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Abstract

Compositional data with a large number of com-
ponents and an abundance of zeros are frequently
observed in many fields recently. Analyzing such
sparse high-dimensional compositional data natu-
rally calls for dimension reduction or, more prefer-
ably, variable selection. Most existing approaches
lack interpretability or cannot handle zeros prop-
erly, as they rely on a log-ratio transformation. We
approach this problem with sufficient dimension
reduction (SDR), one of the most studied dimen-
sion reduction frameworks in statistics. Charac-
terized by the conditional independence of the
data to the response on the found subspace, the
SDR framework has been effective for both lin-
ear and nonlinear dimension reduction problems.
This work proposes a compositional SDR that
can handle zeros naturally while incorporating
the nonlinear nature and spurious negative corre-
lations among components rigorously. A critical
consideration of sub-composition versus amal-
gamation for compositional variable selection is
discussed. The proposed compositional SDR is
shown to be statistically consistent in construct-
ing a sub-simplex consisting of true signal vari-
ables. Simulation and real microbiome data are
used to demonstrate the performance of the pro-
posed SDR compared to existing state-of-art ap-
proaches.

1. Introduction
Compositional data are multivariate data that consist of
nonnegative values in which only the relative proportions
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of the components are meaningful. They are frequently
normalized to sum to unity. Thus, compositional data with
d + 1 variables lie on the d-dimensional simplex ∆d ⊂
Rd+1:

∆d =

{
(x0, . . . , xd)

∣∣∣∣∑xi = 1, xi ≥ 0, ∀i
}
.

This type of data appears commonly in many applications;
for example, chemical compositions of honey in food sci-
ence, mineral compositions of rocks in geology, and compo-
sition of product categories of customers’ internet shopping
carts. This research is primarily inspired by microbiome
data, which measure the relative abundance of microbes that
live in or on a human or animal’s body.

Microbiomes have recently received much attention in med-
ical research due to their association with various diseases
and health-related attributes in humans (Huttenhower et al.,
2012; Goodman & Gardner, 2018). Modern sequencing
technologies, such as 16S rRNA gene sequencing, are used
to quantify the raw numbers of microbiomes. However,
as the total number of counts varies greatly amongst the
samples, the raw count data obtained in this manner must
be viewed as compositional (Li, 2015). In addition, micro-
biome data often exhibit high dimensionality and contain
excess zeros, i.e., there are much higher numbers of micro-
bial taxa than available samples, and a large percentage,
about 50% to 90%, of counts are zero (Lutz et al., 2022).
Identifying relevant variables is a common and important
task in the study of microbiome data because most taxa are
unlikely to be associated with the response of interest (Lee
et al., 2022). Accurately chosen microbial variables can be
used in subsequent analyses such as prediction with reduced
computational cost and increased interpretability.

Despite the necessity of variable selection for high-
dimensional sparse compositional data, there are few ap-
proaches that rigorously perform it. As pointed out in Susin
et al. (2020), the main difficulty lies in how to account for
the compositional nature of the data, i.e., the spurious nega-
tive correlation due to the sum-to-one constraint (Pearson,
1897). Dominantly popular approaches to compositional
variable selection are based on the log-ratio transformation
designed to address this spurious correlation problem, which
is sometimes referred to as CoDA (Compositional Data anal-
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ysis) methods (Aitchison, 1982); we will introduce some of
them in Section 1.2.

However, these methods have a clear drawback that they can-
not handle zeros in the data directly due to the log transfor-
mations, even though most of the compositional data dealt
with today contain a large proportion of zeros. Researchers
have then replaced zeros with small positive values, but the
results of data analysis have been inconsistent depending on
how the zeros are replaced (Lubbe et al., 2021). More impor-
tantly, Park et al. (2022) reveal that the combination of zero
replacement and log-ratio transforms inevitably yields unex-
pected distortions in the data. They demonstrate how even
very basic manifold structures of compositional data can
be broken by such a combination of data translations, com-
promising the accuracy of subsequent data analyses. The
challenges regarding such inconsistency and distortion have
been widely documented in a variety of contexts including
variable selection (Nearing et al., 2022).

1.1. Our Contributions

This work presents a new variable selection framework for
compositional data. It provides a solution to the two primary
challenges in dealing with modern compositional data: high
dimensionality and abundance of zeros. Our method does
not rely on log-ratio transformation, thereby successfully
overcoming the issues of inconsistency and distortion men-
tioned above. Inspired by Park et al. (2022) who advocate
the use of kernel methods for compositional data with a
compelling geometric argument, our proposed approach is
rooted in the existing kernel dimension reduction research
by Fukumizu et al. (2009; 2004); Chen et al. (2017), which
will be briefly reviewed in Section 3.

In Section 2, we show that a nontrivial critical problem
occurs when defining the reduced set of variables in compo-
sitional data. A process called amalgamation is suggested as
a solution to this problem, based on which we propose a vari-
able selection algorithm in Section 4. The proposed method
aims to achieve sufficient dimension reduction (SDR) so
that the (compositional) variables and the response become
independent conditioning on the projected covariates onto
the SDR subspace (Li, 1991). Minimizing the trace of the
kernel conditional covariance operator after variable selec-
tion with amalgamation is shown to yield a consistent SDR.
In the compositional context, this means that all information
in the covariates relevant to the response is contained in
some amalgamation of the original composition.

We also clarify the type of kernels to be used in classification
and regression problems respectively, in order to ensure the
SDR property. It is revealed that the linear kernel commonly
used for regression is not universal and thus yields SDR
under a rather restrictive population model. This finding
corrects some results in Chen et al. (2017).

Finally, we demonstrate the performance of the proposed
method with synthetic and real microbiomes data in Sec-
tion 5 and conclude the paper in Section 6.

1.2. Related Works

Variable selection methods using kernels. Various kernel
measures on probability distributions have been used in the
literature to achieve adequate variable selections. For ex-
ample, the Hilbert-Schmidt Independence Criterion (HSIC)
(Gretton et al., 2005) is applied to obtain maximal depen-
dence between variables and the response, the conditional
covariance operator is used to obtain conditional indepen-
dence for SDR (Chen et al., 2017), and the Maximum Mean
Discrepancy (MMD) (Gretton et al., 2012) is applied to
find marginally different variables between two samples.
Among them, HSIC seems to be used more frequently, from
the greedy algorithm of Song et al. (2012) to continuously
relaxed algorithms with regularizations (Masaeli et al., 2010;
Yamada et al., 2014).

Several studies have also been conducted to test the signifi-
cance of the selected variables using kernels. These meth-
ods are based on Lee et al. (2016)’s pioneering work on
post-selection inference (PSI), and kernel-based approaches
have been successfully developed within this framework
(Yamada et al., 2018; 2019; Lim et al., 2020; Freidling et al.,
2021). However, because these kernel-based PSI algorithms
utilize HSIC or MMD, which focus on marginal distribu-
tions of individual variables, they may not be suitable for
compositional data due to the spurious correlation issue.

Variable selection methods for compositional data. A
majority of variable selection methods in the literature are
based on log-ratio transformations. Among them, the con-
strained lasso approach to the log-transformed data, in par-
ticular, has been extensively studied, where the constraint
reflects the ratio computations and may further reflect group-
ing or tree structures (Lin et al., 2014; Shi et al., 2016; Wang
& Zhao, 2017; Lu et al., 2019). Rivera-Pinto et al. (2018)
alternatively propose a forward selection process using the
log-ratio balance (Egozcue et al., 2003).

Recently, there has been a growing consensus on how to
address the zero problem in compositional data analysis,
leading to the development of methods that do not use log-
ratio transforms. Tomassi et al. (2021) propose a likelihood-
based SDR for compositional data as well as a variable
selection method. However, their non-log-ratio approach
uses a linear projection of the raw count matrix, whose
structure is hardly interpretable. Wang (2022) proposes a
test for the differential abundance of each taxon based on a
multinomial model for the count matrix. These methods are
yet based on the assumption that the count data are drawn
from specific distributions such as multinomial or Poisson
distributions, whereas our proposed method does not impose
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such assumptions on the underlying distribution.

2. Compositional Variable Selection via
Amalgamation

In many cases, dimension reduction does not end with iden-
tifying a subspace or a subset of relevant variables. The
main goal of variable selection is mostly to improve the per-
formance and interpretability of a predictive model. Thus
it is necessary to attain a dimension-reduced dataset that is
suitable for subsequent analyses. In the context of compo-
sitional data, it is crucial that the dimension-reduced data
are also compositional. Intuitively, there are two ways of
achieving this, namely sub-composition and amalgamation
(Aitchison, 1982).

The sub-composition approach is simpler, in that it just re-
normalizes the selected variables to make a composition.
This method is widely used in practice because taking sub-
compositions can be considered as orthogonally projecting
data in the log-ratio geometry; see, for example, Section
4.6 of Pawlowsky-Glahn et al. (2015). However, the toy
example below demonstrates that this approach may not
yield learnable data.

Consider the following toy microbiome data X =
(X0, X1, X2, X3) ∈ ∆3 with four covariates. Let Y ∈
{0, 1} be a binary variable indicating the presence of a
disease and assume that the deficiency of two taxa S =
{X0, X1} causes the disease. Let (x, 1) and (x′, 0) be two
samples from (X,Y ) with

x = (0.01, 0.01, 0.38, 0.6) and x′ = (0.4, 0.4, 0.1, 0.1).

Suppose some variable selection is carried out and the
variables in S are correctly selected. Then, both sub-
compositions xS and x′

S are (0.5, 0.5) with different labels,
which are unsuitable for further investigation. This is be-
cause relative abundance to the total is lost when taking
sub-compositions. This problem exacerbates when there are
many zeros in the data, which is almost always the case in
microbiome studies. If the absence of taxa in S causes the
disease, then the disease group’s sub-composition will prob-
ably be entirely zero, which cannot be made compositional.

In contrast, amalgamation is an intuitive process to reduce
the dimensionality of compositions. It is commonly used
to organize microbiomes according to the phylogenetic tree
structure (Li, 2015). The procedure involves defining inte-
gers ci such that

0 = c0 < c1 < · · · < cm+1 = d+ 1,

and then taking zj = xcj + · · · + xcj+1−1, j = 0, . . . ,m,
so that the resulting vector (z0, . . . , zm) lies on the lower
dimensional simplex ∆m. However, even though composi-
tional data are frequently obtained through an amalgamation

process, it has been hardly used for data analysis, because
it is incompatible with the dominant log-ratio approaches
(Pawlowsky-Glahn et al., 2015). In particular, amalgama-
tions do not behave like linear projections in log-ratio ge-
ometry. Recent studies have attempted to reconcile amalga-
mation with log-ratio methods (Greenacre, 2020; Greenacre
et al., 2021), arguing that amalgamation yields better inter-
pretation and is essential for certain types of compositional
data, such as in geochemistry and mineralogy.

In this work, we argue that the controversy surrounding
amalgamation becomes irrelevant in kernel methods in the
sense of Park et al. (2022) and amalgamation is the most
valid way to perform dimension reduction or variable selec-
tion of compositional data. We state the variable selection
framework as follows: if S = {s1, . . . , sm} ⊂ {0, . . . , d}
is a subset of variables, then we propose to identify the
projection map pS : ∆d → ∆m,

pS(x0, . . . , xd) =

xs1 , . . . , xsm ,
∑
j ̸∈S

xj

 . (1)

By including a dummy variable that aggregates all unse-
lected variables, this special case of amalgamation is intu-
itive and overcomes the issue of sub-composition discussed
earlier, preserving information on the relative abundance to
the total.

3. Sufficient Dimension Reduction and
Variable Selection with Kernels

This section provides an overview on the principle of SDR
and kernel variable selection derived from kernel dimension
reduction. The latter discussion is largely credited to Chen
et al. (2017), who adopt the kernel dimension reduction
(KDR) method of Fukumizu et al. (2009) for the variable
selection purpose.

3.1. Sufficient Dimension Reduction

Let (X,Y ) be a joint random variable with a joint distribu-
tion PX,Y defined on X × Y , where X ⊂ Rd is a domain
of covariates and Y is a domain of response. The general
dimension reduction problem is described as finding a pair
(Z, p) of a lower dimensional domain Z ⊂ Rm, m ≤ d,
and a projection map p : X → Z such that the variable
p(X) has enough information about Y . In case p(X) re-
tains all the relevant information of Y , it is called sufficient
dimension reduction (SDR) and is theoretically defined as

PY |p(X) = PY |X , or equivalently, Y ⊥⊥X | p(X) (2)

where PY |∗ denotes conditional probability distribution of
Y given ∗. This is a general scheme that makes no as-
sumptions about the distribution of (X,Y ), and has been
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extensively studied in the literature; for a recent reference,
see Li (2018). Early studies on SDR tend to find the map p
that achieves (2) among the orthogonal projections onto lin-
ear subspaces. However, because the orthogonal projections
do not generally send simplex to simplex, the nonlinear SDR
theory (Lee et al., 2013) is more relevant to our purpose.

The conditional mean function E[Y |X], rather than the
entire dependence structure PY |X , is frequently of interest
in statistical problems. Then the dimension reduction aims
to achieve a weaker condition, i.e., the maximum predictive
ability using p(X):

E[Y |X] = E[Y |p(X)] ⇔ Y ⊥⊥E[Y |X] | p(X). (3)

This assumption is called sufficient dimension reduction for
conditional mean, which is by definition a special case of
SDR. Intuitively, (3) means that it is enough for predicting
Y , and it becomes equivalent to SDR under certain assump-
tions. For example, statistical models often assume that
the conditional mean has all information on PY |X ; that is,
Y ⊥⊥ X |E[Y |X]. This is known as location regression
(Cook & Li, 2002), and it includes the additive error models
Y = f(X) + ϵ with X ⊥⊥ ϵ. Under this assumption, it is
straightforward to see that (3) implies (2).

3.2. RKHS and Conditional Covariance Operator

While many SDR approaches are available, Fukumizu et al.
(2004; 2009) propose to use kernel measures of conditional
independence, which has often exhibited empirical success.
In what follows, we present theory and remarkable prop-
erties of the conditional covariance operator of RKHSs,
proposed originally by Baker (1973).

Let kX and kY denote positive definite kernels on X and Y
satisfying the boundedness condition in means:

EX [kX (X,X)] < ∞ and EY [kY(Y, Y )] < ∞. (4)

Note that (4) ensures that the corresponding RKHSs HX and
HY are continuously embedded in L2(PX) and L2(PY ),
respectively, and ensures the existence of mean embedding
maps P 7→ µP := EP [k(W, · )] ∈ H, where P denotes an
arbitrary probability measure (Muandet et al., 2017). If the
mean embedding map of an RKHS (H, k) is injective, it is
called characteristic.

The cross-covariance operator of (X,Y ), ΣY X : HX →
HY , is defined by the adjoint relations

⟨g,ΣY Xf⟩HY =

EX,Y [(f(X)− EX [f(X)]) (g(Y )− EY [g(Y )])]
(5)

for all f ∈ HX and g ∈ HY . If Y is equal to X , then
ΣXX is called the covariance operator. It induces a unique
bounded operator VY X : HX → HY such that

ΣY X = Σ
1/2
Y Y VY XΣ

1/2
XX (6)

with ∥VY X∥ ≤ 1 (Baker, 1973). This is called the normal-
ized cross-covariance operator (NOCCO), which resembles
the correlation in classical statistics (Fukumizu et al., 2007).
It helps to define the following conditional covariance oper-
ator without worrying about the invertibility of ΣXX :
Definition 1. The conditional covariance operator ΣY Y |X :
HY → HY of Y given X is defined by

ΣY Y |X = ΣY Y − Σ
1/2
Y Y VY XVXY Σ

1/2
Y Y .

When ΣXX is invertible, it immediately follows that

ΣY Y |X = ΣY Y − ΣY XΣ−1
XXΣXY ,

analogous to the well-known multivariate Gaussian case.

The following two results from Fukumizu et al. (2009) pro-
vide insights into the meaning of the conditional covariance
operator. The former shows its role in assessing the predic-
tive ability of Y given X , and the latter reveals that ΣY Y |X
indeed captures the conditional variance of Y given X .
Proposition 2. For any g ∈ HY , we have

⟨g,ΣY Y |Xg⟩HY =

inf
f∈HX

EX,Y |(g(Y )− EY [g(Y )])− (f(X)− EX [f(X)])|2 .

(7)

If HX + R is dense in L2(PX), then

⟨g,ΣY Y |Xg⟩HY = EX [VarY |X [g(Y )|X]]. (8)

Note that the condition of (8) always holds when kX is
bounded and characteristic (Fukumizu et al., 2009). This
means that the injectivity of the mean embedding map en-
sures the richness of RKHS up to a constant sum. There is
another notion of richness of RKHS (H, k), called univer-
sality. When the domain X is compact and k is continuous,
we say that (H, k) is universal if H is dense in the space
of continuous functions C(X ). There are numerous univer-
sal kernels used in practice, such as Gaussian or Laplace
kernels, and it is known that every universal kernel is char-
acteristic (Gretton et al., 2012).

3.3. Kernel Feature Selection (KFS) via Minimization of
Conditional Covariance

Motivated by (8), Fukumizu et al. (2009) and Chen et al.
(2017) show that minimizing the trace of the conditional co-
variance operator after projection achieves SDR. The prob-
lem of finding suitable projections is formulated as follows.
For any vector x ∈ Rd and any subset S ⊆ {1, 2, . . . , d},
let xS be the vector with components (xS)i = xi if i ∈ S
and (xS)i = 0 otherwise. Then the objective for variable
selection is to find S such that

argmin
S⊆{1,...,d}

Tr(ΣY Y |XS ), (9)
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where Tr(·) denotes the trace of a self-adjoint operator.

It is important to note that this approach is essentially differ-
ent from traditional RKHS methods for dimension reduction.
Well-known RKHS methods such as kernel PCA or kernel
Fisher discriminant analysis (Mika et al., 1999), first map
the data into an RKHS and then carry out low-dimensional
projections within the high-dimensional RKHS. This initial
embedding process inevitably leads to an interpretation loss
with respect to the original variables. On the other hand,
the KFS methods (Fukumizu et al., 2009; Chen et al., 2017)
first project the data (or select the variables) in a way that
preserve interpretability, and then use kernel measures to
evaluate the validity of the projection.

4. Proposed Method
This section describes our kernel variable selection method
for compositional data using the amalgamation in (1). Given
n i.i.d. samples (x1, y1), . . . , (xn, yn) of the random vari-
ables (X,Y ) ∈ ∆d × Y , our task is to find a subset
S = {s1, . . . , sm} ⊂ {0, . . . , d} of variables whose pro-
jection pS(X) = (Xs1 , . . . , Xsm ,

∑
j ̸∈S Xj) ∈ ∆m best

represents the outcome Y .

4.1. Construction of RKHS

The proposed method first lifts the data by adding an extra
zero coordinate to X , i.e., we set X̃ = (X, 0) ∈ ∆d+1. This
lifting process does not affect the theory but will simplify the
notations. Let X = ∆d+1 be the extended domain where
lifted compositions reside and define, by abusing notations,
pS : X → ∆m by pS(x

′) = (x′
s1 , . . . , x

′
sm ,

∑
j ̸∈S x′

j).
That is, we also lift the projection map pS to satisfy pS(x̃) =
pS(x). Then, define a right inverse iS : ∆m → X of pS ,
given by iS(z1, . . . , zm+1) = x with xj = 0 for j ̸∈ S,
xsi = zi, and xd+1 = zm+1. One can readily check that
pS ◦ iS(z) = z for all z ∈ ∆m. Finally, we identify X̃ = X
and redefine the notation XS of the selection result by

XS = iS ◦ pS(X), X ∈ X . (10)

Let (HX , kX ) be an RKHS on X = ∆d+1, and let (HY , kY)
be an RKHS on Y . The embedding iS defined above gives
rise to a pullback kernel kS on ∆m defined by

kS(z, w) = kX (iS(z), iS(w)). (11)

Defining a kernel on the codomain ∆m in this way has the
advantage that it can cover all possible values of the target
dimension m, and that the RKHS of kS , denoted by HS ,
can naturally interact with functions on X . The interactions
can be stated as the following lemma:

Lemma 3. There is another RKHS (H, k) on X that is
isomorphic to (HS , kS) on ∆m. Furthermore, if (HX , kX )
is universal, then so is (HS , kS).

The kernel k is given so that k(x, x′) = kX (xS , x
′
S); we

provide the proof in the appendix. According to the lemma,
we can conduct all of our theoretical analysis on the pro-
jected domain ∆m, including those requiring universality,
within the function space on X , L2(PX). Meanwhile, using
HS has an explicit interpretation of the function space on
the projected domain, as will be seen in Corollary 6.

4.2. SDR and Conditional Covariance Operator

From the discussion above, we can derive a theorem that
parallels Theorem 2 in Chen et al. (2017) and Theorem 4 in
Fukumizu et al. (2009):
Theorem 4. Let ΣY Y |XS denote the conditional covariance
operator with the kernel k given in Lemma 3. Then, if
(HX , kX ) is universal and (HY , kY) is characteristic, we
have

ΣY Y |X ⪯ ΣY Y |XS ,

where the equality is attained if and only if Y ⊥⊥ X |XS .
Here, the inequality ⪯ stands for the partial order of self-
adjoint operators.

The inequality part follows immediately from Proposition 2.
However, proving the equality condition needs exhaustive
work due to the new projection XS in (10). We give a full
proof in the appendix. Note that the universality of HX is
imposed for simplicity and interpretability, and it may be
relaxed to being characteristic.

Theorem 4 implies that the trace of self-adjoint operators
has the following relation

Tr(ΣY Y |X) ≤ Tr(ΣY Y |XS )

for all subsets of variables S. Thus the variable selection
problem for compositional data can be stated as

argmin
S⊆{0,...,d}

Tr(ΣY Y |XS ), (12)

which is a compositional version of (9) with XS de-
fined in (10). Note that the trace equality Tr(ΣY Y |X) =
Tr(ΣY Y |XS ) implies SDR since the operator ΣY Y |XS −
ΣY Y |X is nonnegative and self-adjoint.

Based on this main result, we now consider the choice of
the kernel kY . For binary or multi-class classification tasks
with Y = {y1, . . . , yk} ⊂ R, we can use the delta kernel
kY(y, y

′) = δy,y′ , which is equal to 1 when y = y′ and
0 otherwise. Note that the delta kernel is universal on the
discrete domain Y so the aforementioned theory applies.
The relative advantage of the delta kernel over the Gaussian
kernel has been mentioned by Yamada et al. (2014) who
investigate the performance of HSIC-Lasso under the two
kernel choices.

For regression problems, Chen et al. (2017) argue that one
can use the linear kernel for a univariate response. However,
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we discover that Corollaries 3 and 4 in their work contain mi-
nor errors and the conclusions are overstated. Even though
these errors do not preclude the practical application of the
method, we give a corrected version below for clarity. The
proofs are provided in the appendix.

Let Y = R and define kY as the linear kernel kY(y, y′) =
yy′. It should be noted that the RKHS HY = R∨ is not
characteristic so Theorem 4 cannot be applied to ensure the
full SDR, which is claimed in Corollary 3 of Chen et al.
(2017). Nonetheless, the presence of the identity function
idY in HY leads to a weaker result, which is the SDR for
conditional mean:

Proposition 5. If (HX , kX ) is universal, Y = R, and
if kY is the linear kernel on Y , then the trace equality
Tr(ΣY Y |X) = Tr(ΣY Y |XS ) implies E[Y |X] = E[Y |XS ],
the SDR for conditional mean.

That is, in the case of univariate regression with the linear
kernel, solving (12) achieves the SDR for conditional mean.
However, Corollary 3 of Chen et al. (2017) inaccurately
states that it achieves the full SDR. If we further assume the
location regression model on the population (Section 3.1),
we then obtain the full SDR:

Tr(ΣY Y |X) = Tr(ΣY Y |XS ) ⇔ Y ⊥⊥X |XS .

Using the linear kernel on Y = R has another advantage
of characterizing the trace of the conditional covariance
operator as the minimized variance of prediction error after
projection. Thus solving (12) is equivalent to finding a
subset S that minimizes this variance:

Corollary 6. Under the assumptions of Proposition 5,

Tr(ΣY Y |XS ) = inf
f∈C(∆m)

VarX,Y [Y − f(pS(X))].

If we assume on the population that there exists a continuous
function f on ∆m such that the response is expressed as

Y = f(pS(X)) + ϵ, X ⊥⊥ ϵ, and E[ϵ] = 0, (13)

then Corollary 6 is equivalently stated in terms of the mean
squared error:

Tr(ΣY Y |XS ) = inf
f∈C(∆m)

EX,Y (Y − f(pS(X)))2.

This is the form asserted in Corollary 4 of Chen et al. (2017),
implicitly assuming (13).

4.3. Variable Selection Algorithm

The solution set of (12) is always nonempty since the whole
data X achieves the minimum. For practical purposes, it is

natural to limit the number of variables we want to select,
and this is written as

argmin
|S|≤m

Tr(ΣY Y |XS ). (14)

Solving (14) will result in a variable selection that is nearly
SDR (classification) or SDR for conditional mean (univari-
ate regression). The remaining procedure for solving this
objective is similar to that of Chen et al. (2017) and we
briefly illustrate it here.

For (x1, y1), . . . , (xn, yn) ∈ ∆d ×Y , we first lift them into
X × Y as described before. Then the empirical estimate of
Tr(ΣY Y |XS ) is defined by

Tr(Σ̂
(n)
Y Y |XS

) = Tr(Σ̂
(n)
Y Y − Σ̂

(n)
Y XS

(Σ̂
(n)
XSXS

+ ϵnI)
−1Σ̂

(n)
XSY )

= ϵn Tr(GY (GXS + nϵnIn)
−1),

(15)

where the Σ̂
(n)
∗∗ are empirical estimates of covariance oper-

ators, GY and GXS are centered Gram matrices, and ϵn is
a regularization parameter. Here, letting H = In − 1

n11
T ,

1 = (1, · · · , 1) ∈ Rn, the centered version of a gram matrix
K is defined by G = HKH.

Note that the delta kernel we use in the classification case
is equivalent to the linear kernel kY(y, y′) = ⟨y, y′⟩ on
the one-hot encoded domain Y = {y ∈ {0, 1}k |

∑
i yi =

1} ⊂ Rk. Hence, we fix kY by the linear kernel for the
classification or univariate regression case. Then the Gram
matrix KY is YYT , where Y is the matrix of sample re-
sponses on rows. We assume, without loss of generality,
that the mean of each column of Y is zero, resulting in
GY = YYT . Then, the minimization of (15) is stated as

min
|S|≤m

Tr(YT (GXS + nϵnIn)
−1Y), (16)

which is the empirical version of our objective. In the binary
response case, k = 2, this is equivalent to using Y = {0, 1}
with the linear kernel so that we may reduce the column
dimension of Y to 1.

In the following theorem, we show that a consistency result
holds for the global optimum of (16), justifying that mini-
mizing the empirical estimate will asymptotically achieve
the population minimum (12). See the appendix for proof.

Theorem 7. Let Ŝ(n) be a global optimum that minimizes
(16). If the regularization parameter ϵn satisfies

ϵn → 0 and n1/2ϵn → ∞ as n → ∞,

then Tr
(
Σ̂

(n)
Y Y |XŜ(n)

)
→ Tr

(
ΣY Y |XS′

)
in probability,

where S ′ ∈ argmin|S|≤m Tr(ΣY Y |XS ).
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A brute-force search of (16) is computationally infeasible
for high dimensions since the number

(
d
m

)
grows exponen-

tially. We relax this problem to a continuous one that can
be solved by the gradient descent method, as similarly done
in Chen et al. (2017). Note that we can express XS as
(w ⊙ X, 1 − wTX) where w = (w0, . . . , wd) ∈ {0, 1}d
denotes a binary weight vector with wi = 1 if and only if
i ∈ S , and ⊙ denotes the Hadamard product. Now relaxing
the weights to allow continuous values with 0 ≤ wi ≤ 1
and

∑
wi ≤ m, define

Xw := (w ⊙X, 1− wTX) ∈ X .

Then our relaxed objective is written as

min
w

Tr(YT (GXw
+ nϵnIn)

−1Y)

subject to ∥w∥1 ≤ m, 0 ≤ wi ≤ 1, ∀i.
(17)

Given that the kernel kX is smooth and universal, we can
apply projected gradient descent to solve this optimization
problem. Although the objective function is nonconvex
when typical universal kernels are used, the projected gra-
dient descent algorithm is able to find true signal variables
well, as shown in Section 5 (see also Ruan et al. (2021)).
After obtaining an approximated solution ŵ via gradient
descent, we reconstruct a variable selection Ŝ whose corre-
sponding binary vector is closest to ŵ.

Note that each gradient descent step to equation (17) re-
quires O(n2d + n3) computations. This is not a big prob-
lem in practice because compositional data typically have a
low sample size. The complexity can be reduced further by
adopting a low-rank approximation of kernel matrices, such
as random Fourier features (Rahimi & Recht, 2007).

5. Experiments
This section conducts experiments on synthetic and real
microbiome data to assess the performance of the proposed
variable selection method under both classification and re-
gression scenarios. We compare it with two methods, coda-
lasso (Lin et al., 2014; Lu et al., 2019) and selbal (Rivera-
Pinto et al., 2018), chosen from the recent survey by Susin
et al. (2020). These two methods are based on log-ratio
transformation, so we replace zero values in each sample
x by 0.5xmin, where xmin is the minimum positive value
of x. We also provide results of other zero replacement
methods in Appendix A; to do this, we delete columns with
fewer than two positive values in all data. We use the R
codes provided by Susin et al. (2020) for their implemen-
tation, and the Python code for our method is available at
https://github.com/pjywang/KVS-CoDa.

For the proposed method, we use a Gaussian kernel
kX (x, x′) = exp (−∥x− x′∥2/σ2) with σ being the stan-
dard median pairwise distance between samples. Across

all experiments, the regularization parameter ϵ is set to
ϵ = 0.001 for classification tasks and ϵ = 0.1 for regres-
sion tasks; we find that these values work stably in general.
Cross-validation (CV) can also be used in conjunction with
classification or regression algorithms.

5.1. Synthetic Data

We begin with simulations of microbiome count data pro-
posed by Te Beest et al. (2021), which reflect the varying
total counts and zero-inflation. The (i, j)th-entry Xij of an
n× p count matrix X is sampled from a negative binomial
distribution with mean µij and variance µij + µ2

ij . The
mean µij follows a log-linear model

logµij = ai + tj + eyi, (18)

where ai reflects the total abundance of the ith sample, tj
reflects the abundance of taxon j, e represents the effect size
on taxon j, and yi ∈ {0, 1} indicates whether the ith sample
has an effect. The parameters ai and tj are drawn from nor-
mal distributions, N(0, 1) and N(0, 2), respectively. Only
10% of p taxa are set to be relevant to yi with e = ± log 5,
where the signs are given with equal probabilities, while the
rest of e are set to zero. To ensure that taxa mostly consisting
of zeros receive no effect, these 10% relevant taxa are ran-
domly selected from the top 70% of variables with the high-
est tj values. The binary response vector Y = (y1, . . . , yn)
is set to have the same number of zeros and ones. Finally,
the taxa present in fewer than two samples are removed, and
the count matrix X is normalized so that each row sums to
1. This model generates approximately 50% of zeros in the
data.

We first generate data with fixed (n, p) = (200, 100) so
that only ten taxa retain effects. We then apply the variable
selection algorithms with the desired number of selected
variables m ∈ {5, 10, . . . , 40}. Because the lasso algorithm
does not specify the number of variables to be chosen, we
perform coda-lasso on with the tuning parameter ranged
in [0.01, 0.2], and the best performance among the models
that select m,m+ 1, . . . ,m+ 4 variables is recorded. This
process obviously favors coda-lasso, as it inflates its power.
Nevertheless, its performance is inferior to our method.

For the second experiment, we fix p = 100 and vary n ∈
{200, 400, . . . , 1000} to examine the convergence to the
true number of variables with effects. In this case, we set
the proposed and selbal algorithms to pick the true number
of variables, m = 10. We again perform coda-lasso as
described above, and record the best performance among
the models that choose m∗ ∈ {10, 11, . . . , 14} variables.
We run these two experiments 50 times; the results are
shown in Figure 1.

As illustrated in the figure, the proposed method clearly out-
performs the log-ratio methods on average. The left panel
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Figure 1. Variable selection results from 50 runs of synthetic data. The y-axis denotes the number of correctly selected features. The
maximum number of true variables can be chosen by algorithms is indicated by the top dotted line. The x-axis of the left panel denotes
the desired number m ∈ {5, 10, . . . , 40} of variables selected by algorithms, while the x-axis of the right panel denotes the sample size
n ∈ {200, 400, . . . , 1000}. The average numbers of selected variables ± standard error are shown for each method. Note that the result
of coda-lasso is displayed in its favor.

shows an increasing probability of selecting true signal vari-
ables as we select more variables in the algorithm. Note
that selbal fails to exhibit such a phenomenon because its
forward selection algorithm often terminates before achiev-
ing the upper bound m. In contrast, the proposed method
achieves the bound in most cases. In the right panel, we
observe that the power of the proposed method increases
as the sample size grows and converges to the true value of
10. The log-ratio methods do not exhibit clear convergence
to the true value, and the power of selbal does not even
increases as n grows.

Varying Zero Proportions. By adjusting the means
of the parameters ai and tj in the log-linear model
(18), we may generate similar synthetic data with dif-
ferent zero proportions. Suppose ai and tj are drawn
from N(a, 1) and N(t, 2), respectively. Setting (a, t) as
(2.2, 1.5), (1, 0.5), (0, 0), and (−1.1,−0.5) yields the gen-
erate data to contain about 10%, 30%, 50%, and 70%
of zeros, respectively. Table 1 reports the results with
(n, p) = (500, 100). The proposed method clearly outper-
forms the other methods and shows consistent power over a
wide range of zero proportions. The performance is slightly
weakened when the zero proportion is 70%, which is a natu-
ral consequence of the data generation process. Since the
data are generated as nonnegative counts, the signal of data
shrinks as the ratio of zeros increases because the effect size
e = log 5 is fixed.

In contrast, the other two log-ratio methods, coda-lasso and
selbal, exhibit highly inconsistent results as the zero pro-
portion changes. When the zero proportion is less than
50%, these methods perform unexpectedly poorly. This is
probably due to the data distortions caused by zero replace-

Table 1. Average numbers of true variables selected from 50 runs
of synthetic data with different zero proportions. The data has
ten true variables, and the parameter m is set to 10. The tuning
parameter of coda-lasso is set to select between 10 and 14 variables.
All standard errors range between 0.1 and 0.2.

Zero % 10% 30% 50% 70%

Proposed 9.26 9.1 9.12 8.46

Selbal 0.78 1.74 3.36 4.22

Coda-lasso 2.32 3.7 5.76 6.3

ment and log transformation (Park et al., 2022) are more
severe when the zero rates are moderately low. This issue
is alleviated slightly if the zero proportion increases, as
the model (18) generates a larger number of columns with
mostly zeros. Such columns are similarly impacted by zero
replacement and log transformation, making it easier for su-
pervised learning methods to rule these irrelevant columns
out. It would be worthwhile to observe if this inconsistent
behavior maintains for other synthetic data settings, and we
leave this as future work.

5.2. BMI Microbiomes Data

We also evaluate our proposed method with the body mass
index (BMI) dataset (Wu et al., 2011), which has been
repeatedly analyzed with the constrained lasso approaches
(Lin et al., 2014; Shi et al., 2016; Wang & Zhao, 2017). The
dataset consists of 98 gut microbiome samples with BMI
information and organized into 87 genera. For the purpose
of comparison in Appendix A, 10 genera that appeared in
only one sample are removed. As a result, the data have 77
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Table 2. Prediction accuracy of each variable selection method
on the BMI dataset. Results are shown in terms of mean ± one
standard error of the estimated MSEs over ten repetitions.

Estimated MSE

Methods m = 3 m = 5 m = 10

Proposed 28.90± .048 28.87± .037 28.99± .072

Selbal 33.03± 1.66 32.91± 1.79 34.64± 1.85

Coda-lasso 29.29± .297 (selects 0 to 8 variables)

dimensions with 68.6% of zero values.

To obtain the estimated prediction error for this regres-
sion problem, we run ten repetitions of randomly split
five-fold CV. For selbal and the proposed method, we use
m ∈ {3, 5, 10}. While selbal and coda-lasso are integrated
within prediction modeling, the proposed method requires
a separate regression analysis to assess its prediction abil-
ity. We radially transform the chosen amalgamation onto
the sphere and then apply kernel ridge regression (KRR)
with the Gaussian kernel (Park et al., 2022). All tuning
parameters, including the Gaussian width of KRR and regu-
larization parameters of KRR and lasso, are chosen based
on the five-fold CV within the training set.

Table 2 lists the estimated mean squared errors (MSE) over
ten runs of CV. As can be observed, the proposed method
compares favorably with log-ratio methods, achieving the
smallest MSE and variance. The choice of m = 3, 5 is
comparable to the fact that only four genera are selected in
Lin et al. (2014) and Shi et al. (2016). However, the selected
genera from our method fairly differ from coda-lasso. Given
the prediction accuracy and results presented in Section 5.1,
our result should be considered more reasonable.

6. Conclusion and Future Works
This work proposes a new variable selection framework for
compositional data based on amalgamation. The proposed
method aims to achieve SDR by minimizing the conditional
covariance of the response given selected covariates. Also,
the statistical consistency of the proposed method is pro-
vided. It is broadly applicable to general compositional data
and does not impose strong assumptions on the underlying
probability distributions. Finally, the proposed approach
is shown to exhibit consistent results and outperform exist-
ing log-ratio approaches in both synthetic and real-world
experiments.

An interesting implication of the present research is that
amalgamation may have many more applications than have
been previously considered for compositional data analy-
sis. Amalgamation would not be a justifiable practice for
general Euclidean data, however, the intrinsic nature of

compositional data makes it a valid option for reducing the
complexity of the data. For instance, in the dimension re-
duction context, we may extend the search space to include
all possible amalgamations of the variables, which we leave
as future work.

The optimization problem of the kernel-based dimension
reduction and variable selection is nonconvex and suscep-
tible to local optima. However, recent work by Ruan et al.
(2021) finds that with l1 kernels, the stationary points of
gradient descent are nonetheless able to select the true signal
variables. It is worthwhile to examine if this result extends
to our amalgamation-based situation.
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Appendix

A. Comparison to Other Zero Replacement Methods
While our method does not substitute zero values of compositional data, the other log-ratio methods compared in Section 5
produce different results depending on how the zeros are replaced (Lubbe et al., 2021). Therefore, in this section, we provide
additional experimental results using two other zero replacement methods: 1sum (which adds one pseudocount; e.g., see Brill
et al. (2022)) and the geometric Bayesian multiplicative (gbm) replacement (Martı́n-Fernández et al., 2015). The gbm method
requires data to have at least two positive values at each column and is implemented by the R package zCompositions.
The results show that the proposed method still has superior performance and that the 0.5xmin replacement is not a bad
choice for coda-lasso and selbal.

A.1. Synthetic data

Table 3. Mean true positives over 50 runs of synthetic data with varying m and n. The other experimental settings are the same as in
Section 5. Standard errors range between 0.1 and 0.3

n = 200, p = 100 p = 100, m = 10

Methods m = 10 m = 20 m = 30 m = 40 n = 200 n = 400 n = 600 n = 800 n = 1000

proposed 7.06 8.68 9.32 9.44 7.06 8.34 9.12 9.5 9.5

coda-lasso + 0.5xmin 4.96 6.38 7.40 8.18 4.58 5.88 6.14 6.40 6.64

coda-lasso + 1sum 5.00 6.38 7.42 8.10 4.66 6.22 6.32 6.64 7.08

coda-lasso + gbm 3.84 4.90 6.08 6.98 3.66 4.28 4.54 4.74 4.34

selbal + 0.5xmin 2.60 3.44 3.64 3.68 2.80 3.16 3.82 3.84 3.82

selbal + 1sum 2.92 3.50 3.74 3.74 2.92 3.28 3.90 3.96 4.00

selbal + gbm 1.56 2.16 2.32 2.36 1.56 2.22 2.44 2.78 2.58

A.2. BMI Microbiomes Data

Table 4. Estimated MSE over 10 repetitions of cross-validation on the BMI dataset.

Estimated MSE

Methods m = 3 m = 5 m = 10

proposed 28.90± .048 28.87± .037 28.99± .072

selbal + 0.5xmin 33.03± 1.66 32.91± 1.79 34.64± 1.85

selbal + 1sum 33.46± 1.73 33.92± 1.85 36.52± 1.95

selbal + gbm 32.91± 2.00 37.05± 3.57 41.16± 4.12

coda-lasso + 0.5xmin 29.29± .297 (selects 0 to 8 variables)

coda-lasso + 1sum 30.52± .379 (selects 0 to 16 variables)

coda-lasso + gbm 29.05± .440 (selects 0 to 7 variables)

B. Proof of Results
B.1. Proof of Lemma 3

The kernel kS defines another pullback kernel

k(x, x′) = kS(pS(x), pS(x
′)) = kX (xS , x

′
S) (19)
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with the corresponding RKHS H on X . By pullback theorem of Paulsen & Raghupathi (2016), there is a well-defined
surjective pullback map p∗ : HS → H given by

p∗(f) = f ◦ pS ∈ H, ∀f ∈ HS .

Note that the fact f ◦ pS ∈ H is nontrivial and this is where the pullback theorem is used. Recall that xS = iS ◦ pS(x) and
pS ◦ iS = id∆m . As pS is surjective, the equation (19) implies that the pullback map p∗ preserves the RKHS inner product;
thus, p∗ is an isometry. Therefore, the pullback map p∗ is an isomorphism HS ∼= H.

By construction, the embedding iS : ∆d → X is a homeomorphism onto its image. This topological embedding iS allows
the codomain ∆m to be regarded as a subset of X . Then, if kX is universal, so is kS , as stated in Lemma 4.55 of Steinwart
& Christmann (2008).

B.2. Proof of Theorem 4

For any g ∈ HY , by Proposition 2 we have

⟨g,ΣY Y |Xg⟩HY = inf
f∈HX

EX,Y |(g(Y )− EY [g(Y )])− (f(X)− EX [f(X)])|2

⟨g,ΣY Y |XSg⟩HY = inf
f∈H

EX,Y |(g(Y )− EY [g(Y )])− (f(X)− EX [f(X)])|2 .

Note that our X is compact Hausdorff, and hence the space C(X ) is dense in L2(µ) for all probability measures µ on X .
It is well-known that C(X ) is continuously embedded in L2, so HX is dense in L2(µ) for all probability measure µ by
universality assumption. As H is contained in L2(PX ), it immediately follows that

⟨g,ΣY Y |Xg⟩HY ≤ ⟨g,ΣY Y |XSg⟩HY for all g ∈ HY ,

which is exactly the definition of partial order ⪯; that is, ΣY Y |X ⪯ ΣY Y |XS .

For the equality, we consider the counterpart of feature selection pSc(X) ∈ ∆d−m+2 where Sc = {0, . . . , d} \ S. Let
(U, V ) = (XS , XSc). The primary ingredient of the proof is that (XS , XSc) is in one-to-one correspondence with the
original X , rather than the strict equality as in the references (finding this kind of counterpart with one-to-one correspondence
may be hard if we take arbitrary projections). Then, by the law of total variance, we have

VarY |U [g(Y )|U ] = E(U,V )|U [VarY |U,V [g(Y )|U, V ]|U ] + Var(U,V )|U [EY |U,V [g(Y )|U, V ]|U ]. (20)

We then take EU on both sides. Identifying U = XS with pS(X) on ∆m, the left hand side becomes

EU [VarY |U [g(Y )|U ]] = ⟨g,ΣY Y |Ug⟩HY

by Proposition 2. Based on the one-to-one correspondence and the tower law, the first term of the right-hand side of (20) is
computed as

EU [E(U,V )|U [VarY |U,V [g(Y )|U, V ]|U ]] = EU,V [VarY |U,V [g(Y )|U, V ]]

= EX [VarY |X [g(Y )|X]]

= ⟨g,ΣY Y |Xg⟩HY .

Then the equation (20) turns into

⟨g, (ΣY Y |U − ΣY Y |X)g⟩HY = EU [VarX|U [EY |X [g(Y )|X]|U ]]. (21)

As we have shown that ΣY Y |X ⪯ ΣY Y |XS , the LHS is zero if and only if ΣY Y |X = ΣY Y |U (note that g ∈ HY is arbitrary).
On the other hand, the RHS of (21) is zero if and only if VarX|U [EY |X [g(Y )|X]|U ] = 0 for almost every U , which means
that

EY |X [g(Y )|X] = EX|U [EY |X [g(Y )|X]|U ]

= EY |U [g(Y )|U ]

for almost every U , and for every g ∈ HY . It then follows that the mean embeddings of conditional distributions PY |X
and PY |U are the same in HY . As HY is characteristic, we have that PY |X = PY |U , which is equivalent to Y ⊥⊥X |U
(∵ σ(U) ⊆ σ(X)).
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B.3. Proof of Proposition 5

Plugging g = idY into the equation (21), we have

⟨idY , (ΣY Y |XS − ΣY Y |X)idY⟩HY = EXS [VarX|XS [EY |X [Y |X]|XS ]] = 0, (22)

which only implies E[Y |X] = E[Y |XS ]. This can imply Y ⊥⊥X|XS as stated in Chen et al. (2017) in case of location
regressions.

B.4. Proof of Corollary 6

Since idY forms a complete orthonormal system of HY , we have

Tr(ΣY Y |XS ) = ⟨idY ,ΣY Y |XS idY⟩HY = inf
f∈H

EX,Y ((Y − EY [Y ])− (f(XS)− EXS [f(XS)]))
2

by Proposition 2, where the RHS equals to the variance of Y − f(pS(X)). Since HS is dense in C(∆m) with uniform
convergence norm by universality, we have

Tr(ΣY Y |XS ) = inf
f∈C(∆m)

VarX,Y [Y − f(pS(X))].

B.5. Proof of Theorem 7

We first state the following uniform convergence result:

Proposition 8. If ϵn satisfies the asymptotic behavior given in Theorem 7,

sup
|S|≤m

∣∣∣Tr(Σ̂(n)
Y Y |XS

)− Tr(ΣY Y |XS )
∣∣∣ → 0

as n → ∞ in probability.

As usual, this uniform convergence implies that the limit of minimums converges to the minimum of the limits:

Proof of Theorem 7 given Proposition 8. Let ϵ > 0 be a positive real number. There exists a large number N > 0 such that∣∣∣Tr(Σ̂(n)
Y Y |XS

)− Tr(ΣY Y |XS )
∣∣∣ < ϵ

2
for all |S| ≤ m and for all n ≥ N

with probability ≥ 1− ϵ. Let S ′ ∈ S be any global optimum. Then by definition of Ŝ(n) we have

Tr
(
Σ̂

(n)
Y Y |XŜ(n)

)
≤ Tr

(
Σ̂

(n)
Y Y |XS′

)
≤ Tr

(
ΣY Y |XS′

)
+

ϵ

2

and thus ∣∣∣Tr(ΣY Y |XŜ(n)

)
− Tr

(
ΣY Y |XS′

)∣∣∣ ≤ Tr
(
ΣY Y |XŜ(n)

)
− Tr

(
Σ̂

(n)
Y Y |XŜ(n)

)
+

ϵ

2
< ϵ

with probability ≥ 1 − ϵ (here, we use the uniform convergence twice). This concludes the desired convergence in
probability.

Note that the proof of Proposition 8 requires only pointwise convergence due to discreteness; i.e., it suffices to show pointwise
convergence for each S . This fact makes proof considerably simpler than Fukumizu et al. (2009); their corresponding result
of uniform convergence takes supremum over a continuous domain, not discrete. Proof of such a pointwise convergence can
similarly be derived as guided in Appendix A.3 of Chen et al. (2017). Although our notation XS of variable selection differs
from XT in the reference, the pointwise convergence can parallelly be followed by the law of large numbers.
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