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Abstract
We study the problems of distributed online and
bandit convex optimization against an adaptive
adversary. We aim to minimize the average regret
on M machines working in parallel over T rounds
with R intermittent communications. Assuming
the underlying cost functions are convex and can
be generated adaptively, our results show that col-
laboration is not beneficial when the machines
have access to the first-order gradient informa-
tion at the queried points. This is in contrast to the
case for stochastic functions, where each machine
samples the cost functions from a fixed distribu-
tion. Furthermore, we delve into the more chal-
lenging setting of federated online optimization
with bandit (zeroth-order) feedback, where the
machines can only access values of the cost func-
tions at the queried points. The key finding here
is identifying the high-dimensional regime where
collaboration is beneficial and may even lead to
a linear speedup in the number of machines. We
further illustrate our findings through federated
adversarial linear bandits by developing novel dis-
tributed single and two-point feedback algorithms.
Our work is the first attempt towards a systematic
understanding of federated online optimization
with limited feedback, and it attains tight regret
bounds in the intermittent communication setting
for both first and zeroth-order feedback. Our re-
sults thus bridge the gap between stochastic and
adaptive settings in federated online optimization.

1. Introduction
We consider the following distributed regret minimization
problem on M machines over a horizon of length T :∑
m∈[M ],t∈[T ]

fm
t (xm

t )− min
∥x⋆∥2≤B

∑
m∈[M ],t∈[T ]

fm
t (x⋆), (1)

This work was done while AS was visiting TTIC. 1TTIC 2Apple.
Correspondence to: Kumar Kshitij Patel <kkpatel@ttic.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

where fm
t is an arbitrary convex cost function observed by

machine m at time t, xm
t is the model the machine plays

based on available history, and the comparator x⋆ is shared
across the machines. This formulation is a natural exten-
sion of the classical federated optimization (McMahan et al.,
2016; Kairouz et al., 2019). It captures many real-world ap-
plications, such as mobile keyboard prediction (Hard et al.,
2018; Chen et al., 2019; Hartmann, 2021), self-driving vehi-
cles (Elbir et al., 2020; Nguyen et al., 2022), and recommen-
dation systems (Shi et al., 2021; Liang et al., 2021; Khan
et al., 2021). These applications involve sequential decision-
making across multiple machines where data is generated in
real time and might not be stored. This regret minimization
problem can be solved in a federated manner, i.e., by storing
and analyzing the data locally at each machine while only
communicating the models intermittently, reducing commu-
nication load and mitigating privacy concerns. However,
sequential decision-making and potentially adversarial cost
functions bring new challenges to this problem. In particu-
lar, as opposed to usual federated optimization, where we
want to come up with one good final model, the goal here
is to develop a sequence of instantaneously good models.
This is a natural requirement in many applications, such as
a voice assistant (Hao, 2020; Google, 2023), where the ser-
vice needs to improve as it is used. These challenges require
designing new methods to benefit from collaboration while
attaining small regret.

Furthermore, we want to solve problem (1) in the intermit-
tent communication (IC) setting (Woodworth et al., 2018;
2021) where the machines work in parallel and are allowed
to communicate R times with K time steps in between com-
munication rounds. The IC setting has been widely studied
over the past decade (Zinkevich et al., 2010; Cotter et al.,
2011; Dekel et al., 2012; Zhang et al., 2013; 2015; Shamir
et al., 2014; Stich, 2018; Dieuleveut & Patel, 2019; Wood-
worth et al., 2020a; Bullins et al., 2021; Patel et al., 2022),
and it captures the expensive nature of communication in
collaborative learning, such as in cross-device federated
learning (McMahan et al., 2016; Kairouz et al., 2019).

Limitations of Recent Attempts. Although many re-
cent attempts (Wang et al., 2020; Dubey & Pentland, 2020;
Huang et al., 2021; Li & Wang, 2022; He et al., 2022; Gau-
thier et al., 2022; Gogineni et al., 2022; Dai & Meng, 2022;
Kuh, 2021; Mitra et al., 2021) have been made towards tack-
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ling problem (1), most existing works (Wang et al., 2020;
Dubey & Pentland, 2020; Huang et al., 2021; Li & Wang,
2022) study problem (1) by focusing on the “stochastic”
setting, where {fm

t }’s are sampled from distributions speci-
fied in advance. However, real-world applications may have
distribution shifts, un-modeled perturbations, or even an ad-
versarial sequence of cost functions, all of which violate the
fixed distribution assumption, and thus the above problem
setups fail. To alleviate this issue, in this paper, we extend
our understanding of distributed online and bandit convex
optimization, i.e., problem (1), to “adaptive” adversaries
that could potentially generate a worst-case sequence of cost
functions. Although some recent works have underlined the
importance of the adaptive setting (Gauthier et al., 2022;
Gogineni et al., 2022; Dai & Meng, 2022; Kuh, 2021; Mitra
et al., 2021; He et al., 2022), our understanding of the opti-
mal regret guarantees for problem (1) with different classes
of algorithms is still lacking.

Our Contributions. Our work is the first attempt towards
a systematic understanding of federated online optimization
with limited feedback and attains tight regret bounds (in
at least some regime) in the intermittent communication
setting for both first and zeroth-order feedback, as well as
bridges the gap between stochastic and adaptive settings in
federated online optimization. The following summarizes
the main contributions of our work:

• Federated Online Optimization with First-Order (Gra-
dient) Feedback. We first show in Section 3 that, under
usual assumptions, there is no benefit of collaboration
if all the machines have access to the gradients, a.k.a.
first-order feedback for their cost functions. Specifically,
in this setting, running online gradient descent on each
device without any communication is min-max optimal
for problem (1) (c.f., Theorems 3.1, 3.2). This motivates
us to study weaker forms of feedback/oracles accesses
where collaboration can be provably useful.

• Federated Online Optimization with Zeroth-Order
(Bandit) Feedback. We then study the problem of fed-
erated adversarial linear bandits in Section 4, which is
an important application of problem (1) and has not been
studied in federated learning literature. We propose a
novel federated projected online stochastic gradient de-
scent algorithm to solve this problem (c.f., Algorithm
2). Our algorithm only requires single bandit feedback
for every function. We show that when the problem di-
mension d is large, our algorithm can outperform the
non-collaborative baseline, where each agent solves its
problem independently. Additionally, when d is larger
than O

(
M
√
T/R

)
, we prove that the proposed algo-

rithm can achieve O
(
d/

√
MT

)
average regret, where

M is the number of agents and R is the communication
round (c.f., Theorem 4.1). These results suggest that one
can benefit from collaborations in the more challenging

setting of using bandit feedback when the problem dimen-
sion is large.

• Bandit Feedback Beyond Linearity. We next con-
sider the general (non-linear) problem (1) with bandit
feedback in Section 5, and study a natural variant of FE-
DAVG equipped with a stochastic gradient estimator us-
ing two-point feedback (Shamir, 2017). We show that
collaboration reduces the variance of the stochastic gra-
dient estimator and is thus beneficial for problems of
high enough dimension (c.f., Theorems 5.1 and 5.2). We
prove a linear speedup in the number of machines for
high-dimensional problems, which mimics the stochastic
setting with first-order gradient information (Woodworth
et al., 2021; Woodworth & Srebro, 2021).

• Tighter Rates with Two-Point Bandit Feedback. Addi-
tionally, we show that (c.f., Corollary 5.3) one can achieve
better regret for federated adversarial linear bandits using
two-point feedback, indicating that multi-point feedback
can be beneficial for federated adversarial linear bandits.

• Characterizing the General Class of Problem. Fi-
nally, we characterize the full space of related min-max
problems in distributed online optimization, thus connect-
ing the adversarial and stochastic versions of problem (1)
(see Appendix A). This underlines how we understand
only a small space of problems in federated online opti-
mization, despite more than a decade of work. This also
identifies problems at the intersection of sequential and
collaborative decision-making for future research.

2. Problem Setting
This section introduces definitions and assumptions used in
our analysis. We formalize our adversary class and algo-
rithm class. We also specify the notion of min-max regret.

Notation. We denote the horizon by T = KR. ⪰,⪯,∼=
denote inequalities up to numerical constants. We denote
the average function by ft(·) :=

∑
m∈[M ] f

m
t (·)/M for

all t ∈ [T ]. We use 1A to denote the indicator function for
the event A. B2(B) ⊂ Rd denotes the L2 ball of radius B
centered at zero. We suppress the indexing in the summation∑

t∈[T ],m∈[M ] to
∑

t,m wherever the usage is clear.

Function Classes. We consider several common function
classes (Saha & Tewari, 2011; Hazan, 2016) in this paper:

1. FG,B , the class of convex, differentiable, and G-
Lipschitz functions, i.e.,

∀x, y ∈ Rd, |f(x)− f(y)| ≤ G ∥x− y∥2

with bounded optima x⋆ ∈ B2(B).
2. FH,B , the class of convex, differentiable, and H-

smooth functions, i.e.,

∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥2 ≤ H ∥x− y∥2

2



Federated Online and Bandit Convex Optimization

with bounded optima x⋆ ∈ B2(B). We also define
FG,H,B := FG,B ∩FH,B , i.e., the class of Lipschitz
and smooth functions.

3. FG,B
lin ⊂ FG,B , which includes linear cost functions

with gradients bounded by G. Note that this includes
the cost functions in federated adversarial linear bandits,
discussed in Section 4.

Adversary Model. Note that in the most general setting,
each machine will encounter arbitrary functions from a class
F at each time step. Our algorithmic results are for this
general model, which is usually referred to as an “adaptive”
adversary. Specifically, we allow the adversary’s functions
to depend on the past sequence of models played by the
machines but not on the randomness used by the machines,
i.e., {fm

t }m∈[M ] for all t can depend on
(
{xm

i }
m∈[M ]
i∈[t−1], A

)
,

where A is the algorithm being used by the machines.

We also consider a weaker “stochastic” adversary model
to explain some baseline results. More specifically, the
adversary cannot adapt to the sequence of the models used
by each machine but must fix a distribution in advance for
each machine, i.e., ∀m ∈ [M ], Dm ∈ ∆(F) such that at
each time t ∈ [T ], fm

t ∼ Dm. An example of this less
challenging model is distributed stochastic optimization
where fm

t (·) := f(·; zmt ∼ Dm) for f(·; ·) ∈ F and zmt
is a data-point sampled from the distribution Dm. For the
stochastic adversaries throughout we denote

Fm(x) := Ef∼Dm
[f(x)], F (x) :=

1

M

∑
m∈[M ]

Fm(x),

where with a slight abuse of notation we suppress z ∼
Dm. The distinction between different adversary models is
discussed further in Appendix A.

Oracle Model. We consider three kinds of access to the
cost functions in this paper. Each machine m ∈ [M ] for all
time steps t ∈ [T ] has access to one of the following:

1. Gradient of fm
t at a single point, a.k.a., first-order feed-

back.
2. Function value of fm

t at a single point, a.k.a., one-point
bandit feedback.

3. Function values of fm
t at two different points, a.k.a.,

two-point bandit feedback.
Remark 2.1. Note that we always look at the regret at the
queried points. Thus in the two-point feedback setting, if
the machine m queries at points xm,1

t and xm,2
t at time t, it

incurs the cost fm
t (xm,1

t ) + fm
t (xm,2

t ) (c.f., Theorem 5.1).

Algorithm Class. We assume the algorithms on each ma-
chine can depend on all the history it has seen. Since we are
in the IC setting, at time t on machine m, the algorithm A’s
output can only depend on(

f1:M
1 , . . . , f1:M

τ(t) , f
m
τ(t)+1, . . . , f

m
t−1

)
,

where τ(t) is the last time step smaller than or equal to t
where communication happened. We assume T = KR so
that τ(t) := t mod K. In other words, the algorithms’
output on a machine can depend on all the information
(gradients or function values) it has seen on the machine or
other machines’ information communicated to it. We denote
this class of algorithms by AIC and add super-scripts 1, 0,
(0, 2) to denote first-order, one-point bandit, and two-point
bandit feedback. Thus, we consider three algorithm classes
A1

IC , A0
IC , A

0,2
IC in this paper.

Finally, we consider two more assumptions controlling how
similar the cost functions look across machines and the
average regret at the comparator (Srebro et al., 2010):

Assumption 1 (Bounded First-Order Heterogeneity). For
all t ∈ [T ], x ∈ Rd,

1

M

∑
m∈[M ]

∥∇fm
t (x)−∇ft(x)∥22 ≤ ζ2 ≤ 4G2.

Remark 2.2 (Bounded First-Order Heterogeneity for
Stochastic Setting). In the stochastic setting, Woodworth
et al. (2020b) consider a related but more relaxed assump-
tion, i.e., ∀ x ∈ Rd,

1

M

∑
m∈[M ]

∥∇Fm(x)−∇F (x)∥22 ≤ ζ2 ≤ 4G2.

This assumption does not require the gradients at each time
step to be point-wise close but requires them to be close only
on average over the draws from the machines’ distributions.

Assumption 2 (Bounded Optimality at Optima). For all
x⋆ ∈ argminx∈B2(B)

∑
t∈[T ] ft(x),

∑
t∈[T ] ft(x

⋆)/T ≤
F⋆. For non-negative functions in FH,B , this implies∑

t∈[T ] ∥∇ft(x⋆)∥22 /T ≤ HF⋆ (c.f., Lemma 4.1 in Sre-
bro et al. (2010)).

Remark 2.3 (Bounded Optimiality for Stochastic Setting).
When the functions are generated stochastically, denote
F⋆ := minx∈B2(B) F (x) as the minimum realizable func-
tion value. Then assuming Dm is supported on functions in
FH,B , implies for all t ∈ [T ],

E{fm
t ∼Dm}m∈[M]

∥∥∥∥∥∥ 1

M

∑
m∈[M ]

∇fm
t (x⋆)

∥∥∥∥∥∥
2

2

≤ HF⋆

(c.f., Lemma 3 in Woodworth & Srebro (2021)).

Min-Max Regret. We now define our problem class. We
use PM,K,R(F) := F⊗MKR to denote all selections of
MKR functions from a classF . We use the argument ζ , F⋆

to further restrict this to selections that satisfy Assumptions
1 and 2 respectively. In this paper, we consider four prob-
lem classes: PM,K,R(FG,B , ζ), PM,K,R(FH,B , ζ, F⋆),
PM,K,R(FG,H,B , ζ, F⋆), and PM,K,R(FG,B

lin , ζ). We are
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interested in characterizing the min-max regret for these
classes. In particular, for a problem class P and algorithm
class A, we want to characterize up to numerical constants
the following quantity:

R(P) :=

min
A∈A

max
P∈P

EA
1

MT

(∑
t∈[T ]
m∈[M ]

fm
t (xm

t )− min
x⋆∈B2(B)

∑
t∈[T ]
m∈[M ]

fm
t (x⋆)

)
,

(2)

where A is a randomized algorithm producing models xm
t ’s.

We add super-scripts 0, (0, 2), 1 to R to denote the oracle
access of the min-player’s algorithm.

The second player, i.e., the adversary selecting the functions,
does not benefit from randomization for problem (2), which
is why ignore that here1. It is also important to note that
the max player does not have access to the randomness of
the min player (c.f., problem (P1) in appendix A). Finally,
note again that the max player can adapt to the sequence
of models played by A, which is why we call this regret
minimization against an adaptive adversary. We want to
characterize the min-max value of this game, i.e.,R(P) in
this paper.

Most existing work (Khaled et al., 2020; Woodworth et al.,
2020b; Patel et al., 2022; Wang et al., 2022) in federated
learning has instead focused on characterizing the min-max
regret for the following simpler problem2:

Rstoc.(P)

:= min
A∈A

max
{Dm∈∆(F)}

E
A,{fm

t ∼Dm}m∈[M]

t∈[T ]

(
1

MT

∑
t,m

fm
t (xm

t )

− min
x⋆∈B2(B)

1

MT

∑
t,m

Efm
t ∼Dm

[fm
t (x⋆)]

)

= min
A∈A

max
{Dm∈∆(F)}

E
A,{fm

t ∼Dm}m∈[M]

t∈[T ]

(
1

MT

∑
t,m

Fm(xm
t )

− min
x⋆∈B2(B)

1

M

∑
m

Fm(x⋆)

)
, (3)

where Fm(·) := Ef∼Dm
[f(·)]. This problem has a “stochas-

tic” adversary. The min-max complexity of this easier prob-
lem is understood in the “homogeneous” setting when the

1It makes sense to make the randomization on the second player
explicit when comparing to a weaker comparator, c.f., problem
(P3) in Appendix A.

2These works aim to upper bound the function sub-optimality
at a single point, but most of their analyses actually provide regret
guarantees that are converted to function sub-optimality bounds at
the averaged iterate by applying Jensen’s inequality.

machines have the same distribution (Woodworth et al.,
2021; Woodworth, 2021). However, it is not yet fully un-
derstood in the “heterogeneous” setting where these distri-
butions are allowed to differ across the machines (Wood-
worth et al., 2020b; Wang et al., 2022; Glasgow et al.,
2022). In general, note that for any problem class P ,
Rstoc.(P) ≤ R(P), and we are interested in understand-
ing the higherR(P). We further discuss some related dis-
tributed problems and their potential applications in Ap-
pendix A.

3. Collaboration Does Not Help with
First-Order Feedback

In this section, we will explain why collaboration does not
improve the min-max regretR(P) for the adaptive problem
while using first-order oracles, even though it does improve
Rstoc.(P) for the stochastic problem.

We first consider the class of algorithms in A1
IC , i.e., algo-

rithms that have access to one gradient per cost function on
each machine at each time step. This class is very strong in
the serial setting, i.e., when M = 1. For instance, online gra-
dient descent (OGD) (Zinkevich et al., 2010; Hazan, 2016)
attains the min-max regret for both the problem classes
P1,K,R(FG,B) and P1,K,R(FH,B , F⋆) (Woodworth & Sre-
bro, 2021). This raises the question of whether a distributed
version of OGD can also be shown to be min-max optimal
when M > 1. The answer is, unfortunately, no! To state this
more formally, we first introduce a trivial non-collaborative
algorithm in the distributed setting: we run online gradient
descent independently on each machine without any com-
munication (see Algorithm 1). We prove the following result
for this algorithm (lies in the class A1

IC), which essentially
shows the non-collaborative baseline is min-max optimal.

Algorithm 1: Non-collaborative OGD (η)

1 Initialize xm
0 = 0 on all machines m ∈ [M ]

2 for t ∈ {0, . . . ,KR− 1} do
3 for m ∈ [M ] in parallel do
4 Play model xm

t and see function fm
t (·)

5 Incur loss fm
t (xm

t )
6 Compute gradient at point xm

t as∇fm
t (xm

t )
7 xm

t+1 ← xm
t − η · ∇fm

t (xm
t )

Theorem 3.1 (Optimal Bounds with Non-collabora-
tive OGD for Lipschitz Functions). Algorithm 1 in-
curs an average regret of O

(
GB/

√
T
)

for problem

class PM,K,R(FG,B , ζ). This regret is optimal for
PM,K,R(FG,B , ζ) among algorithms in A1

IC , where 0 ≤
ζ ≤ 2G.

Proof. We first prove the upper bound on the average regret
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of non-collaborative OGD and then show that it is optimal,
i.e., equals R1

(
PM,K,R(FG,B , ζ)

)
. Note the following

bound is always true for any stream of functions and se-
quence of models, we are just changing the comparator:

1

M

∑
m∈[M ]

 ∑
t∈[KR]

fm
t (xm

t )− min
xm,⋆∈B2(B)

∑
t∈[KR]

fm
t (xm)


≥ 1

M

∑
t∈[KR],m∈[M ]

fm
t (xm

t )− min
x⋆∈B2(B)

∑
t∈[KR]

ft(x).

This means we can upper boundR1(PM,K,R(FG,B , ζ)) by
running online gradient descent (OGD) independently on
each machine without collaboration. In other words, for
functions from FG,B , we have:

R1
(
PM,K,R(FG,B , ζ)

)
⪯ R1

(
P1,K,R(FG,B)

) ∼= GB√
T
.

(4)

The min-max rate for a single machine follows classical re-
sults using vanilla OGD (c.f., Theorem 3.1 in Hazan (2016)).
Now we prove that this average regret is optimal by noting
the following:

R
(
PM,K,R(FG,B , ζ)

)
·MT ≥

min
A∈A1

IC

max
{ft∈F}t

E
A

(∑
m,t

ft(x
m
t )−M min

x⋆∈B2(B)

∑
t

ft(x
⋆)

)
(5)

≥ min
A∈A1

IC

E
A

{ft∼D}t

(∑
m,t

ft(x
m
t )− min

x⋆∈B2(B)
M
∑
t

ft(x
⋆)

)
,

⪰ GB√
T
, (6)

where F denotes FG,B in the first inequality, and this in-
equality holds because we can choose a weaker adversary
that can pick functions that do not vary across the machines
but may change over time (which implies that ζ = 0). The
second inequality holds because we choose an even weaker
adversary that fixes the distribution for picking these func-
tions in advance. Furthermore, the last inequality follows
from choosing D as the usual lower bound construction for
serial first-order online convex optimization (Hazan, 2016).
We include the construction in Appendix B. Combining
equations (4) and (6) proves the claim, showing that non-
collaborative OGD attains the min-max regret.

As the lower bound instance is linear, it is easy to show that
the above theorem holds for the linear functions FG,B

lin .

We can use the same proof strategy to prove a similar result
for smooth functions. The upper bound in the serial setting

follows from a classical work on optimistic rates (c.f, Theo-
rem 3 (Srebro et al., 2010)) while the lower bound follows
from a more recent paper (c.f., Theorem 4 (Woodworth &
Srebro, 2021) and Appendix B).

Theorem 3.2 (Optimal Bounds with Non-collaborative
OGD for Smooth Functions). Algorithm 1 incurs the op-
timal regret of Θ

(
HB2/T +

√
HF⋆B/

√
T
)

for problem

class PM,K,R(FH,B , ζ, F⋆).

Implications of Theorems 3.1 and 3.2: The above the-
orems imply that in the worst case, there is no benefit of
collaboration if the machines already have access to gradient
information! This is counter-intuitive at first because several
works have shown in the stochastic setting,Rstoc(P) indeed
improves with collaboration in several regimes (Woodworth
et al., 2020b; Koloskova et al., 2020).

How do we reconcile these results?

Note that while proving Theorem 3.1, we crucially rely
on equation (5), i.e., lower bounding by the min-max re-
gret with the adversary that can put the same function on
each machine every time-step. Let’s compare it against the
expression for stochastic min-max regret. One key differ-
ence is that in equation (5), x⋆ is allowed to depend on the
random draws of ft from D, which makes the comparator
smaller and regret minimization harder. In particular, for
any problem class P , we have

Rstoc.(P) ·MT ≤

min
A∈A1

IC

E
A

{ft∼D}t

(∑
m,t

ft(x
m
t )− min

x⋆∈B2(B)
M
∑
t

ft(x
⋆)

)
.

This is the key reason why there is a benefit of collabora-
tion in stochastic federated optimization, i.e., the problem
captured by Rstoc.(P). The lower bound in equation (5)
does not apply to the problem. We discuss this issue in
more detail in Appendix A while discussing the space of
federated online optimization problems, where we explic-
itly show (c.f., Figure 1 in Appendix A) how there is no
contradiction between the theorems in this section and most
existing results, which do show a benefit of collaboration
with first-order oracles (Woodworth et al., 2020a;b).

4. Collaboration Helps with Bandit Feedback
In this section, we move our attention to the more challeng-
ing setting of using bandit (zeroth-order) feedback at each
machine. We begin by studying one important application
of problem (1), i.e., federated adversarial linear bandits.
We then investigate the more general problem of federated
bandit convex optimization with two-point feedback in the
next section.
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Algorithm 2: FEDPOSGD (η, δ) with one-point bandit
feedback

1 Initialize xm
0 = 0 on all machines m ∈ [M ]

2 for t ∈ {0, . . . ,KR− 1} do
3 for m ∈ [M ] in parallel do
4 wm

t = Proj(xm
t )

5 Sample um
t ∼ Unif(Sd−1), i.e., a random unit

vector
6 Query function fm

t at point wm,1
t = wm

t + δum
t

7 Incur loss fm
t (wm

t + δum
t )

8 Compute stochastic gradient at point wm
t as

gmt = df(wm
t + δum

t )um
t /δ

9 if (t+ 1) mod K = 0 then
10 Communicate to server: (xm

t − η · gmt )
11 On server

xt+1 ← 1
M

∑
m∈[M ] (x

m
t − η · gmt )

12 Communicate to machine: xm
t+1 ← xt+1

13 else
14 xm

t+1 ← xm
t − η · gmt

Federated Adversarial Linear Bandits. One important
application of problem (1) is federated linear bandits, which
has received increasing attention in recent years. However,
most existing works (Wang et al., 2020; Huang et al., 2021;
Li & Wang, 2022; He et al., 2022) do not consider the more
challenging adaptive adversaries, leaving it unclear whether
collaboration can be beneficial in this scenario. Therefore,
we propose to study federated adversarial linear bandits,
a natural extension of single-agent adversarial linear ban-
dits (Bubeck et al., 2012) to the federated optimization set-
ting. Specifically, at each time t ∈ [T ], an agent m ∈ [M ]
chooses an action xm

t ∈ Rd while simultaneously environ-
ment picks βm

t ∈ B2(G) ⊂ Rd. Agent m then suffers
the loss fm

t (xm
t ) = ⟨βm

t , xm
t ⟩. Our goal is to output a se-

quence of models {xm
t }

m∈[M ]
t∈[T ] that minimize the following

expected regret

E

[∑
m,t

⟨βm
t , xm

t ⟩ − min
∥x⋆∥2≤B

∑
m,t

⟨βm
t , x⋆⟩

]
, (7)

where the expectation is w.r.t. the randomness of the model
selection. To solve this federated adversarial linear bandits
problem, we propose a novel projected online stochastic
gradient descent with one-point feedback algorithm, which
we call FEDPOSGD, as illustrated in Algorithm 2.

At the core of Algorithm 2 is the gradient estimator gmt
constructed using one-point feedback (see line 8). This ap-
proach is motivated by Flaxman et al. (2004), with the key
distinction that our gradient estimator is calculated at the
projected point wm

t = Proj(xm
t ) = argmin∥w∥2≤B ∥w −

xm
t ∥2 (see line 4). For the linear cost function fm

t (x) =

⟨βm
t , x⟩, we can show that gmt is an unbiased gradient es-

timator Eum
t
[gmt ] = ∇fm

t (x) with the variance (Hazan,
2016):

Eum
t

[
∥gmt −∇fm

t (x)∥22
]
⪯
(
d∥βm

t ∥2 · (∥x∥2 + δ)/δ
)2
.

Therefore, the projection step in Algorithm 2 can ensure
the variance of our gradient estimator is bounded. How-
ever, the extra projection step can make it difficult to ben-
efit from collaboration when we have gradient estimators
from multiple agents. To address this issue, we propose to
perform the gradient update in the unprojected space, i.e.,
xm
t − η · gmt (see line 14), instead of the projected space,

i.e., Proj(wm
t − η · gmt ), which is motivated by the lazy mir-

ror descent based methods (Nesterov, 2009; Bubeck et al.,
2015; Yuan et al., 2021). We obtain the following guarantee
for Algorithm 2 for federated adversarial linear bandits.
Theorem 4.1 (Regret Guarantee of Algorithm 2 for
Federated Adversarial Linear Bandits). For the prob-
lem class PM,K,R(FG,B

lin , ζ), if we choose η = B
G
√
T
·

min
{
1,

√
M

dB , 1
1K>1

√
dBK1/4

,
√
G

1K>1

√
ζK

}
and δ = B, the

queried points {wm,1
t }T,M

t,m=1 of Algorithm 2 satisfy:

1

MKR

∑
t∈[KR],m∈[M ]

E
[
fm
t (wm,1

t )− fm
t (x⋆)

]
⪯ GB√

KR
+

GBd√
MKR

+ 1K>1 ·
(

GB
√
d

K1/4
√
R

+

√
GζB√
R

)
,

where x⋆ ∈ argminx∈B2(B)

∑
t∈[KR] ft(x), and the expec-

tation is w.r.t. the choice of function queries.

Implication of Theorem 4.1: When degenerated to the
single-agent adversarial linear bandits, FEDPOSGD with
K = 1, M = 1 achieves O

(
GBd/

√
T
)

average regret,
which matches the optimal average regret (Dani et al., 2007;
Hazan, 2016) using one-point feedback when we have un-
constrained action space. When K > 1 and M > 1, we
would like to compare our results to the non-collaborative
baseline as we did in Section 3. More specifically, the non-
collaborative baseline 3 can obtain the average regret of
O
(
GBd/

√
KR

)
. If we have d ⪰

√
K, FEDPOSGD out-

performs the non-collaborative baseline. Furthermore, if we
have d ⪰

√
KM , then the average regret of FEDPOSGD

will be dominated byO
(
GBd/

√
MKR

)
. As a result, FED-

POSGD achieves a “linear speed-up” in terms of the num-
ber of machines compared to the non-collaborative baseline.
Although a smaller ζ will lead to a smaller regret bound, we
cannot benefit from a small ζ. This is because the ζ depen-
dent term

√
GζB/

√
R in the average regret bound will be

3For the non-collaborative baseline, we can run SCRIBLE
(Hazan, 2016) independently on each machine or run Algorithm
1 using the gradient estimator proposed by Flaxman et al. (2004)
with an extra projection step, i.e., xm

t+1 = Proj(xm
t+1).
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dominated by other terms when the problem dimension is
large, i.e., d ⪰

√
K.

Limitations of Algorithm 2. Based on the average regret,
we can see that: (1) the proposed one-point feedback algo-
rithm, i.e., FEDPOSGD, requires an extra projection step;
(2) the averaged regret bound of FEDPOSGD increases
linearly with the problem dimension d; and (3) the average
regret of FEDPOSGD cannot benefit from the small het-
erogeneity in the regime where FEDPOSGD outperforms
the non-collaborative baseline. To address these issues, we
propose to use a two-point feedback algorithm in the next
section.

5. Better Rates with Two-Point Bandit
Feedback

In this section, we study distributed bandit convex optimiza-
tion with two-point feedback, i.e., at each time step, the
machines can query the value (and not the full gradient)
of their cost functions at two different points. We show
an improved regret guarantee for general Lipschitz smooth
functions and then specify the improvements for federated
adversarial linear bandits.

The two-point feedback structure is useful for single-agent
bandit convex optimization, as it can help attain the opti-
mal horizon dependence in the regret (Duchi et al., 2015;
Shamir, 2017) using simple algorithms. We consider a gen-
eral convex cost function rather than the linear cost function
discussed in the last section. We analyze the online vari-
ant of the FEDAVG or LOCAL-SGD algorithm, which is
commonly used in the stochastic setting. We refer to this
algorithm as FEDOSGD and describe it in Algorithm 3.

The key idea in FEDOSGD is using the gradient estimator
constructed with two-point feedback (see line 7), originally
proposed by Shamir (2017) and based on a similar estimator
by Duchi et al. (2015). For a smoothed version of the func-
tion fm

t , i.e., f̂m
t (x) := Eum

t
[fm

t (x + δum
t )], the gradient

estimator gmt is an unbiased estimator Eum
t
[gmt ] = ∇f̂m

t (x)
with variance (c.f., Lemmas 3 and 5 in Shamir (2017)):

Eum
t

[∥∥∥gmt −∇f̂m
t (x)

∥∥∥2
2

]
⪯ dG2,

where G is the Lipschitz parameter for fm
t .

Equipped with this gradient estimator, we can prove the fol-
lowing guarantee for PM,K,R(FG,B , ζ) using FEDOSGD.

Theorem 5.1 (Better Bounds with Two-Point Feed-
back for Lipschitz Functions). For the problem class
PM,K,R(FG,B , ζ). If we choose η = B

G
√
T
·

min
{
1,

√
M√
d
, 1
1K>1

√
Kd1/4

}
, and δ = Bd1/4

√
R

(
1 + d1/4

√
MK

)
,

Algorithm 3: FEDOSGD (η, δ) with two-point bandit
feedback

1 Initialize xm
0 = 0 on all machines m ∈ [M ]

2 for t ∈ {0, . . . ,KR− 1} do
3 for m ∈ [M ] in parallel do
4 Sample um

t ∼ Unif(Sd−1), i.e., a random unit
vector

5 Query function fm
t at points

(xm,1
t , xm,2

t ) := (xm
t + δum

t , xm
t − δum

t )
6 Incur loss (fm

t (xm
t + δum

t )+ fm
t (xm

t − δum
t ))

7 Compute stochastic gradient at point xm
t as

gmt =
d(f(xm

t +δum
t )−f(xm

t −δum
t ))um

t

2δ
8 if (t+ 1) mod K = 0 then
9 Communicate to server: (xm

t − η · gmt )
10 On server

xt+1 ← 1
M

∑
m∈[M ] (x

m
t − η · gmt )

11 Communicate to machine: xm
t+1 ← xt+1

12 else
13 xm

t+1 ← xm
t − η · gmt

the queried points {xm,j
t }T,M,2

t,m,j=1 of Algorithm 3 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ GB√

KR
+

GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

,

where x⋆ ∈ argminx∈B2(B)

∑
t∈[KR] ft(x), and the expec-

tation is w.r.t. the choice of function queries.

Implication of Theorem 5.1: When K = 1, the above av-
erage regret reduces to the first two terms, which are known
to be tight for two-point bandit feedback (Duchi et al., 2015;
Hazan, 2016) (see Appendix D), making FEDOSGD opti-
mal. When K > 1, we would like to compare our results to
the non-collaborative baseline as we did in Section 3. The
non-collaborative baseline 4 attains the average regret of
O
(
GB
√
d/
√
KR

)
. Thus, as long as d ⪰ K2, FEDOSGD

performs better than the non-collaborative baseline. Fur-
thermore, if d ⪰ K2M2, then the average regret of FE-
DOSGD is dominated byO

(
GB
√
d/
√
MKR

)
. Therefore,

FEDOSGD achieves a “linear speed-up” in the number
of machines compared to the non-collaborative baseline.
Unfortunately, the bound doesn’t improve with smaller ζ.

Note that the Lipschitzness assumption is crucial for the
two-point gradient estimator in Algorithm 3 to control the
variance of the proposed gradient estimator. While there

4For the non-collaborative baseline, we run Algorithm 1 using
the gradient estimator proposed by Shamir (2017).
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are gradient estimators that do not require Lipschitzness or
bounded gradients (Flaxman et al., 2004), they actually im-
pose stronger assumptions such as bounded function values
or necessitate extra projection steps (see the gradient esti-
mator in Algorithm 2). To avoid making these assumptions,
we instead focus on problems in PM,K,R(FG,H,B , ζ, F⋆)
rather than problems in PM,K,R(FH,B , ζ, F⋆).

Theorem 5.2 (Better Bounds with Two-Point Feedback
for Smooth Functions). Consider the problem class
PM,K,R(FG,H,B , ζ, F⋆). If we choose appropriate η, δ
(c.f., Lemma E.1 in Appendix E), the queried points
{xm,j

t }T,M,2
t,m,j=1 of Algorithm 3 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ HB2

KR
+

√
HF⋆B√
KR

+
GB√
KR

+
GB
√
d√

MKR

+ 1K>1 ·min

{
H1/3B4/3G2/3d1/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3

+

√
ζGBd1/4

K1/4
√
R

+
ζB√
R
,
GBd1/4

K1/4
√
R

+

√
GζB√
R

}
,

where x⋆ ∈ argminx∈B2(B)

∑
t∈[KR] ft(x), and the expec-

tation is w.r.t. the choice of function queries. Furthermore,
we can obtain the same average regret as in Theorem 5.1
with the corresponding step size.

The above result is a bit technical, so to interpret it, we
consider the simpler class FG,B

lin of linear functions with
bounded gradients. Linear functions are the “smoothest”
Lipschitz functions as their smoothness constant H = 0.
We can get the following guarantee (see Appendix G.1):

Corollary 5.3 (Better Bounds with Two-Point Feed-
back for Linear Functions). Consider the problem class
PM,K,R(FG,B

lin , ζ, F⋆). If we choose the same η and δ as in
Theorem 5.2, the queried points {xm,j

t }T,M,2
t,m,j=1 of Algorithm

3 satisfy:

1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

E
[
fm
t (xm,j

t )− fm
t (x⋆)

]
⪯ GB√

KR
+

GB
√
d√

MKR
+ 1K>1 ·

(√
ζGBd1/4

K1/4
√
R

+
ζB√
R

)
,

where x⋆ ∈ argminx∈B2(B)

∑
t∈[KR] ft(x), and the expec-

tation is w.r.t. the choice of function queries.

Implications of Theorem 5.2 and Corollary 5.3: Un-
like general Lipschitz functions, the last two terms in the
average regret bound for linear functions are zero when
ζ = 0, and the upper bound is smaller for smaller ζ.
In fact, when K = 1 or ζ = 0, the upper bound re-
duces to O

(
GB/

√
KR + GB

√
d/
√
MKR

)
, which is

optimal (c.f., Appendix B). These results show that FE-
DOSGD can benefit from small heterogeneity. More gen-
erally, when K ≤ max

{
1, G2ζ2d,G2d/(ζ2M2)

}
, then

FEDOSGD again achieves the optimal average regret of
O
(
GB/

√
KR+GB

√
d/
√
MKR

)
. Recall that in this set-

ting, the non-collaborative baseline 5 obtains an average
regret of O(GB

√
d/
√
KR). Thus, the benefit of collabora-

tion through FEDOSGD again appears in high-dimensional
problems in PM,K,R(FG,B

lin , ζ, F⋆) similar to what we dis-
cussed for PM,K,R(FG,B , ζ).

Single v/s Two-Point Feedback. For federated adversarial
linear bandits, we can directly apply Algorithm 3, i.e., FE-
DOSGD, to solve it and achieve the average regret bound
in Corollary 5.3 as follows:

GB√
KR

+
GB
√
d√

MKR
+ 1K>1 ·

(√
ζGBd1/4

K1/4
√
R

+
ζB√
R

)
.

Recall that we can also use the one-point feedback based
Algorithm 2, i.e., FEDPOSGD, to get the following average
regret bound for federated adversarial linear bandits:

GB√
KR

+
GBd√
MKR

+ 1K>1 ·
(

GB
√
d

K1/4
√
R

+

√
GζB√
R

)
.

According to these results, FEDOSGD significantly im-
proves the average regret bound of FEDPOSGD in terms of
the dependence on d and ζ. In addition, FEDOSGD does
not require the extra projection step and can benefit from the
small heterogeneity compared to FEDPOSGD. These re-
sults also imply that multi-point feedback can be beneficial
in federated adversarial linear bandits.

6. Conclusion and Future Work
In this paper, we show that, in the setting of distributed
bandit convex optimization against an adaptive adversary,
the benefit of collaboration is very similar to the stochas-
tic setting with first-order gradient information, where the
collaboration is useful when: (i) there is stochasticity in the
problem and (ii) the variance of the gradient estimator is

“high” (Woodworth et al., 2021) and reduces with collabora-
tion. There are several open questions and future research
directions:

1. Does collaboration provably not help for the smaller
class PM,K,R(FG,H,B , ζ, F⋆) using algorithms with
first-order information?

2. Is the final term tight in Theorems 5.1 and 5.2? We do
not know any lower bounds in the intermittent communi-
cation setting against an adaptive adversary.

3. When K is large, but R is a fixed constant, the average
regret of the non-collaborative baseline goes to zero, but

5The same baseline as for problems in PM,K,R(FG,B , ζ).
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our upper bounds for FEDOSGD do not. It is unclear if
our analysis is loose or if we need another algorithm.

4. What structures in the problem can we further exploit to
reduce communication (c.f., federated stochastic linear
bandits (Huang et al., 2021))?
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A. Comparison of Related Problems

Figure 1. Summary of the problem space of federated online optimization. An arrow from the parent to child denotes that the child
min-max problem is easier or has a lower min-max value than the parent problem. Note that to show that there is no benefit of collaboration
for first-order algorithms for problem (P2), we use the lower bound construction for the problem (P5). The figure clarifies why this does
not contradict the benefit of collaboration for problems (P9) and (P10), as they lie on a different path from the parent (P2).

First, we recall that the algorithms on each machine can depend on all the history it has seen. Since we are in the IC setting,
at time t on machine m, the algorithm A’s output can only depend on(

f1:M
1 , . . . , f1:M

τ(t) , f
m
τ(t)+1, . . . , f

m
t−1

)
,

where τ(t) is the last time step smaller than or equal to t where communication happened. We also assume that the
algorithms can be randomized, i.e., at each time t on machine m, the output can also depend on a randomly drawn seed
zmt . With that said, the hardest adversarial problem we can hope to solve for functions coming from some problem class
P ⊂ F⊗MT is

min
A∈A

EA

max
P∈P

1

MT

∑
t∈[T ],m∈[M ]

fm
t (xm

t )− min
x⋆∈B2(B)

1

MT

∑
t∈[T ],m∈[M ]

fm
t (x⋆)

 . (P1)

For this problem, note that the max-player knows both the algorithm and the randomization of the min-player. Thus, the
min-player doesn’t gain from randomization at all. A simpler problem is the following, where the max-player knows the
algorithm but not the random seeds

min
A∈A

max
P∈P

EA

 1

MT

∑
t∈[T ],m∈[M ]

fm
t (xm

t )− min
x⋆∈B2(B)

1

MT

∑
t∈[T ],m∈[M ]

fm
t (x⋆)

 . (P2)
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Problem (P2) is usually considered when talking about randomized optimization algorithms. Note that randomization on
the second player doesn’t increase the min-max regret, so we can equivalently state (P2) with randomized max-players as
follows

min
A∈A

max
P∈P

EA,P

 1

MT

∑
t∈[T ],m∈[M ]

fm
t (xm

t )− min
x⋆∈B2(B)

1

MT

∑
t∈[T ],m∈[M ]

fm
t (x⋆)

 . (P2)

However, making the randomization on the max-player explicit makes it easier to state the following easier version of the
problem (P2) with a weaker comparator

min
A∈A

max
P∈P

EA

EP

 1

MT

∑
t∈[T ],m∈[M ]

fm
t (xm

t )

− min
x⋆∈B2(B)

EP

 1

MT

∑
t∈[T ],m∈[M ]

fm
t (x⋆)

 . (P3)

The comparator in problem (P3) does not know the randomization of the max-player. This form of regret is common in
multi-armed bandit literature and is often called “pseudo-regret”. In this paper, we upper bound (P2), thus also upper
bounding (P3), which might be more relevant for the federated adversarial linear bandits problem. Note that we have only
talked about the “adaptive” setting so far. We can also relax the problem (P2) by weakening the adversary. One way to do
this is by requiring the functions to be the same across the machines, which leads to the following problem

min
A∈A

max
{ft∈F}⊗M

t∈[T ]
∈P

EA

 1

MT

∑
t∈[T ],m∈[M ]

ft(x
m
t )− min

x⋆∈B2(B)

1

T

∑
t∈[T ]

ft(x
⋆)

 . (P4)

Note that if the functions across the machines are shared, then ζ = 0 in Assumption 1. Depending on the algorithm class,
this problem may or may not be equivalent to a fully serial problem, as we showed in this paper. We can further simplify
this problem by making the adversary stochastic

min
A∈A

max
D∈∆(F)

EA,{ft∼D}t∈[T ]

 1

MT

∑
t∈[T ],m∈[M ]

ft(x
m
t )− min

x⋆∈B2(B)

1

T

∑
t∈[T ]

ft(x
⋆)

 . (P5)

We can also simplify problem (P5) to have a weaker comparator or consider problem (P3) with a stochastic adversary

min
A∈A

max
D∈∆(F)

EA,{ft∼D}t∈[T ]

 1

MT

∑
t∈[T ],m∈[M ]

Eft∼D [ft(x
m
t )]

− min
x⋆∈B2(B)

Ef∼D [f(x⋆)] . (P6)

Recalling the definition of Fm, F this can be re-written as,

min
A∈A

max
D∈∆(F)

EA,{ft∼D}t∈[T ]

 1

MT

∑
t∈[T ],m∈[M ]

F (xm
t )

− min
x⋆∈B2(B)

F (x⋆). (P6)

Now let’s relax (P2) directly to have stochastic adversaries, i.e., have fixed distributions on each machine. Note that this will
require appropriately changing the problem classes’ assumptions, as discussed in the remarks 2.2 and 2.3. To simplify the
discussion, we assume that the problem class has no additional assumption and is just a selection of MKR functions from
some class F . With this simplification in mind, we can now relax (P2) by picking the functions at machine m at time t
from distribution Dm. This leads to the following problem

min
A∈A

max
{Dm∼∆(F)}m∈[M]

E
A,{fm

t ∼Dm}m∈[M]

t∈[T ]

 1

MT

∑
t∈[T ],m∈[M ]

fm
t (xm

t )− min
x⋆∈B2(B)

1

MT

∑
t∈[T ],m∈[M ]

fm
t (x⋆)

 . (P7)

If we weaken the comparator for this problem and recall the definitions for {Fm := Ef∼Dm
[f ]}m∈[M ] and F :=

1
M

∑
m∈[M ] Fm, we get the following problem

min
A∈A

max
{Dm∼∆(F)}m∈[M]

E
A,{fm

t ∼Dm}m∈[M]

t∈[T ]

 1

MT

∑
t∈[T ],m∈[M ]

Fm(xm
t )

− min
x⋆∈B2(B)

F (x⋆). (P8)
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We note that problem (P8) is the regret minimization version of the usual heterogeneous federated optimization problem
(McMahan et al., 2016; Woodworth et al., 2020b). To make the final connection to the usual federated optimization literature,
we note that the problem becomes easier if the algorithm can look at all the functions before deciding which model to choose.
In other words, it is harder to minimize regret in the online setting than to come up with one final retrospective model. This
means we can simplify the problem (P8) to the following problem, where A outputs x̂ after looking at all the functions

min
A∈A

max
{Dm∼∆(F)}m∈[M]

E
A,{fm

t ∼Dm}m∈[M]

t∈[T ]

 1

MT

∑
t∈[T ],m∈[M ]

Fm(x̂)

− min
x⋆∈B2(B)

F (x⋆). (P9)

With some re-writing of the notation, this reduces the usual heterogeneous federated optimization problem (McMahan et al.,
2016; Woodworth et al., 2020b)

min
A∈A

max
{Dm∼∆(F)}m∈[M]

E
A,{fm

t ∼Dm}m∈[M]

t∈[T ]

[F (x̂)]− min
x⋆∈B2(B)

F (x⋆). (P9)

Assuming Dm = D for all m ∈ [M ] this reduces to the usual homogeneous federated optimization problem (Woodworth
et al., 2020a)

min
A∈A

max
D∈∆(F)

E
A,{fm

t ∼D}m∈[M]

t∈[T ]

[F (x̂)]− min
x⋆∈B2(B)

F (x⋆). (P10)

Note that we can get a similar relaxation of the problem (P6) by converting regret minimization to find a final good solution.
The problem will look as follows

min
A∈A

max
D∈∆(F)

EA,{ft∼D}t∈[T ]
[F (x̂)]− min

x⋆∈B2(B)
F (x⋆). (P11)

The key difference between (P10) and (P11) is that x̂ depends on MT v/s T samples respectively each case. This means
(P10) is simpler than (P11). This concludes the discussion, and we summarize the comparisons between different min-max
problems in Figure 1. Next, we discuss two relevant lower bounds that follow from this understanding of problem hierarchies.

B. Relevant Lower Bound Proofs
We would like to understand the lower bounds for the problem (P2) from the previous section, i.e., this paper’s main quantity
of interest for relevant problem and algorithm classes. Note that to lower bound (P2), we can lower bound any children
problems in Figure 1. We first restate a well-known OCO sample complexity lower bound to show that

R1(PM,K,R(FG,B , ζ)) ∼= R1(PM,K,R(FG,B
lin , ζ)) ∼=

GB√
KR

. (8)

To see this, we recall that (P2) ⪰ (P4) ⪰ (P5) and then note that for the adversary in (P5), ζ = 0 by design as all the
machines see the same function. Thus to prove a lower bound, it is sufficient to specify a distribution D ∈ ∆(FG,B

lin ) ⊂
∆(FG,B) such that for any sequence of models {xm

t }
m∈[M ]
t∈[T ] ,

E{ft}t∈[T ]

[
1

MT

∑
m,t

ft(x
m
t )− min

x⋆∈B2(B)

1

T

∑
t

ft(x
⋆)

]
⪰ GB√

T
.

And one such easy construction is choosing ft(x) = ⟨vt, x⟩ where vt ∼ G√
d
· Unif({+1,−1}d). This ensures that the

first term on the L.H.S. in the above inequality is zero after taking the expectation no matter which model is picked.
The minimizer of the second quantity is x⋆ is −GB√

T
(c.f., Theorem 3.2 (Hazan, 2016)), which gives the lower bound in

equation (8). Note that the construction is linear and lies in the class FG,B , which is an order-optimal lower bound since
it doesn’t have anything to do with the form of the algorithm. Furthermore, to get equality in equation (8), we recall the
non-collaborative OGD upper bound (c.f., Theorem 3.1 (Hazan, 2016)).

Next, we draw our attention to the problem class of smooth functions PM,K,R(FH,B , ζ, F⋆) where we show that

R1(PM,K,R(FH,B , ζ, F⋆)) ∼=
HB2

T
+

√
HF⋆B√

T
. (9)
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We use the same lower-bounding strategy mentioned above but instead lower bound (P10), and note that (P2) ⪰ (P4) ⪰
(P5) ⪰ (P6) ⪰ (P10). This already makes ζ = 0 since our attack is coordinated. To lower bound (P10), we use
the construction and distribution as used in the proof of Theorem 4 by Woodworth & Srebro (2021), which is a sample
complexity lower bound that only depends on T , i.e., the number of samples observed from D. For the upper bound, we use
Theorem 3 by Srebro et al. (2010) proved in the same setting. Even though the upper bounds are first-order algorithms, the
lower bounds are order-independent, i.e., sample complexity lower bounds.

Finally, we’d like to prove a lower bound for the problem class PMKR(FG,B) with two-point bandit feedback. In particular,
we want to show that

R0,2(PMKR(FG,B), ζ) ⪰ GB√
KR

+
GB
√
d√

MKR
. (10)

To prove this, we’d use the reduction (P2) ⪰ (P4) ⪰ (P5) ⪰ (P6). Then we note for the problem (P6), ζ = 0, and
using 2-point feedback, we get in total 2MKR function value accesses to D. We can directly use the lower bound in
Proposition 2 by Duchi et al. (2015) for the problem (P6) for 2M points of feedback and KR iterations. Combined with the
order-independent lower bound proved previously, this proves the required result.

C. Proof of Theorem 4.1
In this section, we provide the proofs of Theorem 4.1. We first introduce several notations, which will be used in our analysis.
Let d(x, y) = ∥x∥22/2− ∥ŷ∥22/2− ⟨y, x− ŷ⟩, where ∥x∥2 ≤ B and ŷ is the projected point of y in to the ℓ2-norm ball with
radius B. We have the following holds

d(x, y) ≥ 1

2
∥x− ŷ∥22. (11)

This is due to the following: if ∥y∥ ≤ B, (11) clearly holds. If ∥y∥ > B, we have

d(x, y)− 1

2
∥x− ŷ∥22 = ⟨x− ŷ, ŷ − y⟩ ≥ ⟨ŷ − ŷ, ŷ − y⟩ = 0,

where the inequality is due to the fact that ŷ − y = (1 − ∥y∥2/B)ŷ lies in the opposite direction of ŷ, and x = ŷ will
minimize the inner product. Now, we are ready to prove the regret of Algorithm 2.

Proof. Define the following notations

x̄t =
1

M

M∑
m=1

xm
t , w̄t = Proj(x̄t), wm

t = Proj(xm
t ).

We have

d(x⋆, x̄t+1) =
1

2
∥x⋆∥22 −

1

2
∥w̄t+1∥22 − ⟨x̄t+1, x

⋆ − w̄t+1⟩

=
1

2
∥x⋆∥22 −

1

2
∥w̄t+1∥22 − ⟨x̄t − η

1

M

M∑
m=1

gmt , x⋆ − w̄t+1⟩

=
1

2
∥x⋆∥22 −

1

2
∥w̄t+1∥22 − ⟨x̄t, x

⋆ − w̄t+1⟩︸ ︷︷ ︸
I1

−η 1

M

M∑
m=1

⟨gmt , w̄t+1 − x⋆⟩︸ ︷︷ ︸
I2

, (12)

where the second equality comes from the updating rule of Algorithm 2. For the term I1, we have

I1 =
1

2
∥x⋆∥22 −

1

2
∥w̄t+1∥22 − ⟨x̄t, x

⋆ − w̄t+1⟩
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=
1

2
∥x⋆∥22 −

1

2
∥w̄t∥22 − ⟨x̄t, x

⋆ − w̄t⟩ − ⟨x̄t, w̄t − w̄t+1⟩

− 1

2
∥w̄t+1∥22 +

1

2
∥w̄t∥22

= d(x⋆, x̄t)− d(w̄t+1, x̄t)

≤ d(x⋆, x̄t)−
1

2
∥w̄t+1 − w̄t∥22,

where the last inequality is due to (11). For the term I2, we have

I2 = −η 1

M

M∑
m=1

⟨gmt , w̄t+1 − x⋆⟩

= −η 1

M

M∑
m=1

⟨gmt −∇fm
t (wm

t ), w̄t+1 − x⋆⟩︸ ︷︷ ︸
I21

−η 1

M

M∑
m=1

⟨∇fm
t (wm

t ), w̄t+1 − x̄⋆⟩︸ ︷︷ ︸
I22

.

For the term I21, we have

Et[I21] = ηEt
1

M

M∑
m=1

⟨∇fm
t (wm

t )− gmt , w̄t+1 − x⋆⟩

= ηEt
1

M

M∑
m=1

⟨∇fm
t (wm

t )− gmt , w̄t+1 − w̄t⟩

≤ ηEt

∥∥∥∥ 1

M

M∑
m=1

(∇fm
t (wm

t )− gmt )

∥∥∥∥
2

· ∥w̄t+1 − w̄t∥2

≤ η
σ√
M

Et∥w̄t+1 − w̄t∥2.

Thus we have

E[I21] ≤ η
σ√
M

E∥w̄t+1 − w̄t∥2.

For the term I22, we have

I22 = −η 1

M

M∑
m=1

⟨∇fm
t (wm

t ), wm
t − x̄⋆⟩ − η

1

M

M∑
m=1

⟨∇fm
t (wm

t ), w̄t − wm
t ⟩

− η
1

M

M∑
m=1

⟨∇fm
t (wm

t ), w̄t+1 − w̄t⟩

≤ −η 1

M

M∑
m=1

(fm
t (wm

t )− fm
t (x⋆) + η

1

M

M∑
m=1

∥∇fm
t (wm

t )∥2 · ∥w̄t − wm
t ∥2

+ η2
∥∥∥∥ 1

M

M∑
m=1

∇fm
t (wm

t )

∥∥∥∥2
2

+
1

4
∥w̄t+1 − w̄t∥22

Therefore, combining (12) and the upper bound of I1 and I2, we have

Ed(x⋆, x̄t+1) ≤ Ed(x⋆, x̄t)−
1

4
E∥w̄t+1 − w̄t∥22 + η

σ√
M

E∥w̄t+1 − w̄t∥2

− η
1

M

M∑
m=1

E(fm
t (wm

t )− fm
t (x⋆) + η

1

M

M∑
m=1

E∥∇fm
t (wm

t )∥2 · ∥w̄t − wm
t ∥2
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+ η2E
∥∥∥∥ 1

M

M∑
m=1

∇fm
t (wm

t )

∥∥∥∥2
2

.

Therefore, we have

η
1

M

M∑
m=1

E(fm
t (wm

t )− fm
t (x⋆) ≤ Ed(x⋆, x̄t)− Ed(x⋆, x̄t+1) + η2

σ2

M

+ η
1

M

M∑
m=1

E∥∇fm
t (wm

t )∥2 · ∥w̄t − wm
t ∥2

+ η2E
∥∥∥∥ 1

M

M∑
m=1

∇fm
t (wm

t )

∥∥∥∥2
2

.

In addition, we have

1

M

M∑
m=1

E∥w̄t − wm
t ∥2 ≤

1

M

M∑
m=1

E∥x̄t − xm
t ∥2 ≤ 2η(σ

√
K + ζK).,

where the last inequality is due to the linear function and follows the similar proofs of Lemma 8 in Woodworth et al. (2020b).
Thus, we can obtain (the indicator function comes from the fact that if K = 1, there would be no consensus error)

1

M

∑
m∈[M ]

E [fm
t (wm

t )− fm
t (x⋆] ≤ 1

η
(Ed(x⋆, x̄t)− Ed(x⋆, x̄t+1))

+ η

(
G2 +

σ2

M

)
+ 1K>1 · 2G(σ

√
K + ζK)η.

Since Ed(x⋆, x̄T ) ≥ E∥x⋆ − w̄T ∥22/2 ≥ 0 and Ed(x⋆, x̄0) = ∥x⋆∥22/2, summing the above inequality over t, we can get

1

M

∑
t∈[KR],m∈[M ]

E [fm
t (wm

t )− fm
t (x⋆)] ⪯ B2

η
+ η

(
G2 +

σ2

M
+ 1K>1 ·G(σ

√
K + ζK)

)
T.

If we choose η such that

η =
B

G
√
T
·min

{
1,

G
√
M

σ
,

√
G

1K>1
√
σK1/4

,

√
G

1K>1

√
ζK

}
,

We can get

1

MKR

∑
t∈[KR],m∈[M ]

E [fm
t (wm

t )− fm
t (x⋆)] ⪯ GB√

KR
+

σB√
MKR

+ 1K>1 ·

( √
GσB

K1/4
√
R

+

√
GζB√
R

)
.

To get the regret, we just need to notice that we have the linear function, and thus we have: the smoothed function f̂ = f

and Efm
t (wm

t ) = Efm
t (wm

t + δum
t ), where the expectation is over um

t . Furthermore, ∥gmt ∥22 = d2
(
fm
t (wm

t + δum
t )
)2 ≤

d2G2(B + δ)2/δ2 ≤ 4d2G2, where the last inequality is due the choice of δ = B. Since Egmt = ∇f̂m
t (wm

t ) and
E∥gmt −∇f̂m

t (wm
t )∥22 ≤ E∥gmt ∥22 Therefore, we can plug in σ2 = 4d2G2 to get our regret.

D. Proof of Theorem 5.1
In this section and the next one, we consider access to a first-order stochastic oracle as an intermediate step before considering
the zeroth-order oracle. Specifically, each machine has access to a stochastic gradient gmt of fm

t at point xm
t , such that it is

unbiased and has bounded variance, i.e., for all x ∈ X ,

E[gmt (xm
t )|xm

t ] = ∇fm
t (xm

t ) and E
[
∥gmt (xm

t )−∇fm
t (xm

t )∥22 |x
m
t

]
≤ σ2.

In Algorithm 3, we constructed a particular stochastic gradient estimator at xm
t with σ2 = G2d. We can define the

corresponding problem class P1,σ
M,K,R(FG,B , ζ) when the agents can access a stochastic first-order oracle. We have the

following lemma about this problem class:
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Lemma D.1. Consider the problem classP1,σ
M,K,R(FG,B , ζ). If we choose η = B

G
√
T
·min

{
1, G

√
M

σ ,
√
G

1K>1

√
σK

, 1
1K>1

√
K

}
,

then the models {xm
t }

T,M
t,m=1 of Algorithm 3 satisfy the following guarantee:

1

MKR

∑
t∈[KR],m∈[M ]

E [fm
t (xm

t )− fm
t (x⋆)] ⪯ GB√

KR
+

σB√
MKR

+ 1K>1 ·

(√
σGB√
R

+
GB√
R

)
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the stochastic gradients.

Remark D.2. Note that when K = 1, the upper bound in Lemma D.1 reduces to the first two terms, both of which are
known to be optimal due to lower bounds in the stochastic setting, i.e., against a stochastic online adversary (Nemirovski,
1994; Hazan, 2016). We now use this lemma to guarantee bandit two-point feedback oracles for the same function class. We
recall that one can obtain a stochastic gradient for a “smoothed-version” f̂ of a Lipschitz function f at any point x ∈ X ,
using two function value calls to f around the point x (Shamir, 2017; Duchi et al., 2015).

With this lemma, we can prove Theorem 5.1.

Proof of Theorem 5.1. First, we consider smoothed functions

f̂m
t (x) := Eu∼Unif(Sd−1)[f

m
t (x+ δu)],

for some δ > 0 and Sd−1 denoting the euclidean unit sphere. Based on the gradient estimator proposed by Shamir (2017)
(which can be implemented with two-point bandit feedback) and Lemma D.1, we can get the following regret guarantee
(noting that σ ≤ c1

√
dG for a numerical constant c1, c.f., (Shamir, 2017)):

E

 1

MKR

∑
t∈[KR],m∈[M ]

f̂m
t (x̂m

t )

− 1

MKR

∑
t∈[KR],m∈[M ]

f̂m
t (x⋆) ⪯ GB√

KR
+

GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

,

where the expectation is w.r.t. the stochasticity in the stochastic gradient estimator. To transform this into a regret guarantee
for f we need to account for two things:

1. The difference between the smoothed function f̂ and the original function f . This is easy to handle because both these
functions are pointwise close, i.e., supx∈X |f(x)− f̂(x)| ≤ Gδ.

2. The difference between the points x̂m
t at which the stochastic gradient is computed for f̂m

t and the actual points xm,1
t

and xm,2
t on which we incur regret while making zeroth-order queries to fm

t . This is also easy to handle because due
to the definition of the estimator, xm,1

t , xm,1
t ∈ Bδ(x̂

m
t ), where Bδ(x) is the L2 ball of radius δ around x.

In light of the last two observations, the average regret between the smoothed and original functions only differs by a factor
of 2Gδ, i.e.,

E

 1

2MKR

∑
t∈[KR],m∈[M ],j∈[2]

fm
t (xm,j

t )

− 1

MKR

∑
t∈[KR],m∈[M ]

fm
t (x⋆)

⪯ Gδ +
GB√
KR

+
GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

⪯ GB√
KR

+
GB
√
d√

MKR
+ 1K>1 ·

GBd1/4√
R

,

where the last inequality is due to the choice of δ such that δ ⪯ Bd1/4
√
R

(
1 + d1/4

√
MK

)
.
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E. Proof of Theorem 5.2
Similar to before, we start by looking at P1,σ

M,K,R(FG,H,B , ζ, F⋆). We have the following lemma.

Lemma E.1. Consider the problem class P1,σ
M,K,R(FG,H,B , ζ, F⋆). The models {xm

t }
T,M
t,m=1 of Algorithm 3 with appropriate

η (specified in the proof) satisfy the following regret guarantee:

1

MKR

∑
t∈[KR],m∈[M ]

E [fm
t (xm

t )− fm
t (x⋆)] ⪯ HB2

KR
+

σB√
MKR

+min

{
GB√
KR

,

√
HF⋆B√
KR

}
,

+ 1K>1 ·min

{
H1/3B4/3σ2/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3
+

√
ζσB

K1/4
√
R

+
ζB√
R
,

√
GσB

K1/4
√
R

+

√
GζB√
R

}
,

where x⋆ ∈ argminx∈Rd

∑
t∈[KR] ft(x), and the expectation is w.r.t. the stochastic gradients. The models also satisfy the

guarantee of Lemma D.1 with the same step-size.

Proof of Theorem 5.2. Given Lemma E.1, it is now straightforward to prove Theorem 5.2 similar to the proof for Theorem
5.1 by replacing σ2 with G2d ad choosing small enough δ such that Gδ ∼= the r.h.s. of the theorem statement.

F. Proof of Lemma D.1
In this section, we prove Lemma D.1.

Proof of Lemma D.1. Consider any time step t ∈ [KR] and define ghost iterate x̄t =
1
M

∑
m∈[M ] x

m
t (which not might

actually get computed). If K = 1, the machines calculate the stochastic gradient at the same point, x̄t. Then using the
update rule of Algorithm 3, we can get the following:

Et

[
∥x̄t+1 − x⋆∥22

]
= Et


∥∥∥∥∥∥x̄t −

ηt
M

∑
m∈[M ]

∇fm
t (xm

t )− x⋆ +
ηt
M

M∑
m=1

(∇fm
t (xm

t )− gmt (xm
t ))

∥∥∥∥∥∥
2

2


= ∥x̄t − x⋆∥22 +

η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xm

t )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨x̄t − x⋆,∇fm
t (xm

t )⟩+ η2t σ
2

M

= ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xm

t )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨xm
t − x⋆,∇fm

t (xm
t )⟩

+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xm
t − x̄t,∇fm

t (xm
t )⟩+ η2t σ

2

M

≤ ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xm

t )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

(fm
t (xm

t )− fm
t (x⋆))

+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xm
t − x̄t,∇fm

t (xm
t )⟩+ η2t σ

2

M
,

where Et is the expectation conditioned on the filtration at time t under which xm
t ’s are measurable, and the last inequality
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is due to the convexity of each function. Re-arranging this leads to

1

M

∑
m∈[M ]

(fm
t (xm

t )− fm
t (x⋆)) ≤ 1

2ηt

(
∥x̄t − x⋆∥22 − Et

[
∥x̄t+1 − x⋆∥22

])
+

ηt
2M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xm

t )

∥∥∥∥∥∥
2

2

+ 1K>1 ·
1

M

∑
m∈[M ]

Et ⟨xm
t − x̄t,∇fm

t (xm
t )⟩+ ηtσ

2

2M

≤ 1

2ηt

(
∥x̄t − x⋆∥22 − Et

[
∥x̄t+1 − x⋆∥22

])
+

ηt
2

(
G2 +

σ2

M

)
+ 1K>1 ·

G

M

∑
m∈[M ]

E [∥xm
t − x̄t∥2] . (13)

The last inequality comes from each function’s G-Lipschitzness. For the last term in (13), we can upper bound it similar to
Lemma 8 in Woodworth et al. (2020b) to get that

1

M

∑
m∈[M ]

E [∥xm
t − x̄t∥2] ≤ 2(σ +G)Kη. (14)

Plugging (14) into (13) and choosing a constant step-size η, and taking full expectation we get

1

M

∑
m∈[M ]

E [fm
t (xm

t )− fm
t (x⋆)] ≤ 1

2η

(∥∥∥E [x̄t − x⋆]
2
∥∥∥
2
− E

[
∥x̄t+1 − x⋆∥22

])
+

η

2

(
G2 +

σ2

M

)
+ 1K>1 · 2G(σ +G)Kη.

Summing this over time t ∈ [KR] we get,

1

M

∑
m∈[M ],t∈[T ]

E [fm
t (xm

t )− fm
t (x⋆)] ⪯

∥x̄0 − x⋆∥22
η

+ η

(
G2 +

σ2

M
+ 1K>1 · σGK + 1K>1 · ζGK

)
T

⪯ B2

η
+ η

(
G2 +

σ2

M
+ 1K>1 · σGK + 1K>1 ·G2K

)
T.

Finally choosing,

η =
B

G
√
T
·min

{
1,

G
√
M

σ
,

√
G

1K>1

√
σK

,
1

1K>1

√
K

}
,

we can obtain,

1

M

∑
m∈[M ],t∈[T ]

E [fm
t (xm

t )− fm
t (x⋆)] ⪯ GB

√
T + 1K>1 ·

√
σGB

√
KT + 1K>1 ·GB

√
KT +

σB
√
T√

M
. (15)

Dividing by KR finishes the proof.

G. Proof of Lemma E.1
In this section, we provide the proofs for Lemma E.1.

Proof of Lemma E.1. Consider any time step t ∈ [KR] and define ghost iterate x̄t =
1
M

∑
m∈[M ] x

m
t (which not might

actually get computed). Then using the update rule of Algorithm 3, we can get:

Et

[
∥x̄t+1 − x⋆∥22

]
= Et


∥∥∥∥∥∥x̄t −

ηt
M

∑
m∈[M ]

∇fm
t (xm

t )− x⋆ +
ηt
M

M∑
m=1

(∇fm
t (xm

t )− gmt (xm
t ))

∥∥∥∥∥∥
2

2

 ,
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= ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xm

t )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨x̄t − x⋆,∇fm
t (xm

t )⟩+ η2t σ
2

M

= ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xm

t )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

⟨xm
t − x⋆,∇fm

t (xm
t )⟩

+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xm
t − x̄t,∇fm

t (xm
t )⟩+ η2t σ

2

M

≤ ∥x̄t − x⋆∥22 +
η2t
M2

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xm

t )

∥∥∥∥∥∥
2

2

− 2ηt
M

∑
m∈[M ]

(fm
t (xm

t )− fm
t (x⋆))

+ 1K>1 ·
2ηt
M

∑
m∈[M ]

⟨xm
t − x̄t,∇fm

t (xm
t )⟩+ η2t σ

2

M
,

where Et is the expectation taken with respect to the filtration at time t, and the last line comes from the convexity of each
function. Re-arranging this and taking expectation gives leads to

1

M

∑
m∈[M ]

E (fm
t (xm

t )− fm
t (x⋆)) ≤ 1

2ηt

(
E ∥x̄t − x⋆∥22 − E

[
∥x̄t+1 − x⋆∥22

])
+

ηt
2M2

E

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xm

t )

∥∥∥∥∥∥
2

2

+ 1K>1 ·
1

M

∑
m∈[M ]

E ⟨xm
t − x̄t,∇fm

t (xm
t )⟩+ ηtσ

2

2M
(16)

Bounding the blue term. We consider two different ways to bound the term. First note that similar to Lemma D.1 we can
just use the following bound,

ηt
2M2

E

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xm

t )

∥∥∥∥∥∥
2

2

≤ ηtG
2

2
(17)

However, since we also have smoothness, we can use the self-bounding property (c.f., Lemma 4.1 (Srebro et al., 2010)) to
get,

ηt
2M2

E

∥∥∥∥∥∥
∑

m∈[M ]

∇fm
t (xm

t )

∥∥∥∥∥∥
2

2

≤ ηtH

2M

∑
m∈[M ]

(fm
t (xm

t )− fm
t (x⋆)) +

ηtH

2M

∑
m∈[M ]

fm
t (x⋆) (18)

Bounding the red term. We will bound the term in three different ways. Similar to lemma D.1, we can bound the term
after taking expectation and then bounding the consensus term similar to Lemma 8 in Woodworth et al. (2020b) as follows,

1

M

∑
m∈[M ]

E [⟨xm
t − x̄t,∇fm

t (xm
t )⟩] ≤ G

M

∑
m∈[M ]

E [∥xm
t − x̄t∥2]

≤ 2G(σ +G)

τ(t)+K−1∑
t′=τ(t)

ηt′ , (19)

where τ(t) maps t to the last time step when communication happens. Alternatively, we can use smoothness as follows after
assuming ηt ≤ 1/2H ,

1

M

∑
m∈[M ]

E [⟨xm
t − x̄t,∇fm

t (xm
t )⟩] = 1

M

∑
m∈[M ]

E [⟨xm
t − x̄t,∇fm

t (xm
t )−∇ft(x̄t)⟩] ,
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≤

√√√√ 1

M

∑
m∈[M ]

E ∥xm
t − x̄t∥22

√√√√ 1

M

∑
m∈[M ]

E ∥∇fm
t (xm

t )−∇ft(x̄t)∥22,

≤

√√√√ 1

M

∑
m∈[M ]

E ∥xm
t − x̄t∥22

√√√√ 2

M

∑
m∈[M ]

H2E ∥xm
t − x̄t∥22 + 2ζ2,

≤ 2H

M

∑
m∈[M ]

E ∥xm
t − x̄t∥22 + 2ζ

√√√√ 1

M

∑
m∈[M ]

E ∥xm
t − x̄t∥22,

≤ 2η2tH(σ2K + ζ2K2) + 2ηtζ(σ
√
K + ζK), (20)

where we used lemma 8 from Woodworth et al. (2020b) in the last inequality. We can also use the lipschitzness and
smoothness assumption together with a constant step size η < 1/2H to obtain,

1

M

∑
m∈[M ]

E [⟨xm
t − x̄t,∇fm

t (xm
t )⟩] ≤ G

M

∑
m∈[M ]

E [∥xm
t − x̄t∥2]

≤ ηG(σ
√
K + ζK). (21)

Combining everything. After using a constant step-size η, summing (16) over time, we can use the upper bound of the red
and blue terms in different ways. If we plug in (17) and (19) we recover the guarantee of lemma D.1. This is not surprising
because FG,H,B ⊆ FG,B . Combining the upper bounds in all other combinations assuming η < 1

2H , we can show the
following upper bound

Reg(M,K,R)

KR
⪯ HB2

KR
+

σB√
MKR

+min

{
GB√
KR

,

√
HF⋆B√
KR

}
,

+ 1K>1 min

{
H1/3B4/3σ2/3

K1/3R2/3
+

H1/3B4/3ζ2/3

R2/3
+

√
ζσB

K1/4
√
R

+
ζB√
R
,

√
GσB

K1/4
√
R

+

√
GζB√
R

}
,

where we used step size,

η = min

{
1

2H
,
B
√
M

σ
√
KR

,max

{
B

G
√
KR

,
B√

HF⋆KR

}
,

1

1K>1
·max

{
min

{
B2/3

H1/3σ2/3K2/3R1/3
,

B2/3

H1/3ζ2/3KR1/3
,

B

K3/4
√
ζσR

,
B

ζK
√
R

}
,

min

{
B

K3/4
√
GσR

,
B

K
√
ζGR

}}}

This finishes the proof.

G.1. Modifying the Proof for Federated Adversarial Linear Bandits

To prove the guarantee for the adversarial linear bandits, we first note that the self-bounding property can’t be used anymore
as the functions are not non-negative. Thus we proceed with the lemma’s proof with the following changes:

• We don’t prove the additional upper bound in (18) for blue term.

• While upper bounding the red term in (20), we set H = 0 and use this single bound for the red term.

After making these changes, combining all the terms, and tuning the learning rate, we recover the correct lemma for federated
adversarial linear bandits.
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