
TRAK: Attributing Model Behavior at Scale

Sung Min Park * 1 Kristian Georgiev * 1 Andrew Ilyas * 1 Guillaume Leclerc 1 Aleksander Mądry 1

Abstract
The goal of data attribution is to trace model pre-
dictions back to training data. Despite a long line
of work towards this goal, existing approaches
to data attribution tend to force users to choose
between computational tractability and efficacy.
That is, computationally tractable methods can
struggle with accurately attributing model pre-
dictions in non-convex settings (e.g., in the con-
text of deep neural networks), while methods
that are effective in such regimes require train-
ing thousands of models, which makes them
impractical for large models or datasets. In
this work, we introduce TRAK (Tracing with the
Randomly-projected After Kernel), a data attri-
bution method that is both effective and compu-
tationally tractable for large-scale, differentiable
models. In particular, by leveraging only a hand-
ful of trained models, TRAK can match the perfor-
mance of attribution methods that require train-
ing thousands of models. We demonstrate the
utility of TRAK across various modalities and
scales: image classifiers trained on ImageNet,
vision-language models (CLIP), and language
models (BERT and mT5). We provide code
for using TRAK (and reproducing our work) at
https://github.com/MadryLab/trak.

1. Introduction
Training data is a key driver of model behavior in modern
machine learning systems. Indeed, model errors, biases, and
capabilities can all stem from the training data (Ilyas et al.,
2019; Gu et al., 2017; Geirhos et al., 2019). Furthermore,
improving the quality of training data generally improves
the performance of the resulting models (Huh et al., 2016;
Lee et al., 2022). The importance of training data to model

*Equal contribution 1Department of EECS, Massachusetts
Institute of Technology, Cambridge, MA. Correspondence to:
Sung Min Park <sp765@mit.edu>, Kristian Georgiev <kris-
grg@mit.edu>, Andrew Ilyas <ailyas@mit.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

behavior has motivated extensive work on data attribution,
i.e., the task of tracing model predictions back to the train-
ing examples that informed these predictions. Recent work
demonstrates, in particular, the utility of data attribution
methods in applications such as explaining predictions (Koh
& Liang, 2017; Ilyas et al., 2022), debugging model behav-
ior (Kong et al., 2022), assigning data valuations (Ghorbani
& Zou, 2019), detecting poisoned or mislabeled data (Lin
et al., 2022; Hammoudeh & Lowd, 2022a), and curating
data (Khanna et al., 2019; Liu et al., 2021; Jia et al., 2021).

However, a recurring tradeoff in the space of data attribution
methods is that of computational demand versus efficacy.
On the one hand, methods such as influence approxima-
tion (Koh & Liang, 2017; Schioppa et al., 2022) or gradient
agreement scoring (Pruthi et al., 2020) are computation-
ally attractive but can be unreliable in non-convex settings
(Basu et al., 2021; Ilyas et al., 2022). On the other hand,
sampling-based methods such as empirical influence func-
tions (Feldman & Zhang, 2020), Shapley value estimators
(Ghorbani & Zou, 2019) or datamodels (Ilyas et al., 2022)
are more successful at accurately attributing predictions
to training data but require training thousands (or tens of
thousands) of models to be effective. We thus ask:

Are there data attribution methods that are both scalable
and effective in large-scale non-convex settings?

In the remainder of this paper, we answer this question in
the affirmative. Specifically:

• Building on ideas from prior work (Ilyas et al., 2022),
we begin by providing a unifying metric for data attri-
bution methods. We examine existing data attribution
methods and find that current approaches are either
prohibitively expensive, or cheap but ineffective.

• Leveraging results from classical statistics (Pregibon,
1981; Johnson & Lindenstrauss, 1984), and a con-
nection between differentiable models and their cor-
responding kernel machines (Jacot et al., 2018), we
derive a new data attribution method called TRAK.

• On standard computer vision and NLP tasks (CIFAR,
ImageNet, QNLI), TRAK scores are 100-1000x faster
than comparably effective methods (see Figure 1).

1

https://github.com/MadryLab/trak

TRAK: Attributing Model Behavior at Scale

100 101 102 103 104 105
0

0.2

0.4

0.6

C
or

re
la

tio
n

(m
or

e
ac

cu
ra

te
→

)

ResNet-9 on CIFAR-10

TRAK Datamodel [IPE+22] Emp. Influence [FZ20] IF-Arnoldi [SZV+22]
IF [KL17] Representation Sim. GAS [HL22] TracIn [PLS+20]

101 102 103 104 105 106
0

0.1

0.2

0.3

Computation time (mins) on 1xA100
(← more efficient)

ResNet-18 on ImageNet

101 102 103 104 105
0

0.2

0.4

0.6

BERT-base on QNLI

Figure 1. Our data attribution method TRAK achieves state-of-the-art tradeoffs between speed and efficacy. Here, we benchmark its
performance relative to prior methods on ResNet-9 models trained on CIFAR-10, ResNet-18 models trained on ImageNet, and BERT-
BASE models finetuend on QNLI. The x-axis indicates the time (in minutes) it takes to run each method on a single A100 GPU (see
Appendix C.5 for details). The y-axis indicates the method’s efficacy as measured by its ability to make accurate counterfactual predictions
(see Definition 2.2 for the precise metric); error bars indicate 95% bootstrap confidence intervals.

• We can thus scale TRAK to models and tasks that were
previously untenable for data attribution methods—we
study CLIP models and a 300M-parameter language
model mT5.

• We provide an easy-to-use PyTorch API for TRAK,
allowing the community to apply data attribution to
other large-scale models.

2. Motivation and Setup
We begin with a focus on the supervised learning regime.
We will denote by S = {z1, . . . , zn} an ordered training set
of examples, where each zi = (xi, yi) ∈ Z is an input-label
pair. We represent machine learning models (implicitly)
using a model output function f(z; θ), which maps an exam-
ple of interest z and model parameters θ to a real number.
There are a variety of model output functions that one can
employ—for example, the loss L(z; θ) of the model on the
example z is a natural choice. Ultimately, though, the ap-
propriate model output function to use will depend on the
setting that we are studying.

Throughout this work, we also assume that models are
trained to minimize the empirical training loss, i.e., that
the parameters of these models are given by

θ⋆(S) := argmin
θ

∑
zi∈S

L(zi; θ), (1)

where, again, L(zi; θ) is the model training loss on example
zi. We write θ⋆ as a function of S as we will later consider
varying S—but when S is clear from the context, we omit
it and just write θ⋆.

In this paper, our overarching goal is to trace model predic-
tions back to the composition of training data. This goal—
which we refer to as data attribution—is not new. Prior
work has approached it using methods such as influence
functions and their many variants (Hampel et al., 2011; Koh
& Liang, 2017); sampling-based estimators such as Shapley
values (Lundberg & Lee, 2017), empirical influences (Feld-
man & Zhang, 2020), and datamodels (Ilyas et al., 2022);
as well as various other approaches (Yeh et al., 2018; Pruthi
et al., 2020; Hammoudeh & Lowd, 2022b). Each of these
methods implements a similar interface: given a model and
an output of interest (e.g., loss for a given prediction), a
data attribution method computes a score for each train-
ing input indicating its importance to the output of interest.
Definition 2.1 below makes this interface precise:

Definition 2.1 (Data attribution). Consider an ordered train-
ing set of examples S = {z1, . . . , zn} and a model output
function f(z; θ). A data attribution method τ(z, S) is a
function τ : Z × Zn → Rn that, for any example z ∈ Z
and a training set S, assigns a (real-valued) score to each
training input zi ∈ S indicating its importance1 to the model
output f(z; θ⋆(S)). When the second argument S is clear
from the context, we will omit the second argument and
simply write τ(z).

Evaluating attribution methods. Given the variety of exist-
ing data attribution methods, we need a method to evaluate
them in a consistent way. One popular approach is to sim-
ply manually inspect the training examples that the method
identifies as most important for a given prediction or set of

1We make “importance” more precise in Definition 2.2.

2

TRAK: Attributing Model Behavior at Scale

predictions. Such manual inspection can be a useful sanity
check, but is also often subjective and unreliable. A more ob-
jective alternative is to treat the scores from a data attribution
method as estimates of some ground-truth parameters—such
as leave-one-out influences (Koh & Liang, 2017; Basu et al.,
2021) or Shapley values (Lundberg & Lee, 2017)—and then
measure the accuracy of these estimates. However, getting
access to these ground-truth parameters can be prohibitively
expensive in large-scale settings. Finally, yet another pos-
sibility is to measure the utility of data attribution scores
for an auxiliary task such as identifying mislabeled data
(Koh & Liang, 2017; Hammoudeh & Lowd, 2022a) or ac-
tive learning (Jia et al., 2021). This approach can indeed
be a useful proxy for evaluating attribution methods, but
the resulting metrics may be too sensitive to the particulars
of the auxiliary task, making comparisons across different
problems and settings difficult.

2.1. The linear datamodeling score (LDS)

Motivated by the above shortcomings of existing methodolo-
gies, we propose a new metric for evaluating data attribution
methods. At the heart of our metric is the perspective that an
effective data attribution method should be able to make ac-
curate counterfactual predictions about how model outputs
change when the training set is modified.

Inspired by Ilyas et al. (2022), we cast this counterfactual es-
timation task as that of predicting the model output function
f(z; θ⋆(S′)) corresponding to different subsets of the train-
ing set S′. More precisely, consider—for a fixed example of
interest z ∈ Z—the model output f(z; θ⋆(S′)) arising from
training on a subset S′ ⊂ S of the training set S (see (1)).2

Since z is fixed and the learning algorithm θ⋆(·) is fixed,
we can view this model output as a function of S′ alone.
A good data attribution method should help us predict the
former from the latter.

To operationalize this idea, we first need a way of converting
a given data attribution method τ(·) into a counterfactual
predictor. Observing that the vast majority of data attribution
methods are additive,3 we define an attribution method’s
prediction of the model output for a subset S′ ⊂ S as the
sum of the corresponding scores:

Definition 2.2 (Attribution-based output predictions). Con-
sider a training set S, a model output function f(z; θ), and
a corresponding data attribution method τ (see Definition
2.1). The attribution-based output prediction of the model

2In many settings, the non-determinism of training makes this
model output function a random variable, but we treat it as de-
terministic to simplify our notation. We handle non-determinism
explicitly in Section 3.2.

3That is, they define the importance of a group of training
examples to be the sum of the importances of the examples in the
group. See Appendix E.6 for a more detailed discussion.

output f(z; θ⋆(S′)) is defined as

gτ (z, S
′;S) :=

∑
i : zi∈S′

τ(z, S)i = τ(z, S) · 1S′ , (2)

where 1S′ is the indicator vector of the subset S′ of S (i.e.,
(1S′)i = 1{zi ∈ S′}).

Intuitively, Definition 2.2 turns any data attribution method
into a counterfactual predictor. Specifically, for a given
counterfactual training set S′ ⊂ S, the attribution method’s
prediction is simply the sum of the scores of the examples
contained in S′.

Now that we have defined how to derive predictions from an
attribution method, we can evaluate these predictions using
the linear datamodeling score, defined as follows:

Definition 2.3 (Linear datamodeling score). Consider a
training set S, a model output function f(z; θ), and a corre-
sponding data attribution method τ (see Definition 2.1). Let
{S1, . . . , Sm : Si ⊂ S} be m randomly sampled subsets of
the training set S, each of size α · n for some α ∈ (0, 1).
The linear datamodeling score (LDS) of a data attribution τ
for a specific example z ∈ Z is given by

LDS(τ, z) := ρ({f(z; θ⋆(Sj)), gτ (z, Sj ;S) : j ∈ [m]}),

where ρ denotes Spearman rank correlation (Spearman,
1904). The attribution method’s LDS for an entire test set is
then simply the average per-example score.

The LDS is quantitative, simple to compute, and not tied to
a specific task or modality.

2.2. An oracle for data attribution

Definition 2.3 immediately suggests an “optimal” approach
to data attribution (at least, in terms of optimizing LDS).
This approach simply samples random subsets {S1, . . . Sm}
of the training set; trains a model on each subset (yield-
ing {θ⋆(S1), . . . , θ

⋆(Sm)}); evaluates each corresponding
model output function f(z; θ⋆(Sj)); and then fits scores
τ(z) that predict f(z; θ⋆(Si)) from the indicator vector 1Si

using (regularized) empirical risk minimization. Indeed,
Ilyas et al. (2022) take exactly this approach—the resulting
datamodel-based attribution for an example z is then

τDM(z) := min
β∈Rn

m∑
i=1

(
β⊤1Si

−f(z; θ⋆(Si))
)2
+λ∥β∥1. (3)

The attributions τDM(z) yield counterfactual predictions that
are highly correlated with true model outputs (see Figure 1).
Unfortunately, however, estimating accurate linear predic-
tors (3) requires thousands of samples (Sj , f(z; θ

⋆(Sj))).
Since each sample involves training a model from scratch,
this direct estimator can be expensive to compute in large-
scale settings. More generally, this limitation applies to all

3

TRAK: Attributing Model Behavior at Scale

sampling-based attribution methods, such as empirical in-
fluences (Feldman & Zhang, 2020; Carlini et al., 2022) and
Shapley values (Ghorbani & Zou, 2019; Jia et al., 2019).

In light of the above, we can view the approach of Ilyas et al.
(2022) as an “oracle” of sorts—it makes accurate counter-
factual predictions (and as a result has found downstream
utility (Ilyas et al., 2022; Shah et al., 2022; Chang & Jia,
2022)), but is (often prohibitively) costly to compute.

2.3. Data attribution methods beyond sampling

We consider other existing data attribution methods—
specifically, the ones that use only one (or a few) trained
models—and evaluate them on our LDS benchmark.

Simulating re-training with influence functions. The bot-
tleneck of the “oracle” datamodels attribution method (3)
from above is that obtaining each sample (Sj , f(z;Sj)) re-
quires re-training our model from scratch on each subset
Sj . An alternative approach could be to simulate the effect
of this re-training by making some structural assumptions
about the model being studied—e.g., that its loss is locally
well-approximated by a quadratic. This idea has inspired a
long line of work around influence function estimation (Koh
& Liang, 2017; Pruthi et al., 2020; Schioppa et al., 2022).
The resulting influence function attributions accurately ap-
proximate linear models and other simple models, but can
perform poorly in non-convex settings (e.g., in the context of
deep neural networks) (Basu et al., 2021; Ilyas et al., 2022;
Bae et al., 2022). Indeed, as we show in Figure 1, estimators
based on influence functions significantly underperform on
our LDS benchmark when evaluated on neural networks on
standard vision and natural language tasks.

Heuristic measures of example importance. Other ap-
proaches use more heuristic measures of training example
importance for data attribution. These include methods
based on, e.g., representation space similarity (Zhang et al.,
2018; Hanawa et al., 2021) or gradient agreement (Ham-
moudeh & Lowd, 2022a). While such methods often yield
qualitatively compelling results, our experiments (again, see
Figure 1) indicate that, similarly to influence-based estima-
tors, they are unable to make meaningful counterfactual pre-
dictions about model outputs in the large-scale, non-convex
settings we evaluate them on.

3. TRAK: Tracing with the
Randomly-Projected After Kernel

We now present TRAK, a new data attribution method which
is designed to be both effective and scalable in large-scale
differentiable settings.

As a warm-up, and to illustrate the core primitive behind
TRAK, we first study the simple case of logistic regres-

sion (Section 3.1). In this setting, data attribution is well-
understood—in particular, there is a canonical attribution
method (Pregibon, 1981) that is both easy-to-compute and
highly effective (Wojnowicz et al., 2016; Koh et al., 2019).
In Section 3.2, using this canonical attribution method as
a primitive, we derive our data attribution method TRAK,
which operates by reducing complex models back to the
logistic regression case.4

3.1. Warmup: Data attribution for logistic regression

Consider the case where the model being studied is (a gen-
eralized form of) binary logistic regression. In particular,
we consider a training set of n examples

S = {z1, . . . , zn : zi = (xi ∈ Rd, bi ∈ R, yi ∈ {−1, 1})},

where each example comprises an input xi ∈ Rd, a bias bi ∈
R, and a label yi ∈ {−1, 1}. The final model parameters
θ⋆(S) then minimize the log-loss over the training set, i.e.,

θ⋆(S) := argmin
θ

∑
(xi,yi)∈S

− log
(
σ
(
yi · (θ⊤xi + bi)

))
,

(4)
where σ(·) is the sigmoid function. (Note that bi = 0
correspond to ordinary logistic regression.) The natural
choice of model output function in this case is then the “raw
logit” function:

f(z; θ) := θ⊤x+ b, where z = (x, b, y). (5)

Data attribution in this simple setting is a well-studied prob-
lem. In particular, the one-step Newton approximation (Preg-
ibon, 1981; Wojnowicz et al., 2016; Rad & Maleki, 2018;
Koh et al., 2019), which we present as a data attribution
method τNS below, is a standard tool for analyzing and un-
derstanding logistic regression models in terms of their train-
ing data. (We present the theoretical basis for this method
in Appendix E.1.)
Definition 3.1 (One-step Newton approximation (Pregibon,
1981)). For logistic regression, we define the Newton step
data attribution method τNS as the approximate leave-one-
out influence (Pregibon, 1981) of training examples zi =
(xi, bi, yi) on the model output function (5). That is,

τNS(z)i :=
x⊤(X⊤RX)−1xi

1− x⊤i (X⊤RX)−1xi · p⋆i (1− p⋆i)
(1− p⋆i)

(6)

≈ f(z; θ⋆(S))− f(z; θ⋆(S \ zi)) (7)

where X ∈ Rn×k is the matrix of stacked inputs xi, p⋆i :=
(1 + exp(−yi · f(zi; θ⋆)))−1 is the predicted correct-class
probability at θ⋆ and R is a diagonal n × n matrix with
Rii = p⋆i (1− p⋆i).

4Note that we focus on logistic regression for simplicity—more
generally one can adapt TRAK to any setting where the training
loss is convex in the model output; see Appendix E.1.

4

TRAK: Attributing Model Behavior at Scale

If our model class of interest was binary logistic regression,
we could simply apply Definition 3.1 to perform data attribu-
tion. As we discuss, however, our goal is precisely to scale
data attribution beyond such convex settings. To this end,
we next derive our data attribution method TRAK (Tracing
with the Randomly-projected After Kernel) which leverages
τNS (Definition 3.1) as a primitive.

3.2. TRAK for binary (non-linear) classifiers

We now present our method (TRAK) for scaling data attribu-
tion to non-convex differentiable settings. The key primitive
here will be Definition 3.1 from above—in particular, we
will show how to adapt our problem into one to which we
can apply the approximation (7).

For ease of exposition, we will first show how to compute
τTRAK in the context of binary classifiers trained with the
negative log-likelihood loss. (We later generalize TRAK
to other types of models, e.g., to multi-class classifiers in
Appendix E.5, to contrastive models in Section 5.1, and
to language models in Section 5.2.) In this setting, let the
model output function f(z; θ) be the raw output (i.e., the
logit) of a binary classifier with parameters θ.5 The final
parameters of the model can thus be written as

θ⋆(S) = argmin
θ

∑
(xi,yi)∈S

− log [σ ((−yi · f(zi; θ)))] .

(8)
Note that unlike in Section 3.1, we do not assume that the
model itself is linear—e.g., the model might be a deep neural
network parameterized by weights θ.

We implement TRAK as a sequence of five steps: lineariza-
tion, dimensionality reduction, one-step newton approxima-
tion, ensembling, and soft thresholding. We discuss these
steps in more depth below.

(Step 1) Linearizing the model. Recall that our goal here is
to apply the data attribution method τNS from Definition 3.1.
The main roadblock to applying Definition 3.1 in our setting
is that we are studying a non-linear model—that is, our
model output function may not be a linear function of θ. We
address this issue by approximating f(z; θ) with its Taylor
expansion centered around the final model parameters θ⋆:

f̂(z; θ) := f(z; θ⋆) +∇θf(z; θ
⋆)⊤(θ − θ⋆). (9)

This approximation suggests a change in perspective—
rather than viewing f(z; θ) as a non-linear model acting
on inputs x, we can view it as a linear model acting on

5Note that for the special case of binary classifiers, the model
output function that we define (i.e., f(z; θ) = f((x, y); θ)) de-
pends only on the input x, and not on the label y. When we
generalize TRAK to more complex losses (e.g., Appendix E.5) the
model output function will involve both x and y.

inputs ∇θf(z; θ
⋆). In particular, rewriting the loss mini-

mization (8) by replacing f(z; θ) with f̂(z; θ) and defin-
ing the variables gi := ∇θf(zi; θ

⋆) and bi := f(zi; θ
⋆) −

∇θf(zi; θ
⋆)⊤θ⋆ yield

θ⋆(S) = argmin
θ

∑
(gi,bi,yi)

− log
[
σ
(
yi ·
(
θ⊤gi + bi

))]
.

(10)
Comparing (10) to (4) (from Section 3.1) makes it clear that
we can view θ⋆ as the solution to a (generalized) logistic
regression, in which the inputs xi are model gradients gi,
the bias terms are bi and the labels yi remain the same.

Note: In the context of neural networks, we can view Step 1
as replacing the binary classifier with its empirical neural
tangent kernel (eNTK) approximation (Jacot et al., 2018;
Atanasov et al., 2022; Wei et al., 2022). We discuss how
TRAK connects to the eNTK in more detail in Appendix B.

(Step 2) Reducing dimensionality with random projec-
tions. The linear approximation from Step 1 dramatically
simplifies our model class of interest from a highly non-
linear classifier to simple logistic regression. Still, the result-
ing logistic regression can be extremely high dimensional:
the input dimension of the linear model (9) is the number of
parameters of the original model (which can be on the order
of millions), not the dimensionality of the inputs xi.

To reduce the dimensionality of this problem, we lever-
age a classic result of Johnson & Lindenstrauss (1984).
This result guarantees that multiplying each gradient gi =
∇θf(zi; θ

⋆) ∈ Rp by a random matrix P ∼ N (0, 1)p×k

for k ≪ p preserves inner products g⊤i gj with high proba-
bility6 (while significantly reducing the dimension). Thus,
we define the “feature map” ϕ : Z → Rk as

ϕ(z) := P⊤∇θf(z; θ
⋆), (11)

i.e., a function taking an example z to its corresponding
projected gradient, and from now on replace gi with

ϕi := ϕ(zi) = P⊤gi = P⊤∇θf(zi; θ
⋆). (12)

(Step 3) Estimating influences. Now that we have simpli-
fied our model of interest to a logistic regression problem
of tractable dimension, we can finally adapt Definition 3.1.

To this end, recall that the training “inputs” are now the
(projected) gradients ϕi (see (12)). We thus replace the
matrix X in (7) with the matrix Φ := [ϕ1; . . . , ϕn] ∈ Rn×k

of stacked projected gradients. We also find empirically that
both the denominator in (7) and the diagonal matrix R have
little effect on the resulting estimates, and so we omit them
from our adapted estimator. Our estimator for attribution

6In Appendix E.2 we discuss why preserving inner products
suffices to preserve the structure of the logistic regression.

5

TRAK: Attributing Model Behavior at Scale

scores for an example of interest z thus becomes:

τ(z, S) := ϕ(z)⊤(Φ⊤Φ)−1Φ⊤Q, (13)

where we recall from (11) that ϕ(z) = P⊤∇θf(z; θ
⋆), and

where we define

Q := diag({1−p⋆i }) = diag ({1−σ (yi · f(zi; θ⋆))}) (14)

as the n × n diagonal matrix of “one minus correct-class
probability” terms.

(Step 4) Ensembling over independently trained models.
So far, our analysis ignores the fact that in many modern
settings, training is non-deterministic: applying the same
learning algorithm to the same training dataset (i.e., varying
only the random seed) can yield models with (often signifi-
cantly) differing behavior (Nguyen et al., 2021b; D’Amour
et al., 2020). Non-determinism poses a problem for data
attribution because by definition, we cannot explain such
seed-based differences in terms of the training data.

To reduce the impact of such seed-based differences,
we aggregate the estimator (13) across an ensemble of
models trained on different randomly selected subsets
S1, . . . , SM ⊂ S, leading to the final estimator τM :

1

M

M∑
i=1

Qm ·

(
1

M

M∑
i=1

ϕm(z)⊤(Φ⊤
mΦm)−1Φ⊤

m

)
(15)

where Φm are the corresponding projected gradients from
each model θ⋆(Sm); ϕm(z) is the featurized example z
under model θ⋆(Sm); and Qm is the corresponding matrix
of probabilities as defined in Equation (14).7

(Step 5) Inducing sparsity via soft-thresholding. Ilyas
et al. (2022) find that for neural networks attribution scores
are often sparse—that is, each test example depends on only
a few examples from the training set. Motivated by this ob-
servation, we post-process the attribution scores from Step
4 via soft thresholding. After applying the soft-thresholding
operator S, our final estimator becomes

τTRAK(z, S) := S
(
τM (z, S); λ̂

)
(16)

where threshold λ̂ is selected via cross-validation (see Ap-
pendix E.4 for more details).

3.3. Implementing TRAK

We summarize our final algorithm for computing the data
attribution method τTRAK in the general multi-class case
in Algorithm 1. To make Algorithm 1 efficient even for
large models, we implemented a highly optimized random
projector, which we discuss in Appendix D.

7We motivate the use of random subsets in Appendix E.3 and
our method of averaging in Appendix G.

4. Evaluating TRAK

We evaluate TRAK in a variety of vision and NLP settings.
To this end, we compare TRAK with existing data attribu-
tion methods and show that it achieves significantly better
tradeoffs between efficacy and computational efficiency.

4.1. Experimental setup

We use ResNet-9 classifiers trained on CIFAR-10;ResNet-
18 classifiers trained on the 1000-class ImageNet dataset,
and pre-trained BERT models finetuned on the QNLI
(Question-answering Natural Language Inference) task from
the GLUE benchmark (Wang et al., 2018). (See Ap-
pendix C.1 for more details.)

To put TRAK’s performance into context, we also evaluate a
variety of existing attribution methods (see Appendix C.3 for
details). For each method and each dataset we consider, we
compute its linear datamodeling score (LDS) as described
in Definition 2.3; see Appendix C.4 for more details.

We quantify the computational cost of each attribution
method using two metrics: the total wall time of computing
attribution scores on a single A100 GPU, and the total num-
ber of trained models used. The latter is implementation-
independent, while the former is more interpretable and
factors in expensive operations such as matrix inversion.
We find that both metrics lead to similar conclusions.

4.2. Results

Across all models and datasets that we consider, TRAK at-
tains a significantly better tradeoff between efficacy (as
measured by the LDS) and computational efficiency com-
pared to other attribution methods (see Figures 1 and 8
and Table 2). Indeed, TRAK attains efficacy comparable to
datamodels (which achieves the best performance among
existing methods when unconstrained) with a computational
footprint that is (on average) over 100x smaller.

TRAK-identified examples. In Figures 2 and 10 we show,
for randomly chosen test examples from QNLI, CIFAR-10,
and ImageNet, the training examples corresponding to the
most positive and negative TRAK scores.

Understanding the roots of TRAK’s performance. In
Appendix G, we study the roots of TRAK’s performance
through an extensive ablation study. We vary the size of the
ensemble, how we linearize the model of interest (Step 1 in
Section 3.2), the dimension k of the random projection we
use (Step 2 in Section 3.2), how we apply the Newton step
attribution from Definition 3.1 (Step 3 in Section 3.2), and
how we aggregate information from independently trained
models (Step 4 in Section 3.2).

As a byproduct of this investigation, we find two ways of

6

TRAK: Attributing Model Behavior at Scale

More positive More negative

Dutch
oven

Held-out Example

Dutch
oven

Dutch
oven

Dutch
oven

Dutch
oven

wok wok wok wok

basketball basketball basketball basketball basketball volleyball knee
pad

knee
pad

cowboy
hat

stove stove stove stove stove traffic
light

space
heater

fire
screen

doormat

Figure 2. We show a randomly selected test example and its corresponding most helpful (highest-scoring) and most detracting (lowest-
scoring) training examples as identified by TRAK for ResNet-18 classifiers trained on ImageNet (bottom). We observe that TRAK-identified
training examples are semantically similar to the target example, and that the helpful (detracting) examples are of the same (different)
class as the target. See https://trak.csail.mit.edu for more examples.

computing TRAK at even lower cost: (a) leveraging models
that have not been trained to convergence, and (b) using
multiple checkpoints from the same model. Both of these
optimizations dramatically reduce TRAK’s computational
cost without significantly degrading performance.

5. Applications of TRAK

We now illustrate the usefulness of TRAK through three ad-
ditional applications: attributing CLIP models (Section 5.1),
fact tracing language models (Section 5.2), and accelerating
datamodel applications (Appendix A).

5.1. Attributing CLIP models

CLIP (Contrastive Language-Image Pre-training) (Radford
et al., 2021) representations have become a versatile primi-
tive bridging visual and language domains and is used, for
example, for zero-shot classification (Radford et al., 2021)
and as text encoders for latent diffusion models (Rombach
et al., 2022). While the quality of these representations—as
measured by aggregate metrics such as downstream zero-
shot accuracy—appears to be driven largely by the prop-
erties and scale of the training datasets (Fang et al., 2022;
Santurkar et al., 2022; Cherti et al., 2022), we lack a fine-
grained understanding of how the composition of the train-
ing data contributes to learning well-aligned representations.
To that end, we use TRAK to investigate how training data
influences the resulting CLIP embeddings at a local level.
That is, we want to pin-point training examples that cause a
model to learn a specific image-caption pair association.

5.1.1. COMPUTING TRAK FOR CLIP

Similarly to the classification setting we were considering so
far, we need to choose an appropriate model output function
(see, e.g., Equation (28)) to compute attribution scores with
TRAK. Our choice (described in Appendix E.7) is motivated
by the CLIP training loss and allows us to reduce this setting
back to the classification case. We can then compute TRAK
scores following the same approach as before.

5.1.2. RESULTS

We train image-text models using the CLIP objective on
MS COCO (Lin et al., 2014). We compare TRAK with
TracIn and CLIP similarity distance baselines.

Visual analysis. Figure 3 displays a target example along
with the corresponding most important training examples.
The most helpful TRAK examples are the ones for which the
captions contain the phrase “a couple of animals” but where
the images do not necessarily feature giraffes (possibly be-
cause the target caption does not mention “giraffe” either).
On the other hand, the most helpful examples according
to CLIP similarity distance all feature giraffes. These dif-
ferences suggest that TRAK attribution scores may capture
significantly different traits from CLIP similarity distance.

Counterfactual evaluation. We next investigate to what ex-
tent training examples identified by each attribution method
affect the CLIP model’s ability to learn a given image-
caption association. Specifically, we say that a CLIP model
has learned a given association between an image and a
caption whenever their corresponding image and caption
embeddings have high cosine similarity relative to other
image-caption pairs. To evaluate each attribution method,
for a given target image-caption pair, we remove from the
training set the k examples with the most positive attribution
scores, and then re-train ten models from scratch. Finally,
we measure the average decrease in cosine similarity be-
tween the embeddings of target image and caption pair, and
average this result over different target pairs.

Our results (Figure 4) indicate that removing training inputs
identified by TRAK can significantly degrade the model’s
ability to learn the target image-caption pair, while using
CLIP or TracIn is less effective.

5.2. Fact tracing for large language models (mT5)

As large language models are deployed in a variety of con-
texts, there is an emerging need to be able to attribute mod-
els’ outputs back to specific data sources (Bohnet et al.,

7

https://trak.csail.mit.edu

TRAK: Attributing Model Behavior at Scale

target

a couple of
animals that are

walking around the
grass

CLIP nearest neighbors

two giraffes
standing in the

grass on a sunny
day

a giraffe standing
on a desert field

next to rocks

most positive TRAK score

a couple of
animals that are
out in the grass

a couple of
animals that are
standing around

each other

most negative TRAK score

two skiers in the
snow on a sunny

day

a couple of trunks
stacked on top of

each other

Figure 3. Attributing CLIP trained on MS COCO. The first column shows two target image-caption pairs from the validation set of MS
COCO. The second two columns display the nearest neighbors to the target in CLIP embedding space (using the average of image and
text cosine similarities). The next two columns show the train set samples that, according to TRAK, are most helpful for aligning the
image embedding to the caption embedding. Similarly, the last two columns display the train samples that are the most detracting from
aligning the image and caption embeddings. In Appendix F.2, we display more examples and also compare to TracIn.

k = 50 k = 400
0

0.2

0.4

0.06

0.11

0.03 0.04

0.16

0.36

Number of training examples removed

D
ro

p
in

co
si

ne
si

m
ila

ri
ty CLIP similarity

TracIn (Pruthi et al., 2020)

TRAK (ours)

Figure 4. Counterfactually evaluating CLIP attributions. We mea-
sure how the cosine similarity between target image and caption
embeddings is affected when we re-train a CLIP model after re-
moving the most influential training examples—as identified by
TRAK, TracIn, and CLIP similarity distance. We report the de-
crease in cosine similarity, averaged over 100 randomly selected
image-caption pairs from the validation set. Error bars represent
95% confidence intervals.

2022). To that end, we study fact tracing (Akyurek et al.,
2022), i.e., the task of identifying the training examples that
cause a language model to generate a given “fact.”

A benchmark for fact tracing. Akyurek et al. (2022) de-
velop a testbed for the fact tracing problem by way of a
dataset called FTRACE-TREX. The dataset consists of a set
of “abstracts” and a set of “queries,” both of which pertain
to the same database of “facts.” Each abstract is annotated
with a set of facts it expresses, and each query with the
(single) fact that it asks about. As a part of the task setup,
one finetunes a pre-trained language model on the set of
abstracts using masked language modeling,8 and then evalu-

8In masked language modeling (Raffel et al., 2020), the lan-
guage model is asked to predict the tokens corresponding to a
masked-out portion of the input. In FTRACE-TREX, either a

ates this model’s correctness on each query in the query set.
This step defines a set of “novel facts,” i.e., queries that the
model answers correctly only after finetuning.

Akyurek et al. (2022) reason that each novel fact (as iden-
tified above) should have been learned (during finetuning)
from the abstracts that express the same fact. The bench-
mark thus evaluates a given data attribution method’s ability
to retrieve, for each novel fact, the abstracts in the train-
ing set that express the same fact (called the ground-truth
proponents of the query.)

In particular, observe that applying a data attribution method
τ(·) to a particular query (treating the set of abstracts as the
training set) yields scores that we can use as a ranking over
the set of the abstracts. Akyurek et al. (2022) compute the
mean reciprocal rank (MRR) of the ground-truth proponents
in this ranking (see Appendix H.1), a standard metric from
information retrieval, to quantify the efficacy of τ(·) at fact
tracing. We evaluate TRAK on this benchmark, along with
two baselines from (Akyurek et al., 2022), TracIn (Pruthi
et al., 2020) and the information retrieval method BM25.

Computing TRAK scores for language models. To apply
TRAK to this setting, we again need to choose an appropriate
model output function. Observing that we can interpret that
masked language modeling objective as a sequence of v-way
classification problems over the masked tokens (where v is
the vocabulary size), we choose the model output function
for this setting to be the sum of the “canonical” model output
function (28) for each of the v-way classification problems
(see Appendix H.3 for more details).

5.2.1. RESULTS AND DISCUSSION

We find that while TRAK significantly outperforms TracIn
on the FTRACE-TREX benchmark (0.42 vs. 0.09 MRR),
neither method matches the performance of the information

subject or object in the abstract is masked out.

8

TRAK: Attributing Model Behavior at Scale

retrieval baseline BM25 (0.77 MRR).

To understand the possible roots of TRAK’s underperfor-
mance relative to BM25 on FTRACE-TREX, we carry out
a counterfactual analysis. Specifically, for a subset S⋆ of
the FTRACE-TREX query set, we create three correspond-
ing counterfactual training sets by removing one of the
following from the FTRACE-TREX abstract set: (a) the
most important abstracts for accuracy on S⋆, as estimated
by TRAK; (b) the abstracts most similar to the queries in S⋆

according to BM25; (c) the “ground-truth proponents” for
the queries in S⋆ as per FTRACE-TREX.

We then measure the average decrease in performance on S⋆

when a model is finetuned on these counterfactual datasets
compared to finetuning on the full training set. Intuition
suggests that performance should decrease the most when
models are trained on counterfactual training set (c); there
is ostensibly no direct evidence for any of the facts corre-
sponding to the queries in S⋆ anywhere in that set.

We find (see Figure 5), however, that it is only the TRAK-
based counterfactual training set that causes a large change
in model behavior. That is, removing abstracts identified
with TRAK leads to a 34% decrease in accuracy, significantly
more than the decreases induced by removing abstracts
according to BM25 (10%) or even removing ground-truth
proponents (12%).

Ground-truth BM25 TRAK
0

20

40

16.5
12

34

Method

A
cc

ur
ac

y
dr

op
on

ta
rg

et
s

Figure 5. Identifying counterfactually important examples for
learning facts on FTRACE-TREX. We compare how three different
interventions—removing abstracts with the highest TRAK scores,
removing the most similar abstracts according to BM25, and re-
moving the ground-truth proponents as indicated by FTRACE-
TREX—affect the resulting model’s accuracy on the queries that
are answered correctly prior to intervention. The y-axis shows the
decrease in accuracy (relative to the original model) after each
intervention; results are averaged over 50 queries and eight inde-
pendent models. Error bars represent 95% confidence intervals.

Discussion. Our results demonstrate that while TRAK may
not be effective at identifying abstracts that directly express
the same fact as a given query, it can successfully iden-
tify the abstracts that are most responsible for the finetuned
model learning a given fact. In particular, our analysis sug-

gests that TRAK’s subpar performance on the attribution
benchmark is an artifact of the FTRACE-TREX benchmark
rather than a flaw of TRAK itself. We discuss several poten-
tial explanations for this phenomenon in Appendix H.5.

More broadly, our results highlight a difference between
fact tracing and behavior tracing. In other words, finding a
data source that supports a given model-generated text is a
different task than identifying the actual data sources that
caused the model to generate this text. While we may be
able to address the former problem with model-independent
techniques such as information retrieval or web search, the
latter requires methods that remain faithful to (and thus,
dependent on) the model being studied. Our results here
indicate that TRAK can be an effective tool for the latter.

6. Discussion & Conclusion
In our work, we formalize the problem of data attribution
and introduce a new method, TRAK, that is effective and
efficiently scalable. We then demonstrate the usefulness of
TRAK in a variety of large-scale settings: image classifiers
trained on CIFAR and ImageNet, language models (BERT
and mT5), and image-text models (CLIP).

Still, TRAK is not without limitations: in particular, it re-
quires the model to be differentiable, and its effectiveness
also depends on the suitability of the linear approximation.
That said, the success of the applying the NTK on language
modeling tasks (Malladi et al., 2022) as well as our own
experiments both suggest that this approximation is likely
to continue to work for larger models. TRAK presents a
unique opportunity to reap the benefits of data attribution
in previously untenable domains, such as large generative
models. We discuss possible future work in Appendix I.

Acknowledgements
We thank Ekin Akyurek for help installing and using the
FTRACE-TREX benchmark. Work supported in part by the
NSF grants CNS-1815221 and DMS-2134108, and Open
Philanthropy. This material is based upon work supported by
the Defense Advanced Research Projects Agency (DARPA)
under Contract No. HR001120C0015. Research was spon-
sored by the United States Air Force Research Laboratory
and the United States Air Force Artificial Intelligence Accel-
erator and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions
contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the United States Air
Force or the U.S. Government. The U.S. Government is au-
thorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

9

TRAK: Attributing Model Behavior at Scale

References
Achille, A., Golatkar, A., Ravichandran, A., Polito, M.,

and Soatto, S. Lqf: Linear quadratic fine-tuning. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021.

Agarwal, N., Bullins, B., and Hazan, E. Second-order
stochastic optimization for machine learning in linear
time. In The Journal of Machine Learning Research,
2017.

Akyurek, E., Bolukbasi, T., Liu, F., Xiong, B., Tenney,
I., Andreas, J., and Guu, K. Towards tracing factual
knowledge in language models back to the training data.
In Findings of EMNLP, 2022.

Alaa, A. and Van Der Schaar, M. Discriminative jackknife:
Quantifying uncertainty in deep learning via higher-order
influence functions. In International Conference on Ma-
chine Learning, 2020.

Arnoldi, W. E. The principle of minimized iterations in the
solution of the matrix eigenvalue problem. In Quarterly
of applied mathematics, 1951.

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. Fine-
grained analysis of optimization and generalization for
overparameterized two-layer neural networks. In Interna-
tional Conference on Machine Learning (ICML), 2019.

Atanasov, A., Bordelon, B., and Pehlevan, C. Neural net-
works as kernel learners: The silent alignment effect. In
ICLR, 2022.

Atanasov, A., Bordelon, B., Sainathan, S., and Pehlevan, C.
The onset of variance-limited behavior for networks in
the lazy and rich regimes. In ICLR, 2023.

Bachmann, G., Hofmann, T., and Lucchi, A. Generalization
through the lens of leave-one-out error. In arXiv preprint
arXiv:2203.03443, 2022.

Bae, J., Ng, N., Lo, A., Ghassemi, M., and Grosse, R.
If influence functions are the answer, then what is the
question? In ArXiv preprint arXiv:2209.05364, 2022.

Bai, Y. and Lee, J. D. Beyond linearization: On quadratic
and higher-order approximation of wide neural networks.
In ICLR, 2020.

Basu, S., You, X., and Feizi, S. Second-order group influ-
ence functions for black-box predictions. In International
Conference on Machine Learning (ICML), 2019.

Basu, S., Pope, P., and Feizi, S. Influence functions in
deep learning are fragile. In International Conference on
Learning Representations (ICLR), 2021.

Blum, A. Random projection, margins, kernels, and feature-
selection. In Lecture notes in computer science. Springer,
2006.

Bohnet, B., Tran, V. Q., Verga, P., Aharoni, R., Andor, D.,
Soares, L. B., Eisenstein, J., Ganchev, K., Herzig, J., Hui,
K., et al. Attributed question answering: Evaluation and
modeling for attributed large language models. In Arxiv
preprint arXiv:2212.08037, 2022.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

Carlini, N., Ippolito, D., Jagielski, M., Lee, K., Tramer, F.,
and Zhang, C. Quantifying memorization across neural
language models. In arXiv preprint arXiv:2202.07646,
2022.

Chang, T.-Y. and Jia, R. Careful data curation stabilizes
in-context learning. In Arxiv preprint arXiv:2212.10378,
2022.

Cherti, M., Beaumont, R., Wightman, R., Wortsman,
M., Ilharco, G., Gordon, C., Schuhmann, C., Schmidt,
L., and Jitsev, J. Reproducible scaling laws for con-
trastive language-image learning. In arXiv preprint
arXiv:2212.07143, 2022.

D’Amour, A., Heller, K. A., Moldovan, D., Adlam, B.,
Alipanahi, B., Beutel, A., Chen, C., Deaton, J., Eisen-
stein, J., Hoffman, M. D., Hormozdiari, F., Houlsby, N.,
Hou, S., Jerfel, G., Karthikesalingam, A., Lucic, M.,
Ma, Y., McLean, C. Y., Mincu, D., Mitani, A., Monta-
nari, A., Nado, Z., Natarajan, V., Nielson, C., Osborne,
T. F., Raman, R., Ramasamy, K., Sayres, R., Schrouff,
J., Seneviratne, M., Sequeira, S., Suresh, H., Veitch, V.,
Vladymyrov, M., Wang, X., Webster, K., Yadlowsky, S.,
Yun, T., Zhai, X., and Sculley, D. Underspecification
presents challenges for credibility in modern machine
learning. In Arxiv preprint arXiv:2011.03395, 2020.

Deshpande, A., Achille, A., Ravichandran, A., Li, H., Zan-
cato, L., Fowlkes, C., Bhotika, R., Soatto, S., and Per-
ona, P. A linearized framework and a new benchmark
for model selection for fine-tuning. In arXiv preprint
arXiv:2102.00084, 2021.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. 2019.

Donoho, D. L. De-noising by soft-thresholding. In IEEE
Transactions on Information Theory, 1995.

10

TRAK: Attributing Model Behavior at Scale

Elsahar, H., Vougiouklis, P., Remaci, A., Gravier, C., Hare,
J., Laforest, F., and Simperl, E. T-rex: A large scale align-
ment of natural language with knowledge base triples. In
Proceedings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018), 2018.

Fang, A., Ilharco, G., Wortsman, M., Wan, Y., Shankar, V.,
Dave, A., and Schmidt, L. Data determines distributional
robustness in contrastive language image pre-training
(clip). In ICML, 2022.

Feldman, V. and Zhang, C. What neural networks memorize
and why: Discovering the long tail via influence esti-
mation. In Advances in Neural Information Processing
Systems (NeurIPS), volume 33, pp. 2881–2891, 2020.

Gao, R., Cai, T., Li, H., Hsieh, C.-J., Wang, L., and Lee, J. D.
Convergence of adversarial training in overparametrized
neural networks. In Advances in Neural Information
Processing Systems, 2019.

Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wich-
mann, F. A., and Brendel, W. Imagenet-trained CNNs are
biased towards texture; increasing shape bias improves
accuracy and robustness. In International Conference on
Learning Representations (ICLR), 2019.

Ghorbani, A. and Zou, J. Data shapley: Equitable valuation
of data for machine learning. In International Conference
on Machine Learning (ICML), 2019.

Gu, T., Dolan-Gavitt, B., and Garg, S. Badnets: Identify-
ing vulnerabilities in the machine learning model supply
chain. arXiv preprint arXiv:1708.06733, 2017.

Hammoudeh, Z. and Lowd, D. Identifying a training-set
attack’s target using renormalized influence estimation.
In arXiv preprint arXiv:2201.10055, 2022a.

Hammoudeh, Z. and Lowd, D. Training data influence
analysis and estimation: A survey. In arXiv preprint
arXiv:2212.04612, 2022b.

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and
Stahel, W. A. Robust statistics: the approach based on
influence functions, volume 196. John Wiley & Sons,
2011.

Hanawa, K., Yokoi, S., Hara, S., and Inui, K. Evaluation of
similarity-based explanations. In International Confer-
ence on Learning Representations (ICLR), 2021.

Hellmann, S., Lehmann, J., Auer, S., and Brümmer, M. Inte-
grating nlp using linked data. In The Semantic Web–ISWC
2013: 12th International Semantic Web Conference, Syd-
ney, NSW, Australia, October 21-25, 2013, Proceedings,
Part II 12, pp. 98–113. Springer, 2013.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion prob-
abilistic models. In Neural Information Processing Sys-
tems (NeurIPS), 2020.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., Casas, D. d. L., Hendricks, L. A.,
Welbl, J., Clark, A., et al. Training compute-optimal large
language models. In arXiv preprint arXiv:2203.15556,
2022.

Holzmüller, D., Zaverkin, V., Kästner, J., and Steinwart, I. A
framework and benchmark for deep batch active learning
for regression. arXiv preprint arXiv:2203.09410, 2022.

Huang, J. and Yau, H.-T. Dynamics of deep neural networks
and neural tangent hierarchy. In Proceedings of the 37th
International Conference on Machine Learning, 2020.

Huh, M., Agrawal, P., and Efros, A. A. What makes
imagenet good for transfer learning? arXiv preprint
arXiv:1608.08614, 2016.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,
and Madry, A. Adversarial examples are not bugs, they
are features. In Neural Information Processing Systems
(NeurIPS), 2019.

Ilyas, A., Park, S. M., Engstrom, L., Leclerc, G., and Madry,
A. Datamodels: Predicting predictions from training
data. In International Conference on Machine Learning
(ICML), 2022.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Neural Information Processing Systems (NeurIPS), 2018.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gürel,
N. M., Li, B., Zhang, C., Song, D., and Spanos, C. J.
Towards efficient data valuation based on the shapley
value. In Proceedings of the Twenty-Second International
Conference on Artificial Intelligence and Statistics, 2019.

Jia, R., Wu, F., Sun, X., Xu, J., Dao, D., Kailkhura, B.,
Zhang, C., Li, B., and Song, D. Scalability vs. utility:
Do we have to sacrifice one for the other in data impor-
tance quantification? In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2021.

Johnson, W. B. and Lindenstrauss, J. Extensions of lips-
chitz mappings into a hilbert space. In Contemporary
mathematics, 1984.

Khanna, R., Kim, B., Ghosh, J., and Koyejo, S. Interpreting
black box predictions using fisher kernels. In The 22nd
International Conference on Artificial Intelligence and
Statistics, 2019.

11

TRAK: Attributing Model Behavior at Scale

Koh, P. W. and Liang, P. Understanding black-box predic-
tions via influence functions. In International Conference
on Machine Learning, 2017.

Koh, P. W., Ang, K.-S., Teo, H. H., and Liang, P. On the ac-
curacy of influence functions for measuring group effects.
In Neural Information Processing Systems (NeurIPS),
2019.

Kong, S., Shen, Y., and Huang, L. Resolving training bi-
ases via influence-based data relabeling. In International
Conference on Learning Representations (ICLR), 2022.

Krizhevsky, A. Learning multiple layers of features from
tiny images. In Technical report, 2009.

Leclerc, G. and Madry, A. The two regimes of deep network
training. In arXiv preprint arXiv:2002.10376, 2020.

Lee, K., Ippolito, D., Nystrom, A., Zhang, C., Eck, D.,
Callison-Burch, C., and Carlini, N. Deduplicating train-
ing data makes language models better. In Annual Meet-
ing of the Association for Computational Linguistics
(ACL), 2022.

Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein, J.,
and Gur-Ari, G. The large learning rate phase of deep
learning: the catapult mechanism. In arXiv preprint
arXiv:2003.02218, 2020.

Lin, J., Zhang, A., Lecuyer, M., Li, J., Panda, A., and Sen,
S. Measuring the effect of training data on deep learning
predictions via randomized experiments. arXiv preprint
arXiv:2206.10013, 2022.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on
computer vision (ECCV), 2014.

Liu, Z., Ding, H., Zhong, H., Li, W., Dai, J., and He, C.
Influence selection for active learning. In ICCV, 2021.

Long, P. M. Properties of the after kernel. In arXiv preprint
arXiv:2105.10585, 2021.

Lundberg, S. and Lee, S.-I. A unified approach to interpret-
ing model predictions. In Neural Information Processing
Systems (NeurIPS), 2017.

Ma, J., Guo, L., and Fattahi, S. Behind the scenes of gradient
descent: A trajectory analysis via basis function decom-
position. In arXiv preprint arXiv:2210.00346, 2022.

Maddox, W., Tang, S., Moreno, P., Wilson, A. G., and Dami-
anou, A. Fast adaptation with linearized neural networks.
In International Conference on Artificial Intelligence and
Statistics, 2021.

Maillard, O. and Munos, R. Compressed least-squares re-
gression. In Advances in Neural Information Processing
Systems, 2009.

Malladi, S., Wettig, A., Yu, D., Chen, D., and Arora, S.
A kernel-based view of language model fine-tuning. In
arXiv preprint arXiv:2210.05643, 2022.

Mu, F., Liang, Y., and Li, Y. Gradients as features for deep
representation learning. In ICLR, 2020.

Nguyen, T., Novak, R., Xiao, L., and Lee, J. Dataset distil-
lation with infinitely wide convolutional networks. In Ad-
vances in Neural Information Processing Systems, 2021a.

Nguyen, T., Raghu, M., and Kornblith, S. Do wide and deep
networks learn the same things? uncovering how neural
network representations vary with width and depth. In
International Conference on Learning Representations
(ICLR), 2021b.

Petroni, F., Rocktäschel, T., Riedel, S., Lewis, P., Bakhtin,
A., Wu, Y., and Miller, A. Language models as knowl-
edge bases? In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), 2019.

Pregibon, D. Logistic regression diagnostics. In The Annals
of Statistics, 1981.

Pruthi, G., Liu, F., Sundararajan, M., and Kale, S. Estimat-
ing training data influence by tracing gradient descent. In
Neural Information Processing Systems (NeurIPS), 2020.

Rad, K. R. and Maleki, A. A scalable estimate of the extra-
sample prediction error via approximate leave-one-out.
In ArXiv preprint arXiv:1801.10243, 2018.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh,
G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P.,
Clark, J., et al. Learning transferable visual models
from natural language supervision. In arXiv preprint
arXiv:2103.00020, 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring the
limits of transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research (JMLR),
2020.

Rahimi, A. and Recht, B. Random features for large-scale
kernel machines. In Advances in neural information
processing systems, 2007.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
10684–10695, 2022.

12

TRAK: Attributing Model Behavior at Scale

Santurkar, S., Tsipras, D., and Madry, A. Breeds: Bench-
marks for subpopulation shift. In International Confer-
ence on Learning Representations (ICLR), 2021.

Santurkar, S., Dubois, Y., Taori, R., Liang, P., and
Hashimoto, T. Is a caption worth a thousand images?
a controlled study for representation learning. In arXiv
preprint arXiv:2207.07635, 2022.

Saunshi, N., Gupta, A., Braverman, M., and Arora, S. Un-
derstanding influence functions and datamodels via har-
monic analysis. In ICLR, 2023.

Schioppa, A., Zablotskaia, P., Vilar, D., and Sokolov, A.
Scaling up influence functions. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pp. 8179–8186, 2022.

Shah, H., Park, S. M., Ilyas, A., and Madry, A. Modeldiff:
A framework for comparing learning algorithms. In arXiv
preprint arXiv:2211.12491, 2022.

Spearman, C. The proof and measurement of association
between two things. In The American Journal of Psychol-
ogy, 1904.

Teso, S., Bontempelli, A., Giunchiglia, F., and Passerini,
A. Interactive label cleaning with example-based expla-
nations. In Advances in Neural Information Processing
Systems, 2021.

Thanei, G.-A., Heinze, C., and Meinshausen, N. Random
projections for large-scale regression. In Big and Complex
Data Analysis: Methodologies and Applications, 2017.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. Glue: A multi-task benchmark and anal-
ysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Wei, A., Hu, W., and Steinhardt, J. More than a toy: Random
matrix models predict how real-world neural representa-
tions generalize. In ICML, 2022.

Wei, C., Lee, J. D., Liu, Q., and Ma, T. Regularization
matters: Generalization and optimization of neural nets vs
their induced kernel. In Advances in Neural Information
Processing Systems, 2019.

Wojnowicz, M., Cruz, B., Zhao, X., Wallace, B., Wolff, M.,
Luan, J., and Crable, C. Influence sketching: Finding
influential samples in large-scale regressions. In 2016
IEEE International Conference on Big Data (Big Data),
2016.

Yang, G. and Littwin, E. Tensor programs iib: Architectural
universality of neural tangent kernel training dynamics.
In Proceedings of the 38th International Conference on
Machine Learning, 2021.

Yeh, C.-K., Kim, J. S., Yen, I. E. H., and Ravikumar, P.
Representer point selection for explaining deep neural
networks. In Neural Information Processing Systems
(NeurIPS), 2018.

Yu, Y., Wei, A., Karimireddy, S. P., Ma, Y., and Jordan, M. I.
Tct: Convexifying federated learning using bootstrapped
neural tangent kernels. In NeurIPS, 2022.

Zhang, R. and Zhang, S. Rethinking influence functions
of neural networks in the over-parameterized regime. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2022.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang,
O. The unreasonable effectiveness of deep features as
a perceptual metric. In Computer Vision and Pattern
Recognition (CVPR), 2018.

Zinkevich, M. A., Davies, A., and Schuurmans, D. Holo-
graphic feature representations of deep networks. In UAI,
2017.

13

TRAK: Attributing Model Behavior at Scale

Appendices
A Accelerating Datamodel Applications with TRAK 16

A.1 Estimating prediction brittleness . 16

A.2 Learning algorithm comparisons . 16

B Related work 18

C Experimental Setup 19
C.1 Datasets and models . 19

C.2 TRAK hyperparameters . 19

C.3 Baselines . 20

C.4 Linear Datamodeling Score . 21

C.5 Hardware and wall-time measurements . 21

D TRAK implementation 23
D.1 Fast random projections on GPU . 23

D.2 Pseudocode . 24

E Theoretical Justification 25
E.1 The one-step Newton approximation for leave-one-out influence . 25

E.2 Random projections preserve gradient flow . 26

E.3 Subsampling the training set . 26

E.4 Soft-thresholding . 27

E.5 Extending to multi-class classification . 27

E.6 Linearity and model output function . 28

E.7 The CLIP model output function . 28

F Additional Results 30
F.1 Full LDS evaluation . 30

F.2 TRAK examples . 32

G Ablation Studies 34
G.1 Dimension of the random projection . 34

G.2 Number of models used in the ensemble . 34

G.3 Proxies for model ensembles in compute-constrained settings . 34

G.4 Role of different terms. 36

G.5 Choice of the kernel . 36

G.6 Ensembling vs. Averaging the eNTK . 37

G.7 Summary . 37

H Fact Tracing 38
H.1 The FTRACE-TREX Dataset . 38

H.2 Fine-tuning details . 38

H.3 Computing TRAK for masked language modeling . 38

H.4 Counterfactual experiment setup . 38

14

TRAK: Attributing Model Behavior at Scale

H.5 Potential explanations for counterfactual results . 39

I Future Work 40
I.1 Further applications of TRAK . 40

I.2 Understanding and improving the TRAK estimator . 40

15

TRAK: Attributing Model Behavior at Scale

A. Accelerating Datamodel Applications with TRAK

Our evaluation in the main paper shows taht data attribution scores computed with TRAK can predict how a given model’s
output changes as a function of the composition of the corresponding model’s training set. While the capability to make such
predictions is useful in its own right, prior work has shown that this primitive also enables many downstream applications
(Koh & Liang, 2017; Jia et al., 2019; Alaa & Van Der Schaar, 2020). For example, prior works leverage datamodel scores to
identify brittle predictions (Ilyas et al., 2022) and to compare different learning algorithms (Shah et al., 2022). We now show
that using TRAK in place of datamodel scores can significantly speed up these downstream applications too.

A.1. Estimating prediction brittleness

Ilyas et al. (2022) use datamodel scores to provide lower bounds on the brittleness of a given example—that is, given an
example of interest z, they identify a subset of the training set whose removal from the training data causes the resulting
re-trained model to misclassify z. The brittleness estimation algorithm that Ilyas et al. (2022) leverage hinges on the fact
that the datamodel attribution function τDM(z) can accurately predict model outputs, i.e., achieve high LDS. Motivated by
TRAK’s good performance on the linear datamodeling task (see, e.g., Figure 8), we examine estimating the brittleness of
CIFAR-10 examples using TRAK scores in place of datamodel ones (but otherwise following the procedure of Ilyas et al.
(2022)). Our results (see Figure 6) indicate that TRAK scores computed from an ensemble of just 100 models are about as
effective at estimating brittleness as datamodel scores computed from 50,000 models. Thus, TRAK scores can be a viable
(and orders of magnitude faster) alternative to datamodels for estimating prediction brittleness.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

training examples removed to flip prediction

Fr
ac

.o
fC

IF
A

R
-1

0
te

st
se

t

Datamodels (300k models)
TRAK (100 models)
Datamodels (50k models)
TracIn (100 models)
Representation Sim. (100 models)
Influence Function (100 models)

Figure 6. Using TRAK scores to identify brittle model predictions. Following the methodology of Ilyas et al. (2022), we apply different
data attribution methods to estimate the brittleness of model predictions on examples from the CIFAR-10 validation set. The number of
models used by each attribution method is specified in parentheses, e.g., TRAK (100) indicates that TRAK scores were computed using an
ensemble of 100 trained models.

A.2. Learning algorithm comparisons

A useful way to leverage datamodels is to view them as data representations. More specifically, following Ilyas et al.
(2022), for an example of interest z, one can view the datamodel attribution τDM(z) as an embedding of z into Rn, where
n is the size of the training dataset. Analyzing examples in such induced datamodel representation spaces turns out to
enable uncovering dataset biases and model-specific subpopulations (Ilyas et al., 2022). Furthermore, this representation
space is not specific to a particular model instance or architecture—it is globally aligned in the sense that for the same
example z, the attribution score τDM(z)i of a given train example i has a consistent interpretation across different learning
pipelines. Shah et al. (2022) leverage the properties of the datamodel representation space to perform model-agnostic
learning algorithm comparison (called MODELDIFF): given two learning algorithms, they show how to use datamodels to
identify distinguishing features, i.e., features that are used by one learning algorithm but not the other.

Once again, motivated by TRAK’s good performance on the LDS metric, we investigate whether TRAK scores can substitute
for datamodel scores in this context. To this end, we revisit one of the case studies from Shah et al. (2022)—the one that
compares image classifiers trained with and without data augmentation, and identifies features that distinguish these two

16

TRAK: Attributing Model Behavior at Scale

classes of models. When applied to this case study, MODELDIFF computed with TRAK scores recovers similar distinguishing
features to the ones originally found by Shah et al. (2022) (using datamodel scores)—see Figure 7 for more details. Also,
employing TRAK scores in place of datamodel scores reduces the total computational cost by a factor of 100, showing, once
again, that TRAK can dramatically accelerate downstream tasks that rely on accurate attribution scores.

(1) Compute attribution-based representations for examples w.r.t. algorithms and !1 !2

Example z
τ(1)(z) =

τ(2)(z) =
 coordinate = dependence on training example jth jth

All training examples N

Datamodels

TRAK

(3) Counterfactually verify distinguishing feature
(e.g., spider web)

(2) Extract distinguishing subpopulations from
using the ModelDiff algorithm

{τ(i)(z)}

Algorithm 1
e.g., training w/ data augmentation

Algorithm 2
e.g., training w/ NO data augmentation

A

B

Figure 7. Accelerating learning algorithm comparisons with TRAK. The MODELDIFF framework from (Shah et al., 2022) uses datamodel
representations to surface features that distinguish two learning algorithms. In the case study here, we compare models trained on
the LIVING17 dataset with and without data augmentation. Applying MODELDIFF involves three stages: (1) computing datamodel
representations; (2) applying the MODELDIFF algorithm to extract distinguishing subpopulations of inputs on which two model classes
behave differently; (3) counterfactually testing the inferred feature associated with the subpopulation. Shah et al. (2022) find that models
trained with data augmentation latch onto the presence of spider webs as a spurious correlation to predict the class spider. Here, we
recover their result by using TRAK scores instead of datamodel scores in step (1); doing so reduces the computational cost of MODELDIFF

by 100x.

17

TRAK: Attributing Model Behavior at Scale

B. Related work
In this section, we highlight and discuss how TRAK connects to prior works on training data attribution, the neural tangent
kernel, and kernel approximation.

Training data attribution. There is a sizable body of work on data attribution methods. Here we discuss approaches most
similar to ours, but we refer the reader back to Section 2 for an overview of prior work on data attribution methods and to
(Hammoudeh & Lowd, 2022b) for an even more extensive survey.

In the setting of generalized linear models, Wojnowicz et al. (2016) speed up classical influence estimation (Definition 3.1)
by leveraging random projections. Also, Khanna et al. (2019) employ a similar estimator based on the Fisher matrix for
data attribution and subset selection. Their experiments are limited though to small neural networks and linear models.
Most similarly to our approach, Achille et al. (2021) leverage the linearized model for approximating influence functions
(among other applications). However, their approach introduces several changes to the model of interest (such as modifying
activations, loss, and regularization) and focuses on finetuning in smaller-scale settings, whereas TRAK can be applied
directly to the original model (and at scale).

Similarly to us, prior works also investigate the tradeoffs between scalability and efficacy of data attribution methods. For
instance, Jia et al. (2021) study these tradeoffs by proposing new metrics and comparing according to them leave-one-out
methods (e.g., influence functions) and Shapley values. They put forth, in particular, a new estimator for Shapley values that
is based on approximating the original model with a k-nearest neighbors model over the pre-trained embeddings—this can
be viewed as an alternative to working with the linearized model.

As discussed in Section 2, a major line of work uses Hessian-based influence functions for data attribution (Koh & Liang,
2017; Koh et al., 2019; Basu et al., 2021). In particular, the influence function effectively computes—up to an error that can
be bounded—the one-step Newton approximation with respect to the full model parameters (Koh et al., 2019). Recall that
TRAK also leverages the one-step Newton approximation in order to estimate leave-one-out influences for logistic regression
(see Section 3). However, in contrast to the influence function approach, the Hessian matrix we leverage (the matrix X⊤RX
in Definition 3.1) is positive semi-definite as it is computed with respect to the linearized model rather than the original
model. As a result, computing TRAK does not require the use of additional regularization (beyond the one implicitly induced
by our use of random projections), which is practically necessary in the influence function approach. Prior works also
leverage a similar Hessian matrix based on the generalized Gauss-Newton matrix (Bae et al., 2022) or the equivalent Fisher
information matrix (Teso et al., 2021), which are guaranteed to be positive semi-definite.

Neural tangent kernel. The neural tangent kernel (NTK) (Jacot et al., 2018) and its generalizations (Yang & Littwin, 2021)
are widely studied as a tool for theoretically analyzing generalization (Arora et al., 2019), optimization (Wei et al., 2019),
and robustness (Gao et al., 2019) of (overparameterized) neural networks. While these works focus on neural networks in the
their large or infinite-width limit, a line of recent works (Mu et al., 2020; Achille et al., 2021; Long, 2021; Atanasov et al.,
2022; Wei et al., 2022; Malladi et al., 2022; Atanasov et al., 2023; Ma et al., 2022) studies instead the finite-width empirical
NTK (eNTK). Our TRAK estimator is partly motivated by the observation from this line of work that kernel regression with
the eNTK provides a good approximation to the original model.

While we leverage the eNTK approximation for data attribution, prior works leveraged the NTK and eNTK for various other
applications, such as studying generalization (Bachmann et al., 2022), sample selection for active learning (Holzmüller et al.,
2022), model selection (Deshpande et al., 2021), federated learning (Yu et al., 2022), and fast domain adaptation (Maddox
et al., 2021). Our reduction to the linear case (Step 1 in Section 3.2) is analogous to the approach of Bachmann et al. (2022)
that leverages formulas for the leave-one-out error of kernel methods coupled with the NTK approximation to estimate the
generalization error. Another related work is that of Zhang & Zhang (2022), who theoretically characterize the accuracy of
the Hessian-based influence function in the NTK regime (i.e., large-width limit).

Finally, although the work on NTK popularized the idea of leveraging gradients as features, similar ideas can be traced back
to works on the Fisher kernel and related ideas (Zinkevich et al., 2017).

Kernel methods and random projections. Our application of random projections to improve computational efficiency
of kernel approximation is a widely used idea in kernel methods (Blum, 2006; Rahimi & Recht, 2007). Aside from
computational advantages, this technique can also provide insight into empirical phenomena. For example, Malladi et al.
(2022) use the kernel view along with random projections as a lens to explain the efficacy of subspace-based finetuning
methods.

18

TRAK: Attributing Model Behavior at Scale

C. Experimental Setup
C.1. Datasets and models

CIFAR. We construct the CIFAR-2 dataset as the subset of CIFAR-10 (Krizhevsky, 2009) consisting of only the “cat”
and “dog” classes. We initially used CIFAR-2 as the main test bed when designing TRAK, as it is a binary classification
task and also smaller in size. On both CIFAR-2 and CIFAR-10, we train a ResNet-9 architecture.9 For CIFAR-2, we use
(max) learning rate 0.4, momentum 0.9, weight decay 5e-4, and train for 100 epochs using a cyclic learning rate schedule
with a single peak at epoch 5. For CIFAR-10, we replace the learning rate with 0.5 and train for 24 epochs.

Our code release includes a notebook10 that can reproduce the CIFAR-2 results end-to-end. ImageNet. We use the full
1000-class ImageNet dataset and train a modified ResNet-18 architecture. Models are trained from scratch for 15 epochs,
cyclic learning rate with peak at epoch 2 and initial learning rate 5.2, momentum 0.8, weight decay 4e-5, and label smoothing
0.05.

QNLI. We finetune a pre-trained BERT model (bert-base-cased11) on the QNLI (Question-answering Natural
Language Inference) task from the GLUE benchmark. We use the default training script12 from HuggingFace with a
few modifications: we use SGD (20 epochs, learning rate starting at 1e-3) instead of AdamW, and we remove the last
tanh non-linearity before the classification layer. Removing the last non-linearity prevents the model outputs in saturating,
resulting in higher LDS. (That said, we find that TRAK scores can be still computed on the models with non-linearity; this
was only for improving evaluation.) We restrict the training set to 50,000 examples, approximately half of the full training
set.

CLIP on MS COCO. We use an open-source implementation13 of CLIP. The model uses a ResNet-50 for the image
encoder and a Transformer for the text encoder (for captions). We train for 100 epochs using the Adam optimizer with batch
size 600, a cosine learning rate schedule with starting learning rate 0.001, weight decay 0.1, and momentum 0.9. All images
are resized to a resolution of 224 × 224. We use random resize crop, random horizontal flip, and Gaussian blur as data
augmentations.

In the counterfactual evaluation, we consider a normalized notion of cosine similarity, r̄ = r/(r95 − r5), where r is the raw
correlation between image and caption embeddings and rα is the α-percentile of image-caption similarities across the entire
dataset. Results remain similar with other choices of metric.

Fact tracing mT5 on FTRACE-TREX. We follow the setup exactly as in Akyurek et al. (2022) as we describe in Section 5.2,
other than using a smaller architecture (mt5-small). See Appendix H for more details.

MODELDIFF on LIVING17. The LIVING17 dataset (Santurkar et al., 2021) is an image classification dataset derived from
the ImageNet dataset and consists of 17 classes, each comprised of four original ImageNet classes.

We train the standard ResNet-18 architecture on the above dataset, either using standard data augmentation (random resized
cropping and random horizontal flips) or with no data augmentation (only center cropping, same as used on when evaluating).
The goal of the case study from Shah et al. (2022) is to distinguish the above two learning algorithms in terms of the feature
priors of the resulting trained models. To run MODELDIFF, follow the setup in Shah et al. (2022) exactly; we refer to the
work for more details of the case study and implementation details.

C.2. TRAK hyperparameters

TRAK only has two hyperparmeters: the projection dimension k and the number of models M . The following hyperparame-
ters were used unless specified otherwise:

Soft-thresholding. An optional hyperparameter is needed if we use soft-thresholding (Step 5). Among the four tasks we
evaluate the LDS on, we find that soft-thresholding is only helpful for the non-binary classification tasks (i.e., CIFAR-10 and

9https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py
10https://github.com/MadryLab/trak/blob/main/examples/cifar2_correlation.ipynb
11https://huggingface.co/bert-base-cased
12https://github.com/huggingface/transformers/blob/main/examples/pytorch/

text-classification/run_glue.py
13https://github.com/mlfoundations/open_clip

19

https://github.com/wbaek/torchskeleton/blob/master/bin/dawnbench/cifar10.py
https://github.com/MadryLab/trak/blob/main/examples/cifar2_correlation.ipynb
https://huggingface.co/bert-base-cased
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py
https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py
https://github.com/mlfoundations/open_clip

TRAK: Attributing Model Behavior at Scale

Dataset Model Number of models (M) Projection dimension (k)

CIFAR-2 ResNet-9 - 4,000
CIFAR-10 ResNet-9 - 20,000
QNLI BERT-BASE - 4,000
ImageNet ResNet-18 - 15,000
MS COCO ResNet-50 (CLIP) 100 20,000
FTRACE-TREX mt5-small 10 4,000
LIVING-17 ResNet-18 100 1,000

Table 1. TRAK hyperparameters used for different experiments. Blank indicates that different numbers were used depending on the
experiment.

ImageNet, but not CIFAR-2 and QNLI); intuitively, this may be due to the fact that the underlying model output function
depends on fewer examples (i.e., the attribution vector is sparser) when there are more classes.

For both CIFAR-10 and ImageNet, we use a single sparsity threshold—i.e., for each test example, we choose the soft-
thresholding parameter λ s.t. the resulting TRAK score vector has exactly k non-zero entries, and use the same k for all test
examples. To choose k, for CIFAR-10 we cross-validate using the same M models that we used to compute TRAK scores,
when M ≥ 20; in other words, we avoid “cheating” by using additional models for cross-validation. For ImageNet, we
simply choose k = 1000 since there are on average 1,300 training examples per class.

C.3. Baselines

We provide details on baselines used in our evaluation in Section 4. Though most of the existing approximation-based
methods only use a single model checkpoint in their original formulation, we average the methods over multiple independent
checkpoints to help increase its performance.

Influence functions. The standard Hessian-based influence functions yield the attribution scores

τ(zj)i = ∇L(zj ; θ⋆) H−1
θ⋆ ∇L(zi; θ⋆),

where Hθ⋆ is the empirical Hessian w.r.t. the training set. We use an existing PyTorch implementation14 that uses the
stochastic approximation of inverse-Hessian-vector products using the LISSA (Agarwal et al., 2017) algorithm as done in
Koh & Liang (2017). As in the original work, we compute the gradients only with respect to the last linear layer; using
additional layers caused the inversion algorithm to either diverge or to run out of memory. For hyperparameters, we use
similar values as done in prior work; we use r = 1, d = 5000, and damping factor of 0.01. We find that additional repeats
(r, the number of independent trials to average each iHvp estimate) does not help, while increasing the depth (d, the number
of iterations used by LISSA) helps significantly.

Influence functions based on the Arnoldi iteration. This variant of influence functions from Schioppa et al. (2022) is
based on approximating the top eigenspace of the Hessian using the Arnoldi iteration (Arnoldi, 1951). We use the original
implementation in JAX.15 We normalize the gradients as recommended in the original paper. While much faster than the
original formulation in Koh & Liang (2017), we find that the attribution scores not very predictive (according to the LDS).

TracIn. We use the TracInCP estimator from (Pruthi et al., 2020), defined as

τ(zj)i =

T∑
t=1

ηt · ∇L(zj ; θt) · ∇L(zi; θt),

where θt is the checkpoint from the epoch t and ηt is the corresponding learning rate ηt. We also average over trajectories of
multiple independently trained models, which increases its performance. We approximate the dot products using random
projections of dimensions 500-1000 as we do for TRAK, as the estimator is intractable otherwise. We found that increasing
the number of samples (epochs) from the training trajectory does not lead to much improvement.

14https://github.com/alstonlo/torch-influence
15https://github.com/google-research/jax-influence

20

https://github.com/alstonlo/torch-influence
https://github.com/google-research/jax-influence

TRAK: Attributing Model Behavior at Scale

Gradient Aggregated Similarity (GAS). This is a “renormalized” version of the TracInCP (Hammoudeh & Lowd, 2022b)
based on using the cosine similarity instead of raw dot products. In general, its performance is indistinguishable from that of
TracIn.

Representation similarity. We use the signed ℓ2 dot product in representation space (feature embeddings of the penultimate
layer), where the sign indicates whether the labels match. We also experimented with cosine similarity but the resulting
performance was similar.

Empirical influences. We use the subsampling-based approximation to leave-one-out influences as used by (Feldman &
Zhang, 2020), which is a difference-in-means estimator given by

τ(zj)i = ES∋zif(zj ; θ)− ES ̸∋zif(zj ; θ)

where the first (second) expectation is over training subsets that include (exclude) example zi.

Datamodels. We use the ℓ1-regularized regression-based estimators from Ilyas et al. (2022), using up to 60,000 models for
CIFAR-2 and 300,000 models for CIFAR-10 (trained on different random 50% subsets of the full training set).

C.4. Linear Datamodeling Score

Let τ be a given data attribution method (as framed in Definition 2.1), and let gτ (z, S′;S) be its corresponding attribution-
derived prediction function (see Definition 2.2). Then, to evaluate τ :

1. We sample 100 different random subsets {Sj ⊂ S : j ∈ [100]} of the training set S, and train five models on each one
of these subsets. Each subset Sj is sampled to be 50% of the size of S, but we also consider other subsampling ratios
in Appendix F.

2. For each example of interest z (i.e., for each example in the test set of the dataset we are studying), we approximate the
expectation of the model output E[f(z; θ⋆i (Sj))] for each training subset Sj (where the expectation is taken over the
learning algorithm’s randomness) by averaging across the corresponding five models {θ⋆i (Sj)}5i=1.

3. We then compute the linear datamodeling score for each example of interest z as the Spearman rank correlation between
the averaged model outputs computed in the previous step and the attribution-derived predictions gτ (z, Sj ;S) of model
outputs. That is, we compute:

Spearman-ρ
({

1

5

5∑
i=1

f(z; θ⋆i (Sj)) : j ∈ [100]

}
︸ ︷︷ ︸

averaged model outputs

,

{gτ (z, Sj ;S) : j ∈ [100]}︸ ︷︷ ︸
attributed-derived predictions

of model outputs

)

4. Finally, we average the LDS (Definition 2.3) across 2,000 examples of interest, sampled at random from the validation
set, and report this score along with the 95% bootstrap confidence intervals corresponding to the random re-sampling
from the subsets Sj .

C.5. Hardware and wall-time measurements

For all of our experiments, we use NVIDIA A100 GPUs each with 40GB of memory and 12 CPU cores. We evaluate the
computational cost of attribution methods using two metrics, total wall-time and the total number of trained models used;
see Section 4 for motivation behind these metrics. For most attribution methods, one or more of the following components
dominate their total runtime:

• TRAIN_TIME: the time to train one model (from scratch)

21

TRAK: Attributing Model Behavior at Scale

• GRAD_TIME: the time to compute gradients of one model (including computing random projections) for the entire
dataset under consideration (both train and test sets). This time may vary depending on size of the projection dimension,
but our fast implementation (Appendix D) can handle dimensions of up to 80,000 without much increase in runtime.

The total compute time for each method was approximated as follows, where M is the number of models used:

• TRAK: M × (TRAIN_TIME+ GRAD_TIME), as we have to compute gradients for each of the trained models.

• Datamodel (Ilyas et al., 2022) and Empirical Influence (Feldman & Zhang, 2020): M × TRAIN_TIME. The
additional cost of estimating datamodels or influences from the trained models (which simply involves solving a linear
system) is negligible compared to the cost of training.

• LISSA based influence functions (Koh & Liang, 2017): These approaches are costly because they use thousands of
Hessian-vector product iterations to approximate a single inverse-Hessian-vector product (which is needed for each
target example). Hence, we computed these attribution scores for a much smaller sample of validation set (50 to 100).
We measured the empirical runtime on this small sample and extrapolated to the size of the entire (test) dataset.

• Influence function based on the Arnoldi iteration (Schioppa et al., 2022): We ran the authors’ original code16 on
CIFAR models of the same architecture (after translating them to JAX) and measured the runtime.

• TracIn (Pruthi et al., 2020) and GAS (Hammoudeh & Lowd, 2022a): M × (TRAIN_TIME+ GRAD_TIME× T),
where T is the number of checkpoints used per model.

16https://github.com/google-research/jax-influence

22

https://github.com/google-research/jax-influence

TRAK: Attributing Model Behavior at Scale

D. TRAK implementation
We release an easy-to-use library, trak,17, which computes TRAK scores using Algorithm 1. Computing TRAK involves
the following four steps: (i) training models (or alternatively, acquiring checkpoints), (ii) computing gradients, (iii)
projecting gradients with a random projection matrix (Rademacher or Gaussian), and (iv) aggregating into the final estimator
(Equation (15)).

Step (i) is handled by the user, while steps (ii)-(iv) are handled automatically by our library. Step (ii) is implemented using
the functorch library to compute per-example gradients. Step (iii) is either implemented using matrix multiplication on
GPU or by a faster custom CUDA kernel, which is described below. Step (iv) just involves a few simple matrix operations.

D.1. Fast random projections on GPU

One of the most costly operation of TRAK is the random projection of the gradients onto a smaller, more manageable vector
space. While CPUs are not equipped to handle this task on large models (e.g., LLMs) at sufficient speed, at least on paper,
GPUs have more than enough raw compute.

In practice, however, challenges arise. First, storing the projection matrix entirely is highly impractical. For example, a
matrix for a model with 300 million weights and an output of 1024 dimensions would require in excess of 1TB of storage.
One solution is to generate the projection in blocks (across the output dimension). This solution is possible (and offered in
our implementation) but is still radically inefficient. Indeed, even if the generation of the matrix is done by block it still has
to be read and written once onto the GPU RAM. This severely limits the performance as memory throughput becomes the
bottleneck.

Our approach. Our solution is to generate the coefficients of the projection as needed (in some situations more than once)
and never store them. As a result, the bandwidth of the RAM is solely used to retrieve the values of the gradients and write
the results at the end. This forces us to use pseudo-randomness but this is actually preferrable since a true random matrix
would make experiments impossible to reproduce exactly.

Our implementation is written in C++/CUDA and targets NVIDIA GPUs of compute capability above or equal 7.0 (V100 and
newer). It supports (and achieve better performance) batches of multiple inputs, and either normally distributed coefficients
or -1, 1 with equal probabilities.

Implementation details. We decompose the input vectors into K blocks, where each block is projected independently to
increase parallelism. The final result is obtained by summing each partial projection. To reduce memory usage, we keep K
to roughly 100.

We further increase parallelism by spawning a thread for each entry of the output blocks, but this comes at the cost of reading
the input multiple times. To mitigate this issue, we use Shared Memory offered by GPUs to share and reduce the frequency
of data being pulled from global memory. We also use Shared Memory to reduce the cost of generating random coefficients,
which can be reused for all the inputs of a batch.

Finally, we take advantage of Tensor Cores to maximize throughput and efficiency, as they were designed to excel at matrix
multiplications. These interventions yield a fast and power-efficient implementation of random projection. On our hardware,
we achieved speed-ups in excess of 200x compared to our “block-by-block” strategy.

17https://github.com/MadryLab/trak

23

https://github.com/MadryLab/trak

TRAK: Attributing Model Behavior at Scale

D.2. Pseudocode

Algorithm 1 TRAK for multi-class classifiers (as implemented)

1: Input: Learning algorithmA, dataset S of size n, sampling fraction α ∈ (0, 1], correct-class likelihood function p(z; θ),
projection dimension k ∈ N

2: Output: Matrix of attribution scores T ∈ Rn×n

3: f(z; θ) := log(p(z;θ)
1−p(z;θ)) ▷ Margin function fθ

4: for m ∈ {1, . . . ,M} do
5: Sample random S′ ⊂ S of size α · n
6: θ⋆m ← A(S′) ▷ Train a model on S′

7: P ∼ N (0, 1)p×k ▷ Sample projection matrix
8: Q(m) ← 0n×n

9: for i ∈ {1, . . . , n} do
10: ϕi ← P⊤∇θf(zi; θ

⋆
m) ▷ Compute gradient at θ⋆m and project to k dimensions

11: Q
(m)
ii ← 1− p(zi; θ⋆) ▷ Compute weighting term

12: end for
13: Φm ← [ϕ1; · · · ;ϕn]⊤
14: end for

15: T←
[

1
m

M∑
m=1

Φm(Φ⊤
mΦm)−1Φ⊤

m

] [
1
m

M∑
m=1

Q(m)

]
16: return SOFT-THRESHOLD(T)

24

TRAK: Attributing Model Behavior at Scale

E. Theoretical Justification
E.1. The one-step Newton approximation for leave-one-out influence

The key formula we use in TRAK is the estimate for the leave-one-out (LOO) influence in logistic regression (Definition 3.1).
Here, we reproduce the derivation of this estimate from Pregibon (1981) then extend it to incorporate example-dependent
bias terms.

Convergence condition for logistic regression. Assume that we optimized the logistic regression instance via Newton-
Raphson, i.e., the parameters are iteratively updated as

θ̂t+1 ← θ̂t +H−1

θ̂t
∇θL(θ̂t) (17)

where Hθ̂ is the Hessian and∇θL(θ̂) is the gradient associated with the total training loss L(θ̂) =
∑

zi∈S L(zi; θ). In the
case of logistic regression, the above update is given by

θ̂t+1 ← θ̂t + (X⊤RX)−1X⊤q̂ (18)

where q̂ = 1⃗ − p̂ is the vector of the probabilities for the incorrect class evaluated at θ̂t and R = diag(p̂(1 − p̂) is the
corresponding matrix. Upon convergence, the final parameters θ⋆ satisfy the following:

(X⊤RX)−1X⊤q⋆ = 0 (19)

where q⋆ is the incorrect-class probability vector corresponding to θ⋆.

The one-step Newton approximation. We estimate the counterfactual parameters θ⋆−i that would have resulted from
training on the same training set excluding example i by simply taking a single Newton step starting from the same global
optimum θ⋆:

θ⋆−i = θ⋆ + (X⊤
−iR−iX−i)

−1X⊤
−iq

⋆
−i, (20)

where the subscript −i denotes the corresponding matrices and vectors without the i-th training example. Rearranging and
using (19),

θ⋆ − θ⋆−i = −(X⊤
−iR−iX−i)

−1X⊤
−iq

⋆
−i

θ⋆ − θ⋆−i = (X⊤RX)−1X⊤q⋆ − (X⊤
−iR−iX−i)

−1X⊤
−iq

⋆
−i

Using the Sherman–Morrison formula to simplify above,18 we have

θ⋆ − θ⋆−i =
(X⊤RX)−1xi

1− x⊤i (X⊤RX)−1xi · p⋆i (1− p⋆i)
q⋆i =

(X⊤RX)−1xi
1− x⊤i (X⊤RX)−1xi · p⋆i (1− p⋆i)

(1− p⋆i) (21)

The above formula estimates the change in the parameter vector itself. To estimate the change in prediction at a given
example x, we take the inner product of the above expression with vector x to get the formula in Definition 3.1.

The approximation here is in assuming the updates converge in one step. Prior works (Koh et al., 2019) quantify the fidelity
of such approximation under some assumptions. The effectiveness of TRAK across a variety of settings suggests that the
approximation is accurate in regimes that arise in practice.

Incorporating bias terms. The above derivation is commonly done for the case of standard logistic regression, but it
also directly extends to the case where the individual predictions incorporate example-dependent bias terms bi that are
independent of θ. In particular, note that the likelihood function after linearization in Step 1 is given by

p(zi; θ) = σ(−yi · (∇θf(zi; θ
⋆) · θ + bi)) (22)

where σ(·) is the sigmoid function. Because the Hessian and the gradients of the training loss only depend on θ through
p(zi; θ), and because bi’s are independent of θ, the computation going from Equation (17) to Equation (18) is not affected.
The rest of the derivation also remains identical as the bias terms are already incorporated into p⋆ and q⋆.

18This is used also, for instance, to derive the LOO formulas for standard linear regression.

25

TRAK: Attributing Model Behavior at Scale

Generalization to other settings. While our derivations in this paper focus on the case of logistic regression, more
generally, TRAK can be easily adapted to any choice of model output function as long as the training loss L is a convex
function of the model output f . The corresponding entries in the Q = diag(1− p⋆i) matrix in Definition 3.1 is then replaced
by ∂L/∂f(zi). The R matrix and the leverage scores also change accordingly, though we do not include them in our
estimator (that said, including them may improve the estimator in settings beyond classification).

However, in general one needs care in choosing an appropriate model output function in order to maximize the performance
on the linear datamodeling prediction task. If the chosen model output is not well approximated by a linear function of
training examples, then that puts an upper bound on the predictive performance of any attribution method in our framework.
We discuss appropriate choices of model output functions further in Appendix E.6.

E.2. Random projections preserve gradient flow

In Step 2 of TRAK, we use random projections to reduce the dimension of the gradient vectors. Here, we justify this
approximation when our model is trained via gradient descent. Similar analysis has been used prior, e.g., by Malladi et al.
(2022).

In the limit of small learning rate, the time-evolution of model output f(z; θ) under gradient descent (or gradient flow) is
captured by the following differential equation (Jacot et al., 2018):

df(z; θ)

dt
=
∑
i

∂L(zi; θ)

∂f(zi; θ)
· (∇f(zi; θ) · ∇f(z; θ)) ≈

∑
i

∂L(zi; θ)

∂f(zi; θ)
· (gi · g(z)) (23)

where gi and g(z) are the gradients of the final model corresponding to examples zi and z as before. The approximation is
due to assuming that the gradients do not change over time.

If we treat the outputs {f̂(zi; θ)}i as time-varying variables, then their time evolution is entirely described by the above
system of differential equations (one for each i, replacing z with zi above). Importantly, the above equations only depend
on the gradients through their inner products. Hence, as long as we preserve the inner products to sufficient accuracy, the
resulting system has approximately the same evolution as the original one. This justifies replacing the gradient features with
their random projections.

E.3. Subsampling the training set

In Step 4 of our algorithm, we ensemble the attribution scores over multiple models. As we investigate in Appendix G.2,
this significantly improves TRAK’s performance. An important design choice is training each model on a different random
subset of the training set.

This choice is motivated by the following connection between TRAK scores and empirical influences (Feldman & Zhang,
2020). Recall that we designed TRAK to optimize the linear datamodeling score. As we discuss in Section 2, datamodels can
be viewed as an “oracle” for optimizing the same metric. Further, as Ilyas et al. (2022) observes, datamodels can be viewed
as a regularized version of empirical influences (Feldman & Zhang, 2020), which are defined as a difference-in-means
estimator,

τ(zj)i = ES′∼D[f(zj ; θ
⋆(S′))|zi ∈ S′]− ES′∼D[f(zj ; θ

⋆(S′))|zi ̸∈ S′] (24)

where D is the uniform distribution over α-fraction subsets of training set S. Assuming the expectation over α-fraction
subsets is identical to that over subsets of one additional element, we can rearrange the above expression as

τ(zj)i = ES′∼D[f(zj ; θ
⋆(S′ ∪ {zi}))− f(zj ; θ⋆(S′))]. (25)

The above expression is simply the expectation of leave-one-out influence over different random subsets. As the estimate
from step 3 of our algorithm is specific to a single training set, we need to average over different subsets in order to
approximate the above quantity.

In principle, the estimates computed from θ⋆(S′) only apply to the training examples included in the subset S′, since the
underlying formula (Definition 3.1) concerns examples that were included for the original converged parameter θ⋆. Hence,
when averaging over the models, each model should only update the TRAK scores corresponding to examples in S′. However,

26

TRAK: Attributing Model Behavior at Scale

we found that the estimates are marginally better when we update the estimates for the entire training set S (i.e., even those
that were not trained on).

Generalization across different α’s. A possible concern is that we overfit to a particular regime of α used in evaluating
with the LDS. In Figure 9, we evaluate TRAK scores (computing using α = 0.5) in other regimes and find that they continue
to be highly predictive (though with some degradation in correlation). More generally, our various counterfactual evaluations
using the full training set (CIFAR-10 brittleness estimates in Figure 6, the CLIP counterfactuals in Figure 4) indicate that
TRAK scores remain predictive near the α = 1 regime.

E.4. Soft-thresholding

Soft-thresholding is a common denoising method in statistics (Donoho, 1995) for when an underlying signal is known to be
sparse. We apply the soft thresholding operator S(·;λ) defined for any τ ∈ Rn as:

S(τ ;λ) = (τi − λ) · 1{τi > λ}+ (τi + λ) · 1{τi < −λ}. (26)

We choose the soft threshold parameter λ via cross-validation. That is, given a set of trained models, we first estimate
attribution scores (15), then sample a range of values for λ, compute corresponding attribution scores by applying (26), and
finally select the value of λ that yields that highest linear datamodeling score (Definition 2.3) on the set of trained models.

E.5. Extending to multi-class classification

In Section 3, we instantiated TRAK for binary classifiers; we now show how to extend TRAK to the multi-class setting. Recall
that our key insight in the binary case was to linearize the model output function f(z; θ) around the optimal parameters
θ⋆(S) (see (9)). Our choice of output function (i.e., the raw logit of the classifier) allowed us to then cast the original
(non-convex) learning problem of interest as an instance of binary logistic regression with inputs ∇θf(z; θ

⋆). That is, we
made the approximation

θ⋆(S) ≈ argmin
θ

∑
zi∈S

log
[
1 + exp

(
−yi ·

(
∇θf(zi; θ

⋆)⊤θ + bi
))]

, (27)

and then leveraged Definition 3.1.

To apply this same approach to the c-class setting (for c > 2), one possibility is to first transform the problem into c2 binary
classification problems, then apply the approach from Section 3.2 directly. (For example, Malladi et al. (2022) use this
transformation to apply the neural tangent kernel to c-way classification problems.) In large-scale settings, however, it is
often expensive or infeasible to study of all c2 subproblems, e.g., ImageNet has c = 1000 classes.

We thus take a different approach. In short, we leverage the fact that we always have labels available (even for test examples)
to reduce the multi-class classification problem to a single logistic regression. More specifically, for an example z = (x, y),
we define the model output function

f(z; θ) := log

(
p(z; θ)

1− p(z; θ)

)
, (28)

where p(z; θ) is the softmax probability assigned to the correct class.

A crucial property of the model output function (28) is that it allows us to rewrite the loss function for c-way classification as

L(z; θ) = − log(p(z; θ)) (29)
= log [1 + exp (−f(z; θ))] , (30)

where the first line is the definition of cross-entropy loss, and the second line comes from (28). As a result, if we linearize
f(z; θ) as in Step 1 above (Section 3.2), we can make the approximation

θ⋆(S) ≈ argmin
θ

∑
zi∈S

log
[
1 + exp

(
−∇θf(zi; θ

⋆)⊤θ + bi
)]
.

This approximation is identical to the one we made for the binary case (see (27)). We can thus treat the multi-class problem
as a single binary logistic regression with inputs ∇θf(zi; θ

⋆)19 and then apply Steps 2-5 from Section 3.2 directly to this
binary problem.

19Note that the corresponding “labels” for this logistic regression are actually identically equal to one—to see this, compare (30) to

27

TRAK: Attributing Model Behavior at Scale

E.6. Linearity and model output function

We study linear predictors derived from attribution scores, as linearity is a latent assumption for many popular attribution
methods. Linearity also motivates our choices of model output functions.

Latent assumption of linearity. Our evaluation of data attribution methods cast them as linear predictors. While not always
immediate, linearity is a latent assumption behind most of the prior methods that we evaluate in this paper. Datamodels and
Shapley values satisfy additivity by construction (Ghorbani & Zou, 2019; Jia et al., 2019). The approach based on influence
functions (Koh & Liang, 2017; Koh et al., 2019) typically uses the sum of LOO influences to estimate influences for groups
of examples. Similarly, empirical (or subsampled) influences (Feldman & Zhang, 2020) also correspond to a first-order
Taylor approximation of the model output function. The TracIn estimator also implicitly assumes linearity (Pruthi et al.,
2020).

That said, others works also incorporate additional corrections beyond the first order linear terms (Basu et al., 2019) and find
the resulting predictions better approximate the true influences.

Choice of model output function f . In our experiments, we choose the model output function suitable for the task at hand:
for classification and language modeling, we used a notion of margin that is equivalent to the logit function, while for CLIP,
we used a similar one based on the CLIP loss.

Our particular choice of the logit function (log p/(1− p)) in the multi-class classification case was motivated by theoretical
(Saunshi et al., 2023) and empirical (Ilyas et al., 2022) observations from prior works. In particular, this choice of model
output function is well approximated by linear datamodels, both in practice and in theory. A slightly different definition of
margin used in Ilyas et al. (2022)—where the margin is computed as the logit for the correct class minus the second highest
class—can also be viewed as an approximation to the one used here.

More generally, choosing a good f boils down to linearizing (w.r.t. θ) as much of the model output as possible, but not
too much. On one extreme, choosing f(z) = z (i.e., linearizing nothing, as there is no dependence on θ) means that the
one-step Newton approximation has to capture all of the non-linearity in both the model and the dependence of L on f ; this
is essentially the same approximation used by the Hessian-based influence function. On the other extreme, if we choose
f = L, we linearize too much, which does not work well as L in general is highly non-linear as a function of f .

E.7. The CLIP model output function

The CLIP loss. A CLIP model with parameters θ takes in an image-caption pair (x, y) and outputs an image embedding
ϕ(x; θ) and a text embedding ψ(y; θ). Given a (random) batch of training examples B = {(x1, y1), ..., (xn, yn)}, the CLIP
training loss computes all n× n pairwise cosine similarities between the image and text embeddings

Sij := ϕ(xi; θ) · ψ(yj ; θ),

and aims to maximize the cosine similarities Sii of correct pairs while minimizing the cosine similarities Sij , for i ̸= j, of
incorrect pairs. More specifically, the training loss of example (xi, yi) ∈ B is defined as the following symmetric cross
entropy over the similarity scores Sij :

L(xi, yi; θ) = − log
exp(Sii)∑

1≤j≤n

exp(Sij)
− log

exp(Sii)∑
1≤j≤n

exp(Sji)
, (31)

where the first term corresponds to matching each image xi to its correct caption yi, and the second term corresponds to
matching each caption to its correct image. In effect, we are solving two classification problems: one where the images are
inputs and captions (from the same batch) are labels, and vice versa.

Reducing to classification. Recall that in the classification setting we trained the model with the cross entropy loss (i.e.,
− log p(z; θ), where p(z; θ) is the correct-class probability), and used the model output function f(z; θ) = log p(z; θ)/(1−
p(z; θ)) (Equation (28)), i.e., the logit transform of the correct-class probability to compute TRAK scores.

(27). This does not change the resulting attributions, however, as Definition 3.1 only depends on labels through its dependence on the
correct-class probability p∗i .

28

TRAK: Attributing Model Behavior at Scale

To take advantage of the same formula in the CLIP setting, note that our loss (31) can be viewed as having the form

L(xi, yi; θ) = − log p1(xi, yi; θ)− log p2(xi, yi; θ),

where p1(xi, yi; θ) corresponds to the probability of matching an image to its corresponding caption based on the cosine
similarity, and likewise for p2(xi, yi; θ). A natural choice of model output function in this case, then, is using the sum of the
model output functions corresponding to the two classification problems:

f(xi, yi; θ) := log

(
p1(xi, yi; θ)

1− p1(xi, yi; θ)

)
+ log

(
p2(xi, yi; θ)

1− p2(xi, yi; θ)

)
= − log

∑
1≤j≤n

exp(Sij − Sii)− log
∑

1≤j≤n

exp(Sji − Sii).

Indeed, this choice allows us once again (see Appendix E.5) to reduce our problem to an instance of logistic regression and
apply the same formula for influence approximation (Definition 3.1) as before.

29

TRAK: Attributing Model Behavior at Scale

F. Additional Results
F.1. Full LDS evaluation

100 101 102 103 104 105
0

0.2

0.4

0.6

C
or

re
la

tio
n

(L
D

S)
(m

or
e

ac
cu

ra
te
→

)

(a) ResNet-9 on CIFAR-2

TRAK Datamodel [IPE+22] Emp. Influence [FZ20] IF-Arnoldi [SZV+22]
IF [KL17] Representation Sim. GAS [HL22] TracIn [PLS+20]

100 101 102 103 104 105
0

0.2

0.4

0.6

(b) ResNet-9 on CIFAR-10

100 101 102 103 104
0

0.2

0.4

0.6

Number of models used
(← more efficient)

C
or

re
la

tio
n

(L
D

S)
(m

or
e

ac
cu

ra
te
→

)

(c) BERT-base on QNLI

100 101 102 103 104 105
0

0.1

0.2

0.3

Number of models used
(← more efficient)

(d) ResNet-18 on ImageNet

Figure 8. TRAK achieves state-of-the-art tradeoffs between attribution efficacy and efficiency. We use TRAK to attribute ResNet-9
classifiers trained on CIFAR-2 and CIFAR-10; ResNet-18 classifiers trained on ImageNet; and BERT-base models finetuned on QNLI.
The x-axis indicates the computational cost measured as the number of trained models that a given method uses to compute attribution
scores. The y-axis indicates the method’s efficacy as measured by the linear datamodeling score (LDS). Error bars indicate 95% bootstrap
confidence intervals.

Generalization across α’s. In Figure 9 left, we compare the linear datamodeling scores (LDS) evaluated on α = 0.5
sub-sampled training sets to those evaluated on α = 0.75. (The numbers are overall lower as these are evaluated on data
where only one model was trained on each subset,instead of averaging over 5 models; hence, there is more noise in the data.)
As we observe, the LDS scores on different α’s are highly correlated, suggesting that TRAK scores computed on a single α
generalize well.

LDS correlation between TRAK and datamodels. In Figure 9 right, we compare the LDS correlations of datamodels to
that of TRAK and find that they are correlated across examples; in general, TRAK also performs better on examples on which
datamodels perform better.

30

TRAK: Attributing Model Behavior at Scale

Dataset TRAK TracIn Influence function Datamodels

CIFAR-2 # models 5 100 - 1,000
Time (min.) 3 100 - 500
LDS 0.203(3) 0.056(2) - 0.162(5)

CIFAR-10 # models 20 20 1 5,000
Time (min.) 20 60 20,000 2,500
LDS 0.271(4) 0.056(7) 0.037(13) 0.199(4)

QNLI # models 10 1 1 20,000
Time (min.) 640 284 18,000 176,000
LDS 0.416(10) 0.077(29) 0.114(43) 0.344(32)

ImageNet # models 100 1 20 30,000
Time (min.) 2920 76 >100,000 525,000
LDS 0.188(6) 0.008(6) 0.037(6) 0.1445(6)

Table 2. Comparison of different data attribution methods. We quantify various data attribution methods (TRAK, TracIn (Pruthi et al.,
2020), influence function (Koh & Liang, 2017), and datamodels (Ilyas et al., 2022)) in terms of both their predictiveness—as measured by
the linear datamodeling score—as well as their computational efficiency—as measured by either the total computation time (wall-time
measured in minutes on a single A100 GPU; see Appendix C.5 for details) or the number of trained models used to compute the attribution
scores. The errors indicate 95% bootstrap confidence intervals. Sampling-based methods (datamodels and empirical influences) can
outperform TRAK when allowed to use more computation, but this leads to a significant increase in computational cost.

0.2 0.4 0.6 0.8
TRAK (= 0.5)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TR
AK

 (
=

0.
75

)

y=x

0.4 0.6 0.8
Datamodel

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TR
AK

y=x

Figure 9. (Left) The LDS of CIFAR-2 TRAK scores computed with α = 0.5 models then evaluated on either models trained with either
α = 0.5 or α = 0.75. Each point corresponds to a validation example. (Right) The LDS of CIFAR-2 datamodel scores compared with
that of TRAK. Here, the LDS is measured on two different estimators.

31

TRAK: Attributing Model Behavior at Scale

F.2. TRAK examples

Example Highest TRAK score (+) Lowest TRAK score (-)

Q: What was a major success, especially in rebuilding War-
saw? A: Like many cities in Central and Eastern Europe,
infrastructure in Warsaw suffered considerably during its
time as an Eastern Bloc economy – though it is worth men-
tioning that the initial Three-Year Plan to rebuild Poland
(especially Warsaw) was a major success, but what fol-
lowed was very much the opposite. (Yes)

Q: In 1998, the deal was renewed for what amount
over four years? A: Television money had also be-
come much more important; the Football League
received £6.3 million for a two-year agreement in
1986, but when that deal was renewed in 1988, the
price rose to £44 million over four years. (Yes)

Q: Who was a controversial figure due to a corked-
bat incident? A: Already a controversial figure in
the clubhouse after his corked-bat incident, Sammy’s
actions alienated much of his once strong fan base as
well as the few teammates still on good terms with
him, (many teammates grew tired of Sosa playing
loud salsa music in the locker room) and possibly
tarnished his place in Cubs’ lore for years to come.
(No)

Q: What is the name associated with the eight areas that
make up a part of southern California? A: Southern Cal-
ifornia consists of one Combined Statistical Area, eight
Metropolitan Statistical Areas, one international metropoli-
tan area, and multiple metropolitan divisions. (Yes)

Q: Was was the name given to the Alsace provincinal
court? A: The province had a single provincial court
(Landgericht) and a central administration with its
seat at Hagenau. (Yes)

Q: What do six of the questions asses? A: For each
question on the scale that measures homosexuality
there is a corresponding question that measures het-
erosexuality giving six matching pairs of questions.
(No)

Q: What words are inscribed on the mace of parliament?
A: The words There shall be a Scottish Parliament, which
are the first words of the Scotland Act, are inscribed around
the head of the mace, which has a formal ceremonial role
in the meetings of Parliament, reinforcing the authority of
the Parliament in its ability to make laws. (No)

Q: Whose name is on the gate-house fronting School
Yard? A: His name is borne by the big gate-house in
the west range of the cloisters, fronting School Yard,
perhaps the most famous image of the school. (No)

Q: What kind of signs were removed form club
Barcelona? A: All signs of regional nationalism, in-
cluding language, flag and other signs of separatism
were banned throughout Spain. (Yes)

Q: What was the percentage of a female householder with
no husband present? A: There were 158,349 households,
of which 68,511 (43.3%) had children under the age of
18 living in them, 69,284 (43.8%) were opposite-sex mar-
ried couples living together, 30,547 (19.3%) had a female
householder with no husband present, 11,698 (7.4%) had
a male householder with no wife present. (Yes)

Q: What percent of household have children under
18? A: There were 46,917 households, out of which
7,835 (16.7%) had children under the age of 18 living
in them, 13,092 (27.9%) were opposite-sex married
couples living together, 3,510 (7.5%) had a female
householder with no husband present, 1,327 (2.8%)
had a male householder with no wife present. (Yes)

Q: Roughly how many same-sex couples were there?
A: There were 46,917 households, out of which 7,835
(16.7%) had children under the age of 18 living in
them, 13,092 (27.9%) were opposite-sex married cou-
ples living together, 3,510 (7.5%) had a female house-
holder with no husband present, 1,327 (2.8%) had a
male householder with no wife present. (No)

Q: What did Warsz own? A: In actuality, Warsz was
a 12th/13th-century nobleman who owned a village lo-
cated at the modern-day site of Mariensztat neighbourhood.
(Yes)

Q: What company did Ray Kroc own? A: It was
founded in 1986 through the donations of Joan B.
Kroc, the widow of McDonald’s owner Ray Kroc.
(Yes)

Q: What did Cerberus guard? A: In Norse mythology,
a bloody, four-eyed dog called Garmr guards Helheim.
(No)

Q: What words are inscribed on the mace of parliament?
A: The words There shall be a Scottish Parliament, which
are the first words of the Scotland Act, are inscribed around
the head of the mace, which has a formal ceremonial role
in the meetings of Parliament, reinforcing the authority of
the Parliament in its ability to make laws. (No)

Q: Whose name is on the gate-house fronting School
Yard? A: His name is borne by the big gate-house in
the west range of the cloisters, fronting School Yard,
perhaps the most famous image of the school. (No)

Q: What kind of signs were removed form club
Barcelona? A: All signs of regional nationalism, in-
cluding language, flag and other signs of separatism
were banned throughout Spain. (Yes)

Figure 10. Top TRAK attributions for QNLI examples. Yes/No indicates the label (entailment vs. no entailment).

32

TRAK: Attributing Model Behavior at Scale

TRAK

a view of a bedroom with a
green closet and chair in it .

a person is taking a picture
of a bathroom .

this is a bathroom in the
middle of someones home .

a walk in shower next to a
toilet in a bathroom .

a walk in shower sitting next
to a bathroom sink .

Target

the view of a large bathroom
with a walk in closet .

CLIP NNs

a bathroom with a sink and an
open door . an open bathroom door with a

mirror , sink , toilet and a
tub .

a large bathroom with a mirror
and a towel rack .

a white toilet sitting in a
bathroom next to a wall .

a sink and a toilet in a
bathroom .

TracIn

a fancy clock on the side walk
near some big buildings .

the view of a city street from
the front of a bus

the tiled white floor of a
clean bathroom

one person surfs over waves
and two others raft .

a view of a bathroom , with a
seat in it .

TRAK

a city street filled with
traffic at night .

a city street filled with lots
of traffic .

a busy street full of cars
with red traffic lights

a city street with one traffic
light next to a store .

a road intersection with
several traffic lights near

some buildings .

Target

a city street filled with
traffic and parking lights .

CLIP NNs

a couple of cars driving down
a street under traffic lights

.

cars driving through a green
traffic light .

a busy street full of cars
with red traffic lights

a city street filled with lots
of traffic .

a red stop light at a city
intersection with traffic

TracIn

two traffic signs and a
parking sign located on metal

poles .

a busy street filled with
traffic and traffic lights .

a city street filled with lots
of traffic .

a very crowded car filled
street next to a sidewalk .

a city street filled with lots
of traffic .

TRAK

a cat is laying on top of a
laptop computer .

a cat laying next to an open
laptop computer .

a dog stretched out laying on
a persons legs under a laptop

the cat is laying on top of
the laptop

a cat is laying on top of a
laptop computer .

Target

a cat laying down stretched
out near a laptop

CLIP NNs

a cat that has fallen asleep
on a laptop computer .

a large orange and white cat
laying on top of a table .

a cat resting its paw on a
computer mouse .

the cat plays with a toy while
lying on a computer desk .

a kitten lying on top of a
laptop keyboard

TracIn

a cat laying on top of a couch
next to a laptop computer .

a small dog is asleep next to
a laptop .

a woman is frowning near a
laptop computer .

a woman laying down on her
stomach using a laptop

a book is laying next to a
laptop

Figure 11. Top attributions for CLIP models trained on MS COCO. We display random test examples and their corresponding most
helpful (highest-scoring) and most detracting (lowest-scoring) training examples according to TRAK, CLIP similarity distance, and
TracIn.

33

TRAK: Attributing Model Behavior at Scale

G. Ablation Studies
We perform a number of ablation studies to understand how different components of TRAK affect its performance. Specifi-
cally, we study the following:

• The dimension of the random projection, k. Section 3.2).

• The number of models ensembled, M . Section 3.2).

• Proxies for ensembles to further improve TRAK’s computational efficiency.

• The role of different terms in the influence estimation formula (Equation (16)).

• Alternative choice of the kernel (using last layer representations).

• Alternative methods of ensembling over models.

As in Section 4, we evaluate the linear datamodeling score (LDS) on models trained on the CIFAR-2, CIFAR-10, and
QNLI datasets. Note that the LDS is in some cases lower than the counterparts in Figure 8 as we use a smaller projected
dimension (k) and do not use soft-thresholding in these experiments.

G.1. Dimension of the random projection

Recall that when we compute TRAK we reduce the dimensionality of the gradient features using random projections (Step
2 of Section 3.2). Intuitively, as the resulting dimension k increases, the corresponding projection better preserves inner
products, but is also more expensive to compute. We now study how the choice of the projection dimension k affects TRAK’s
attribution performance.

Figure 12 (Left) shows that as we increase the dimension, the LDS initially increases as expected; random projections to a
higher dimension preserve the inner product more accurately, providing a better approximation of the gradient features.
However, beyond a certain point, increasing projection dimension decreases the LDS. We hypothesize that using random
projections to a lower dimension has a regularizing effect that competes with the increase in approximation error.20 Finally,
the dimension at which LDS peaks increases as we increase the number of models M used to compute TRAK.

G.2. Number of models used in the ensemble

An important component of computing TRAK is ensembling over multiple independently trained models (Step 4 in
Section 3.2). In our experiments, we average TRAK’s attribution scores over ensembles of size ranging from 1 to 100. Here,
we quantify the importance of this procedure on TRAK’s performance.

Figure 12 (Right) shows that TRAK enjoys a significantly better data attribution performance with more models. That said,
even without ensembling (i.e., using a single model), TRAK still performs better (e.g., LDS of 0.096 on CIFAR-2) than all
prior gradient-based methods that we evaluate.

G.3. Proxies for model ensembles in compute-constrained settings

In Appendix G.2 we saw that ensembling leads to significantly higher efficacy (in terms of LDS). In many settings, however,
it is computationally expensive to train several independent models to make an ensemble. Hence, we study whether there is
a cheaper alternative to training multiple independent models that does not significantly sacrifice efficacy. To this end, we
explore two avenues of approximating the full ensembling step while dramatically reducing the time required for model
training. In particular, we investigate:

1. using multiple checkpoints from each training trajectory;

20Indeed, we can view our approach of first projecting features to a lower dimension and then performing linear regression in the
compressed feature space, as an instance of compressed linear regression (Maillard & Munos, 2009) and also related to principal
components regression (Thanei et al., 2017). These approaches are known to have a regularizing effect, so TRAK may also benefit from
that effect.

34

TRAK: Attributing Model Behavior at Scale

0 2,000 4,000 6,000 8,000
0

0.2

0.4

0.6

10 models

100 models

Random projection dimension k

C
or

re
la

tio
n

(L
D

S)
(m

or
e

ac
cu

ra
te
→

)
ResNet-9 on CIFAR-2

0 20 40 60 80 100
0

0.2

0.4

0.6

Number of Models

ResNet-9 on CIFAR-2

Figure 12. Left: The impact of the dimension of random projection on TRAK’s performance on CIFAR-2. Each line corresponds to
a different value of M ∈ {10, 20, ..., 100} (the number of models TRAK is averaged over); darker lines correspond to higher M . As
we increase the projected dimension, the LDS initially increases. However, beyond a certain dimension, the LDS begins to decrease.
The “optimal” dimension (i.e., the peak in the above graph) increases with higher M . Right: The impact of ensembling more models on
TRAK’s performance on CIFAR-2. The performance of TRAK as a function of the number of models used in the ensembling step. TRAK

scores are computed with random projections of dimension k = 4000.

2. using checkpoints from early training, long before the model has converged.

Multiple checkpoints from each training trajectory. We compute TRAK scores using a fixed number of checkpoints,
but while varying the number of independently-trained models. For example, for 100 checkpoints, we can use the final
checkpoints from 100 independently-trained models, the last two checkpoints from 50 independently-trained models, etc.
We observe (see Table 4) that TRAK achieves comparable LDS when we use last T checkpoints along the trajectory of the
same models as a proxy for independently-trained models in the ensembling step.

Using checkpoints from early training. We explore whether each of the models in the ensemble has to be fully trained to
convergence. In particular, we study the effect of using checkpoints from early epochs on the LDS. While TRAK benefits
from using later-epoch gradient features, it maintains its efficacy even when we use gradient features from training runs long
before reaching convergence (see Table 3). Leveraing this can further improve the computational efficiency of TRAK.

training epochs LDS (M = 100)

1 0.100
5 0.204

10 0.265
15 0.293
25 0.308

Table 3. The performance of TRAK on CIFAR-10 as a function
of the epoch at which we terminate model training. In all cases,
TRAK scores are computed with projection dimension k = 1000
and M = 100 independently trained models.

independent models LDS

5 0.329
6 0.340

10 0.350
100 0.355

Table 4. TRAK maintains its efficacy when we use multiple
checkpoints from different epochs of the same training run
instead of checkpoints from independently-trained models
(CIFAR-10). In all cases, M = 100 checkpoints and pro-
jection dimension k = 4000 are used to compute TRAK scores.

35

TRAK: Attributing Model Behavior at Scale

G.4. Role of different terms.

The TRAK estimator (Equation (16)) has a number of different components. We label each component (of the single model
estimator) as follows:

τ(z)i =
ϕ(z)⊤

reweighting︷ ︸︸ ︷
(Φ⊤RΦ)−1 ϕ(zi) ·

loss gradient︷ ︸︸ ︷
1

1 + ef(zi)

1− hi︸︷︷︸
leverage score

We ablate each of the terms above and re-evaluate the resulting variant of TRAK on CIFAR-2. Our results in Table 5 indicate
the following:

• Reweighting: Experiment 6 shows that this matrix is a critical part of TRAK’s performance. Conceptually, this matrix
distinguishes our estimator from prior gradient based similarity metrics such as TracIn.

• Diagonal term R: The full reweighting matrix includes a diagonal term R. Although it is theoretically motivated by
Definition 3.1, including this term results in lower LDS, so we do not include it (Experiments 2,4).

• Loss gradient: This term corresponds to the Q matrix (Equation (14)) and encodes the probability of the incorrect
class, 1− pi; the name is based on the derivation in Appendix E.1, where this term corresponds to scalar associated
with the gradient of the loss. Intuitively, this term helps reweight training examples based on on models’ confidence on
them. Experiment 5 shows that this term improves the performance substantially.

• Leverage score: This term does not impact the LDS meaningfully, so we do not include it (Experiments 1,2).

• Averaging “out” vs “in”: Averaging the estimator and the loss gradient term separately, then re-scaling by the average
loss gradient results in higher LDS (Experiment 3).

Experiment Reweighting Loss Diagonal R Leverage Averaging Correlation

0 ✓ ✓ ✗ ✗ out 0.499
1 ✓ ✓ ✗ ✓ out 0.499
2 ✓ ✓ ✓ ✓ out 0.430
3 ✓ ✓ ✗ ✗ in 0.416
4 ✓ ✓ ✓ ✗ out 0.403
5 ✓ ✗ ✗ ✗ out 0.391
6 ✗ ✓ ✗ ✗ out 0.056

Table 5. Ablating the contribution of each term in the TRAK estimator. For these experiments, we use random projections of dimenseion
k = 2000.

G.5. Choice of the kernel

To understand how the choice of the kernel impacts the performance of TRAK, we also compute a version of TRAK using
feature representations of the penultimate layer in place of the projected gradients. This choice is equivalent to restricting
the gradient features to those of the last linear layer. As Table 6 shows, this method significantly improves on all existing
baselines based on gradient approximations,21 but still underperforms significantly relative to TRAK. This gap suggests that
the eNTK is capturing additional information that is not captured by penultimate layer representations. Moreover, the larger
gap on CIFAR-10 compared to CIFAR-2 and QNLI (both of which are binary classificaiton tasks) hints that the gap will
only widen on more complex tasks.

We note that TRAK applied only to the last layer is almost equivalent to the influence function approximation. Indeed, they
perform similarly (e.g., the influence function approximation also achieves a LDS of 0.19 on QNLI).

21Note that as with the eNTK, the use of multiple models here is crucial: only using a single model gives a correlation of 0.006.

36

TRAK: Attributing Model Behavior at Scale

Dataset Kernel representation Linear Datamodeling Score (LDS)

CIFAR-2 eNTK 0.516
CIFAR-2 penultimate layer 0.198

CIFAR-10 eNTK 0.413
CIFAR-10 penultimate layer 0.120

QNLI eNTK 0.589
QNLI penultimate layer 0.195

Table 6. Choice of the kernel in TRAK. We compare TRAK computed using the eNTK (i.e., using features derived from full gradients) with
TRAK computed using the kernel derived from last layer feature representations. The attribution scores are ensembled over M = 100
models.

G.6. Ensembling vs. Averaging the eNTK

There are different ways to ensemble a kernel method given multiple kernels {Ki}i: (i) we can average the Gram matrices
corresponding to each kernel first and then predict using the averaged kernel (i.e., work with K = 1

n

∑
Ki), (ii) we can

average their induced features (with respect to some fixed basis of functions) and use the corresponding kernel, or (iii) we
can average the predictions derived from each kernel (Atanasov et al., 2023). TRAK’s algorithm follows the third approach
(Step 4).

Here we ensemble using the first approach instead (i.e., using the averaged eNTK). We do this by first averaging the Gram
matrices corresponding to each models’ eNTK, using the Cholesky decomposition to extract features from the averaged
Gram matrix (G = LL⊤), then using resulting features L into the same influence formula (Step 3). We find that computing
TRAK with this average eNTK gives a significantly underperforming estimator (LDS of 0.120 on CIFAR-2) than averaging
after computing the estimator from each eNTK (LDS of 0.499). This gap suggests that the underlying model is better
approximated as an ensemble of kernel predictors rather than a predictor based on a single kernel.

G.7. Summary

To summarize the results of our ablation, TRAK performs best when averaging over a sufficient number of models (though
computationally cheaper alternatives also work); gradients computed at later epochs; and random projections to sufficiently
high—but not too high—dimension. Using the reweighting matrix in Equation (16), as well as deriving the features from
the full model gradient are also both critical to TRAK’s predictive performance.

37

TRAK: Attributing Model Behavior at Scale

H. Fact Tracing
H.1. The FTRACE-TREX Dataset

The training set of FTRACE-TREX is sourced from the TREX dataset (Elsahar et al., 2018), with each training example
excerpted from a DBPedia abstract (Hellmann et al., 2013) and annotated with a list of facts it expresses.22 The test set of
FTRACE-TREX is sourced from the LAMA dataset (Petroni et al., 2019), and each test example is a sentence that expresses a
single fact—every training example that expresses the same fact is called a “proponent” of this test example. Now, given a
test example expressing some fact, the goal of fact tracing (as defined by the FTRACE-TREX benchmark) is to correctly
identify the corresponding proponents from the training set.

More precisely, Akyurek et al. (2022) propose the following evaluation methodology, which we follow exactly (with the
exception that, due to computational constraints, we use a smaller 300M-parameter mt5-small model instead of the
580M-parameter mt5-base). We first finetune the pretrained language model (Raffel et al., 2020) on the training set of
FTRACE-TREX. Then, we iterate through the FTRACE-TREX test set and find the examples on which the pre-trained
model is incorrect and the finetuned model is correct,23 which Akyurek et al. (2022) refer to as the “novel facts” learned by
the model after finetuning. For each novel fact identified, we collect a set of candidate training examples, comprising all
proponents as well as 300 “distractors” from the training set. Akyurek et al. (2022) propose to evaluate different attribution
methods based on how well they identify the ground-truth proponents among each candidate set.

Concretely, given an attribution method τ(·), we compute attribution scores τ(z) for each of the novel facts in the test set.
For each novel fact, we sort the corresponding candidate examples by their score τ(z)i. Finally, we compute the mean
reciprocal rank (MRR), a standard information retrieval metric, of ground-truth proponents across the set of novel facts,
defined as

MRR =
∑

z∈novel
facts

1

min
i∈ proponents(z)

rank(τ(z), i)
.

H.2. Fine-tuning details

We finetune the pre-trained language model using the masked language modeling objective (Devlin et al., 2019). In particular,
for each training example zi ∈ [K]L (where K is the vocabulary size and L is the maximum passage length), we mask
out a subject or object within the passage. (E.g., a training example “Paris is the capital of France” might become an
input-label pair [“__ is the capital of France”, “Paris”]). We then treat the language modeling problem as multiple separate
K-way classification tasks. Each task corresponds to predicting a single token of the masked-out text, given (as input) the
entire passage minus the token being predicted. The loss function is the average cross-entropy loss on this sequence of
classification tasks.

H.3. Computing TRAK for masked language modeling

The model output function we use, more precisely, is given by:

f(z; θ) =
∑

j ∈ masked
tokens

log

(
p(zj |z−j ; θ)

1− p(zj |z−j ; θ)

)
.

In particular, to compute this model output function, we compute the model output function (28) for each one of the V -way
classification problems separately, then define our model output function as the sum of these computed outputs.

H.4. Counterfactual experiment setup

To understand the possible roots of TRAK’s underperformance relative to BM25 on FTRACE-TREX, we carry out a
counterfactual analysis. Specifically, for a subset of the FTRACE-TREX test set, we create three corresponding counterfactual
training sets. Each training set corresponds to removing one of three collections of examples from the FTRACE-TREX

22See (Akyurek et al., 2022) for more details on the annotation methodology.
23To decide whether a model is “correct” on a given test example, we use MT5 as a conditional generation model. That is, we feed in a

masked version of the query, e.g., “__ is the capital of France,” and mark the model as “correct” if the conditional generation matches the
masked word.

38

TRAK: Attributing Model Behavior at Scale

training set:

(a) the union (across all 50 selected novel facts) of the 500 most important training examples for each novel fact, as
identified by TRAK (this corresponds to removing 17, 914 total training examples, leaving 1, 542, 539 remaining);

(b) the union of the 500 most important training examples for each novel fact, as identified by BM25 (18, 146 total
examples removed, and 1, 542, 307 remaining);

(c) the union of the proponents—as defined by FTRACE-TREX—for each novel fact (10, 780 examples removed, and
1, 549, 673 remaining)

Then, starting from a pre-trained mt5-small model (the same model that we finetuned in (B) above to identify novel
facts), we finetune several models on each counterfactual training set, and compute their average accuracy on the selected
subset of 50 novel facts. Note that, by construction, we know that on this subset (i) the pre-trained model has an accuracy of
0%; and (ii) finetuning on the entire FTRACE-TREX training set (i.e., with no examples removed) yields models with 100%
accuracy.24 As for the counterfactual training sets, one should note that:

• Counterfactual training set (c) is missing all of the proponents for our subset of 50 novel facts—we would thus expect
the corresponding finetuned model to have very low accuracy. In particular, there is ostensibly no direct evidence for
any of the novel facts of interest anywhere in this counterfactual training set.

• Being constructed with BM25, counterfactual training set (b) has high lexical overlap with the novel facts of interest.
Since BM25 performs well on the FTRACE-TREX benchmark, we would also expect the resulting models to have low
accuracy.

In Figure 5, we report the resulting models’ average performance on the set of 50 selected novel facts. What we find is
that, counter to the above intuition, only the TRAK-based counterfactual training set is able to significantly change model
behavior. That is, the counterfactual effect of removing the most important images as identified by TRAK on the selected
subset of novel facts is significantly higher than both (a) that of removing the most important images according to BM25;
and (b) that of removing the ground-truth proponents of the facts as indicated by the FTRACE-TREX benchmark.

H.5. Potential explanations for counterfactual results

We discuss some potential reasons for why TRAK outperforms the FTRACE-TREX ground-truth in our counterfactual
evaluation (some of which Akyurek et al. (2022) already discuss in their work):

• There may be errors in the FTRACE-TREX benchmark. (Although, given the drastic difference between the TRAK
scores and the ground-truth labels in their ability to identify counterfactually important abstracts, such data errors are
unlikely to be the sole culprit.)

• Models may be answering queries by combining facts from the training set. For example, neither “The largest pyramid
is in Giza” nor “Giza is a city in Egypt” would be ground-truth proponents for the query “Which country is home to the
largest pyramid?” in FTRACE-TREX, but a model that learns both of these facts may still be able to correctly answer
that query.

• Alternatively, models may be learning from the syntactic rather than semantic structure of abstracts. For example, a
model may correctly answer that a person from Korea is called a “Korean” by learning from an abstract which says “A
person from Bulgaria is Bulgarian.”

24In particular, recall that in order for a test example to be categorized as a “novel fact,” it must be both (a) incorrectly handled by the
pre-trained mt5-small model and (b) correctly handled by a finetuned model.

39

TRAK: Attributing Model Behavior at Scale

I. Future Work
I.1. Further applications of TRAK

Prior works have demonstrated the potential of leveraging data attribution for a variety of downstream applications, ranging
from explaining predictions (Koh & Liang, 2017; Kong et al., 2022), cleaning datasets (Jia et al., 2019), removing poisoned
examples (Lin et al., 2022) to quantifying uncertainty (Alaa & Van Der Schaar, 2020). Given the effectiveness of TRAK, we
expect that using it in place of existing attribution methods will improve the performance in many of these downstream
applications. Moreover, given its computational efficiency, TRAK can expand the settings in which these prior data attribution
methods are feasible. Indeed, we already saw some examples in Appendix A. We highlight a few promising directions in
particular:

Fact tracing and attribution for generative models. Fact tracing, which we studied in Section 5.2, is a problem of
increasing relevancy as large language models are widely deployed. Leveraging TRAK for fact tracing, or attribution more
broadly, may help understand the capabilities or improve the trustworthiness of recent models such as GPT-3 (Brown et al.,
2020) and ChatGPT,25 by tracing their outputs back to sources in a way that is faithful to the actual model. More broadly,
attribution for generative models (e.g., stable diffusion (Ho et al., 2020; Rombach et al., 2022)) is an interesting direction for
future work.

Optimizing datasets. TRAK scores allow one to quantify the impact of individual training examples on model predictions
on a given target example. By aggregating this information, we can optimize what data we train the models on, for instance,
to choose coresets or to select new data for active learning. Given the trend of training models on ever increasing size of
datasets (Hoffmann et al., 2022), filtering data based on their TRAK scores can also help models achieve with the benefits of
scale without the computational cost.

Another advantage of TRAK is that it is fully differentiable in the input (note that the associated gradients are different from
the gradients with respect to model parameters that we use when computing TRAK). One potential direction is to leverage
this differentiability for dataset distillation. Given the effectiveness of the NTK for this problem (Nguyen et al., 2021a),
there is potential in leveraging TRAK—which uses the eNTK—in this setting.

I.2. Understanding and improving the TRAK estimator

Empirical NTK. TRAK leverages the empirical NTK to approximate the original model. Better understanding of when
this approximation is accurate may give insights into improving TRAK’s efficacy. For example, incorporating higher order
approximations (Huang & Yau, 2020; Bai & Lee, 2020) beyond the linear approximation used in TRAK is a possible
direction.

Training dynamics and optimization. Prior works (Leclerc & Madry, 2020; Lewkowycz et al., 2020) suggest that neural
network training can exhibit two stages or regimes: in the first stage, the features learned by the network evolve rapidly; in
the second stage, the features remain approximately invariant and the overall optimization trajectory is more akin a convex
setting. We can view our use of the final eNTK as modeling this second stage. Understanding the extent to which the first
stage (which TRAK does not model) accounts for the remaining gap between true model outputs and TRAK’s predictions may
help us understand the limits of our method as well as improve its efficacy. Another direction is to study whether properly
accounting for other optimization components used during training, such as mini-batches, momentum, or weight decay, can
improve our estimator.

Ensembles. As we saw in Appendix G.2, computing TRAK over an ensemble of models significantly improves its
efficacy. In particular, our results suggest that the eNTK’s derived from independently trained models capture non-
overlapping information. Better understanding of the role of ensembling here may us better understand the mechanisms
underlying ensembles in other contexts and can also provide practical insights for improving TRAK’s efficiency. For instance,
understanding when model checkpoints from a single trajectory can approximate the full ensemble (Appendix G.3) can be
valuable in settings where it is expensive to even finetune several models.

25https://chat.openai.com/

40

https://chat.openai.com/

	Introduction
	Motivation and Setup
	The linear datamodeling score (LDS)
	An oracle for data attribution
	Data attribution methods beyond sampling

	trak: Tracing with the Randomly-Projected After Kernel
	Warmup: Data attribution for logistic regression
	trak for binary (non-linear) classifiers
	Implementing trak

	Evaluating trak
	Experimental setup
	Results

	Applications of trak
	Attributing CLIP models
	Fact tracing for large language models (mT5)

	Discussion & Conclusion
	Appendix
	
	Accelerating Datamodel Applications with trak
	Estimating prediction brittleness
	Learning algorithm comparisons

	Related work
	Experimental Setup
	Datasets and models
	trak hyperparameters
	Baselines
	Linear Datamodeling Score
	Hardware and wall-time measurements

	trak implementation
	Fast random projections on GPU
	Pseudocode

	Theoretical Justification
	The one-step Newton approximation for leave-one-out influence
	Random projections preserve gradient flow
	Subsampling the training set
	Soft-thresholding
	Extending to multi-class classification
	Linearity and model output function
	The CLIP model output function

	Additional Results
	Full LDS evaluation
	trak examples

	Ablation Studies
	Dimension of the random projection
	Number of models used in the ensemble
	Proxies for model ensembles in compute-constrained settings
	Role of different terms.
	Choice of the kernel
	Ensembling vs. Averaging the eNTK
	Summary

	Fact Tracing
	The Ftrace-TREx Dataset
	Fine-tuning details
	Computing trak for masked language modeling
	Counterfactual experiment setup
	Potential explanations for counterfactual results

	Future Work
	Further applications of trak
	Understanding and improving the trak estimator

