
Resurrecting Recurrent Neural Networks for Long Sequences

Antonio Orvieto 1 * Samuel L Smith 2 Albert Gu 2 Anushan Fernando 2 Caglar Gulcehre 2 Razvan Pascanu 2

Soham De 2

Abstract
Recurrent Neural Networks (RNNs) offer fast in-
ference on long sequences but are hard to opti-
mize and slow to train. Deep state-space models
(SSMs) have recently been shown to perform re-
markably well on long sequence modeling tasks,
and have the added benefits of fast parallelizable
training and RNN-like fast inference. However,
while SSMs are superficially similar to RNNs,
there are important differences that make it un-
clear where their performance boost over RNNs
comes from. We show that careful design of deep
RNNs using standard signal propagation argu-
ments can recover the impressive performance of
deep SSMs on long-range reasoning tasks, while
matching their training speed. To achieve this, we
analyze and ablate a series of changes to standard
RNNs including linearizing and diagonalizing the
recurrence, using better parameterizations and ini-
tializations, and ensuring careful normalization of
the forward pass. Our results provide new insights
on the origins of the impressive performance of
deep SSMs, and introduce an RNN block called
the Linear Recurrent Unit (or LRU) that matches
both their performance on the Long Range Arena
benchmark and their computational efficiency.

1. Introduction
Recurrent neural networks (RNNs) have played a central
role since the early days of deep learning, and are a natural
choice when modelling sequential data (McCulloch & Pitts,
1943; Hopfield, 1982; Rumelhart et al., 1985; Elman, 1990).
However, while these networks have strong theoretical prop-
erties, such as Turing completeness (Kilian & Siegelmann,
1996; Chung & Siegelmann, 2021), they can be hard to train

*Work done at DeepMind. 1Department of Computer
Science, ETH Zurich, Switzerland. 2DeepMind, London,
United Kingdom.. Correspondence to: Antonio Orvieto <anto-
nio.orvieto@inf.ethz.ch>, Soham De <sohamde@google.com>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

in practice. In particular, RNNs suffer from the vanishing
and exploding gradient problem (Hochreiter, 1991; Bengio
et al., 1994; Pascanu et al., 2013), which makes it difficult
to learn the long-range dependencies in the data. Several
techniques were developed that attempt to mitigate this is-
sue, including orthogonal/unitary RNNs (Arjovsky et al.,
2016; Helfrich et al., 2018), and gating mechanisms such
as long short-term memory (LSTM) (Hochreiter & Schmid-
huber, 1997) and gated recurrent units (GRUs) (Cho et al.,
2014a). Nonetheless, these models are still slow to optimize
due to the inherently sequential nature of their computation
(Kalchbrenner et al., 2016), and are therefore hard to scale.

In recent years, Transformers (Vaswani et al., 2017) have
gained increasing prominence for sequence modelling tasks,
achieving remarkable success in a wide range of applica-
tions (Brown et al., 2020; Dosovitskiy et al., 2020; Jumper
et al., 2021). Compared to RNNs, attention layers are easier
to scale and parallelize during training, and crucially they
do not suffer from the vanishing gradient problem, since
the interaction between any two tokens in the sequence is
modeled by direct edges in the network. A key issue with at-
tention layers however is that their computation and memory
costs scale quadratically as O(L2) for sequence length L.
Transformers can therefore be expensive to deploy on long
sequences. RNNs, which scale linearly with the sequence
length, are typically faster than transformers at inference
time even for modest sequence lengths (Liu et al., 2019).

Motivated by these problems, Gu et al. (2021a) recently
introduced the S4 model, a carefully designed deep state-
space model (SSM) that achieves remarkable performance
on tasks from the Long Range Arena (LRA) (Tay et al.,
2020), a benchmark explicitly designed to require very long-
ranged reasoning. The S4 layer and its variants (DSS, S4D,
Liquid S4, S5, etc) (Gupta et al., 2022a; Gu et al., 2022a;
Hasani et al., 2022; Smith et al., 2022) overcome the O(L2)
bottleneck of attention layers by modeling interactions be-
tween tokens sequentially using a hidden state. These mod-
els are therefore very efficient at inference time as we can
simply unroll the recurrent layer like an RNN. Futhermore,
since SSMs are linear in the temporal dimension, they are
easily parallelizable during training, in contrast to the slow
sequential nature of training non-linear RNNs. This makes
them very computationally efficient on long sequences.

1

Resurrecting Recurrent Neural Networks for Long Sequences

Tanh-RNN Lin-RNN Diag Stable No%m

50%

60%

70%

80%

90%

sCIFAR

ListOps

PathFinde%

PathX

7Dnh-5NN LLn-5NN DLDg 6tDble NRrm

50%

60%

70%

80%

90%

 + Performance on 
Text/Retrieval always

aligned with S4/5

 
dense
tanh linear 

dense
linear 
diag.

+ stable 
+ ring init.

+ norm
γ
↑ efficiency boost

Test accuracy on LRA tasks

⚡

(LRU)

Deep RNNs (the S4 way)

Lin. Encoder
(same for all
timestamps)

Linear Recurrent Unit (LRU)

x number of layers

MLP/GLU
(same for all
timestamps)

LRU
Linear
Recurrent
Unit

tim
e p

ool

classes

Linear
 Layer

Pre
-LN/B

N

skip connection

xk = diag(�)xk�1 + � �Buk

<latexit sha1_base64="lq8dCfMSVIgBgFuyopdT2ZmlIOc=">AAACRXicbVBNaxsxENWmaZu6X2577EXEFFJKzW4JND0EQnLpMYU6CVhmmdVqHWFptUizwUboz+XSe2/9B73k0BJyTWTHgTTpgODx5s2b0SsaJR2m6a9k5cHqw0eP1550nj57/uJl99XrA2day8WAG2XsUQFOKFmLAUpU4qixAnShxGEx2Zv3D0+EddLU33HWiJGGcS0ryQEjlXfZNJ/QbcpQTNGXEsZhw7OFrY9KUSMEpqJdCeE9neZ+8jEL9AO90RSqFYEVlWdj0BpCoMyUBukubaNv3u2l/XRR9D7IlqBHlrWfd3+y0vBWx71cgXPDLG1w5MGi5EqEDmudaIBP4mXDCGvQwo384pRA30WmpJWx8dVIF+ztCQ/auZkuolIDHru7vTn5v96wxWpr5GXdtChqfr2oahVFQ+eR0lJawVHNIgBuZbyV8mOwwDEG34khZHe/fB8cfOpnm/0v3zZ7O7vLONbIW7JONkhGPpMd8pXskwHh5JT8Jn/I3+RHcpacJxfX0pVkOfOG/FPJ5RWDC7LW</latexit>

λj = exp(−exp(νlog
j) + i exp(θlog

j))

γj ← (1 − |λj |
2)

1/2

magnitude phase

Normalization

Stable exponential parametrization

λ γ
Linear Recurrent Unit (LRU)

Recurrent 
Block Variants

�j = exp(� exp(log ⌫j) + i✓j)

<latexit sha1_base64="rZa9gtg8yQCXmWFb6RTYwjAt8cM=">AAACFXicbVBNSwMxFMz6bf1a9eglWIQWteyKoB4E0YtHBWsL3bJk09c2NZtdkrdiKf4JL/4VLx4U8Sp489+Y1h60dSBhmJlH8iZKpTDoeV/OxOTU9Mzs3HxuYXFpecVdXbs2SaY5lHkiE12NmAEpFJRRoIRqqoHFkYRKdHPW9yu3oI1I1BV2U6jHrKVEU3CGVgrdnUDacIOFHXpMA7hLC7uDO5BJK1BZ2CluiwDbgDZRDN28V/IGoOPEH5I8GeIidD+DRsKzGBRyyYyp+V6K9R7TKLiE+1yQGUgZv2EtqFmqWAym3htsdU+3rNKgzUTbo5AO1N8TPRYb040jm4wZts2o1xf/82oZNg/rPaHSDEHxn4eamaSY0H5FtCE0cJRdSxjXwv6V8jbTjKMtMmdL8EdXHifXeyV/v3R0uZ8/OR3WMUc2yCYpEJ8ckBNyTi5ImXDyQJ7IC3l1Hp1n5815/4lOOMOZdfIHzsc3262eCA==</latexit>

Figure 1. (Left) Our final architecture is a stack of Linear Recurrent Units (LRU), with nonlinear projections in between, and also uses
skip connections and normalization layers like batch/layer normalization. We expand on model details in §D and provide pseudocode in
§A. We use the same architecture structure (Norm-Recurrence-GLU-Skip) for every variant of recurrent module in our study (tanh dense,
linear dense, etc..). (Right) Summary of performance for each of the main steps outlined in the introduction to design LRUs starting from
tanh RNNs. We show the average performance on the Long Range Arena (LRA) across 3 seeds at each step, and also provide the average
performance of deep SSMs. For all LRA tasks, the LRU matches the performance of deep SSMs like S4/S4D/S5. Detailed results in §3.

While the S4 model is equivalent to an RNN during infer-
ence, it has a number of unique characteristics during train-
ing. For example, S4 is parameterized as a discretization
of a latent continuous-time system of differential equations,
and it uses specific initializations of the state matrices moti-
vated from the theory of polynomial projections (Gu et al.,
2020). While these characteristics might seem to motivate
the impressive performance of these models, later works
(Gu et al., 2022a; Smith et al., 2022; Gupta et al., 2022a;b)
have suggested that the specific initialization used by S4 is
often not crucial for performance, and that the discretization
rules which achieve best performance may not be the most
accurate in theory (Smith et al., 2022). It is therefore unclear
what these unique characteristics of deep SSMs are doing
mechanistically, and how they can be simplified.

Motivated by the striking similarities between RNNs and
deep SSMs, and in an attempt to better understand the under-
lying mechanism driving the performance of these models,
we study the power and limitations of RNNs when used
as core components of deep architectures for long-range
reasoning. Our main goal is to answer the question:

“Can we match the performance and efficiency of deep
continuous-time SSMs using deep RNNs?”

We give a positive answer to this question. We show that the
performance boost provided by deep SSMs like S4 can also
be achieved via a series of small changes to a vanilla deep
RNN. With these changes, we can recover the performance
and efficiency of deep SSMs on the Long Range Arena
(LRA) benchmark (Tay et al., 2020). We call this new RNN
model the Linear Recurrent Unit (or LRU for short).

Main Steps. We outline here the main steps needed to
design performant and efficient RNN models. While some

of these observations appear in prior works (see §B), we
provide novel perspectives and careful ablations leading to
new insights. Each step presented in this paper unveils a
specific property of recurrent networks, and showcases the
challenges and best practices in training deep RNNs.
• Linear Recurrences. When replacing SSM layers in a

deep architecture with vanilla RNN layers using tanh or
ReLU activations, the performance on Long Range Arena
(LRA) drops significantly. Surprisingly, in §3.1 we find
that simply removing the nonlinearities in the recurrence
of the RNN (i.e., using linear recurrences) gives a substan-
tial boost in test accuracy. We motivate this effect in §E.1
by showing that stacking linear RNN layers and nonlin-
ear MLP blocks (Fig.1) can model complex nonlinear
sequence-to-sequence maps without requiring nonlineari-
ties in the recurrence. While dropping the nonlinearity
does not harm expressivity, it leads to several advantages,
from the ability to directly control how quickly the gradi-
ents might vanish or explode, to allowing us to parallelize
training. Our findings also partially motivate the success
of deep SSMs, where the recurrence is also linear.

• Complex Diagonal Recurrent Matrices. Dense linear
RNN layers can be reparameterized to a complex
diagonal form without affecting the expressivity of the
network or the features at initialization (§3.2). Diagonal
linear RNN layers additionally allow for a highly
parallelizable unrolling of the recurrence using parallel
scans to substantially improve training speeds (Martin
& Cundy, 2017). We validate that these observations,
which have been leveraged by prior SSMs (Gupta et al.,
2022a; Smith et al., 2022), also provide important
efficiency improvements for linear RNN layers.

• Stable Exponential Parameterization. In §3.3 we show

2

Resurrecting Recurrent Neural Networks for Long Sequences

that using an exponential parameterization for the diag-
onal recurrent matrix has important benefits. Crucially,
this enables us to easily enforce stability during training,
which in turn allows us to modify the initialization dis-
tribution to facilitate long-range reasoning and improve
performance. Our results indicate that rather than the
specific deterministic initializations used by several
recent SSMs, it is the eigenvalue distribution of the
recurrent layer at initialization that determines whether
or not the model can capture long-range reasoning.

• Normalization. In §3.4 we show that normalizing the
hidden activations on the forward pass is important
when learning tasks with very long-range dependencies.
With this final modification, our RNNs can match the
performance of deep SSMs on all tasks in the LRA
benchmark. Connecting back to state-space models, we
show in §4 how our normalization scheme can be linked
to the discretization structure in S4.

We summarize the deep Linear Recurrent Unit (LRU) ar-
chitecture used in this paper, and the effect of each of the
above steps on performance in Fig.1. We emphasize that the
main purpose of our work is not to surpass the performance
of S4-based models, but rather to demonstrate that simple
RNNs can also achieve strong performance on long range
reasoning tasks when properly initialized and parameterized.
We believe the insights derived in this paper can be useful
to design future architectures, and to simplify existing ones.

2. Preliminaries
In this section, we compare the key architectural compo-
nents (RNNs and SSMs) studied in this work, and also
describe our methodology and experimental setup. For a
more thorough discussion including related architectures,
we refer the reader to our related work section §B.

2.1. Recap of recurrent block structures
We give an overview of the main architectural components
considered in this paper, focusing on the major differences
between Vanilla RNNs and recent S4-like deep SSMs (Gu
et al., 2021a; 2022a; Gupta et al., 2022a; Smith et al., 2022).

RNN Layer. Let (u1, u2, . . . , uL) be a sequence of Hin-
dimensional inputs, which can be thought of as either the
result of intermediate layer computations (which keep the se-
quential structure) or as the initial input. An RNN layer with
N -dimensional hidden state computes a sequence of Hout-
dimensional outputs (y1, y2, . . . , yL) through a recurrent
computation1 using learnable parameters A ∈ RN×N , B ∈

1We do not use bias parameters as they can be incorporated
into the MLP blocks preceding and following the RNN block.
Classical RNNs also included a nonlinearity on the output yk =
σout(Cxk + b) with D = 0. Having D ̸= 0 basically introduces a
skip connection (standard in modern architectures), and the σout

RN×Hin , C ∈ RHout×N , D ∈ RHout×Hin :

xk = σ(Axk−1 +Buk), yk = Cxk +Duk, (1)

starting from x0 = 0 ∈ RN . σ here denotes a nonlinearity,
often chosen to be a tanh or sigmoid activation. If σ is the
identity function, then we say the RNN layer is linear.

S4-like recurrent layer. We present a simplified2 version
of the S4 recurrence introduced in Gu et al. (2021a). The
input (u0, u1, . . . , uL−1) is now seen as the result of sam-
pling a latent continuous-time signal uct : R≥0 → RHin at
multiples of a stepsize ∆ > 0: i.e. uct(∆k) := uk for all
k ∈ 0, . . . , L− 1. The output sequence (y0, y1, . . . , yL−1)
is then sampled, again with stepsize ∆, from the signal
yct : R≥0 → RHout computed by the following continuous-
time state-space model, initialized at xct(0) = 0:

d

dt
xct(t) = Ãxct(t) + B̃uct(t),

yct(t) = ℜ
[
C̃xct(t)

]
+ D̃uct(t), (2)

where ℜ(p) denotes the real part of a complex-valued vector
p, Ã = diag(ã) with ã ∈ CN , B̃ ∈ CN×Hin , C̃ ∈ CHout×N

and D̃ ∈ RHout×Hin . Aside from the use of continuous
time, the most striking differences compared to Eq.(1) are
(a) the computation on the right-hand-side is linear in the
hidden state and the input, and (b) most parameters are
complex valued, with Ã diagonal. While B̃, C̃, D̃ follow
complex random or uniform initialization, the transition ma-
trix Ã is structured, i.e., initialized deterministically through
HiPPO theory (Gu et al., 2020) in diagonal form. Common
choices (Gu et al., 2022a) are ãn = − 1

2+iπn (S4D-Lin) and

ãn = − 1
2+iNπ

(
N

n+1 − 1
)

(S4D-Inv), for n = 1, 2, . . . , N .

For training and inference, the continuous-time system in
Eq.(2) is discretized at stepsize ∆ using the Zero-Order-
Hold (ZOH) or Bilinear method. The ZOH method gives

xk = Axk−1 +Buk, yk = Cxk +Duk, (3)

where x−1 = 0, A = exp(∆Ã), B = (A − I)Ã−1B̃,
C = C̃ and D = D̃, and exp denotes the matrix exponen-
tial. Under the assumption that uct is constant in between
timestamps (which can be thought of as a modeling assump-
tion), this numerical integration is exact (Jacquot, 2019).
Moreover, note that all these discretization operations can
be quickly performed element-wise since Ã is diagonal.

Some key differences. We now highlight some of the
most important differences between RNNs and SSMs:

can be thought of as part of the MLP following the RNN.
2This version is most similar to S5 (Smith et al., 2022), but

is here presented for ease of reasoning for a single discretization
parameter ∆, shared across input dimensions. See §B for details.

3

Resurrecting Recurrent Neural Networks for Long Sequences

• Since Eq.(3) is linear, it can be efficiently parallelized
until k = L − 1 using parallel scans (Martin & Cundy,
2017; Smith et al., 2022), unlike a nonlinear RNN where
the computation has to be performed sequentially.

• While Eq.(3) is similar to the linear RNN computation,
we note that (a) A and B are parameterized in a peculiar
way prescribed by discretization, and (b) these matrices
share parameters (e.g. ∆ affects both A and B). These
differences are critical as in SSMs learning is performed
on the continuous-time parameters Ã, B̃, C̃, D̃,∆; hence
parameterization choices directly affect optimization.

• Unlike RNNs, most SSMs use complex-valued diagonal
recurrent matrices that are initialized deterministically
using HiPPO theory. The literature attributes much of
the success of SSMs to the specific initialized used (Gu
et al., 2021a; Gupta et al., 2022a; Gu et al., 2022b).

The points above motivate our investigation. We consider
the same architecture as Gu et al. (2021a; 2022a) and Smith
et al. (2022), but replace the SSM layer in the recurrent core
by an RNN. We then study which steps need to be taken to
gradually retrieve S4-like performance on LRA (Tay et al.,
2020) tasks. The effectiveness of each of our steps is sup-
ported by empirical evidence and theoretical considerations,
and leads to the architecture shown in Fig.1.

2.2. Experimental setup

We consider the Long Range Arena benchmark (Tay et al.,
2020), a set of tasks designed to test the ability of models to
do long-range sequence modelling (we use coloured images
instead of grayscale images for the sequential CIFAR-10
classification task). Transformers fail to perform well on
most of these tasks, while deep SSMs have shown remark-
able performance on these tasks (Gu et al., 2021a; Dao et al.,
2022a). This makes it an appropriate benchmark to explore
the long-range modelling capabilities of deep RNNs.

For all our experiments, we use a network of 6 layers with
residual connections and layer/batch normalization (Ioffe &
Szegedy, 2015; Ba et al., 2016) similar to Gu et al. (2021a)
(Fig.1), and we replace the SSM layers with RNN layers
with roughly the same number of parameters, building up to
our LRU in a sequence of steps (see §3). All experiments are
repeated three times, and we report the mean and standard
error. We train using the AdamW optimizer (Loshchilov &
Hutter, 2017). We use a smaller learning rate and no weight
decay on the recurrent parameters, as suggested by Steil
(2004); Gu et al. (2021a). We tune hyperparameters such as
learning rates for all models on a logarithmic grid for best
accuracy. See §D for more details.

3. Designing Performant Deep RNNs
In this section, we discuss the fundamental steps needed
for designing RNNs to reach the impressive performance

of deep SSMs on the LRA benchmark. We present these
steps, already outlined in the introduction, in logical order,
and support each claim with experimental evidence and
theoretical considerations (discussed further in section §E).

We consider the architecture of Fig.1, where the recurrent
computation is gradually modified starting from a vanilla
RNN. We start by showcasing the advantage of using linear
recurrences in §3.1; then, in §3.2, we show how to speed-up
training and inference without affecting expressivity or the
initialization distribution. In §3.3, we discuss how (and why)
changing the parameterization and initialization distribution
enables us to make the RNN stable and improve long-range
modeling. In §3.4, we finalize the LRU architecture by
proposing a normalization strategy for the hidden activations
that results in a close match in performance with SSMs.

3.1. Linear RNN layers are performant

One of the main findings of our work is that linear RNN
layers can be surprisingly expressive when coupled with
nonlinear MLP or GLU (Dauphin et al., 2017) blocks, out-
performing tuned nonlinear RNN variants in the same ar-
chitecture. In Tb.1, we show that simply removing3 the
nonlinearity, and therefore computing the next state as
xk = Axk−1 + Buk, is able to improve test accuracy on
most LRA tasks. While the boost provided by vanilla linear
RNN blocks leads to performance which is still far behind
S4 on some tasks (sCIFAR, PathFinder and PathX), this first
finding motivates us to drop nonlinearities in the recurrence
for the rest of this paper. In later sections, we leverage the
linearity of the recurrence to significantly speed up training
as well as derive principled initialization and normalization
principles to learn long-range dependencies. We note that,
on the Text and Retrieval tasks, performance using vanilla
RNNs already matches performance of deep SSMs (see Tb.3
for the performance of S4/S4D/S5 on these tasks).

The empirical result in Tb.1 is surprising, since recurrent
nonlinearities are believed to be a key component for the suc-
cess of RNNs — both in theory and in practice (Siegelmann,
2012; Pascanu et al., 2013; Erichson et al., 2021). Indeed, a
strong property of single-layer sigmoidal and tanh RNNs is
Turing completeness, which cannot be achieved by the lin-
ear variant (Stogin et al., 2020; Chung & Siegelmann, 2021).
However, the architecture we use (Fig.1) is deeper than a
standard RNN and includes nonlinearies, placed position-
wise after each RNN block. In §E.1, we investigate how the
expressivity and trainability of deep models is affected by
recurrent nonlinearities. Leveraging a spectral analysis and
Koopman operator theory (Koopman & Neumann, 1932),

3All other settings in the recurrent block match the Vanilla
RNN Haiku module (Hennigan et al., 2020). All matrices have
Glorot initialization (Glorot & Bengio, 2010). The overall archi-
tecture is as in Fig.1, with the LRU block replaced by an RNN.

4

Resurrecting Recurrent Neural Networks for Long Sequences

Table 1. The effect of removing the nonlinearity from the recurrent
unit on test accuracy (§3.1). We show results only for the sCIFAR,
ListOps, Text and Retrieval tasks in LRA as these models did not ex-
ceed random guessing on PathFinder/PathX (further improvements
in Tb.2&3). Performance of deep SSMs shown in Tb.3.

RECURRENCE SCIFAR LISTOPS TEXT RETRIEVAL

RNN-RELU 69.7 (0.2) 37.6 (8.0) 88.0 (0.1) 88.5 (0.1)

RNN-TANH 69.9 (0.3) 43.9 (0.1) 87.2 (0.1) 88.9 (0.2)

RNN-LIN 72.2 (0.2) 50.4 (0.2) 89.1 (0.1) 89.1 (0.1)

we discuss how interleaving linear RNN layers with nonlin-
ear feedforward blocks is sufficient to approximate highly
nonlinear systems. A key observation in our analysis is
that position-wise nonlinearities effectively transfer signal
information to higher frequencies, enabling the system to
go beyond linearity in the spectral domain and increasing
the layer capacity. To further strengthen our claim on the
advantage of linear recurrences, in §E.2 we show that, while
linear and nonlinear RNNs share an important class of ap-
proximating functionals (linear operators, see Wang et al.
(2022)), nonlinear activations can potentially slow down
training.

3.2. Complex diagonal recurrences are efficient

We now show that we can significantly speed up training
and inference for deep linear RNNs without losing perfor-
mance by using complex-valued diagonal recurrent matrices.
While the idea of diagonalizing linear systems for computa-
tional efficiency is a dominating feature of all deep SSMs,
following the introduction of DSS by Gupta et al. (2022a), in
this section we construct our diagonalized version to exactly
match the initialization spectrum (see §3.2.1) of the Glorot-
initialized deep linear RNN in Tb.1. Our main purpose with
this approach is to disentangle the effects of initialization
and diagonalization on performance (cf. Tb.2 and Tb.3).

We start in §3.2.1 by recalling some useful linear algebra el-
ements, and then proceed in §3.2.2 with a discussion on how
to diagonalize the recurrence while preserving the eigen-
value spectrum at initialization.

3.2.1. LINEAR RNN EIGENDECOMPOSITION

The recurrence xk = Axk−1 +Buk can be unrolled easily
using the assumption that x−1 = 0 ∈ RN :

xk =

k−1∑
j=0

AjBuk−j . (4)

Exponentiations of the matrix A in the equation above are
the source of the well-known vanishing/exploding gradient
issue in RNNs (Bengio et al., 1994; Pascanu et al., 2013).
While in nonlinear RNNs the state xk is forced to live on
the compact image of the activation function, the hidden-
state of our linear variant can potentially explode or vanish

exponentially as k increases. This phenomenon can be better
understood by leveraging an eigenvalue (a.k.a. spectral)
analysis: up to an arbitrarily small perturbation of the entries,
every matrix A ∈ RN×N is diagonalizable4 (Axler, 1997),
i.e. one can write A = PΛP−1, where P ∈ CN×N is an
invertible matrix and Λ = diag(λ1, λ2, . . . , λN) ∈ CN×N .
It is essential to note that, unlike the symmetric setting
where eigenvalues and eigenvectors are real, in the non-
symmetric case5 one has to allow for complex entries to
achieve full equivalence. Plugging the decomposition A =
PΛP−1 into Eq.(4) and multiplying both sides by P−1,
we get x̄k =

∑k−1
j=0 Λ

jB̄uk−j , where x̄k := P−1xk, B̄ :=

P−1B. The output can then be computed as yk = ℜ[C̄x̄k]+
Duk ∈ RH , where C̄ = CP−1, and we take the real
part of C̄x̄k. Therefore, instead of learning (A,B,C,D),
one can equivalently learn (Λ, B̄, C̄,D), where Λ, B̄, C̄ are
complex valued, and Λ is a diagonal matrix.

Are complex numbers really necessary? We adopt com-
plex numbers since they provide a convenient and compact
representation of non-symmetric matrices in diagonal form.
However this is not the only option – one could work almost
as efficiently using only real numbers (see §E.3).

Stability. Since x̄k =
∑k−1

j=0 Λ
jB̄uk−j , the norm of com-

ponent j of x̄ at timestamp k evolves such that |xk,j | =
O(|x̄k,j |) = O(|λj |k). Therefore, a sufficient condition to
ensure stability (i.e. xk does not explode) is therefore to
require |λj | < 1 for all j (Gu et al., 2021a).

3.2.2. LEARNING IN THE DIAGONALIZED SPACE

Learning recurrent linear systems in diagonal form provides
substantial computational speedups both for training and in-
ference. For example, in our implementation of sCIFAR, we
found diagonal linear RNNs to be ∼8 times faster to train
than a dense RNN with ReLUs, matching the speed of our
implementations of S4D and S5. The main reasons for this
computational benefit are that (a) taking powers of diagonal
matrices is trivial (speeding up both training (see also (Li
et al., 2018)) and inference), while exponentiating dense
matrices is computationally expensive, and (b) while nonlin-
ear recurrences must be computed sequentially, unrolling a
linear recurrence can be parallelized using associative scans,
resulting in faster training (Smith et al., 2022) (App. C.1).

Equivalent initialization. To disentangle the benefits of
diagonal linear systems from the role of initialization, we
seek an initialization for the diagonal system which keeps
the eigenvalue spectrum of the recurrence unchanged when
comparing our diagonal system with the dense linear RNN
in §3.1, where A followed Glorot initialization. We use a

4In other words, the set of non-diagonalizable matrices has
measure zero, see e.g. Zhinan (2002) for a proof idea.

5Take e.g. A = ((0, 1)(−1, 0)). The solution to the standard
eigenvalue equation gives λ = ±i, where i is the imaginary unit.

5

Resurrecting Recurrent Neural Networks for Long Sequences

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

A is 20×20

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

A is 100×100

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

A is 500×500

Figure 2. Eigenvalues of A ∈ RN×N following Glorot initialization: each entry of A is
sampled independently from a Gaussian (mean 0, variance 1/N). The eigenvalues are
complex (A is not symmetric) and are represented on the complex plane. The black circle
is the unit disk. The limit behavior (uniform initialization) is predicted by Thm. 3.1.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

rmin = 0.4, rmax = 0.9

Figure 3. Eigenvalues of a diagonal matrix
A with entries sampled using Lemma 3.2.
For rmin = 0, rmax = 1, the distribution
coincides with Glorot init. in the limit.

classical result from random matrix theory (Ginibre, 1965):

Theorem 3.1 (Strong circular law). Let µN be the empirical
spectral measure of AN ∈ RN×N , with i.i.d. Gaussian
entries, each with zero mean and variance 1/N . Then, µN

converges weakly almost surely as N →∞ to the uniform
probability measure on {|z| ≤ 1} ⊆ C.

The theorem above (pointed out also by (Rajan & Abbott,
2006)), illustrated in Fig.2, shows that under Glorot ini-
tialization the spectrum of a dense matrix A is de-facto
sampled from the unit disk in C. This result motivates the
strong performance of linear RNNs in §3.1, since it implies
Glorot initialization provides an approximately stable ini-
tialization (see definition in §3.2.1).Theorem 3.1 allows us
to identify an equivalent spectral initialization for the di-
agonal system, which matches exactly for the large width
limit: Λ should be diagonal with entries sampled uniformly
on the unit disk. Using the definition of exponential of a
complex number: exp(−ν+ iθ) := e−ν(cos(θ)+ i sin(θ)),
we adopt a simple scheme for sampling uniformly on a ring
in between circles with radii rmin and rmaxin C:

Lemma 3.2. Let u1, u2 be independent uniform random
variables on the interval [0, 1]. Let 0 ≤ rmin ≤ rmax ≤ 1.
Compute ν = − 1

2 log
(
u1(r

2
max − r2min) + r2min

)
and θ =

2πu2. Then exp(−ν + iθ) is uniformly distributed on the
ring in C between circles of radii rmin and rmax.

We recover the spectrum of Glorot-initialization (in the
limit of infinite width) by setting rmin = 0 and rmax = 1
(we will explore tuning these hyper-parameters in §3.3).
Tb.2 (first two rows) shows the results of learning deep linear
RNNs in complex diagonal form,6 where each diagonal
entry of Λ is initialized uniformly on the unit disk in C using
Lemma 3.2 with [rmin, rmax] = [0, 1]. In our experiments,
B̄, C̄ (which we rename for convenience back to B and
C) follow Glorot initialization for both real and imaginary
parts (parameterized separately), with halved variance in
each component to preserve lengths on the input-output
projections (Glorot & Bengio, 2010). Finally, after the SSM

6To avoid issues with backpropagation on complex variables,
each complex parameter in the network is stored and learned as a
pair of floats encoding the real and imaginary parts.

computation, only the real part of the signal is kept (as
in Gupta et al. (2022a); Gu et al. (2022a)).

Surprisingly, our results in Tb.2 show that diagonalizing
the recurrence improves accuracy on tasks like ListOps and
sCIFAR. More importantly, it drastically reduces training
and inference time on all LRA tasks (see Tb.4 in §C.1 for
training speed comparisons), making the RNN just as fast
to train as deep SSMs like S4D and S5.

3.3. Benefits of stable exponential parameterization

In §3.2 we showed that moving to complex diagonal re-
currences improved performance and is computationally
efficient. However we also found that learning the diagonal
model can be more unstable than learning the dense model
in some experiments. To learn long-range dependencies
and avoid vanishing gradients, eigenvalues in the recurrence
need to have magnitude close to 1 (Gu et al., 2022b; Gupta
et al., 2022a); however, these large eigenvalues may also
make the system unstable during training. In this section,
we show the benefits of a stable parameterization of the
RNN, and of tuning rmin and rmax (see Lemma 3.2).
Easier optimization under exponential parameterization.
Lemma 3.2 suggests a natural parameterization of the diago-
nalized RNN as Λ = diag(exp(−ν+iθ)) with ν ∈ RN and
θ ∈ RN as the learnable parameters (instead of the real and
imaginary parts of Λ). As we explain in §E.2, this choice
decouples eigenvalue magnitude and oscillation frequency,
making optimization with Adam easier. The positive effects
of this exponential parametrization, which resembles some
features of ZOH discretization (see §2 and §4) can be ob-
served in the third row of Tb.2. Notably, the performance
on PathFinder rises above random chance for the first time.

Enforcing stability. An important benefit of the expo-
nential parameterization is that it makes it simple to en-
force stability on the eigenvalues. To see this, note that
at initialization, |λj | = | exp(−νj)| ≤ 1 since νj > 0.
Therefore, to preserve stability during training, we can
use an exponential or another positive nonlinearity: λj :=

exp(− exp(νlogj) + iθj), where νlog ∈ RN is the param-
eter we optimize, and we set νlogj := log(ν) at initializa-
tion. Note that a similar idea is used in deep SSMs (Gu

6

Resurrecting Recurrent Neural Networks for Long Sequences

Table 2. Test accuracy of linear diagonal complex RNNs under dif-
ferent parametrizations of the transition matrix (see §3.2). These
results improve on the results in Tb.1, and showcase the advantage
of an exponential (polar) representation for Λ. Ring Init denotes
a changed initialization where rmin and rmax are tuned. Perfor-
mance on the Text and Retrieval tasks is not shown as linear RNNs
already match the performance of S4 (c.f. Tb.1 with Tb.3).

SCIFAR LISTOPS PATHFINDER

DENSE A 72.2 (0.2) 50.4 (0.2) %

Λ REAL + IM 86.5 (0.1) 58.8 (0.3) %

Λ EXP 85.4 (0.7) 60.5 (0.3) 65.4 (9.0)

Λ STABLE EXP 87.2 (0.4) 59.4 (0.3) 93.5 (0.5)

+ RING INIT 88.1 (0.0) 59.4 (0.3) 94.4 (0.3)

et al., 2021a) in the context of discretization. We choose
an exponential non-linearity over a simple ReLU nonlin-
earity to increase granularity around |λ| = 1, achieved at
νlog = −∞ (while |λ| = 0 is achieved at νlog = ∞). Sta-
ble parameterization helps on most LRA tasks. In the fourth
row of Tb.2, we show its effects on sCIFAR, ListOps and
Pathfinder. We observe the most drastic improvement on
Pathfinder, one of the harder long-range dependency tasks
in LRA, where performance now reaches above 93%.
The benefits of the stable parameterization becomes more
apparent when we explore the idea of initializing the eigen-
values of Λ on a ring closer to the unit disk (increasing
rmin closer to 1 in Lemma 3.2) to bias the network towards
long range interactions and avoid vanishing gradients. As
discussed in detail in Gu et al. (2022b); Gupta et al. (2022a),
for tasks requiring consideration of interactions between
distant tokens, eigenvalues in the recurrence need to have
magnitude close to 1. Otherwise, as clear from the diago-
nal version of Eq.(4), when taking powers of eigenvalues
close to the origin, the signal from past tokens quickly dies
out (see §3.2.1). However as we show in the last row of
Tb.5 in §C, without enforcing stability performance starts
to degrade as we increase rmax past 0.9 in the sCIFAR task.
With stability enforced, we can increase rmax up to 0.99 and
improve performance. We see similar benefits on the other
tasks where we sweep different values of rmin and rmax

(See Tbs.8 & 9). Finally, note that while we explore chang-
ing the magnitude of the eigenvalues of Λ in this section, in
§3.4 we also show the benefits of initializing the eigenvalues
to have a small phase to learn more global patterns, which
is useful on very long-range reasoning tasks (e.g. PathX).

3.4. Additional considerations for long-range reasoning
Up to this point, our model did not succeed on PathX, the
hardest dataset in the LRA benchmark, with a sequence
length of 16k tokens. In this section, we discuss two final
modifications which improve our model’s ability to learn
very long-range dependencies, and finalize our LRU model.

Normalization. In §3.3, we initialized the eigenvalues
of Λ close to the unit disk for better performance on long-

range tasks. However, we observed that as we moved rmin

and rmax closer to 1, the training loss also started to blow
up at initialization (see Fig.4). In this section, we first
present a result explaining this phenomenon, before deriving
a practical normalization scheme for the hidden activations
to tackle this problem and further improve performance.

Proposition 3.3 (Forward-pass blow-up). Let Λ be diag-
onal with eigenvalues sampled uniformly on the ring in C
between circles of radii rmin < rmax < 1. Under con-
stant or white-noise input and Glorot input projection, the
squared norm of the state xk converges as k →∞ to:

E[∥x∞∥22] =
1

r2max − r2min

log

(
1− r2min

1− r2max

)
E[∥Bu∥22].

This result (related to similar propositions for Echo-State
Networks (Couillet et al., 2016)) has the following intuitive
form if rmin = rmax = r: if we initialize ρ-close to the unit
disk, the forward pass blows up by a factor 1/ρ (since the
contributions from previous states will take longer to decay).
Let ϵ = r2max − r2min and ρ = 1− r2max, then:

lim
ϵ→0

E[∥x∞∥22]
E[∥Bu∥22]

= lim
ϵ→0

[
1

ϵ
log

(
1 +

ϵ

ρ

)]
=

1

ρ
=

1

1− r2
.

Towards the derivation of an effective normalization scheme
for the forward pass, we present a simplified derivation of
the 1/ρ gain formula for the one-dimensional setting under
white-noise input7: let Λ = λ ∈ C, and B = 1. Let p∗

denote the conjugate of p ∈ C, we have that |p|2 = p∗p and
in expectation over the input, using Eq.(4) and the fact that
E[uk−iuk−j] = 0 for i ̸= j:

E|xk|2 =

(k−1∑
i=0

λiE[uk−i]

)(k−1∑
j=0

λjE[uk−j]

)∗
(5)

=

k−1∑
i,j=0

λi(λj)∗E[uk−iuk−j] =

k−1∑
i=0

|λ|2i ∞→ 1

1− |λ|2 .

Since the formula above holds for every Euclidean direction
in our recurrence (Λ is diagonal), we add a normalization
parameter that is initialized element-wise. Note as λ ap-
proaches 1, (1− |λ|2) approaches 0, making further adapta-
tions of this parameter via SGD hard. We therefore use nor-
malization parameter γlog ∈ RN , initialized element-wise
as γlog

i ← log(
√
1− |λi|2),8 and modify the recurrence as:

xk = Λxk−1 + exp(γlog)⊙ (Buk), (6)

where ⊙ denotes the element-wise product. The γ parame-
ter enables the RNN to adaptively scale the input for each
eigendirection. This consistently improves performance on
tasks that benefit from initializing close to the unit disk,
such as sCIFAR and Pathfinder, as shown in Tb.3.

7We use the random input assumption for our normalization
scheme as we found it to work well in practice.

8We also tried setting γi to
√

1− |λi|2 in each training itera-
tion, and found it to work similarly to a trainable γ.

7

Resurrecting Recurrent Neural Networks for Long Sequences

Table 3. Performance of the final LRU architecture after adding γ normalization to the diagonal RNN with stable exponential parameteri-
zation and initialization on the ring (see §3.4). For PathX, we additionally use a smaller eigenvalue phase at initialization. We sweep
rmin, rmax and learning rate. We report results from the S4/S4D and S5 papers for comparison. The LRU reaches similar performance to
deep SSMs on all LRA tasks. We reproduce S4D and S5 in our own pipeline, with similar hyper-parameter sweeps to the LRU, in Tb.9.

SCIFAR LISTOPS TEXT RETRIEVAL PATHFINDER PATHX

LRU 89.0 (0.1) 60.2 (0.8) 89.4 (0.1) 89.9 (0.1) 95.1 (0.1) 94.2 (0.4)

S4 (PAPER RESULTS) 91.1 59.6 86.8 90.9 94.2 96.4

S4D-LEGS (PAPER RESULTS) 89.9 60.5 86.2 89.5 93.1 91.9

S5 (PAPER RESULTS) 90.1 62.2 89.3 91.4 95.3 98.6

Reducing Eigenvalue Phase at Initialization. We have
Λ = diag(exp(− exp(νlog) + θ)), where νlog ∈ RN is the
vector of log eigenvalue magnitudes and θ ∈ RN the vector
of eigenvalue phases. While νlog encodes the distance to
the origin, θ is the angle from the vector 1 + 0i. For long
sequences, initializing θ ∼ [0, 2π] uniformly implies that
most state entries will exhibit a large number of oscillations
at initialization (see upper panel in Fig.5). Equivalently, in
this setting, most state dimensions are the result of convo-
lutions9 capturing an average of local oscillation patterns.
This behavior is independent from the ability of capturing
long-range dependencies (controlled by νlog), but pertains
to the nature of the information stored by the RNN. There-
fore, initializing Λ with uniform phase on long sequence
data inherently biases the network towards learning spurious
features in the input sequence. The model cannot recover
from this suboptimal initialization. Indeed we observe that,
for our best model so far on PathX, the training loss after
a few iterations converges to a suboptimal minimizer with
random chance test performance (see Fig.4). To fix this is-
sue, we found it sufficient to restrict the range of θ to a thin
slice around 0, biasing the model towards learning more
global features. Since the optimal values of θ are small,
we parameterize the phase logarithmically: θ = exp(θlog),
where θlog is optimized, to aid optimization.

Restricting the range of the phase at initialization to be
[0, π/10], our LRU achieved 94.2% on PathX, aligning with
state-of-the-art deep SSMs. We did not explore using a
smaller phase at initialization for the other LRA tasks, al-
though we believe this might further improve performance
here as well. Note that both γ normalization and restricting
the eigenvalue phase at initialization were crucial to solving
PathX. We were unable to learn when using restricted phase
at initialization without also introducing γ normalization.

With all the components of §3 taken together, we name this
new model the Linear Recurrent Unit (or LRU for short).
It provides a flexible, interpretable, and theoretically prin-
cipled framework for initializing and learning deep RNNs
efficiently, and it matches performance and efficiency of
deep SSMs across all the LRA tasks, as shown in Tb.3.

9See Gu et al. (2022a) for a discussion of kernel perspectives.

0 50 100
Iterations (x1000)

2 1

21

Training Loss

0 50 100
Iterations (x1000)

60

80

Training Accuracy

No Normalization + Normalization + Small Phase Init

0 50 100
Iterations (x1000)

60

80

Test Accuracy

Figure 4. Effect of normalization and using a small phase at ini-
tialization on the PathX task. Without normalization, the model
presents higher loss values at initialization and quickly converges
to a suboptimal value, where train and test accuracy are both
at random chance. Adding normalization helps: the train loss
is lower at initialization, and the optimizer is able to escape the
suboptimal region and train accuracy also increases. Interestingly,
this model still fails to generalize. Finally, reducing initialization
phase (tuning the range of θ) dramatically improves convergence
on the training set, while also generalizing to the test set.

PathFinder

PathX

2K 4K 6K 8K 10K 12K 14K 16K
θ ∈ [0,π/50]

θ ∈ [0,2π]
1

1

-1

-1

0

0

PathFinder

PathX

PathFinder

PathX

Figure 5. Evolution of x ∈ R3 under input u = (1, 0, 0, . . . , 0) ∈
R16k. Plotted in different colors are the 3 components of x. Λ
has parameters νj = 5e−5 and θj sampled uniformly in [0, 2π] or
[0, π/50]. For short sequences, such as L = 1024 (PathFinder),
[0, 2π] produces kernels with an acceptable number of oscillations:
information about u0 is recalled only a few times in the state
history. For large L (PathX), the range of the imaginary part at
initialization has to be smaller to obtain a similar effect.

4. Insights on S4 and Variants
We believe our ablations in §3 explain the underlying mech-
anisms driving the success of deep SSMs. To conclude the
paper, we inspect in detail the main similarities and differ-
ences between our LRU model and diagonal SSMs, and
elaborate a few insights. As in §2, to avoid technicalities,
we provide a simplified discussion capturing the main fea-
tures of models stemming from the original S4 paper. For a
comparison of different models, we defer the reader to §B.
As detailed in §2, diagonal SSMs (DSS, S4D, S5) are in-
stantiated and parameterized through the discretization of
a latent continuous-time model ẋct(t) = Ãxct(t) + B̃uct(t),

8

Resurrecting Recurrent Neural Networks for Long Sequences

where A = diag(ã) is initialized with complex entries, of-
ten guided by HiPPO theory (Gu et al., 2020). Zero-Order-
Hold (ZOH) discretization with stepsize ∆ leads to the re-
currence xk = exp(∆Ã)xk−1 + (exp(∆Ã)− I)Ã−1B̃uk.
This formula, while arguably complex compared to our
Eq.(6), relates to it as outlined in the following paragraphs.

Matrix exponentials make training easier. The ex-
ponential in the ZOH formula arises from the inte-
gration of ẋct(t) = Ãxct(t), obtaining xct(∆k) =
exp(∆Ã)xct(∆(k − 1)). To enforce stability, in models
inspired by S4 the real part of A is often fed into a positive
nonlinearity, as we also do in §3.3. From our results in §3.3
we claim that the power of exponential parameterization is
not necessarily attributable to accurate integration (which is
not present in our system), but is more fundamentally rooted
in a magnitude-phase decoupling on the recurrence (which
makes training with Adam easier, see Fig.9), as well as in
the overall advantage of learning in diagonalized space (see
Tb.2). We also note that stabilizing the recurrence by adding
a nonlinearity in parameter generation was beneficial also
in our experiments, although this is not prescribed by the
theory underlying S4.

Structured initialization is not necessary. While Gu
et al. (2022a); Gupta et al. (2022b); Smith et al. (2022)
also discuss initializations for A deviating from the HiPPO
structure (see §2 and §B), to the best of our knowledge we
are the first to show that simple uniform initialization on
a slice of the unit disk, combined with proper normaliza-
tion, is able to also solve the hardest task in LRA: PathX.10

We also show (Tb.2) that uniform initialization on the disk,
which is simply the diagonalized version of Glorot initializa-
tion (Thm. 3.1), is sufficient to achieve performance close
to more complex deep state-space models on the remain-
ing LRA tasks. Our results ultimately suggest that HiPPO
theory, while fundamental for the development of this field,
should not be thought of as the main source of S4’s success.

Discretization changes the initialization spectrum. For
simplicity, we restrict our attention to S4D-Lin, for which
A = diag(ã) with ãn = − 1

2 + iπn, yielding a diago-
nal transition matrix with elements (i.e. eigenvalues) ini-
tialized at exp(−∆/2 + iπ∆n). Under typical choices,
such as ∆ = 1e−3 and N = 128, the SSM eigenval-
ues have magnitude exp(−∆/2) ≈ 0.9995, and phase
θ = π∆n

∼∈ [0, π/8]; i.e. initialization is performed on
a ring11 close to the unit circle in C, with restricted phase
connected to the eigenvalues magnitude. As is clear from the

10Among the models in Gu et al. (2022a), only S4D-inv and
S4D-LegS (options heavily inspired by the HiPPO theory) perform
beyond random guessing on PathX. In S5, the skew-symmetric
component of the HiPPO matrix is used for initialization.

11For all diagonal SSMs, ∆ is actually a vector initialized in the
range [∆min,∆max]. This interval can be directly mapped through
the exponential map to a ring in complex space (see Lemma 3.2).

results in §3.3 and §3.4, linking the eigenvalues phase and
magnitude is not necessary to achieve good performance:
indeed, as it can be seen in Tb.3, test accuracy on the Long
Range Arena (except PathX) can be recovered by using a
more natural magnitude-independent initialization on the
complete ring. As we discussed in §3.4, changing the
initialization phase to a small range around 0 can be moti-
vated by first principles, yet is only needed for extremely
long sequences: this modification is already hard-coded
in S4, where choosing a small ∆ also shrinks the phase.12

However, our results clearly show that connecting real and
imaginary parts during training through the ∆ parameter is
not necessary to achieve good performance, even on PathX.

Discretization performs normalization. The most strik-
ing visual difference between our model and ZOH-
discretized S4 recurrence is in the matrix multiplier for
uk: (exp(∆Ã)− I)Ã−1B̃. After conducting experiments
on S4D, we found that simply replacing this multiplier with
its first-order expansion in ∆, i.e. ∆B̃, achieves very similar
performance, despite being much simpler and not being a
valid second order integration scheme. For input dimension
H = 1 and unit B ∈ RN×1 (to keep reasoning simple), the
corresponding recurrence is xk = exp(∆ã) +∆1Nuk. Ele-
mentwise unrolling of this recurrence without a ∆ factor in
front of u yields |xk,i| ≤

∑k−1
j=0 | exp(∆ãi)|juk−j,i, which

in the limit k →∞ is O(∆−1). We conclude that including
a ∆ multiplier on B implicitly scales the recurrence to nor-
malize the activations, similar to our γ normalization factor.

Parameter sharing is not necessary. As a result of dis-
cretization, the ∆ parameter multiplying both Ã and B̃ cou-
ples the recurrence formula with the input projection during
training. In our S4 ablations, we found that decoupling
these as two separate parameters, while keeping the same
initialization to normalize the hidden activations (see last
paragraph), does not decrease performance, suggesting that
the ODE discretization viewpoint (which induces parameter
sharing) is not necessary to achieve S4 performance.

From this discussion, we conclude that the success of (diag-
onal) state-space models is attributable to the use of linear
recurrences and complex diagonal exponential matrices,
combined with the normalization and initialization induced
by discretization. On the other hand, other artifacts of dis-
cretization such as parameter sharing or the continuous-time
interpretation do not necessarily contribute to performance.

Acknowledgements
The authors would like to thank Michalis Titsias, Aleksandar
Botev, James Martens, Daniel Worrall and Yee Whye Teh
for the interesting discussions and perspectives on our work.

12This is a useful effect of having a latent continuous-time
model: choosing eigenvalues close to the unit circle (i.e. small ∆)
changes the oscillation frequencies in the discretized system.

9

Resurrecting Recurrent Neural Networks for Long Sequences

References
Arjovsky, M., Shah, A., and Bengio, Y. Unitary evolution

recurrent neural networks. In International conference
on machine learning. PMLR, 2016.

Axler, S. Linear algebra done right. Springer Science &
Business Media, 1997.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bai, S., Kolter, J. Z., and Koltun, V. An empirical evalua-
tion of generic convolutional and recurrent networks for
sequence modeling. arXiv preprint arXiv:1803.01271,
2018.

Bengio, Y., Simard, P., and Frasconi, P. Learning long-term
dependencies with gradient descent is difficult. IEEE
transactions on neural networks, 1994.

Bordin, N., Dallago, C., Heinzinger, M., Kim, S., Littmann,
M., Rauer, C., Steinegger, M., Rost, B., and Orengo, C.
Novel machine learning approaches revolutionize protein
knowledge. Trends in Biochemical Sciences, 2022.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., et al. JAX: composable transfor-
mations of python+ numpy programs, 2018.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, S., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y.
On the properties of neural machine translation: Encoder-
decoder approaches. arXiv preprint arXiv:1409.1259,
2014a.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., and Bengio, Y. Learn-
ing phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014b.

Chung, S. and Siegelmann, H. Turing completeness of
bounded-precision recurrent neural networks. Advances
in Neural Information Processing Systems, 2021.

Compagnoni, E. M., Biggio, L., Orvieto, A., Hofmann,
T., and Teichmann, J. Randomized signature layers
for signal extraction in time series data. arXiv preprint
arXiv:2201.00384, 2022.

Couillet, R., Wainrib, G., Ali, H. T., and Sevi, H. A random
matrix approach to echo-state neural networks. In Inter-
national Conference on Machine Learning, pp. 517–525.
PMLR, 2016.

Courbariaux, M., Bengio, Y., and David, J.-P. Binarycon-
nect: Training deep neural networks with binary weights
during propagations. Advances in neural information
processing systems, 28, 2015.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. arXiv preprint arXiv:2205.14135, 2022a.

Dao, T., Fu, D. Y., Saab, K. K., Thomas, A. W., Rudra,
A., and Ré, C. Hungry hungry hippos: Towards lan-
guage modeling with state space models. arXiv preprint
arXiv:2212.14052, 2022b.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. Lan-
guage modeling with gated convolutional networks. In
International conference on machine learning. PMLR,
2017.

De, S. and Smith, S. Batch normalization biases residual
blocks towards the identity function in deep networks. Ad-
vances in Neural Information Processing Systems, 2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Houlsby, N., Gelly, S., Zhang, X., and Uszkoreit, J.
An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

Elman, J. L. Finding structure in time. Cognitive science,
1990.

Erichson, N. B., Azencot, O., Queiruga, A., Hodgkinson, L.,
and Mahoney, M. W. Lipschitz recurrent neural networks.
In International Conference on Learning Representations,
2021.

Ginibre, J. Statistical ensembles of complex, quaternion,
and real matrices. Journal of Mathematical Physics,
1965.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics. JMLR Workshop and
Conference Proceedings, 2010.

Goel, K., Gu, A., Donahue, C., and Ré, C. It’s raw! au-
dio generation with state-space models. arXiv preprint
arXiv:2202.09729, 2022.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. Hippo: Re-
current memory with optimal polynomial projections. Ad-
vances in Neural Information Processing Systems, 2020.

Gu, A., Goel, K., and Re, C. Efficiently modeling long
sequences with structured state spaces. In International
Conference on Learning Representations, 2021a.

10

Resurrecting Recurrent Neural Networks for Long Sequences

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra,
A., and Ré, C. Combining recurrent, convolutional, and
continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 2021b.

Gu, A., Gupta, A., Goel, K., and Ré, C. On the parameteri-
zation and initialization of diagonal state space models.
arXiv preprint arXiv:2206.11893, 2022a.

Gu, A., Johnson, I., Timalsina, A., Rudra, A., and Ré, C.
How to train your hippo: State space models with gen-
eralized orthogonal basis projections. arXiv preprint
arXiv:2206.12037, 2022b.

Gupta, A., Gu, A., and Berant, J. Diagonal state spaces are
as effective as structured state spaces. In Advances in
Neural Information Processing Systems, 2022a.

Gupta, A., Mehta, H., and Berant, J. Simplifying and un-
derstanding state space models with diagonal linear rnns.
arXiv preprint arXiv:2212.00768, 2022b.

Hardt, M., Ma, T., and Recht, B. Gradient descent learns lin-
ear dynamical systems. arXiv preprint arXiv:1609.05191,
2016.

Hasani, R., Lechner, M., Amini, A., Rus, D., and Grosu,
R. Liquid time-constant networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2021.

Hasani, R., Lechner, M., Wang, T.-H., Chahine, M., Amini,
A., and Rus, D. Liquid structural state-space models.
arXiv preprint arXiv:2209.12951, 2022.

Helfrich, K., Willmott, D., and Ye, Q. Orthogonal recur-
rent neural networks with scaled cayley transform. In
International Conference on Machine Learning. PMLR,
2018.

Hennigan, T., Cai, T., Norman, T., and Babuschkin, I. Haiku:
Sonnet for JAX, 2020. URL http://github.com
/deepmind/dm-haiku.

Hochreiter, S. Untersuchungen zu dynamischen neuronales
netzen. Diploma thesis, Institut f”ur Informatik, Technis-
che Universit”at M”unchen, 1991.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 1997.

Hopfield, J. J. Neural networks and physical systems with
emergent collective computational abilities. Proceedings
of the national academy of sciences, 1982.

Hyland, S. L. and Rätsch, G. Learning unitary operators
with help from u (n). In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on Machine Learning, 2015.

Islam, M. M. and Bertasius, G. Long movie clip classifi-
cation with state-space video models. In ECCV 2022.
Springer, 2022.

Jacquot, R. G. Modern digital control systems. Routledge,
2019.

Jaeger, H. and Haas, H. Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communi-
cation. science, 304(5667):78–80, 2004.

Jeffreys, H. The theory of probability. OUP Oxford, 1998.

Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun,
Y., Tegmark, M., and Soljačić, M. Tunable efficient
unitary neural networks (eunn) and their application to
rnns. In International Conference on Machine Learning.
PMLR, 2017.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M.,
Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žı́dek,
A., Potapenko, A., et al. Highly accurate protein structure
prediction with alphafold. Nature, 2021.

Kaiser, E., Kutz, J. N., and Brunton, S. L. Data-driven dis-
covery of koopman eigenfunctions for control. Machine
Learning: Science and Technology, 2021.

Kalchbrenner, N., Espeholt, L., Simonyan, K., Oord, A. v. d.,
Graves, A., and Kavukcuoglu, K. Neural machine trans-
lation in linear time. arXiv preprint arXiv:1610.10099,
2016.

Ke, N. R., Goyal, A., Bilaniuk, O., Binas, J., Charlin, L., Pal,
C., and Bengio, Y. Sparse attentive backtracking: Long-
range credit assignment in recurrent networks. arXiv
preprint arXiv:1711.02326, 2017.

Ke, N. R., ALIAS PARTH GOYAL, A. G., Bilaniuk, O.,
Binas, J., Mozer, M. C., Pal, C., and Bengio, Y. Sparse at-
tentive backtracking: Temporal credit assignment through
reminding. Advances in neural information processing
systems, 31, 2018.

Kilian, J. and Siegelmann, H. T. The dynamic universality of
sigmoidal neural networks. Information and computation,
1996.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Koopman, B. O. and Neumann, J. v. Dynamical systems of
continuous spectra. Proceedings of the National Academy
of Sciences, 1932.

11

http://github.com/deepmind/dm-haiku
http://github.com/deepmind/dm-haiku

Resurrecting Recurrent Neural Networks for Long Sequences

Korda, M. and Mezić, I. On convergence of extended
dynamic mode decomposition to the koopman operator.
Journal of Nonlinear Science, 2018.

Korda, M. and Mezić, I. Koopman model predictive con-
trol of nonlinear dynamical systems. In The Koopman
Operator in Systems and Control. Springer, 2020.

Kostic, V. R., Novelli, P., Maurer, A., Ciliberto, C., Rosasco,
L., and massimiliano pontil. Learning dynamical sys-
tems via koopman operator regression in reproducing
kernel hilbert spaces. In Advances in Neural Information
Processing Systems, 2022.

Kutz, J. N., Brunton, S. L., Brunton, B. W., and Proctor, J. L.
Dynamic mode decomposition: data-driven modeling of
complex systems. SIAM, 2016.

Le, Q. V., Jaitly, N., and Hinton, G. E. A simple way
to initialize recurrent networks of rectified linear units.
arXiv preprint arXiv:1504.00941, 2015.

Lee-Thorp, J., Ainslie, J., Eckstein, I., and Ontanon, S. Fnet:
Mixing tokens with fourier transforms. arXiv preprint
arXiv:2105.03824, 2021.

Lezcano-Casado, M. and Martınez-Rubio, D. Cheap
orthogonal constraints in neural networks: A simple
parametrization of the orthogonal and unitary group. In
International Conference on Machine Learning. PMLR,
2019.

Li, S., Li, W., Cook, C., Zhu, C., and Gao, Y. Independently
recurrent neural network (IndRNN): Building a longer
and deeper rnn. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5457–5466,
2018.

Li, Y., Cai, T., Zhang, Y., Chen, D., and Dey, D. What makes
convolutional models great on long sequence modeling?
arXiv preprint arXiv:2210.09298, 2022a.

Li, Z., Han, J., Weinan, E., and Li, Q. Approximation and
optimization theory for linear continuous-time recurrent
neural networks. J. Mach. Learn. Res., 2022b.

Liu, L., Wang, H., Lin, J., Socher, R., and Xiong, C. Mkd: a
multi-task knowledge distillation approach for pretrained
language models. arXiv preprint arXiv:1911.03588,
2019.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

Lukoševičius, M. and Jaeger, H. Reservoir computing ap-
proaches to recurrent neural network training. Computer
science review, 3(3):127–149, 2009.

Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G., May,
J., and Zettlemoyer, L. Mega: moving average equipped
gated attention. arXiv preprint arXiv:2209.10655, 2022.

Mali, A., Ororbia, A., Kifer, D., and Giles, L. Investigat-
ing backpropagation alternatives when learning to dy-
namically count with recurrent neural networks. In In-
ternational Conference on Grammatical Inference, pp.
154–175. PMLR, 2021a.

Mali, A., Ororbia, A. G., Kifer, D., and Giles, C. L. Recog-
nizing and verifying mathematical equations using multi-
plicative differential neural units. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pp. 5006–5015, 2021b.

Manchev, N. and Spratling, M. Target propagation in recur-
rent neural networks. The Journal of Machine Learning
Research, 21(1):250–282, 2020.

Martin, E. and Cundy, C. Parallelizing linear recur-
rent neural nets over sequence length. arXiv preprint
arXiv:1709.04057, 2017.

Mauroy, A. and Mezić, I. Global stability analysis using the
eigenfunctions of the koopman operator. IEEE Transac-
tions on Automatic Control, 2016.

Mauroy, A., Susuki, Y., and Mezić, I. Koopman operator in
systems and control. Springer, 2020.

McCulloch, W. S. and Pitts, W. A logical calculus of the
ideas immanent in nervous activity. The bulletin of math-
ematical biophysics, 1943.

Mehta, H., Gupta, A., Cutkosky, A., and Neyshabur, B.
Long range language modeling via gated state spaces.
arXiv preprint arXiv:2206.13947, 2022.

Mhammedi, Z., Hellicar, A., Rahman, A., and Bailey, J.
Efficient orthogonal parametrisation of recurrent neural
networks using householder reflections. In International
Conference on Machine Learning. PMLR, 2017.

Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., and
Khudanpur, S. Recurrent neural network based language
model. In Interspeech. Makuhari, 2010.

Misra, D. Mish: A self regularized non-monotonic activa-
tion function. arXiv preprint arXiv:1908.08681, 2019.

Nallapati, R., Zhou, B., Gulcehre, C., Xiang, B., et al. Ab-
stractive text summarization using sequence-to-sequence
rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

Nguyen, E., Goel, K., Gu, A., Downs, G., Shah, P., Dao, T.,
Baccus, S., and Ré, C. S4nd: Modeling images and videos
as multidimensional signals with state spaces. In Ad-
vances in Neural Information Processing Systems, 2022.

12

Resurrecting Recurrent Neural Networks for Long Sequences

Omlin, C. W. and Giles, C. L. Constructing deterministic
finite-state automata in recurrent neural networks. Jour-
nal of the ACM (JACM), 43(6):937–972, 1996.

Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
and Kavukcuoglu, K. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

Ororbia, A., Mali, A., Giles, C. L., and Kifer, D. Continual
learning of recurrent neural networks by locally aligning
distributed representations. IEEE Transactions on Neu-
ral Networks and Learning Systems, 31(10):4267–4278,
2020.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning. PMLR, 2013.

Proctor, J. L., Brunton, S. L., and Kutz, J. N. Generalizing
koopman theory to allow for inputs and control. SIAM
Journal on Applied Dynamical Systems, 2018.

Rajan, K. and Abbott, L. F. Eigenvalue spectra of random
matrices for neural networks. Physical review letters, 97
(18):188104, 2006.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learn-
ing internal representations by error propagation. Tech-
nical report, California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

Schmid, P. J. Dynamic mode decomposition of numerical
and experimental data. Journal of fluid mechanics, 2010.

Siegelmann, H. T. Neural networks and analog computation:
beyond the Turing limit. Springer Science & Business
Media, 2012.

Smith, J. T., Warrington, A., and Linderman, S. W. Sim-
plified state space layers for sequence modeling. arXiv
preprint arXiv:2208.04933, 2022.

Steil, J. J. Backpropagation-decorrelation: online recurrent
learning with o (n) complexity. In 2004 IEEE interna-
tional joint conference on neural networks. IEEE, 2004.

Stogin, J., Mali, A., and Giles, C. L. A provably stable
neural network turing machine. arXiv e-prints, pp. arXiv–
2006, 2020.

Surana, A. Koopman operator based observer synthesis
for control-affine nonlinear systems. In 2016 IEEE 55th
Conference on Decision and Control (CDC). IEEE, 2016.

Tallec, C. and Ollivier, Y. Unbiased online recurrent opti-
mization. arXiv preprint arXiv:1702.05043, 2017.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena: A benchmark for efficient transformers. In
International Conference on Learning Representations,
2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 2017.

Voelker, A., Kajić, I., and Eliasmith, C. Legendre memory
units: Continuous-time representation in recurrent neural
networks. Advances in neural information processing
systems, 2019.

Vogel, C. R. Computational methods for inverse problems.
SIAM, 2002.

Wang, S., Li, Z., and Li, Q. The effects of nonlinearity
on approximation capacity of recurrent neural networks,
2022.

Weintraub, S. H. Jordan canonical form: theory and practice.
Synthesis Lectures on Mathematics and Statistics, 2009.

Williams, M. O., Kevrekidis, I. G., and Rowley, C. W. A
data–driven approximation of the koopman operator: Ex-
tending dynamic mode decomposition. Journal of Non-
linear Science, 2015.

Williams, R. J. and Zipser, D. Experimental analysis of
the real-time recurrent learning algorithm. Connection
science, 1(1):87–111, 1989.

Wisdom, S., Powers, T., Hershey, J., Le Roux, J., and At-
las, L. Full-capacity unitary recurrent neural networks.
Advances in neural information processing systems, 2016.

Zheng, X., Zaheer, M., Ahmed, A., Wang, Y., Xing, E. P.,
and Smola, A. J. State space lstm models with particle
mcmc inference. arXiv preprint arXiv:1711.11179, 2017.

Zhinan, Z. The jordan canonical form of a rational random
matrix. Science Direct Working Paper, 2002.

Zhou, T., Ma, Z., Wen, Q., Sun, L., Yao, T., Jin, R.,
et al. Film: Frequency improved legendre memory model
for long-term time series forecasting. arXiv preprint
arXiv:2205.08897, 2022.

13

Resurrecting Recurrent Neural Networks for Long Sequences

Supplementary Materials
A. Simplified Implementation of the Linear Recurrent Unit
We present here a simplified JAX implementation (Bradbury et al., 2018) of the Linear Recurrent Unit (LRU). The state of
the LRU is driven by the input (uk)

L
k=1 of sequence length L according to the following formula (and efficiently parallelized

using an associative scan): xk = Λxk−1 + exp(γlog)⊙ (Buk), and the output is computed at each timestamp k as follows:
yk = Cxk + Duk. In our code, B,C follow Glorot initialization, with B scaled additionally by a factor 2 to account
for halving the state variance by taking the real part of the output projection. D is random H-dimensional and mutiplies
elementwise each uk, where k is the timestamp. Λ is initialized with the help of Lemma 3.2, with phase potentially restricted
to a thin slice (see §3.4).

1 import jax
2 import jax.numpy as jnp
3 import numpy as np
4 parallel_scan = jax.lax.associative_scan
5
6 def forward(lru_parameters, input_sequence):
7 """Forward pass of the LRU layer. Output y and input_sequence are of shape (L, H)."""
8
9 # All LRU parameters

10 nu_log, theta_log, B_re, B_im, C_re, C_im, D, gamma_log = lru_parameters
11
12 # Materializing the diagonal of Lambda and projections
13 Lambda = jnp.exp(-jnp.exp(nu_log) + 1j*jnp.exp(theta_log))
14 B_norm = (B_re + 1j*B_im) * jnp.expand_dims(jnp.exp(gamma_log), axis=-1)
15 C = C_re + 1j*C_im
16
17 # Running the LRU + output projection
18 # For details on parallel scan, check discussion in Smith et al (2022).
19 Lambda_elements = jnp.repeat(Lambda[None, ...], input_sequence.shape[0], axis=0)
20 Bu_elements = jax.vmap(lambda u: B_norm @ u)(input_sequence)
21 elements = (Lambda_elements, Bu_elements)
22 _, inner_states = parallel_scan(binary_operator_diag, elements) # all x_k
23 y = jax.vmap(lambda x, u: (C @ x).real + D * u)(inner_states, input_sequence)
24
25 return y
26
27 def init_lru_parameters(N, H, r_min=0, r_max=1, max_phase=6.28):
28 """Initialize parameters of the LRU layer."""
29
30 # N: state dimension, H: model dimension
31 # Initialization of Lambda is complex valued distributed uniformly on ring
32 # between r_min and r_max, with phase in [0, max_phase].
33 u1 = np.random.uniform(size = (N,))
34 u2 = np.random.uniform(size = (N,))
35 nu_log = np.log(-0.5*np.log(u1*(r_max**2-r_min**2) + r_min**2))
36 theta_log = np.log(max_phase*u2)
37
38 # Glorot initialized Input/Output projection matrices
39 B_re = np.random.normal(size=(N,H))/np.sqrt(2*H)
40 B_im = np.random.normal(size=(N,H))/np.sqrt(2*H)
41 C_re = np.random.normal(size=(H,N))/np.sqrt(N)
42 C_im = np.random.normal(size=(H,N))/np.sqrt(N)
43 D = np.random.normal(size=(H,))
44
45 # Normalization factor
46 diag_lambda = np.exp(-np.exp(nu_log) + 1j*np.exp(theta_log))
47 gamma_log = np.log(np.sqrt(1-np.abs(diag_lambda)**2))
48
49 return nu_log, theta_log, B_re, B_im, C_re, C_im, D, gamma_log
50
51 def binary_operator_diag(element_i, element_j):
52 # Binary operator for parallel scan of linear recurrence.
53 a_i, bu_i = element_i
54 a_j, bu_j = element_j
55 return a_j * a_i, a_j * bu_i + bu_j

14

Resurrecting Recurrent Neural Networks for Long Sequences

B. Related works
We first discuss standard RNN-based approaches for sequence-to-sequence modeling, and then provide a historical overview
on the progress of the literature stemming from the S4 paper (Gu et al., 2021a).

Recurrent neural networks (RNNs). Before the rise of transformers (Vaswani et al., 2017), RNNs were widely used
in various applications of natural language processing tasks such as language modeling (Mikolov et al., 2010), machine
translation (Cho et al., 2014b) and text summarization (Nallapati et al., 2016). The modern RNN structure (see Eq.1)
is mainly attributed to the works of Rumelhart et al. (1985), and enjoys strong theoretical guarantees such as Turing
completeness (Stogin et al., 2020) in the width limit. However, it is possible to see the Hopfield Networks as a particular
form of RNN (Hopfield, 1982). Modern RNN formulations are also often related to the Elman Networks (Elman, 1990).
The issue of vanishing or exploding gradients, as described by Bengio et al. (1994); Pascanu et al. (2013), is one barrier
to training Recurrent Neural Networks (RNNs) with gradient descent. This problem limits the ability of RNNs to learn,
especially on tasks with long input sequences. One of the critical contributions to the success of RNNs was the introduction
of gating mechanisms such as the Long Short-Term Memory (LSTM) proposed by the Hochreiter & Schmidhuber (1997).
LSTMs address the vanishing gradients problem by introducing input, output, and forget gates, which enable the network to
selectively remember or forget information from previous time steps. Another popular variant of gated RNNs is the Gated
Recurrent Unit (GRU) (Cho et al., 2014b) which simplifies the LSTM architecture by merging input and forget gates into a
single update gate.

Mitigating the vanishing gradient problem with orthogonal and unitary RNNs. Arjovsky et al. (2016) introduced
unitary evolution RNNs (uRNN), where eigenvalues in the RNN state-to-state transition matrix (A in Eq. (1)) are restricted
to live on the unit circle. The induced map driving the hidden state evolution, therefore, mixes state components taking
into account new inputs — but the signal from past timestamps is not exponentially vanishing/exploding as in the vanilla
RNN case (see discussion on stability in §3.2.1 and (Pascanu et al., 2013)). This idea is powerful but introduces two
problems: (1) choosing unitary transitions restricts the function approximation class, and (2) training unitary matrices is
expensive since a projection on the Stiefel manifold is required at each gradient step. To resolve the second issue, many
works devoted attention to carefully designed reparameterization of the transition matrix as e.g., with the product of simpler
matrices (Arjovsky et al., 2016), Givens rotations (Jing et al., 2017), Householder reflections (Mhammedi et al., 2017), or
as exponentials of skew-symmetric matrices (Hyland & Rätsch, 2017; Lezcano-Casado & Martınez-Rubio, 2019). The
approximation capacity of these models is discussed and improved in Wisdom et al. (2016). A further step in designing
efficient orthogonal RNNs is provided by Helfrich et al. (2018), who parametrized skew-symmetric matrix using the Cayley
transforms, resulting in a fully real parameter space.

Recent Developments in the RNN literature. In addition to LSTMs (Hochreiter & Schmidhuber, 1997), GRUs (Cho
et al., 2014b), and orthogonal RNNs (Arjovsky et al., 2016; Helfrich et al., 2018), in recent years many works devoted
attention to the problem of vanishing gradients and of efficient learning in recurrent models. Such approaches can be put in
comparison with our work, and with the literature on SSMs. While linear recurrences such as the ones used in this paper as
well as in SSMs are studied mainly in the theoretical setting (to reduce level of complexity) (Li et al., 2022b; Hardt et al.,
2016), diagonal nonlinear real recurrences appeared in the literature before S4. One example is the IndRNN (Li et al., 2018),
which restricts the recurrent weights to have diagonal form (that is, hidden state components learn independently). (Li et al.,
2018) also gives intuition on why this feature makes IndRNNs more stable to the vanishing gradient problem. Compared
to our work, in the IndRNN a nonlinearity is placed directly in the recurrence as in classical RNNs. In our work, we give
evidence that complex-valued linear recurrences placed as sequence-to-sequence processing units followed by MLPs lead to
a boost both in scalability (through the use of parallel scans) and in test accuracy (see §3.1).
An alternative and very interesting approach for solving the vanishing gradient problem consists in using random nonlinear
recurrences, fixed at initialization, and just training the linear readout. The state produced by such networks – often called
Echo State Networks (ESNs) (Jaeger & Haas, 2004) is called a reservoir (see (Lukoševičius & Jaeger, 2009) for a review).
The reservoir acts as a nonlinear dynamical system that transforms input data into a higher-dimensional space, enabling
effective learning and prediction. Shallow versions of these networks were found to be particularly efficient in the context of
learning low-dimensional nonlinear dynamical systems, and offer strong connections to new areas of mathematics such as
rough-path theory (Compagnoni et al., 2022). While clamping the recurrent weights to initialization leads to a decrease
in test performance (see Gu et al. (2020; 2022a)), in ESNs the vanishing gradient problem clearly is no longer causing
issues, as the recurrent weights are not trained. It would be interesting to compare the performance of our model to that of
deep (transformer-like) echo-state networks and to leverage ideas in this literature to design more effective initializations.
More fundamentally, the problem of vanishing gradients and the challenges of learning from sequential data are studied in the

15

Resurrecting Recurrent Neural Networks for Long Sequences

literature on credit assignment (Mali et al., 2021a; Manchev & Spratling, 2020; Ororbia et al., 2020; Ke et al., 2018; Tallec
& Ollivier, 2017). This field of machine learning studies alternatives to backpropagation in the context of training recurrent
models, targeted towards improving generalization and biological plausibility. Approaches include variants of Kronecker
Factors Real-Time Recurrent Learning (Williams & Zipser, 1989) (such as Unbiased Online Recurrent Optimization (Tallec
& Ollivier, 2017)) and application of sparse attention mechanisms (Ke et al., 2017). We find these ideas particularly
interesting, and believe insights from this literature can be leveraged to further strengthened training speed in linear RNNs.
An orthogonal line of research is instead concerned with higher order recurrent networks (Omlin & Giles, 1996). For
instance, Mali et al. (2021b) proposes to update the hidden state using equations such as xk = σ (A(xk−1, uk) +Buk),
where A is a third-order tensor (named a Second-Order Tree Recurrent Network). While our work does not discuss
higher-order recurrences, we believe a successful parallel implementation of simplified variants (e.g. without nonlinearity)
is a promising direction for furture investigations.
To conclude, other works which proposed conceptually different solutions to mitigate the vanishing gradient problem include
combinations with rectified linear units (Le et al., 2015), Lipschitz RNNs (Erichson et al., 2021), and dilated convolutions to
increase context size (Oord et al., 2016; Bai et al., 2018).

Deep state-space models (SSMs), a historical overview. Inspired by interesting approaches involving continuous-time
representation for recurrent neural networks (Voelker et al., 2019; Zheng et al., 2017), Gu et al. (2020) recently provided an
alternative view on the vanishing gradient problem: one can design linear continuous-time state-space models (SSMs), of
the form ẋ(t) = Ax(t) +Bu(t) where the state x(t) ∈ RN is guaranteed to compress all relevant (under a certain metric)
information about previously observed (one-dimensional) inputs u([0, t]). For instance, by using specific pair of matrices
(A ∈ RN×N , B ∈ RN×1), one can discretize the continuous-time SSM above using a stable, accurate integrator (e.g.,
bilinear or zero-order-hold) and retrieve the hidden state x(t), which contains the coefficients for the best N -th degree
polynomial approximation to u([0, t]). The idea of Gu et al. (2020) was to then use the resulting discretized structured (i.e.,
using structured HiPPO matrices) state-space model as a starting for the design and initialization of a novel gated RNN.

Later, Gu et al. (2021a) scaled up this idea into a deep architecture, where a collection (one for each input dimension) of
discretized continuous-time structured SSM was placed at each layer as a substitute13 for the attention block, in an attempt
to mitigate the O(L2) issue in transformers and provide a theoretically principled component for sequence-to-sequence
modeling. The model reached state-of-the-art on the Long Range Arena benchmark (Tay et al., 2020), effectively showcasing
the power of discretized linear recurrences using structured transition matrices. Notably, the resulting model, named S4,
uses a convenient and stable representation of the HiPPO transition, which is initialized using a normal + low-rank matrix
and then learned efficiently in diagonal + low-rank form using fast Fourier transforms (FFTs) and Cauchy kernels.

In the months following the publication of S4, Gupta et al. (2022a) noticed that most of S4 performance can be retrieved by
only considering the diagonal component of the HiPPO matrix, and therefore showed the power of discretized diagonal
structured continuous-time state space models. This architecture is known as DSS. As the interest of the community was
rising, with first applications of DSS and S4 in language (Mehta et al., 2022), vision (Nguyen et al., 2022) and audio (Goel
et al., 2022), Gu et al. (2022a) further simplified DSS providing a diagonal form (S4D) with theoretical guarantees in the
infinite width setting. Notably Gu et al. (2022a) showed that, to retrieve most performance of S4, one can simply initialize
the transition matrix A in diagonal form, with entries an = − 1

2 + iπn (S4D-Lin) or an = − 1
2 + iNπ

(
N

n+1 − 1
)

(S4D-Inv).
Our interest in S4-like models spiked at this point since the findings of Gu et al. (2022a) suggest that, given the effectiveness
of such simplified versions of A, the root of S4 success might be attributable to more fundamental effects are orthogonal to
the HiPPO theory.

Shortly after, Smith et al. (2022) found that one can also depart from the formal one-dimensional discretization structure
of S4, rooted in the HiPPO theory, and considered a simplified version where all input dimensions are efficiently and
simultaneously processed using parallel scans (Martin & Cundy, 2017) — not separately like in S4, S4D, and DSS. This
model (named S5) set a new state-of-the art on PathX, the hardest task in the Long Range Arena, and provides further
evidence for a conceptually simpler motivation for the performance of deep state-space models. Indeed, as already mentioned,
S5 is not precisely the discretization of a latent continuous-time SSM, yet still includes parameters like discretization
stepsizes that have an ambiguous interpretation in this context14, suggesting further investigations are needed.

At the same time, a few interesting works developed novel variants of the S4 architecture. Liquid S4 used the original

13This idea is also leveraged in FNet (Lee-Thorp et al., 2021), where the attention mechanism is replaced with a simpler linear
token-mixing strategy.

14One can still view S5 as a discretized version of a continuous-time SSM. However, this requires adjusting the input projection matrix.

16

Resurrecting Recurrent Neural Networks for Long Sequences

(non-diagonal) S4 formulation combined with liquid time-constant networks (Hasani et al., 2021; 2022). Similar to DSS,
S4D, and S5, Mega also simplified S4 to a diagonal SSM (Ma et al., 2022) while showing additionally that restricting the
diagonal A to real numbers – giving it an exponential moving average (EMA) interpretation – can still work well when
combined with attention and a gated block design. Another intriguing view was provided by the SGConv model (Li et al.,
2022a), which leverages the convolutional interpretation of SSMs (Gu et al., 2021b) to design a purely filter-based version
of S4, with no latent continuous-time model or need for discretization.

The discretization viewpoint also attracted the interest of Gupta et al. (2022b), concurrent to this work, who pointed out
that, after numerical integration, diagonal state-space models and linear RNNs share the same function approximation class.
Gupta et al. (2022b) then introduced DLR, most closely related to DSS and S4D (each input is processed independently
at each layer) but where the discretization stepsize ∆ is absorbed into the continuous-time transition matrix A (see §2).
Their focus was on a new set of synthetic long-range tasks with strong supervision (e.g. segmentation), while ours is on the
established Long Range Arena benchmark.

To conclude, we point the reader to interesting recent applications of models inspired by the S4 architecture. In addition to
earlier applications in NLP (Mehta et al., 2022), more sophisticated architectures based on S4 recently showed great promise
in language modeling (Dao et al., 2022b; Ma et al., 2022). Specifically, Dao et al. (2022b) designed a new generative
language model, H3, that outperforms GPT-Neo-2.7B with SSMs, augmented with two attention layers. Besides language,
deep state-space models were also found successful for long video/audio understanding and generation tasks (Islam &
Bertasius, 2022; Nguyen et al., 2022; Goel et al., 2022), and have attracted interest in biology (Bordin et al., 2022) and time
series forecasting (Zhou et al., 2022).

17

Resurrecting Recurrent Neural Networks for Long Sequences

C. Additional experimental results
C.1. Training speedups

In Tb.4, we show training speed comparisons of the LRU with a regular RNN with tanh activations, as well as with the
S4D and S5 models. As we elaborate in §2.2, for the LRU, we closely followed the optimal model sizes of the S5 model.
Consequently, we also see similar training speeds as the S5 model on all tasks.

MODEL SCIFAR LISTOPS TEXT RETRIEVAL PATHFINDER PATHX

TANH RNN 2.0 1.1 0.5 0.5 2.1 0.14

LRU 15.9 (8X) 2.1 (1.9X) 14.7 (29X) 5.7 (11.4X) 15.5 (7.4X) 2.4 (17X)

S4D (OUR REPRODUCTION) 13.5 2.2 10.6 3.0 24.5 2.6

S5 (OUR REPRODUCTION) 15.9 2.2 14.4 5.7 15.6 2.3

Table 4. Speeds (steps/sec) during training on a A100 GPU. We also show the speedup of the LRU over the tanh RNN for each task. The
batch size used for each task is specified in Tb.10.

Example of parallelization. We provide here a quick example to give an idea of the inner workings of parallel scans. The
example is similar to the one presented in Smith et al. (2022). Consider the computation of 4th hidden state of the linear
recurrent model xk = Axk−1 +Buk, i.e. x3. We have, starting as usual from x−1 = 0,

x0 = Bu0,

x1 = ABu0 +Bu1,

x2 = A2Bu0 +ABu1 +Bu2,

x3 = A3Bu0 +A2Bu1 +ABu2 +Bu3.

Note that, starting from the sequence of projected inputs Bu0, Bu1, Bu2, to compute x3 sequentially we need three
consecutive steps: x0 → x1, x1 → x2 and x2 → x3. If however we have access to parallel compute, we can reduce the
number of steps — in this setting, we can make it in just two steps.

Consider tuples (A,Bu0), (A,Bu1), (A,Bu2), (A,Bu3) and the operation ⊙ such that (a, b)⊙ (a′, b′) = (aa′, a′b+ b′).
Below, in Figure 6, we illustrate how we can reduce the number of steps from 3 to 2 using the ⊙ operation. Of course, for
longer sequences, the number of operations decreases drastically. In particular, we note that this type of parallelization is
particularly effective in the case where A is diagonal (as proposed in this work as well as in Smith et al. (2022)), so that no
dense matrix multiplication is needed.

28

Important Advantage : linear dynamics can be parallelized
Linear RNN : xk = Axk−1 + Buk, x−1 = 0

⟹
x2 = A2Bu0 + ABu1 + Bu2
x3 = A3Bu0 + A2Bu1 + ABu2 + Bu3

x1 = ABu0 + Bu1
x0 = Bu0

(A4, A3Bu0 + A2Bu1 + ABu2 + Bu3)

(A, Bu0)
(A, Bu1)
(A, Bu2)
(A, Bu3)

Example of parallelization for (exponential gains on long seq.) x3

(A2, ABu0 + Bu1)

(A2, ABu2 + Bu3)

Arrow computation:
(a, b) ⊙ (a′ , b′) = (a′ a, a′ b + b′)

jax.lax.associative_scan

Still matrix multiplications, can we do better? Yes! After diagonalization.

Also used in some SSMs

Processor 1

Processor 2

Figure 6. Example of parallel scans on a short sequence.

C.2. Effect of stability and normalization

In this section, we explore further the effect of introducing stability during training (§3.3), as well as introducing the γ
normalization factor as shown in Eq.(6). To do this, we consider the sCIFAR experiment where we sweep over different
settings of rmax and rmin to see the effect when initializing closer to the unit disk. We keep the learning rate fixed at 0.004
for these experiments, which we found to be optimal when initializing with rmax = 1.0 and rmin = 0.0 under a stable
exponential parameterization.

We show our results in Tb.5. In the first table Tb.5(A), we show results with our baseline where we use the exponential
parameterization described in §3.3. We see that under this setting, the optimal performance is achieved when rmax =
rmin − 0.9, and performance degrades as rmax is increased beyond 0.9.

18

Resurrecting Recurrent Neural Networks for Long Sequences

In Tb.5(B) we show results after enforcing stability. We now notice that for each rmin, the optimal performance is achieved
by a higher rmax than before, i.e., training is more when initializing closer to the unit disk. Our optimal performance in this
setting is achieved using rmin = 0.0 and rmax = 0.99. Note that even in this setting, performance can sometimes degrade
when moving to even higher rmax.

Finally, in Tb.5(C) we also incorporate the γ normalization factor, and we now notice no degradation in performance even
when rmax = 0.999. We found training to be more stable in this setting, and our best result of 89.0% performance is also
obtained in this setting, with rmin = 0.9 and rmax = 0.999.

These ablations further motivate the benefits of enforcing stability and using the normalization parameter for better
performance and more stable training, particularly when required to learn very long-range dependencies.

rmax

rmin 0 0.5 0.9

0.9 87.6 (0.4) 87.8 (0.1) 87.9 (0.2)

0.99 83.8 (0.9) 85.8 (1.2) 81.9 (3.8)

0.999 83.9 (0.2) 84.8 (0.4) 84.8 (0.8)

(A) NO STABILITY.

rmax

rmin 0 0.5 0.9

0.9 86.2 (0.2) 86.6 (0.3) 87.3 (0.1)

0.99 87.8 (0.2) 87.7 (0.1) 88.1 (0.0)

0.999 87.4 (0.2) 87.4 (0.1) 87.5 (0.4)

(B) WITH STABILITY.

rmax

rmin 0 0.5 0.9

0.9 86.4 (0.1) 86.5 (0.1) 88.3 (0.1)

0.99 88.1 (0.1) 88.4 (0.1) 89.0 (0.2)

0.999 88.1 (0.1) 88.6 (0.0) 89.0 (0.1)

(C) WITH γ NORMALIZATION.

Table 5. Effect of stability and normalization and different rmin and rmax values on test accuracy for the sCIFAR10 task. Both stability
and normalization allow for initializing eigenvalues closer to the unit disk, resulting in improved performance.

C.3. Expanded tables

Below we show our full results on the Long Range Arena, expanding on Tables 1, 2, and 3 in the main paper. The tables are
presented in logical order: in Table 6 and 7, we show that vanilla (dense) RNNs profit from dropping recurrent nonlinearities
when used in the context of the architecture in Fig. 1. Next, in Table 8 we diagonalize our linear RNN model from
§3.1 and show how different parametrization for the diagonal elements affect performance. For all the rows in Table 8,
initialization of the diagonal RNN was performed uniform on the disk, to match the random Glorot initialization of our
dense version (Thm. 3.1), used also for the models in Tables 6 and 7.
Further, the last row in Table 8 shows the positive effects of changing initialization distribution to a thin ring close to the
circle boundary — effectively enabling long-range reasoning through mitigation of vanishing gradients. Our settings for
the ring are reported on the first row of Table 9. Finally, the second row of this table shows the improvements that can be
achieved by including model normalization (Eq. (6)), which closes the accuracy gap with deep SSMs.

D. Detailed experimental setup
In this section, we describe our experimental details.

D.1. Architecture

We consider the standard S4 architecture of Gu et al. (2021a) and replace the S4 layers with RNN layers or with S5 (Smith
et al., 2022) or S4D (Gu et al., 2022a) layers for our baselines. We give an overview of the architecture used in Fig.1. The
input is first encoded into H features, followed by a stack of residual blocks. For all our experiments, we use networks
with a depth of 6 residual blocks. Each residual block consists of identity skip connection, and the residual path containing

19

Resurrecting Recurrent Neural Networks for Long Sequences

RECURRENCE SCIFAR LISTOPS TEXT RETRIEVAL PATHFINDER PATHX

RNN-LIN 72.2 (0.2) 50.4 (0.2) 89.1 (0.1) 89.1 (0.1) % %

RNN-RELU 69.7 (0.2) 37.6 (8.0) 88.0 (0.1) 88.5 (0.1) % %

RNN-TANH 69.9 (0.3) 43.9 (0.1) 87.2 (0.1) 88.9 (0.2) % %

S4D (OUR REPRODUCTION) 91.5 (0.2) 60.2 (0.3) 86.4 (0.0) 89.5 (0.0) 94.2 (0.3) 97.5 (0.0)

S5 (OUR REPRODUCTION) 88.8 (0.1) 58.5 (0.3) 86.2 (0.1) 88.9 (0.0) 95.7 (0.1) 96.0 (0.1)

S4 (PAPER RESULTS) 91.1 59.6 86.8 90.9 94.2 96.4

S4D-LEGS (PAPER RESULTS) 89.9 60.5 86.2 89.5 93.1 91.9

S5 (PAPER RESULTS) 90.1 62.2 89.3 91.4 95.3 98.6

Table 6. Placing a Vanilla RNN as recurrent core in the architecture of Fig. 1. Shown is the effect of removing the RNN nonlinearity on
test accuracy (§3.1).

TASK SIGMOID HARD-SIGMOID HARD-TANH MISH NO NONLINEARITY

SCIFAR 67.2 (0.4) 66.7 (0.2) 69.6 (0.1) 69.9 (0.2) 72.2 (0.2)

LISTOPS 46.8 (1.9) 41.9 (0.5) 43.1 (0.5) 28.1 (8.3) 50.4 (0.2)

Table 7. Complement to the first 3 rows of Table 6. Effect of using other types of nonlinearities for the Vanilla RNN such as Sigmoid,
Hard Sigmoid (Courbariaux et al., 2015), Hard Tanh and Mish (Misra, 2019) (ReLU and Tanh already in Table 6).

a normalization layer (in our case, we always use batch normalization in our experiments), followed by the RNN/SSM
block. While using the “post-norm” option of adding the normalization layer after the skip and residual branches typically
improves performance, we stick to this design due to this architecture being more scalable in general (De & Smith, 2020).

Each RNN/SSM block first contains the recurrent layer as described in Eqs.(1) and (3) in §2. This is followed by a mixing
layer. For all experiments except PathX, we use the GLU activation function (Dauphin et al., 2017) with dropout as the
mixing layer, similar to Gu et al. (2021a). For PathX, we instead use a GLU activation function without one additional linear
transform; the same as used by Smith et al. (2022) for their experiments.

We use bidirectional models for our experiments on PathFinder and PathX, using a similar setup as Gu et al. (2021a), and
use unidirectional models for the rest of our experiments.

D.2. General experimental details

We use AdamW as our optimizer (Loshchilov & Hutter, 2017). We use warmup for the learning rate, where we start from a
value of 10−7 and increase the learning rate linearly up a specified value for the first 10% of training. This is followed by
cosine annealing for the rest of training down to a value of 10−7.

We used a smaller learning rate for the RNN/SSM parameters in the recurrent computation (i.e. A (or Λ) and B). When
using normalization in our RNNs, we also used a smaller learning rate on the normalization parameter γ. For our S5 and
S4D baselines, we used a smaller learning rate for the discretization step size ∆. This smaller learning rate was determined
by multiplying the base learning rate by a factor < 1 (See Tb.10 for the learning rate factor used for each task).

We use weight decay for all parameters except the RNN/SSM parameters A and B (and γ and ∆ when applicable).

All experiments were carried out on accelerated hardware A100 GPUs.

D.3. Hyperparameters

For our S5 (Smith et al., 2022) baseline, we tuned the model dimension H and state dimension N . These values were then
used for our final LRU configuration without re-tuning. For the S5 baseline, we additionally tuned the number of blocks
(denoted P in (Smith et al., 2022)) as well as the initialization scheme. For our S4D (Gu et al., 2022a) baseline, we used the
same model dimension H as used for our S5 baseline, and additionally tuned the state dimension N and the initialization
scheme. For the LRU, we tuned the initialization scheme (set by rmin and rmax). Thus, our S4D and S5 baselines were
afforded a similar tuning budget as the LRU (arguably, a larger tuning budget than the LRU). This explains why some
of the numbers for our baselines are superior to the values reported in the original papers on the same tasks. For all our
experiments, we tuned the base learning rate on a logarithmic grid of 2 to choose the optimal learning rate. We present the
hyperparameters we used for each LRU experiment in Tb.10. We also note that the number of parameters in the architectures
above is similar.

20

Resurrecting Recurrent Neural Networks for Long Sequences

SCIFAR LISTOPS TEXT RETRIEVAL PATHFINDER PATHX

DENSE A 72.2 (0.2) 50.4 (0.2) 89.1 (0.1) 89.1 (0.1) % %

Λ REAL + IM 86.5 (0.1) 58.8 (0.3) 87.4 (0.3) 87.8 (0.5) % %

Λ EXP 85.4 (0.7) 60.5 (0.3) 86.5 (0.4) 89.4 (0.1) 65.4 (9.0) %

Λ STABLE EXP 87.2 (0.4) 59.4 (0.3) 87.6 (0.3) 89.1 (0.2) 93.5 (0.5) %

+ RING INIT 88.1 (0.0) 59.4 (0.3) 89.4 (0.1) 90.1 (0.1) 94.4 (0.3) %

S4D (OUR REPRODUCTION) 91.5 (0.2) 60.2 (0.3) 86.4 (0.0) 89.5 (0.0) 94.2 (0.3) 97.5 (0.0)

S5 (OUR REPRODUCTION) 88.8 (0.1) 58.5 (0.3) 86.2 (0.1) 88.9 (0.0) 95.7 (0.1) 96.0 (0.1)

S4 (PAPER RESULTS) 91.1 59.6 86.8 90.9 94.2 96.4

S4D-LEGS (PAPER RESULTS) 89.9 60.5 86.2 89.5 93.1 91.9

S5 (PAPER RESULTS) 90.1 62.2 89.3 91.4 95.3 98.6

Table 8. Test accuracy of a linear diagonal complex RNNs under different parameterizations of the transition matrix (see §3.2). Per-
formance directly improves the results in Tb. 1, and showcases the advantage of exponential (polar) representation of Λ. In bold font
is the best parameterization option for linear RNN blocks. Ring Init denotes a changed initialization where rmin and rmax are tuned.
Performance and Text and Retrieval task already aligns with S4 results in the dense setting (c.f. Tb.1 with Tb. 3). No model with able to
solve PathX, which requires normalization (see Tb.3).

SCIFAR LISTOPS TEXT RETRIEVAL PATHFINDER PATHX

LINEAR DENSE RNN 72.2 (0.2) 50.4 (0.2) 89.1 (0.1) 89.1 (0.1) % %

DIAGONAL COMPLEX RNN 86.5 (0.1) 58.8 (0.3) 87.4 (0.3) 87.8 (0.5) % %

STABLE EXP PARAM W/ RING INIT 88.1 (0.0) 59.4 (0.3) 89.4 (0.1) 90.1 (0.1) 94.4 (0.3) %

[rmin, rmax] [0.9, 0.99] [0.0, 1.0] [0.0, 0.9] [0.5, 0.9] [0.9, 0.999]

+γ NORMALIZATION (LRU) 89.0 (0.1) 60.2 (0.8) 89.4 (0.1) 89.9 (0.1) 95.1 (0.1) 94.2 (0.4)

[rmin, rmax] [0.9, 0.999] [0.0, 0.99] [0.5, 0.9] [0.5, 0.9] [0.9, 0.999] [0.999, 0.9999]

S4D (OUR REPRODUCTION) 91.5 (0.2) 60.2 (0.3) 86.4 (0.0) 89.5 (0.0) 94.2 (0.3) 97.5 (0.0)

S5 (OUR REPRODUCTION) 88.8 (0.1) 58.5 (0.3) 86.2 (0.1) 88.9 (0.0) 95.7 (0.1) 96.0 (0.1)

S4 (PAPER RESULTS) 91.1 59.6 86.8 90.9 94.2 96.4

S4D-LEGS (PAPER RESULTS) 89.9 60.5 86.2 89.5 93.1 91.9

S5 (PAPER RESULTS) 90.1 62.2 89.3 91.4 95.3 98.6

Table 9. Effects of normalization on linear diagonal RNNs with stable exponential parameterization (see §3.4). In bold is our best
performing model, and we report the closely matching deep SSM results below. Tunings for our rings are also reported. Results showcase
the advantage of taking initialization close to the unit circle under proper γ normalization. For PathX, we initialize eigenvalues to have a
phase range of [0, π/10], for all other tasks we use a range of [0, 2π] (see §3.4).

Hyper-parameter stability. We found that common hyper-parameters such as model width, model depth, and the learning
rate, were no more sensitive for the LRU than for our S4/S4D/S5 baselines. The main hyper-parameters specific to the LRU
are the rmin and rmax hyper-parameters governing the initialization scheme. We found that these could simply be set to
default values of rmin = 0 and rmax = 1 for most tasks (see e.g. tuning for sCIFAR in Table 5), but needed to be tuned to
achieve strong performance on Pathfinder and PathX, the two most challenging tasks in the LRA benchmark.

D.4. Tasks

We use the 6 tasks in the Long Range Arena benchmark for our experiments (Tay et al., 2020), with the only difference
being we use colored sCIFAR images instead of the grayscale sCIFAR images used in LRA.

E. Theoretical insights
We provide here theoretical groundings for some observations made in §3. We start by showing in §E.1 that, when interleaved
with MLP blocks, stacked linear RNNs can model highly nonlinear dynamical systems. We provide two separate views that
justify our findings: in §E.1.1, we provide a spectral explanation, while in §E.1.2 we present a function-space prespective.
Our results, combined with the observation that nonlinear RNNs are difficult to optimize (§E.2), provide a justification for
the results in Tb. 1. Next, motivated by the results in Tb. 3 we in discuss in the same section optimization of linear RNN
blocks, and show that exponential reparameterization can accelerate training.

21

Resurrecting Recurrent Neural Networks for Long Sequences

TASK DEPTH H N ITERATIONS BATCH SIZE LR FACTOR WEIGHT DECAY DROPOUT

SCIFAR 6 512 384 180K 50 0.25 0.05 0.1

LISTOPS 6 128 256 80K 32 0.5 0.05 0.0

TEXT 6 256 192 50K 32 0.1 0.05 0.1

RETRIEVAL 6 128 256 100K 64 0.5 0.05 0.1

PATHFINDER 6 192 256 500K 64 0.25 0.05 0.0

PATHX 6 128 256 250K 32 0.25 0.05 0.0

Table 10. List of all the hyper-parameters used for each task for the LRU model.

E.1. Expressivity of linear RNN stacks

In our sequence-to-sequence setting, it is a natural to seek models which (at least in the width limit) are able to map inputs u
to outputs y (last layer) using a flexible nonlinear transition map T learned from data. Mathematically, a fully-expressive
causal model should be able to approximate yk = T (uk, uk−1, . . . , u1), where T is an arbitrary nonlinear map.

E.1.1. SPECTRAL PERSPECTIVE

We show in this section how interleaving linear RNNs with MLPs in a deep architecture provides a flexible and modular
recipe for the approximation of nonlinear transition maps.

Spectral limitations of linear RNNs. It is a standard result (Li et al., 2022b) that linear RNNs can approximate any
shift-invariant linear map T . In continuous-time, on the spectral domain, this property is easier to study: let Y (ω) and U(ω)
be the Fourier transforms for two continuous-time signals u, y : R→ R. If there exists a function H : R→ R such that
Y (ω) = H(ω)U(ω), then this can be approximated by a continuous-time linear RNN ẋ = Ax+Bu for some coefficients
A ∈ RN×N , B ∈ RN×1, and the approximation can be made arbitrarily accurate as N →∞. However, one thing a linear
RNN cannot do is store information under frequencies which are not present in the input signal: if the input is a sine wave
of a certain frequency, the output will be a scaled and shifted sine wave of the same frequency.

Spectral effects of interleaving with MLPs. In our architecture (Fig.1) an activation function, as well as a linear
position-wise layer, is placed right after each RNN output. As can be seen in Fig. 7, this operation causes spectral leakage:
information gets copied over different frequency components.

0.00 0.01 0.02 0.03 0.04 0.05
0.010

0.005

0.000

0.005

0.010
Signal

0.00 0.01 0.02 0.03
0

5

10

15

20

25

30

35
Abs. value FFT

original
after ReLU

Figure 7. ReLU nonlinearity leaks information from the original signal to higher frequencies, as shown formally in Prop. E.1.

The behavior shown in Fig. 7 can be characterized exactly:

Proposition E.1 (Spectral effect of ReLU). Let u : R→ R be a continuous-time signal. Let Pi be the i-th region activated
by the ReLU applied to u, and let us write Pi = [pi − Li, pi + Li]. Then

FReLU(u) = Fu(ω) ⋆

[∑
i

2Lie
−iωpisinc(ωLi)

]
. (7)

where F denotes the Fourier transform, ⋆ the convolution operation and sinc(x) := sin(x)/x.

22

Resurrecting Recurrent Neural Networks for Long Sequences

This result is simple to parse: the Fourier transform of a ReLU activated signal is equal to the Fourier transform before the
ReLU, convolved with a kernel which transports information to higher frequencies — an operation which is impossible
for linear RNNs, even as the width increases. As such, introducing an MLP completes the list of requirements for
approximations of a nonlinear transition map: frequencies can be scaled up and down arbitrarily by the RNN, and
can then be translated in the space using the ReLU. As depth increases, these operations can be combined in a modular
fashion, leading to highly nonlinear dynamics using easy-to-learn linear blocks, interleaved with simple activations.

To conclude, we provide a proof for the proposition above.

Proof. Recall that multiplications in the time domain are convolutions in the frequency domain.

u1(t) · u2(t) = F−1
U1

(t) · F−1
U2

(t) (8)

=

(∫ ∞

−∞
U1(ν)e

iνtdν

)
·
(∫ ∞

−∞
U2(ξ)e

iξtdξ

)
(9)

=

∫ ∞

−∞
U1(ν)

(∫ ∞

−∞
U2(ξ)e

i(ξ+ν)tdξ

)
dν (10)

=

∫ ∞

−∞
U1(ν)

(∫ ∞

−∞
U2(ω − ν)eiωtdω

)
dν (11)

=

∫ ∞

−∞

(∫ ∞

−∞
U1(ν)U2(ω − ν)dν

)
eiωtdω (12)

= F−1
U1⋆U2

(t). (13)

Let now u1 = u and u2 = χ(u1 > 0), then u1 · u2 = ReLU(u). Next, let Pi be the i-th region activated by the ReLU, and
let us write Pi = [pi − Li, pi + Li]. We can write χ(u1 > 0) =

∑
i χ[pi−Li,pi+Li].

Recall now the following basic properties:

1. Fx(t−t0)(ω) = e−iωt0Fx(t)(ω).

2. The Fourier transform of a rectangular pulse between −τ and τ is 2τ · sinc(ωτ), where sinc(x) = sin(x)/x.

Therefore, we have
Fχ[pi−Li,pi+Li]

(ω) = e−iωpiFχ[−Li,Li]
(ω) = 2Lie

−iωpisinc(ωLi). (14)

This concludes the proof:

FReLU(u) = U ⋆

[∑
i

2Lie
−iωpisinc(ωLi)

]
. (15)

E.1.2. INSIGHTS FROM KOOPMAN OPERATOR THEORY

We show how Koopman operator theory (Koopman & Neumann, 1932), combined with recent advances in dynamic mode
decomposition (Schmid, 2010; Kutz et al., 2016; Williams et al., 2015), can provide a solid theoretical foundation for
understanding the class of functions that can be approximated by linear RNNs, interleaved with MLPs. Our notation and
results are based on Korda & Mezić (2018); Mauroy et al. (2020).

Basic theory. Consider a discrete-time nonlinear dynamical system xk+1 = S(xk), where S : Rn → Rn is a suffi-
ciently regular map. The Koopman operator KS for the dynamical system S prescribes the evolution of any observable
(measurement) f : Rn → C:

(KSf)(x) := f(S(x)). (16)

For instance, let us consider n = 1 and the observable f(x) = sin(x): the Koopman operator is the map that takes

sin(·) KS7→ sin(S(·)), i.e. advances the measurement f one step forward in time.

23

Resurrecting Recurrent Neural Networks for Long Sequences

The crucial property of the Koopman operator is that it is linear and bounded (Mauroy et al., 2020): let f1, f2 be two
observables, then

KS(αf1 + βf2)(x) = (αf1 + βf2)(S(x)) (17)
= αf1(S(x)) + βf2(S(x)) (18)
= α(KSf1)(x) + β(KSf2)(x). (19)

If S is regular enough, i.e. if the Hilbert space of observables can be chosen such that K only has point spectrum, then the
spectral theory of bounded linear operators in Hilbert spaces implies that KS is diagonalizable — i.e. any observable f can
be expanded in terms of eigenfunctions of KS , where the Koopman acts linearly. We recall the definition: ϕλ : Cn → C is
an eigenfunction of KS with eigenvalue λ ∈ C if KSϕλ = λϕλ — i.e if the system measured on ϕ evolves linearly. Since
the eigenfunctions of KS form a basis for L2, for any observable f : Cn → C, there exist complex numbers ν1, ν2, · · · such
that one can write (Mauroy & Mezić, 2016)

KSf(x) = KS

 ∞∑
j=1

νjϕj

 (x) =

∞∑
j=1

λkνjϕj(x). (20)

Since also the identity measurement map x 7→ x can be decomposed into eigenfunctions of KS coordinate-wise, we have
the following: assuming xk+1 = S(xk), with x ∈ Rn, for any k ∈ N we have

xk = V ΛkΦ(x0), (21)

where, with slight abuse of notation, Φ : Rn → C∞ is a vector of functions with the j coordinate defined as (Φ)j := x 7→
ϕj(x), and V ∈ Cn×∞ (often named the Koopman modes matrix) is the infinite dimensional matrix such that, for the
observable fi : x 7→ xi, one has fi(x) =

∑∞
j=1 Vijϕj(x).

Basic Theory Summary. In essence, Koopman operator theory, provides the following guarantee: any sufficiently
regular nonlinear autonomous dynamical system can be made linear under a high-dimensional nonlinear blow-up of
the state-space. Sounds familiar? This is exactly what a wide MLP + Linear RNN can do. Moreover, to take the system
back to the original coordinate system, one just needs a linear projection with matrix V . In practice, for identification and
diagnosis of nonlinear systems (e.g. in machanical engineering), this approach is used in a truncated version, where the
finite class of dominant eigenfunctions is constructed by using the dynamic mode decomposition (DMD) algorithm from
Hermite Polynomials (Schmid, 2010; Kaiser et al., 2021).

Extension to nonlinear systems with inputs. Several options exist for extending Koopman operator theory to systems
with inputs (Surana, 2016; Proctor et al., 2018; Kaiser et al., 2021; Korda & Mezić, 2020). Here, we briefly outline the
approach of (Korda & Mezić, 2020). Let S : Rn × Rm → Rn be a nonlinear function which evolves the state of the
system as xk+1 = S(xk, uk), where (uk)

∞
k=1 ∈ ℓ2(Rm) is the input sequence. We wish to take this nonlinear dynamical

system with inputs to linear form in the infinite-dimensional space of observables f of the form Rn × ℓ2(Rm)→ C. Let L
denote the left shift operator ũ = (u0, u1, . . .) 7→ L(ũ) = (u1, u2, . . .), then one can define the Koopman operator for any
observable f as follows:

KSf(x, ũ) = f(S(x, u0),L(ũ)). (22)

This operator is again linear and bounded for regular enough S (Korda & Mezić, 2020) — hence the analysis in the
autonomous setting carries out also in this case. In particular, using the notation in the last paragraph:

xk = V Λk
(x,u)Φ(x0, ũ), (23)

where Λ(x,u) is a diagonal complex infinite-dimensional matrix which contains the eigenvalues corresponding to the
eigenfunctions of the extended state Φ(x0, ũ).

Implication for deep RNNs. In essence, Koopman operator theory, provides the following guarantee: any regular
nonlinear dynamical system is representable by a linear RNN after proper nonlinear reparameterization of the inputs —
which can be performed by an MLP. While we believe this connection is conceptually solid and gives substantial insights into
our architecture, a quantitative discussion would require substantial technical efforts perhaps linked to recent contributions
from the statistical learning community (Kostic et al., 2022).

24

Resurrecting Recurrent Neural Networks for Long Sequences

E.2. Optimization of recurrent blocks

In this subsection we back-up some of our claims about optimization of linear RNNs with experimental findings on toy
examples. Our purpose is to confirm validity of our intuition outside the deep learning setting, without architecture-dependent
confounders: i.e on vanilla RNNs with one layer.

Recurrent nonlinearities slow down gradient descent. In §3 and §E.1 we showed how linear RNNs can be used as
elementary recurrent blocks for the purpose of modeling complex nonlinear dynamics when stacked in deep architectures.
Similarly, the results in (Li et al., 2022a) indicate that, to achieve S4 performance, one can equivalently replace the recurrent
core with a collection of convolutions parametrized by filters. While a single-layer level, a (dense) RNNs (Eq.1) with tanh
or sigmoid activation can express convolutions with filters (Wang et al., 2022), the results in Tb. 1 (and Fig. 1(a) in Wang
et al. (2022)) indicate an advantage on test accuracy from dropping such nonlinearities in the recurrence — i.e. of making the
RNN linear. Motivated by this, in Fig. 8 we consider the problem of learning a single one-dimensional convolution kernel
with a single layer RNN, and compare performance of linear and tanh activations. The sequence length in this problem was
100, and our data consists in 32 input-output one-dimensional trajectories, where the output is the result of a convolution
with the kernel of elements hk := 1

10 exp(−0.015 · k) cos(0.04 · k)2, which induces moderate-length dependencies in the
data (see bump in the kernel in Figure 8 at k = 70). The 32 input sequences are generated sampling random a, c parameters
on a range and have form sin(0.05 · a · k) cos(0.05 · c · k)2. Outputs are generated by convolving each input by h. Learning
is performed using the Adam optimizer (Kingma & Ba, 2014) with standard momentum parameters.

Interestingly, already on this simple task, linear RNNs outperforms the tanh variant even after careful tuning of the stepsize.
While the input-output map the system had to approximate is linear (i.e. a convolution), this result still indicates that on
deep architectures, where the MLPs interleaving RNNs can quickly perform position-wise nonlinearities lifting the function
approximation class (see §E.1), linear RNNs are preferrable.

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10
Convolution kernel to be learned

0 250 500 750 1000 1250 1500 1750 2000

10 1

100

101
Training loss over iterations

tanh, lr = 0.0001
tanh, lr = 0.0003
tanh, lr = 0.001
tanh, lr = 0.005
lin, lr = 1e-05
lin, lr = 3e-05
lin, lr = 0.0001

Figure 8. Learning with Adam a one-dimensional convolution with a length-100 kernel using a single-layer RNNs with linear or tanh
recurrent activations and 100-dimensional hidden state. Initialization is performed using Glorot on all quantities for both options. For all
learning rates in our grid, the linear variant is faster to converge.
Benefits of exponential parameterization. Our experimental results in §3.3 indicete that linear RNN cores can be more
effectively learned under exponential parameterization of the eiganvalues: λ = exp(−ν + iθ). To understand the reason
behind this phenomenon, we go back at the classical (hard) problem of learning powers (Bengio et al., 1994), crucially
linked with linear RNN models (see Eq. (4)). For a specific planted solution λ∗ = λ∗

r + iλ∗
i = exp(−ν∗ + iθ∗), we

consider the problem of minimizing the loss L(λ̂) = 1
2 |λ̂k − (λ∗)k|2, where k = 100 and λ̂ is generated from two real

parameters following standard (real + imaginary) or exponential parameterization. Note that in this paragraph λ∗ ∈ C
denotes the solution, not the complex conjugate of λ. In Fig. 9, we show that as the target phase θ∗ approaches π/2 (i.e.
λ∗ gets close to the imaginary axis), standard parameterization slows down learning, as the corresponding landscape gets
non-axis-aligned — a feature that does not match well the inner workings of the Adam optimizer15, which is a diagonal
preconditioner (Kingma & Ba, 2014). Instead, under exponential parameterization, the effects of phase and magnitude
parameters on the powers of λ are more efficiently decouped: for example, while the real part of λk is simply exp(−kν)
using exponential parameterization, if standard parameterization is used, Re

[
λk

]
is a function of both λr and λi. We noticed

that the performance difference gets most pronounced when the system has to learn how to “turn”: i.e. the initialization
magnitude is correct, but the position on the complex plane is not (this is the precise setting for Figure 9): while for standard
parameterization changing the phase θ∗ requires a careful balance between real and imaginary components, for exponential

15For this problem, vanilla gradient descent cannot be effectively used as the landscape is highly non-convex, with challenging
curvature vanishing as |λ| approaces 0.

25

Resurrecting Recurrent Neural Networks for Long Sequences

0 100 200 300 400 500

10 27

10 23

10 19

10 15

10 11

10 7

10 3

Loss evolution (* = 0.03)
Re + Im param
Exp. param

0 100 200 300 400 500

10 28

10 24

10 20

10 16

10 12

10 8

10 4

100
Loss evolution (* = 0.35)

Re + Im param
Exp. param

0.78 0.79 0.80 0.81 0.82
0.54

0.55

0.56

0.57

0.58

Trajectory, Standard param. (* = 0.35)

0.01 0.00 0.01 0.02 0.03 0.04

0.59

0.60

0.61

0.62

0.63
Trajectory, Exp param. (* = 0.35)

Figure 9. Exponential parametrization helps when learning a single complex eigenvalue λ∗ = exp(−ν∗ + iθ∗), exponentiated 100
times. As λ∗ gets close to the purely imaginary setting θ∗ = π/2, the geometry of the loss landscape under standard real+imaginary
parametrization becomes suboptimal for the Adam optimizer, which works best in the axis-aligned setting (exponential parametrization).
In the plot, the square denotes initialization , while the star denotes the solution after 500 iterations.

parameterization gradients are fully aligned with the phase parameter. This makes the learning more flexible, a feature
which we observed necessary in our experiments on the Long Range Arena, see §3.3 and Tb.2.

E.3. On alternatives to using complex numbers

In this subsection, we show how to derive the canonical real form for a non-symmetric real-valued matrix A, which we
assume to be diagonalizable in the complex domain (always true up to arbitrary small perturbation of the entries (Axler,
1997)). This derivation is classical and can be found in many textbooks under the context of real Jordan form (more general),
see e.g. Weintraub (2009). Here, we present a simplified discussion.

After diagonalizing A, we retrieve a set of purely real eigenvalues (each with multiplicity 1 up to vanishing perturbations)
with corresponding real eigenvectors, and pairs of complex conjugate eigenvalues, with corresponding complex conjugate
eigenvectors.
We recall a proof for the facts above: let ∗ denote the elementwise complex conjugate of any complex quantity. This
operation clearly commutes with multiplication. If λ ∈ C is an eigenvalue of A ∈ RN×N with eigenvector v ∈ CN , then
since A is real-valued we have Av∗ = (A∗v)∗ = (Av)∗ = (λv)∗ = λ∗v∗. Hence, λ∗ is an eigenvalue with eigenvector
v∗. This also shows that there always does exist a real eigenvector corresponding to each real eigenvalue: let v ∈ CN be a
complex eivengvector with real eigenvalue λ, then v + v∗ ∈ RN is an eigenvector with eigenvalue λ since, again using the
fact that A is real, A(v + v∗) = Av +Av∗ = Av + (Av)∗ = λ(v + v∗) .

The action of A on its real eigenvectors (with real eigenvalues) is trivial and analogous to the symmetric case — this
corresponds to a diagonal entry in the diagonalized version of A. For the subspaces spanned by complex eigenvalues, the
discussion is more interesting: let λ, λ∗ be a pair of conjugate eigenvalues with corresponding eigenvectors v, v∗. Collect
v, v∗ in a N × 2 matrix V , then

AV = V

(
λ 0
0 λ∗

)
=: V Λ (24)

Let us now choose a different real basis for the columns of V , the real and imaginary parts of v: Ṽ = [Re(v), Im(v)]. Note
that this is a basis, since v, v∗ are linearly independent and can be both written as (complex-weighted) linear combination of
real and imaginary parts of v. Now note that

A · Re(v) =
1

2
A(v + v∗)

=
1

2
(λv + λ∗v∗)

= Re(λv)
= Re [(Re(λ) + iIm(λ))(Re(v) + iIm(v))]

= Re(λ)Re(v)− Im(λ)Im(v).

26

Resurrecting Recurrent Neural Networks for Long Sequences

Similarly,

A · Im(v) =
1

2
A(v − v∗)

=
1

2
(λv − λ∗v∗)

= Im(λv)

= Im [(Re(λ) + iIm(λ))(Re(v) + iIm(v))]

= Re(λ)Im(v) + Im(λ)Re(v).

This shows that the action of A on the new real basis Ṽ is of simple form:

AṼ = Ṽ

(
Re(λ) −Im(λ)
Im(λ) Re(λ)

)
=: Ṽ Λ̃ (25)

This discussion shows that there exist a simple invertible change of basis (from V to Ṽ for all pairs of conjugate eigenvalues)
which makes takes the system back to a simple decomposition in the real domain, both in terms of eigenvalues and
eigenvectors — one simply has to replace all diagonal blocks of form Λ with 2× 2 matrices Λ̃.

The careful reader might recognize that, in the resulting system, matrix multiplication for the 2× 2 blocks is algebraically
equivalent to multiplication of the corresponding complex numbers. Hence, while complex numbers are not per-se needed
to find a simple representation of non-symmetric matrices, they are convenient to work with since the matrix in Eq. (25) is
structured: has 4 entries but can be represented using just two — real and imaginary parts, exactly what a complex number
stores in memory.

27

Resurrecting Recurrent Neural Networks for Long Sequences

F. Proofs
In this section we provide proofs for the propositions listed in the main paper.

F.1. Proof of Lemma 3.2

We provide here a proof for the following sampling lemma.

Lemma 3.2. Let u1, u2 be independent uniform random variables on the interval [0, 1]. Let 0 ≤ rmin ≤ rmax ≤ 1.
Compute ν = − 1

2 log
(
u1(r

2
max − r2min) + r2min

)
and θ = 2πu2. Then exp(−ν + iθ) is uniformly distributed on the ring in

C between circles of radii rmin and rmax.

Proof. First, note that one can sample phase and magnitude independently by symmetry of the target distribution. Phase
sampling can trivially performed through scaling a uniform distribution.

Next, we consider sampling the magnitude. The area of the ring in between rmin and rmax is π(r2max − r2min), while the
cumulative distribution function for the radius distribution is such that Fr(rmin) = 0, Fr(rmax) = 1 and for r ∈ [rmin, rmax]
we therefore have

F (r) =
r2 − r2min

r2max − r2min

. (26)

Under parametrization of r using the exponential, r = e−ν , one gets

F (r) =
e−2ν − r2min

r2max − r2min

. (27)

Finally, we use the inverse sampling theorem (see e.g. Vogel (2002)): one can sample ν using the formula ν = F−1(u),
where u is uniform on [0, 1]. By setting

u =
e−2ν − r2min

r2max − r2min

, (28)

we get
e−2ν = (r2max − r2min)u+ r2min, (29)

from which follows that ν = − 1
2 log((r

2
max − r2min)u+ r2min).

F.2. Proof of Proposition 3.3

Validity of this proposition is verified numerically in Figure 10.

0.8 0.9 0.95 0.99
Value of rmax

2

3

4

5

6

7

8

Constant input, rmin = 0.75
predicted gain

0.8 0.9 0.95 0.99
Value of rmax

3

4

5

6

7

8

White noise input, rmin = 0.75
predicted gain

Figure 10. Numerical simulation for gain formula derived in Proposition 3.3. Here we chose N = 500, L = 10k (sequence length) and
plotted statistics for 10 runs with boxplot indicating median and (5,95) percentile. Indicated in blue line is our prediction. The formula
holds both for constant and random input, yet we notice that it is more accurate in the random input setting.

28

Resurrecting Recurrent Neural Networks for Long Sequences

Proposition 3.3 (Forward-pass blow-up). Let Λ be diagonal with eigenvalues sampled uniformly on the ring in C between
circles of radii rmin < rmax < 1. Under constant or white-noise input and Glorot input projection, the squared norm of the
state xk converges as k →∞ to:

E[∥x∞∥22] =
1

r2max − r2min

log

(
1− r2min

1− r2max

)
E[∥Bu∥22].

Proof. Assume first (most difficult case) that uk is constant, i.e. such that Buk =: ũ for all k. Then,

∥x∞∥22 =

∞∑
n=1

∞∑
m=1

ũ∗
k−m (Λm)

∗
Λnũk−n (30)

= ũ∗
[∞∑
n=1

∞∑
m=1

(Λm)
∗
Λn

]
ũ. (31)

Note that Λ = diag(λ1, . . . , λN) is diagonal with equally distributed entries on the disk between radii rmin and rmax. One
can then sample a generic entry λ using the change of variables formula for probabilities (Jeffreys, 1998) as follows (see
also Lemma 3.2):

λ = r
1
2 ei2πθ, r ∼ U [r2min, r

2
max], θ ∼ U [0, 1], (32)

Where crucially r and θ are independent. Let T(rmin, rmax) = {λ ∈ C : |λ| ∈ [rmin, rmax]}. We need to study the
following quantity:

Eλ∼T(rmin,rmax)

[∞∑
n=1

∞∑
m=1

λn(λm)∗
]
= Er,θ

[∞∑
n=1

∞∑
m=1

r
1
2 (n+m)ei2π(n−m)θ

]
(33)

=

∞∑
n=1

∞∑
m=1

Er

[
r

1
2 (n+m)

]
Eθ

[
ei2π(n−m)θ

]
(34)

The expectation w.r.t θ is non-zero only if n = m, therefore

Eλ∼T(rmin,rmax)

[∞∑
n=1

∞∑
m=1

λn(λm)∗
]
=

∞∑
n=1

Er [r
n] (35)

= Er

[∞∑
n=1

rn

]
(36)

= Er

[
1

1− r

]
(37)

=
1

r2max − r2min

∫ r2max

r2min

1

1− r
dr (38)

=
1

r2max − r2min

(− log(|1− r2max|) + log(|1− r2min|)) (39)

=
1

r2max − r2min

log

(
1− r2min

1− r2max

)
. (40)

The white noise input case is simpler. Let us start from ∥x∞∥22 =
∑∞

n=1

∑∞
m=1 ũ

∗
k−m (Am)

∗
Anũk−n. Now, we can

retrieve the single sum by the fact that A is diagonal and E[ũ∗
k−mũk−n] = 0 for m ̸= n. The rest of the proof is identical,

and presented in the main paper for the one-simensional setting.

29

