with the ‘players’ each attempt-
ing to minimize one component of a particular
regret decomposition. We derive a new model-
free algorithm which we call ‘epistemic-risk-
seeking actor-critic’ (ERSAC), which is simply
an application of simultaneous stochastic gradi-
ent ascent-descent to the game. Finally, we dis-
cuss a recipe for incorporating off-policy data
and show that combining the risk-seeking ob-
jective with replay data yields a double benefit
in terms of statistical efficiency. We conclude
with some results showing good performance of
a deep RL agent using the technique on the chal-
lenging ‘DeepSea’ environment, showing signif-
icant performance improvements even over other
efficient exploration techniques, as well as im-
proved performance on the Atari benchmark.
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1. Introduction
Reinforcement learning (RL) involves an agent interacting
with an environment over time attempting to maximize its
total return (Sutton & Barto, 1998; Puterman, 2014; Meyn,
2022). Initially the agent does not know about the envi-
ronment and must learn about it from experience. As the
agent navigates the environment it receives noisy observa-
tions which it can use to update its (posterior) beliefs about
the environment (Ghavamzadeh et al., 2015). Therefore,
the RL problem is a statistical inference problem wrapped
in a control problem, and the two problems must be tackled
simultaneously for good data efficiency (Lu et al., 2021).
This is because the policy of the agent affects the data it will
collect, which in turn affects the policy, and so on. This is
in contrast to supervised learning, where the performance
of a classifier (for instance) does not influence the data it
will later observe. Failure to properly consider the statis-
tical aspect of the RL problem will result in agents that
require exponential amounts of experience for good per-
formance. So far, deep RL as a field has largely accepted
this tradeoff, requiring enormous computational budgets to
solve relatively simple problems. On the other hand, cor-
rectly considering the statistical inference problem and the
control problem together has the potential to dramatically
reduce the compute requirements to solve problems and po-
tentially unlock new domains and capabilities far outside of
the range of current agents.

Understood in this way, RL is about choosing what actions
to take, and consequently which data to collect, in order
to maximize long-term return. To do this an agent must
sometimes take actions that lead to states where it has epis-
temic uncertainty about the value of those states, and some-
times take actions that lead to more certain payoff. The
tension between these two modes is the ‘explore-exploit’
dilemma (Auer, 2002; Kearns & Singh, 2002; Dimitrakakis
& Ortner, 2018). When it comes to exploration in deep
RL there are two main focus areas of research. The pri-
mary line of work is generating better estimates of uncer-
tainty, typically by exploiting some aspect of a neural net-
work (Singh et al., 2004; Barto, 2013; Stadie et al., 2015;
Bellemare et al., 2016; Ostrovski et al., 2017; Burda et al.,
2018; Pathak et al., 2017). Getting accurate uncertainty
estimates from deep neural networks is a ‘holy grail’ of re-
search in deep learning in general (Osband et al., 2021),
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and in reinforcement learning good uncertainty estimates
are crucial for good performance of any practical explo-
ration algorithm. The second area of research is how best
to use uncertainty estimates for efficient exploration, which
is the focus of this work and as such any of the referenced
methods for generating uncertainty estimates are compati-
ble with the approach discussed herein. A lot of prior work
in this area has simply converted the uncertainty estimates
into an ‘optimism in the face of uncertainty’ bonus added
to the rewards and then applied off-the-shelf RL algorithms
to the modified Markov decision process (MDP) (Dayan &
Sejnowski, 1996; Strehl & Littman, 2008; Bellemare et al.,
2016; Tang et al., 2017). This approach is inspired by the-
oretical results based on optimism bonuses which show
that in an episodic tabular MDP setting where the modi-
fied MDP is solved exactly, these strategies can yield good
regret bounds (Auer et al., 2008; Jaksch et al., 2010; Azar
et al., 2017; Jin et al., 2018). However, translating the per-
formance to deep RL has been challenging. Consider the
fact that some of the most impressive results in modern
deep RL have had no sophisticated exploration strategies,
relying instead on simple local dithering strategies (Mnih
et al., 2015; Silver et al., 2016; Berner et al., 2019) or mak-
ing extensive use of human data (Vinyals et al., 2019).

Although optimism is the most popular exploration tech-
nique in deep RL, there are several alternative approaches.
One line of research is not to consider uncertainty explic-
itly, but instead to add some structured noise to dither-
ing, such as Lévy flights (Dabney et al., 2020), or adding
noise to the weights of the neural network (Fortunato
et al., 2017; Plappert et al., 2017). These approaches have
shown some promising results although they fall strictly
into the category of heuristic and do not achieve good
performance on challenging unit-test exploration domains
like DeepSea (Osband et al., 2019). Another line of re-
search involves Thompson sampling and various approxi-
mations to it (Thompson, 1933; Strens, 2000; Osband et al.,
2013; Russo et al., 2018; Osband et al., 2016). Although
Thompson sampling has excellent performance in tabu-
lar settings it is not yet clear how to translate that perfor-
mance into deep RL settings reliably as a full implemen-
tation of Thompson sampling requires sampling from the
posterior over policies, which is intractable for all but the
simplest tabular domains. Another drawback of Thomp-
son sampling is that it cannot handle either the multi-agent
case nor the constrained case (O’Donoghue et al., 2020;
O’Donoghue & Lattimore, 2021). Since we expect real-
world agents to be in situations with multiple agents and to
be bound by constraints this is a major disadvantage.

In this paper we endow a policy-gradient agent with an
epistemic-risk-seeking utility function which summarizes
both the expected return and the epistemic uncertainty
into a single value (O’Donoghue, 2021; Eriksson & Dimi-

trakakis, 2019). How risk-seeking the agent is is controlled
by a single scalar parameter which is tuned (i.e., learned)
to balance exploration and exploitation. The approach is
based on a dual view of the recent ‘K-learning’ algorithm,
which is a value learning, model-based, Bayesian RL ap-
proach with a guaranteed Bayesian regret bound in tabular
domains (O’Donoghue, 2021). We derive a model-free and
policy-based algorithm, which allows us to approximately
solve for the optimal policy using stochastic feedback and
online experience using policy gradients, and to use a deep
neural network to parameterize our policy. Moreover, we
can show that the approach enjoys Bayesian regret guar-
antees even in the face of function approximation. The
final algorithm we present is an extension of policy gra-
dient (Sutton et al., 1999; Konda & Tsitsiklis, 2003) with
entropy regularization. Combining policy gradient with en-
tropy regularization is a common heuristic and typically
a small amount of entropy ‘bonus’ is used to discourage
the policy from becoming deterministic and thereby los-
ing the ability to ‘explore’ (Mnih et al., 2016). That be-
ing said, simply adding entropy regularization is not suffi-
cient for deep exploration since entropy regularization only
encourages local dithering (Osband, 2016; O’Donoghue
et al., 2018). In this work we show that entropy regular-
ization combined with a carefully tuned uncertainty bonus
is a principled approach to deep exploration. Our approach
formulates the problem as a two-player game where one
player is attempting to find the policy that maximizes the
optimistic reward and the other player is tuning how risk-
seeking the policy is in order to minimize expected regret.
The solution of this game yields the optimal K-learning
policy with the associated performance guarantees. Un-
like standard optimism approaches the K-learning policy
is stationary (i.e., not dependent on the number of elapsed
episodes other than through the posteriors) and stochastic,
and it varies slowly as data is collected, which makes it
more amenable to online approximation. Unlike Thomp-
son sampling, K-learning does not require a full sample
from the posterior at each episode and it can handle both
the multi-agent and the constrained cases when suitably
modified (O’Donoghue et al., 2020; O’Donoghue & Lat-
timore, 2021). In practice on a hard exploration unit-test
our approach outperforms deep RL approximations to both
Thompson sampling and optimism, as we shall show in the
numerical experiments. Our results suggest that the ap-
proach in this manuscript may close some of the gap be-
tween theory and practice for efficient exploration in deep
RL.

2. Preliminaries
We consider an RL problem where an agent inter-
acts with an unknown environment over a number of
episodes. We model the environment as a finite state-
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action time-inhomogeneous MDP given by the tuple M =
(S,A, L, {Pl}Ll=1, {Rl}Ll=1, ρ), where L is the horizon
length, S = S1 ∪ · · · ∪ SL ∪ {sL+1} is the set of states
including terminating state sL+1, A is the set of possible
actions, Pl : Sl × A → ∆(Sl+1) denotes the state tran-
sition kernel at layer l, Rl : Sl × A → ∆(R) is the re-
ward function at layer l with mean reward rl ∈ R|Sl|×|A|,
and ρ ∈ ∆(S1) is the initial state distribution. A pol-
icy π ∈ ∆(A)|S| is a distribution over actions for each
state, and we shall denote the probability of action a in
state s at timestep l as πl(s, a). The agent starts in some
state s1 ∈ S1 sampled according to ρ, then for each
step in the episode l = 1, . . . , L the agent is in state sl,
takes action al ∼ πl(sl, ·), receives reward sampled from
Rl(sl, al), and transitions to state sl+1 ∈ Sl+1 according
to Pl(· | sl, al). The episode ends when the terminating
state sL+1 is reached, the initial state is sampled again and
another episode begins.

For a given policy π we define value functions for each
(s, a) ∈ Sl ×A, l = 1, . . . , L, as

Qπ
l (s, a) = rl(s, a) +

∑
s′∈Sl+1

Pl(s
′ | s, a)V π

l+1(s
′),

V π
l (s) =

∑
a

πl(s, a)Q
π
l (s, a),

where we define V π
L+1 ≡ 0. The optimal values are defined

for l = 1, . . . , L as

Q⋆
l (s, a) = rl(s, a) +

∑
s′∈Sl+1

Pl(s
′ | s, a)V ⋆

l+1(s
′),

V ⋆
l (s) = max

a
Q⋆

l (s, a),

and we define V ⋆
L+1 ≡ 0. The policy that achieves the max

is given by

π⋆
l (s, a) = 1(a = argmax(Q⋆

l (s, a))), l = 1, . . . , L,

assuming the argmax is unique, otherwise any policy that
has support only on the maximum entries of Q⋆ is optimal.

2.1. Regret

The regret of a policy is the expected shortfall between the
performance of the policy and the optimal performance. In
this paper we take a Bayesian approach, which is to say we
assume the agent has access to prior information about the
MDP, represented by a distribution ϕ, and we are interested
in the expected regret with respect to this prior. Concretely,
for a policy π we define the Bayesian regret for a single
episode as

R(π, ϕ) = EM∼ϕ(Es∼ρ(V
M,⋆
1 (s)− V M,π

1 (s))).

For clarity we have made the dependence of the value func-
tions on M explicit here, but we shall suppress the de-

pendency in the notation hereafter. If algorithm Alg pro-
duces policy sequence π1, π2, . . . based on observed his-
tories F1,F2, . . ., where Ft is all the observed history of
states, actions, and rewards before episode t then, due to
the tower property of conditional expectation, the cumula-
tive Bayesian regret of Alg over N episodes is given by

BR(Alg, ϕ) = E
N∑
t=1

R(πt, ϕt) (1)

where ϕt = ϕ(· | Ft). Loosely speaking, agents that have
low regret explore efficiently and generate high reward. So
minimizing the cumulative Bayesian regret is important for
good performance.

3. K-Learning
For the value functions in §2 to be computable they re-
quire exact knowledge of the mean reward r and transition
matrix P . However, in reinforcement learning these are
initially unknown and must be learned about from experi-
ence. K-learning was derived by endowing the agent with a
risk-seeking exponential utility function u : R → R which
converts uncertainties to value, defined for any τ ≥ 0 as
uτ (x) = τ(exp(x/τ)− 1). We can compute the certainty-
equivalent value under this utility for any random variable
X : Ω → R as Jτ = u−1

τ (Euτ (X)) = τ logE exp(X/τ),
and from Jensen’s inequality we have Jτ ≥ EX for all
τ ≥ 0. For example, random variable X ∼ N (µ, σ2) has
certainty equivalent value under uτ of Jτ = µ + σ2/2τ .
Clearly greater uncertainty (or risk) σ increases this value,
and τ ≥ 0 controls the tradeoff. In the context of reinforce-
ment learning the uncertainty we are interested in is the
epistemic uncertainty about the unknown parameters of the
MDP, and the risk-seeking utility function can be used to
summarize the beliefs about an unknown MDP into a risk-
seeking value. As shown by O’Donoghue (2021) the risk-
seeking values are computable by solving a Bellman equa-
tion. Concretely, given posterior information ϕ we define
the ‘risk-seeking’ reward function for each (s, a) ∈ Sl×A,
l = 1, . . . , L, as

rl,τ (s, a) = r̄l(s, a) + σ2
l (s, a)/2τ,

where r̄ = Eϕr and σ ∈ R|S|×|A| is a measure of the un-
certainty about the MDP under ϕ (see O’Donoghue (2021)
for details on how σ should be chosen, for now we shall
just assume it is given). Then for any policy π and con-
stant τ > 0 we define risk-seeking value functions for each
(s, a) ∈ Sl ×A, l = 1, . . . , L, as

Kπ
l,τ (s, a) = rl,τ (s, a) +

∑
s′∈Sl+1

P̄l(s
′ | s, a)Jπ

l+1,τ (s
′),

Jπ
l,τ (s) =

∑
a

πl(s, a)K
π
l,τ (s, a) + τH(πl(s, ·)), (2)
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where P̄ = EϕP and H denotes the entropy (Cover &
Thomas, 2012), and we define Jπ

L+1,τ ≡ 0. Similarly to
the optimal Q-values, we can define optimal K-values for
each (s, a) ∈ Sl × A, l = 1, . . . , L, and any τ > 0 as
follows

K⋆
l,τ (s, a) = rl,τ (s, a) +

∑
s′∈Sl+1

P̄l(s
′ | s, a)J⋆

l+1,τ (s
′
l),

where

J⋆
l,τ (s) = max

πl∈∆(A)

(∑
a

πl(s, a)K
⋆
l,τ (s, a) + τH(πl(s, ·))

)
= τ log

∑
a∈A

exp(K⋆
l,τ (s, a)/τ),

where again we define J⋆
L+1,τ ≡ 0. The policy that

achieves the max is given by the ‘Boltzmann’ policy over
the K-values, that is, for each (s, a) ∈ Sl×A, l = 1, . . . , L

π⋆
l,τ (s, a) = exp

(
K⋆

l,τ (s, a)− J⋆
l,τ (s)

τ

)
. (3)

Observe that if the agent has no uncertainty (i.e., σ = 0),
then letting τ → 0 recovers the original Q and V formu-
lations in §2. The risk-seeking Bellman equation captures
both the expected value and the uncertainty, and both prop-
agate through the MDP to other states and actions. It is the
‘temperature’ parameter τ that is controlling the trade-off
between them. So far τ is a free-variable, in the sequel we
shall show how to optimize it so as to minimize regret.

The main result of O’Donoghue (2021) is that following
the policy in Eq. (3) guarantees a sublinear Bayesian regret
bound for appropriate choices of σ and τ . In other words,
the policy associated with the optimal K-values balances
exploration and exploitation efficiently. However, finding
the policy requires solving a Bellman equation for the op-
timal K-values and the analysis was restricted to tabular
cases. This paper builds on that work in three main ways:

1. We present a new objective over policies, rather than
values, which can be solved using policy gradients to
obtain the policy in Eq. (3).

2. The algorithm we derive is entirely model-free,
whereas the previous work was model-based.

3. We extend the analysis and experiments to cover non-
tabular and function approximation cases.

All the quantities we presented in this section are functions
of the current beliefs ϕ, however, for brevity we have sup-
pressed this dependence in the notation.

4. Saddle-Point Problem
If we assume that the posterior over the reward and transi-
tion functions are layerwise-independent, then it is straight-

forward to show that for any τ ≥ 0 and for l = 1, . . . , L

Kπ
l,τ (s, a) ≥ EϕQ

π
l (s, a), Jπ

l,τ (s) ≥ EϕV
π
l (s).

Furthermore, in (O’Donoghue, 2021) it was shown that un-
der some additional assumptions the optimal values satisfy
for l = 1, . . . , L

K⋆
l,τ (s, a) ≥ EϕQ

⋆
l (s, a), J⋆

l,τ (s) ≥ EϕV
⋆
l (s)

for an appropriate choice of σ and any τ ≥ 0. This means
that the K-values are optimistic, and following policy (3) is
an instance of optimism in the face of uncertainty. For our
purposes in this paper we shall assume the following bound
holds.

Assumption 1. Es∼ρJ
⋆
1,τ (s) ≥ Es∼ρEϕV

⋆
1 (s), ∀ τ ≥ 0.

Under Assumption 1, finding the tightest bound in the fam-
ily requires solving minτ Es∼ρJ

⋆
1,τ (s), and since for any τ

we have maxπ Es∼ρJ
π
1,τ (s) = Es∼ρJ

⋆
1,τ (s), we obtain the

following saddle-point problem:

max
π∈Π

min
τ≥0

Es∼ρJ
π
1,τ (s) (4)

where Π ⊆ ∆(|A|)|S| is some possibly restricted policy
space. The solution to this saddle-point problem yields
the tightest upper-bound on the expected value of the op-
timal value function Es∼ρEϕV

⋆
1 (s) under the posterior ϕ,

and, as we shall show, it also minimizes a bound on the
Bayesian regret. Implicit in the definition of the saddle-
point problem is the assumption of strong duality, which
we state next. This assumption holds, for instance, if Π is
convex.

Assumption 2. Strong duality holds for (4), i.e.,

min
τ≥0

max
π∈Π

Es∼ρJ
π
1,τ (s) = max

π∈Π
min
τ≥0

Es∼ρJ
π
1,τ (s).

The saddle-point problem (4) is our main problem of inter-
est, and the rest of this manuscript is dedicated to solving it
and interpreting the solutions.

4.1. The connection to Bayesian regret

In order to provide a connection between the saddle-point
problem (4) and the Bayesian regret (1) let us define a few
quantities of interest. First, we define a notion of optimism
for a given π and τ ≥ 0

Optimism(π, τ) := Es∼ρ

(
Jπ
1,τ (s)− EϕV

π
1 (s)

)
.

Since Jπ
1,τ (s) ≥ EϕV

π
1 (s) for all τ , the Optimism is mea-

suring how much ‘bonus’ is derived from the risk-seeking
exponential utility, relative to the (risk-neutral) expected
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value. Let us also define a notion of ‘distance’ from a pol-
icy to the optimal optimistic policy as the expected KL-
divergence between the policies under the stationary distri-
bution generated by π (Cover & Thomas, 2012), that is,

Dist(π, τ) :=

L∑
l=1

τEπKL(πl(s, ·) || π⋆
l,τ (s, ·)).

It turns out that we can relate the KL-divergence and the
suboptimality gap for any policy (O’Donoghue, 2022; Mei
et al., 2020).

Lemma 1. [Cor. 1 (O’Donoghue, 2022)] For any τ > 0
and policy π ∈ ∆(A)|S| we have:

Dist(π, τ) = Es∼ρ(J
⋆
1,τ (s)− Jπ

1,τ (s)).

With this we are ready to present the following decompo-
sition.

Lemma 2. Under Assumption 1 we can bound the
Bayesian regret in a single episode for any policy π as

R(π, ϕ) ≤ Dist(π, τ) + Optimism(π, τ), ∀τ ≥ 0.

The proof is deferred to Appendix B. This lemma shows
that we can decompose the Bayesian regret bound into two
terms. One term is a distance from the policy to the optimal
optimistic policy, and the other term relates to the amount
of optimism in the policy. Next we show how the saddle-
point problem we are solving (4) relates to this decomposi-
tion.

Theorem 1. Assume 1 and 2, and let (π∗, τ∗) be a solution
to the saddle-point problem (4), then

R(π∗, ϕ) ≤ min
π∈Π

Dist(π, τ∗) + min
τ

Optimism(π∗, τ).

We defer the proof to Appendix B. The above Theorem
tells us that even though the ‘players’ are competing in a
zero-sum game, they are in a sense cooperating to minimize
the Bayesian regret of the resulting policy. The solutions
to the saddle-point problem (4) are each minimizing one
component that contributes to the Bayesian regret bound in
the decomposition we derived in Lemma 2, and ignoring
the other. In summary, we can interpret the saddle point
problem as follows:

• The policy player π is maximizing the entropy-
regularized optimistic reward, where the amount of
optimism is controlled by τ . Equivalently, it is mini-
mizing the expected KL-divergence to the optimal op-
timistic policy, and thereby minimizing one compo-
nent contributing to the regret bound.

• The risk-seeking player τ is balancing the reward
bonus and entropy regularization in order to minimize

the upper bound on the value function under π. Equiv-
alently, it is minimizing the amount of optimism in the
policy, and thereby minimizing the other component
contributing to the regret bound.

Next we show a concentration result for the optimism term.

Lemma 3. Assume that the priors are layerwise-
independent and that the uncertainty at each state-action
decays as σ2(s, a) = σ2/n(s, a) for some σ > 0, where
n(s, a) is the visitation count of the agent to (s, a). Then for
any sequence of policies πt, t = 1, . . . , N after T = NL
timesteps we have

E
N∑
t=1

min
τ

Optimismϕt(πt, τ) ≤ Õ(σ
√

|S||A|T ),

where Õ suppresses logarithmic terms.

The proof is included in Appendix B. Note that the above
holds for any sequence of policies and has no dependence
on the feasible policy set Π. This lemma tells us that un-
der any sequence of policies, under the optimal choice of τ
the expected cumulative sum of the Optimism terms grows
sub-linearly. If Π = ∆(A)|S|, then the optimal policy sat-
isfies Dist(π, τ) = 0 in the above bound and corresponds
exactly to the K-learning policy in Eq. (3), so have the we
following corollary.
Corollary 1. Assume 1 and 2 and let Π = ∆(A)|S|. If
algorithm Alg produces the policy that solves the saddle-
point (4) for each episode t then after T = NL timesteps

BR(Alg, ϕ) ≤ Õ(σ
√
|S||A|T ).

We can ensure that Assumption 1 holds in the case of
bounded rewards, i.e., |r| ≤ 1 a.s., by setting σ = O(L),
which recovers the bound in O’Donoghue (2021).

4.2. Function approximation

In this manuscript we are interested in efficient reinforce-
ment learning in non-tabular settings. In this case we must
resort to using function approximators to parameterize the
policy (or the value function) and we are interested in how
well our function approximators will perform. Here we dis-
cuss the relationship between the capacity of the function
approximator and the regret for our approach.

Consider the case where we are using an approximation
architecture with feasible policy set Π ⊂ ∆(A)|S| chosen
such that we can guarantee that for any τ

min
π∈Π

max
s,l

KL(πl(s, ·) || π⋆
l,τ (s, ·)) ≤ ϵ/τ,

from which we have minπ∈Π Dist(π, τ) ≤ ϵL. This might
occur if, for instance, we have an approximation archi-
tecture that can approximate the value functions up to a
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small constant ϵ > 0. Consider the regret of the policy
π∗ = argmaxπ∈Π minτ Es∼ρJ

π
1,τ (s). In this case, using

Theorem 1, we can bound the per-episode Bayesian regret
as

R(π∗, ϕ) ≤ min
τ

Optimism(π, τ) + ϵL.

and so the algorithm AlgΠ producing policies πt
∗ ∈ Π, t =

1, . . . , N enjoys bound

BR(AlgΠ, ϕ) ≤ Õ(σ
√

|S||A|T ) + ϵT,

where T = NL is the total number of timesteps. In other
words, we can translate the error from the function ap-
proximation directly into a regret bound when solving the
saddle-point problem (4), and richer function classes will
yield better bounds.

On the other hand, consider the case where our approxima-
tion architecture is flexible enough to represent any policy,
but our algorithm for choosing the policy employs an ap-
proximation procedure, such as online policy gradient. In
that case the KL-divergence from the current policy to the
optimistic policy is not zero, but if the policy is converging
towards the optimal policy at some rate, then we may be
able bound the sum of the KL divergences. There has been
much recent work examining the convergence rate of pol-
icy gradient and entropy regularized policy gradient (under
somewhat restrictive assumptions on the initial state distri-
bution ρ) (Agarwal et al., 2021; Zhang et al., 2021; Bhan-
dari & Russo, 2019; 2021; Mei et al., 2020). We leave to
future work combining the results in this paper with results
from the literature for the derivation of regret bounds in that
case.

5. Epistemic-Risk-Seeking Actor-Critic
We have a derived a two-player zero-sum game, the solu-
tion of which yields a policy that explores efficiently by
minimizing a bound on Bayesian regret. There are many
possible approaches one could use to solve the saddle point
problem, even in the purely online RL setting. In this sec-
tion we describe a very simple approach that works reason-
ably well in practice, though it is likely that more sophis-
ticated variants of policy algorithms would perform better
(Schulman et al., 2017; Abdolmaleki et al., 2018; Schul-
man et al., 2015; Kakade, 2001). Our approach is to de-
rive gradients for both the policy parameters and the risk-
seeking parameter, then to update them online simultane-
ously using stochastic gradients. If we parameterize the
policy π by some θ ∈ Θ, then the gradient of the saddle-

point problem (4) with respect to θ is given by

Es∼ρ∇θJ
π
1,τ (s) =

L∑
l=1

Eπ

(
∇θ log π(sl, al)K

π
l,τ (sl, al)+

(5)

τ∇θH(π(sl, ·))
)
. (6)

This is a straightforward extension of the classic policy
gradient theorem adapted to our case (Sutton et al., 1999).
Similarly, the gradient with respect to τ is given by

Es∼ρ∇τJ
π
1,τ (s) =

L∑
l=1

Eπ

(
H(π(sl, ·)−

σ2(sl, al)

2τ2

)
.

Finally, we have a relationship between the gradients and
the Bayesian regret bound decomposition.
Corollary 2. The gradients of the saddle-point correspond
to the gradients of the components in the Bayesian regret
decomposition in Lemma 2, i.e.,

Es∼ρ(−∇θJ
π
1,τ (s),∇τJ

π
1,τ (s)) =

(∇θDist(π, τ),∇τOptimism(π, τ)).

Fixing τ and taking a step in the negative gradient with
respect to θ is towards minimizing the KL distance to the
optimal optimistic policy, and for fixed θ taking a step in
the direction of the gradient with respect to τ is towards
minimizing the amount of optimism in the policy. Seen this
way, the gradient flow is in the direction of minimizing the
components in the Bayesian regret bound decomposition
from Lemma 2.

Importantly, both of these gradient terms can be interpreted
as expectations under the state-action distribution induced
by the policy π. This suggests a scheme where we sample
states and actions from the distribution generated by the
policy, and use the same samples to update both quantities.
We call this approach epistemic-risk-seeking actor-critic
(ERSAC), and it is implemented as Algorithm 1 (presented
in the appendix). Since this algorithm is applying stochas-
tic gradient ascent-descent, rather than solving the saddle-
point problem (4) exactly, we have no known Bayesian re-
gret guarantees. However, as we shall demonstrate empir-
ically, this algorithm tends to perform significantly better
than vanilla actor-critic in hard exploration problems.

Estimating the uncertainty σ. In Algorithm 1 we left
the process of deriving the estimator of Kπ open. An
estimator that performed well in practice is to use online
TD−λ with λ = 0.8 and a rollout length of N = 50 (Sut-
ton & Barto, 1998).We have also left the source of the un-
certainty signal σ(s, a) undefined. There is much work in
the deep RL literature that could be plugged into the al-
gorithm here as discussed in §1. For our experiments we

6
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augmented the neural network with an ensemble of reward
prediction heads with randomized prior functions (Osband
et al., 2018), and used the variance of the ensemble predic-
tions as the uncertainty signal.

Comparison to other actor-critic methods. Algorithm
1 is a relatively small modification of a vanilla actor
critic, the modifications are in blue. They are primarily
the addition of the uncertainty terms, learning the τ risk-
seeking parameter, and the addition of entropy regulariza-
tion weighted with the learned τ . In our experiments we
shall refer to the algorithm without these modifications as
vanilla actor-critic. The presence of the reward predictors
in Algorithm 1 can act as an auxiliary task and potentially
improve the representation learned by the neural network
thereby improving performance. This would give our agent
an advantage over vanilla actor-critic that has nothing to do
with exploration. To counter that, we also give the vanilla
actor-critic agent the same reward prediction task, but we
do not use the uncertainty estimates they generate.

A common pattern in optimistic deep RL algorithms is to
simply add an optimism bonus to the rewards based on the
standard deviation of the uncertainty, i.e., replace the re-
ward with r+(s, a) = r̄(s, a) + µσ(s, a) for some hyper-
parameter µ > 0, and then run a vanilla actor-critic algo-
rithm using this reward. In our experiments we shall refer
to this variant as simple optimism actor-critic, where the
uncertainty signal is the same ensemble approach as used
by Algorithm 1 and all results are presented after tuning the
µ hyper-parameter.

6. DeepSea Numerical Results
In the DeepSea environment the agent finds itself at the top
left of an L × L grid and must navigate it to find the re-
ward in the bottom right corner, see Figure 6. At each time-
step the agent descends one row and must choose to move
one column left or right. This is a challenging exploration
unit-test because the agent needs to select the action ‘move
right’ L times in a row in order to reach the goal (Osband
et al., 2019) (in practice the actions corresponding to right
and left are different in each state to prevent an agent with a
bias for taking one action repeatedly from solving the prob-
lem unfairly). An agent that is acting randomly will take
time exponential in L to reach the goal. However, agents
that are exploring efficiently should reach the goal in time
polynomial in L. Although DeepSea can be made a tabular
environment, in this experiment we feed a one-hot repre-
sentation of the agent location into a neural network in or-
der to test how various deep RL approaches work. We com-
pare four approaches: Vanilla actor-critic, ERSAC (Alg. 1)
with a reward predictor ensemble size of 10, simple opti-
mism actor-critic with the same uncertainty signal as Alg 1,

and Bootstrapped DQN (Osband et al., 2016) with 10 ele-
ments in the value ensemble and 10 randomized priors (one
per ensemble member). All agents had the same basic net-
work architecture. Bootstrapped DQN performs an update
with batch size of 128 samples every actor step which is the
default in the agent implemented in the ‘bsuite’ (Osband
et al., 2019). This uses substantially more compute and
wall-clock time than the other approaches, and required a
GPU to run efficiently. In Figure 1 we show the results of
the four approaches. In that figure the blue dots represent
solved DeepSea instances (where solved means the agent
reached the goal reliably) and red dots are unsolved. The
x-axis is depth and the y-axis is the number of episodes un-
til that depth is solved. The grey dashed line is exponential
in depth, which is the dependence we expect a naive agent
to have. If the agent is consistently below this line, then it
is exploring well.

As we can see, the naive vanilla actor-critic algorithm suf-
fers from an exponential dependence on depth and con-
sequently cannot solve depths of greater than around 14
within 105 episodes. Bootstrapped DQN is much faster
than Algorithm 1 at learning the small DeepSea instances
since it uses significant amounts of replay (though we close
this gap in §7). However, as the DeepSea size grows it sud-
denly fails, unable to solve DeepSea instances larger than
around size 50. The simple optimism actor-critic does pro-
vide some benefit over vanilla actor-critic, as it is able to
solve DeepSeas out to approximately depth 50, however,
the dependency on depth is significantly worse than ER-
SAC. ERSAC (Algorithm 1) is able to solve DeepSea in-
stances out to size 100 without a clear performance degra-
dation. In Figure 2 we show on a log-log plot that Algo-
rithm 1 has an empirical quadratic dependency on depth,
a major improvement over the exponential dependency of
the naive actor-critic approach.

In Appendix C we further analyze the performance on
DeepSea, and the sensitivity of Algorithm 1 to various
hyper-parameters. We also test far deeper DeepSeas, in-
cluding showing performance on a DeepSea of depth 250
where 99 out of 100 seeds reached the goal with 106

episodes. To the best of our knowledge no other deep RL
algorithm has been able to solve such hard instances of
DeepSea.

7. Incorporating Off-Policy Data
So far our discussion of Algorithm 1 has been entirely
about the on-policy case. In practice however, state-of-
the-art deep RL agents use a substantial amount of expe-
rience replay data, which vastly improves data efficiency
and overall performance (Mnih et al., 2015; O’Donoghue
et al., 2017; Hessel et al., 2018). Since exploration is also
about increasing data efficiency, being able to combine re-
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Figure 1. ERSAC is able to solve far deeper DeepSea instances than Bootstrapped DQN, despite requiring significantly less compute.
Adding simple optimism to actor-critic provides some benefit, but it struggles to solver deeper instances. Vanilla actor-critic requires
exponential experience to solve DeepSeas of increasing depth.

Figure 2. Algorithm 1 has an empirical quadratic dependency on
depth when solving DeepSea.

play and principled exploration would yield a double im-
provement. In this section we extend Algorithm 1 to use
off-policy replay data and show that combining the risk-
seeking objective and replay can provide large performance
improvements. To do that we make the following updates
to the core algorithm:

• Add state-action-reward-noise (st, at, rt, ζt), t =
1, 2, . . . , transition data to a replay buffer, where ζt ∼
N (0, ρIK) is independent noise with variance ρ ≥ 0,
and K is the size of the ensemble.

• Mix on-policy data with off-policy data sampled from
the replay buffer according to a prioritization scheme
(Schaul et al., 2015).

• Apply V-trace clipped importance sampling correc-
tions to the off-policy trajectories (Espeholt et al.,
2018).

• Use the reward + noise as targets for the reward pre-
diction ensemble (Dwaracherla et al., 2022).

The above setup adds a small amount of Gaussian noise
to the targets for the reward ensemble. This is necessary
to prevent collapsing the uncertainty estimates from the
use of replay data. It is important that the noise terms be
added to the replay since this ensures that the epistemic un-
certainty decays with the number of real data, rather than
the number of replay steps. Using randomly initialized re-
ward heads, randomized prior functions, and adding noise
to the replay buffer (a form of Bayesian bootstrapping) fol-
lows the recipe analyzed in Dwaracherla et al. (2022) for
good uncertainty estimates using ensembles. The V-trace
clipped importance sampling re-weights the data coming
from off-policy data according to how likely it is under the
current policy, so that the gradient update in (5) is still (ap-
proximately) under the correct measure when using replay
(Munos et al., 2016; Espeholt et al., 2018). We shall refer
to Algorithm 1 when we add the changes above as ‘ERSAC
+ replay’.

In Fig. 3 we compare the performance of ERSAC on
DeepSea both with and without replay data. It is clear that
adding replay data substantially improves performance,
while maintaining the empirical quadratic dependence of
solve time on depth (see Fig. 13). Overall, the ERSAC +
replay agent yields about a 4× data efficiency improvement
over the pure on-policy version. The off-policy agent here
used a batch size of 16 with an offline-data fraction of 0.97
per batch. Replay was prioritized by TD-error and when
sampling the replay prioritization exponent was 1.0 (Schaul
et al., 2015). The replay noise parameter was ρ = 0.1. All
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Figure 3. Adding replay to ERSAC improves data efficiency by a
factor of about 4× on DeepSea. Note the depth here goes to 151.

other settings were identical to the on-policy variant. In
order to show the advantage of using noise in the replay
buffer, we show results with and without noise on DeepSea
in Figure 12.

There are two main ways in which replay may improve
performance on DeepSea. First, it may reach the goal
faster. Second, once the goal is reached it may ‘latch on’
faster, that is it may return to the goal consistently in fewer
episodes. In Fig. 4 we show the reward of the agents on
a depth 100 instance of DeepSea, averaged over 100 ran-
dom seeds. It is clear that using replay is both finding the
goal and latching on faster. However, we note that the on-
policy version of the algorithm reached the goal 99 times
out of 100, whereas the off-policy version reached the goal
only 93 times. This suggest that the replay version may not
be quite as robust as the on-policy version, at least for the
hyper-parameters we used.

Figure 4. Adding replay to ERSAC improves both the time until
goal first reached and the latching on speed in DeepSea.

8. Atari Numerical Results
Finally, we compare ERSAC + replay to an Actor-critic
+ replay agent on the Atari benchmark (Bellemare et al.,
2012). Our setup involves actors generating experience
and sending them to a learner, which mixes the online
data and offline data from a replay buffer to update the

network weights (Hessel et al., 2021; Mnih et al., 2016).
Our agent is relatively simple compared to modern state-
of-the-art Atari agents since it is missing components like
model-based rollouts, distributional heads, auxiliary tasks,
etc. The point of these experiments is not to produce state-
of-the-art results, but to provide evidence of a clear benefit
when the addition of the risk-seeking objective function is
incorporated into a policy-gradient based agent. We ran
both agents on the full Atari suite and averaged the results
over five seeds. Between the agents all hyper-parameters in
common were set to the same values, and tuned for the re-
play actor-critic agent performance. The replay actor-critic
agent used a fixed entropy regularization of 0.02. The per-
game results for all 57 games are presented in Figure 15,
and Figure 5 shows the median human-normalized perfor-
mance across the entire suite (calculated in the same way
as Hessel et al. (2018)). Clearly the addition of the risk-
seeking objective in Algorithm 1 is providing a signifi-
cant benefit over the actor-critic agent. The ERSAC agent
reaches the peak performance of the actor-critic agent in
about 1.8× fewer environment frames, for essentially the
same computational cost. The advantage comes from the
fact that the risk-seeking objective leads to deep explo-
ration, which results in finding higher rewarding states and
in better cumulative performance.

Figure 5. ERSAC reaches the same median performance on the
Atari suite as the actor-critic baseline in about 1.8× fewer frames.

9. Conclusion
We presented a new policy-gradient algorithm for efficient
exploration. It was derived by endowing the agent with an
epistemic-risk-seeking utility function, where the amount
of risk-seeking is controlled by a risk-seeking parameter.
The formulation entails solving a zero-sum game between
the policy and the risk-seeking parameter. The policy is
updated to maximize the optimistic reward, and the risk-
seeking parameter is tuned to minimize regret. This proce-
dure is a small modification to vanilla actor-critic but pro-
duces vastly improved results on challenging exploration
problems.
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A. Main algorithm

Algorithm 1 Epistemic-risk-seeking actor-critic (ERSAC)
1: Input initial parameters θ0 ∈ Θ, τ0 > 0, uncertainty estimator σ : S ×A → R+

2: Input policy function πθ : S → ∆(A) and value function Jθ : S → R
3: For k = 0, 1, . . .
4: Gather trajectory ν = (r1, s1, a1, . . . , rN , sN ) using πk

5: Compute uncertainties σ(si, ai), i = 1, . . . N
6: Estimate K̂π

l,τ (si, ai) using ri, Jθk(si), σ(si, ai), τ
k, i = 1, . . . , N , and Eq. 2

7: Lpolicy = (1/N)
∑N

i=1

(
log πθk(si, ai)stop_grad(K̂π

l,τ (si, ai)− Jθk(si))− τkH(πθk(si, ·))
)

8: Lvalue = (1/N)
∑N

i=1(Jθk(si)− stop_grad(K̂π
l,τ (si, ai)− τk log πθk(si, ai)))

2

9: Lτ = (1/N)
∑N

i=1

(
σ2(si,ai)

2τ + τH(πθk(si, ·)
)

10: θk+1 = θk + η(∇θLpolicy −∇θLvalue)
11: τk+1 = τk − η∇τLτ

12: Update uncertainty model σ using ν

B. Proofs
Lemma 2. Under Assumption 1 we can bound the Bayesian regret in a single episode for any policy π as

R(π, ϕ) ≤ Dist(π, τ) + Optimism(π, τ), ∀τ ≥ 0.

Proof.

R(π, ϕ) = EϕEs∼ρ(V
⋆
1 (s)− V π

1 (s))

≤ Es∼ρ(J
⋆
1,τ (s)− EϕV

π
1 (s))

= Es∼ρ(J
⋆
1,τ (s)− Jπ

1,τ (s) + Jπ
1,τ (s)− EϕV

π
1 (s))

= Dist(π, τ) + Optimism(π, τ).

Theorem 1. Assume 1 and 2, and let (π∗, τ∗) be a solution to the saddle-point problem (4), then

R(π∗, ϕ) ≤ min
π∈Π

Dist(π, τ∗) + min
τ

Optimism(π∗, τ).

Proof. We can rewrite the saddle-point formulation in two ways. For any π we have

min
τ

Es∼ρJ
π
1,τ (s) = min

τ
Es∼ρ(J

π
1,τ (s)− EϕV

π
1 (s) + EϕV

π
1 (s))

= Es∼ρEϕV
π
1 (s) + min

τ
Optimism(π, τ),

and for any τ

max
π∈Π

Es∼ρJ
π
1,τ (s) = max

π∈Π
Es∼ρ(J

π
1,τ (s)− J⋆

1,τ (s) + J⋆
1,τ (s))

= Es∼ρJ
⋆
1,τ (s)−min

π∈Π
Dist(π, τ).

From strong duality and the fact that (π∗, τ∗) is a primal-dual optimum we know that maxπ∈Π Es∼ρJ
π
1,τ∗(s) =

Es∼ρJ
π∗
1,τ∗

(s) = minτ Es∼ρJ
π∗
1,τ (s), which implies

Es∼ρJ
⋆
1,τ∗(s)−min

π∈Π
Distϕ(π, τ∗) = Es∼ρEϕV

π∗
1 (s) + min

τ
Optimism(π∗, τ)

13
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and so

R(π∗, ϕ) ≤ Es∼ρ(J
⋆
1,τ∗(s)− EϕV

π∗
1 (s))

= min
π∈Π

Dist(π, τ∗) + min
τ

Optimism(π∗, τ).

Lemma 3. Assume that the priors are layerwise-independent and that the uncertainty at each state-action decays as
σ2(s, a) = σ2/n(s, a) for some σ > 0, where n(s, a) is the visitation count of the agent to (s, a). Then for any sequence
of policies πt, t = 1, . . . , N after T = NL timesteps we have

E
N∑
t=1

min
τ

Optimismϕt(πt, τ) ≤ Õ(σ
√
|S||A|T ),

where Õ suppresses logarithmic terms.

Proof. At episode t denote the uncertainty at state-action (s, a) as σ2/nt(s, a), where nt(s, a) is the visitation count of
(s, a) before episode t. Under the assumption of independent priors across layers we can write

Es∼ρEϕtV πt

1 (s) =

L∑
l=1

Eπt r̄tl (sl, al),

and recall that

Es∼ρJ
t,πt

1,τ (s) =

L∑
l=1

Eπt

(
r̄tl (sl, al) +

σ2
l

2τnt(sl, al)
+ τH(πt

l (sl, ·))
)
,

and so we can write

Optimism(πt, τ) = EϕEs∼ρ(J
π
1,τ (s)− V π

1 (s))

=

L∑
l=1

Eπ

(
σ2

2τnt(sl, al)
+ τH(πt

l (s, ·))
)
.

Now define scalar (up to log factors which we shall ignore for brevity)

τN = Õ(σ
√

|S||A|/(LN)).

Then we have

N∑
t=1

min
τ

Optimismϕt(πt, τ) ≤
N∑
t=1

Optimismϕt(πt, τN )

=

N∑
t=1

L∑
l=1

Eπ

(
σ2

2τNnt(sl, al)
+ τNH(πt

l (s, ·))
)

≤ (1/2)σ2|A|(1 + logN)τ−1
N

L∑
l=1

|Sl|+ τNNL log |A|

≤ Õ(σ
√
L|S||A|N),

where we used the fact that entropy is bounded, the pigeonhole principle Lemma 6 from (O’Donoghue, 2021), and the
identity

∑L
l=1 |Sl| = |S|. The result follows by substituting in T = NL.

14
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Figure 6. The DeepSea MDP is a challenging exploration ‘unit-test’ where the agent must navigate from the top left state to the bottom
right in order to collect a positive reward. Naive exploration approaches take time exponential in depth to solve this problem.

C. DeepSea results discussion
K-learning has a worst-case Õ(L

√
|S||A|T ) Bayesian regret in tabular domains. In a DeepSea of depth d we have L = d,

S = d2, A = 2, so this regret bound would translate as Õ(d2
√
T ), and to have average regret below some threshold would

require O(d4) timesteps, or O(d3) episodes. Algorithm 1 is an online, stochastic policy gradient based approximation to
K-learning, so we have no known regret bound guarantee. However, in Figure (2) we find that empirically for Algorithm 1
the number of episodes required to ‘solve’ a DeepSea instance appears to have a quadratic dependency on depth, a factor
of d better than the worst-case bound. Naive approaches to exploration require episodes scaling as O(2d), so a quadratic
dependency is a substantial improvement.

Our agent used TD-λ with λ = 0.8, Figure 7 we show the performance of the agent as a function of the λ parameter. It
appears that values of λ ≥ 0.6 perform well, able to solve most or all of the DeepSea instances out to depth 100. Figure 8
shows the robustness of the method to TD-λ rollout length. For very small rollouts (e.g., 1) the benefit of Algorithm 1 over
vanilla actor-critic is minor, however the epistemic-risk-seeking agent is able to solve practically all DeepSea instances to
depth 100 reliably for just a rollout of length 25.

Figure 7. When using TD-λ to estimate the K-values in Algorithm 1 larger λ values tend to perform better in DeepSea.

Finally, we also tested how important learning the risk-seeking parameter τ is, as done in Algorithm 1. In Figure 9 we
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Figure 8. When using TD-λ to estimate the K-values in Algorithm 1 even relatively small rollout lengths are able to solve deeper DeepSea
instances. Even a rollout length of 5 is able to solve more than 60% of DeepSea instances, and 25 is enough to solve practically all of
them.

compare the approach in Algorithm 1 to simply using a fixed τ parameter. From this Figure it appears that there is a fixed
choice of τ that matches the learned approach on DeepSea performance. However, the performance of the agent is highly
dependent on this parameter and even small deviations can dramatically degrade reliability. On the other hand, Algorithm
1, which learns τ from data, is able to solve almost all the DeepSea instances robustly over a wide range of initial choices
of τ , which suggests that the update rule that minimizes the zero-sum game (4) over τ is effective at tuning the amount of
risk-seeking for efficient exploration.

Figure 9. The optimal fixed risk-seeking parameter τ can produce good results, but learning τ via Algorithm 1 is far more robust.

The excellent performance of Algorithm 1 on DeepSea raises the question: What is the maximum depth that the algorithm
is able to consistently solve? We ran the algorithm on a DeepSea of depth 250 with 100 random seeds to see how the
performance degraded with depth. To handle the longer episode length before a reward we increased both the discount
factor to γ = 0.999 and the λ factor in TD-λ to 0.95. The average performance is plotted in 10. Overall, 99 out of the 100
seeds managed to reach the goal within 106 episodes. In order to reach a positive reward the agent must make the exact
right sequence of 250 actions and any deviation is impossible to recover from. This is a very difficult problem and one

16



Efficient Exploration via Epistemic-Risk-Seeking Policy Optimization 17

that would require an enormous number of episodes for a simple dithering agent, since 2250 ≈ 1075. This suggests that
Algorithm 1 is able to handle extremely deep and difficult DeepSeas without much degradation in performance, and the
limit has not yet been reached.

Figure 10. Performance on DeepSea of depth 250 for Algorithm 1 averaged over 100 seeds. Overall, 99 out of 100 seeds managed to
reach the goal within 106 episodes.

C.1. DeepSea replay experiments

In Figure 12 we show the benefit of adding noise to the reward samples in the replay buffer. It is clear that without the
addition of noise the replay is destroying the uncertainty estimates and leading to worse performance than without replay.
However, once the noise is added the agent with replay outperforms the purely online agent. Figure 11 is the same as
Figure 3 except on a linear, rather than log, scale. Figure 13 shows that adding replay to ERSAC does not appear to alter
the quadratic dependency of solve time on depth.

Figure 11. Adding replay to the epistemic-risk-seeking actor-critic improves data efficiency by a factor of about 4×. Note the depth here
goes out to 151.

D. Atari results
In Figure 14 we present the performance of Algorithm 1 compared to the vanilla actor-critic algorithm on a collection of 7
hard exploration games from the Atari 57 suite (Bellemare et al., 2012). In Figure 15 we compare the performance of the
agents across all 57 Atari games.

17
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Figure 12. Adding noise to the reward targets when using replay dramatically improves the uncertainty estimates and the performance
of the agent.

Figure 13. The solve time for ERSAC + replay on DeepSea has the same empirical quadratic dependency with depth as ERSAC without
replay, but it is about 4× faster overall.

18
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Figure 14. In this collection of hard exploration Atari games we see that the epistemic actor-critic algorithm provides a performance
improvement over Replay actor-critic in four of the 7 games. In particular, there is a significant performance improvement for the very
hard exploration game ‘Montezuma’s revenge’.
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Figure 15. Performance of ERSAC and an actor-critic agent across all 57 Atari games.
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E. Future work
We conclude with some discussion about future directions for this work. One question that this work raises is whether it
is appropriate to have a single risk-seeking (entropy regularization) parameter τ for all states and actions (Ziebart, 2010;
Neu et al., 2017; O’Donoghue et al., 2017; Nachum et al., 2017; Eysenbach & Levine, 2019; Haarnoja et al., 2018). Some
preliminary work (O’Donoghue & Lattimore, 2021) suggests that in fact it is both possible and advantageous to have a
separate risk-seeking parameter for each state-action pair. In future work we may wish to investigate this. Simple actor-
critic methods are no longer state-of-the-art, with most effective policy-based agents employing a range of different tactics
to improve performance such as trust-regions, Q-value critics, natural gradients, model-based rollouts etc. An interesting
extension would be to incorporate the techniques discussed here into those agents. We discussed at a high-level the regret
of the formulation we derive in §2.1, and showed empirical regret scaling results in Figure 2. In future work it would be
interesting to combine the results of this work with theoretical results on the convergence rate of policy gradient algorithms
to derive a concrete regret bound for a epistemic-risk-seeking policy-gradient algorithm.
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