
Dynamics-inspired Neuromorphic Visual Representation Learning

Zhengqi Pei 1 2 Shuhui Wang 1 3

Abstract
This paper investigates the dynamics-inspired neu-
romorphic architecture for visual representation
learning following Hamilton’s principle. Our
method converts weight-based neural structure
to its dynamics-based form that consists of finite
sub-models, whose mutual relations measured by
computing path integrals amongst their dynamical
states are equivalent to the typical neural weights.
Based on the entropy reduction process derived
from the Euler-Lagrange equations, the feedback
signals interpreted as stress forces amongst sub-
models push them to move. We first train a
dynamics-based neural model from scratch and
observe that this model outperforms traditional
neural models on MNIST. We then convert several
pre-trained neural structures into dynamics-based
forms, followed by fine-tuning via entropy reduc-
tion to obtain the stabilized dynamical states. We
observe consistent improvements in these trans-
formed models over their weight-based counter-
parts on ImageNet and WebVision in terms of
computational complexity, parameter size, test-
ing accuracy, and robustness. Besides, we show
the correlation between model performance and
structural entropy, providing deeper insight into
weight-free neuromorphic learning.

1. Introduction
A biological brain learns by both the structural evolution
via rewiring neural pathways (Chklovskii et al., 2004) and
the numerical evolution via strengthening/weakening neural
connections (Cho et al., 2015). Following the rule of biolog-
ical neurons, the artificial neural networks (ANNs) mimic
the biological brain with neurons organized in a fixed lay-

1Institute of Computing Technology, Chinese Academy of Sci-
ences 2School of Artificial Intelligence, University of Chinese
Academy of Sciences 3Peng Cheng Laboratory. Zhengqi Pei
<peizhengqi22@mails.ucas.ac.cn>. Correspondence to: Shuhui
Wang <wangshuhui@ict.ac.cn>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

ered structure as the fully connected neural network (Hinton
et al., 2006), CNN (Krizhevsky et al., 2017) and Transform-
ers (Liu et al., 2021). In real applications such as image
categorization, different neural structures lead to varying
performance on widely-used datasets (Golubeva et al., 2020)
such as ImageNet (Deng et al., 2009). Despite the great
success, ANNs have several intrinsic drawbacks, e.g., the
requirement of a massive number of parameters, gradient
vanishing or explosion (Pascanu et al., 2013), and redun-
dant computations (RoyChowdhury et al., 2018). The fixed
structure of ANNs is considered suboptimal to approximate
the brain precisely and efficiently (Han et al., 2021).

It has been proved that evolving neural mechanisms, such as
NeuroEvolution (Stanley & Miikkulainen, 2002) and neural
architecture search (NAS) (Elsken et al., 2019) that alter the
layers and parameters, can significantly outperform their
counterparts with fixed structures (Assunção et al., 2018).
Nonetheless, these mechanisms established as dynamic neu-
ral networks (Han et al., 2021) require a large amount of
expensive fitness evaluations that are inefficient for real-time
learning (Stork et al., 2019) and appear unstable. As another
direction of research endeavors, some attempts, e.g., weight
agnostic neural network (Gaier & Ha, 2019), Spiking neu-
ral networks (Basegmez, 2014) and weight mirror (Akrout
et al., 2019), reconsider the importance of neural weight and
structure. They either rely on explicit neural weight compu-
tation or have yet to develop an efficient learning mechanism
to, for example, overcome the difficulties of training a spik-
ing neural network via supervised learning (Huynh et al.,
2022), which are still inefficient due to the enormous search
space of model structure (Ren et al., 2021). In general, the
weight-based ANNs can hardly achieve unified structural
and numerical evolutions.

In this study, we consider the structure and numerical learn-
ing from the neuromorphic dynamics aspect, inspired by
Hebb’s learning rule (Cooper, 2005), which states that neu-
ral connections between neurons with similar dynamic be-
haviors tend to be stronger. Rather than explicitly imple-
menting Hebb’s rule of the neural connections as weights,
we represent the dynamic behaviors of neurons (neuronal
dynamics) as their spatial coordinates. Neurons with similar
dynamic behaviors have closer spatial coordinates, leading
to naturally stronger connections. To formalize the whole
mechanism, we first reinterpret the universal approximation

1

Dynamics-inspired Neuromorphic Visual Representation Learning

(a) Weights-based neural networks: weights are trainable variants that are explicitly isolated
from each other; they are treated as the essential parameters directly affected by the feedback
signals, such as predictive error during the back-propagation process.

(b) Dynamics-inspired neuromor-
phic system: neural weights are path
integrals between neuronal dynamics.

Figure 1: Comparison between neural networks and dynamics-inspired neuromorphic system. We interpret the neurons
as sub-models q(l,t)i embedded in the high-dimensional neuronal state space. The indices l and t refer to a subsystem’s index
and time step. In Fig. 1b, sub-models of different subsystems, corresponding to input, hidden, and output layers, are mixed
in the neuronal state space. The feedforward and feedback signals push the neurons to continue moving until equilibrium.
The neuronal dynamics determine the nonlinear spatial “density” nearby, affecting the signals traveling among neurons in a
curved/nonlinear manner. The area in pink indicates higher density, while the area in cyan indicates lower density.

theorem (UAT) (Scarselli & Tsoi, 1998) into a dynamical
alternative, which claims that neural weights can be cal-
culated as the covariant of neuronal states while retaining
the approximation capacity of the whole neural system. In
the dynamical UAT (Eq. 2), neurons receive the input sig-
nals that affect neuronal dynamics and emit the processed
signals to other neurons. The signals between neurons am-
plify or decay during transmission via path integral. During
training, the neurons move until their neuronal states reach
equilibrium. In this way, the trainable units are the neuronal
states. The neural weights between neurons are not neces-
sarily maintained as concrete trainable units since they can
be expressed as path integrals between neuronal states.

Accordingly, we propose a Dynamics-inspired Neuromor-
phic (DyN) learning framework where the trainable param-
eters are the neuronal dynamics (Figure 1b). DyN applies
dynamics-based updating rules on finite sub-models, i.e.,
the functional neurons receiving and emitting signals with
neuronal states changing dynamically. The model learning
and inference are undertaken via computing the path integral
between the neuronal dynamics. Computationally, it allows
one to change coordinates of distinct neurons efficiently
with functional integrals (Weinberg, 1995), facilitating a
more global interaction among neurons, compared to the
layer-by-layer update rules used in deep learning architec-
tures (Pascanu et al., 2013).

Experimentally, we first validate DyN on MNIST (Deng,
2012) to verify its capacity as a universal approximator. As
in the case of LeNet-5 (LeCun et al., 2015), we observe
that when we transform both the convolutional and fully-
connected layers to their DyN form, the parameters have

been reduced by 10 ∼ 30, yet the transformed DyN mod-
els outperform the original LeNet-5 by 0.2%. Then, we
transform the weight-based layers of many pre-trained deep
neural models, e.g., DenseNet (Huang et al., 2017) and
SwinT (Liu et al., 2021), to the DyN alternatives, followed
by fine-tuning on ImageNet (Deng et al., 2009). As a re-
sult, the parameters have been reduced by 5 ∼ 10. Still,
the transformed models outperform the original ones on
both ImageNet and WebVision (Li et al., 2017). These
observations reveal the potential of building a more effi-
cient neural computing architecture focusing on neuronal
dynamics rather than weight transport.

We also consider practical implementation issues assum-
ing that existing computing devices naturally contain
noises (Braverman et al., 2015), e.g., the quantization er-
ror of digitization, affecting the parameter precision during
storage and calculation. Specifically, we assume a model’s
parameter space is reconstructed by noise uniformly on an
ϵ-ball. We round all parameters to a certain precision, e.g.,
round a 5-digit value to a 2-digit value, to see how the per-
formance of the “quantized” model is affected. The results
indicate that our model is robust to different noise levels,
suggesting that we can accelerate the model via hashing
without a significant loss of accuracy. Codes are available1.

2. Preliminaries
Interpreting ANN as a dynamical system. A typical ANN
comprises neurons organized in a specific structure and
trainable neural weights connecting them. The weights

1https://github.com/pzqpzq/flat-learning

2

Dynamics-inspired Neuromorphic Visual Representation Learning

among different neurons keep updating during training with
layer-by-layer updating rules. According to the dynamics
theory, an ANN is a dynamic system where the neurons
dynamically interact towards a minimal objective function,
e.g., the cross-entropy loss. However, ANN’s fixed structure
seems suboptimal because it constrains the learning toward
a universally optimal network configuration and imposes
an unnecessary computational burden on the training and
inference. In comparison, our method is straightforward.
By treating each neuron state as a basic trainable unit, we re-
place the neural weights between neurons with the dynamic
interaction between neuronal dynamics. Neural weight val-
ues are measurements of the transient interaction between
neurons, which are directly accessible from the dynamical
states of neurons. Neurons are allowed to interact fully
with each other during training, facilitating a comprehensive
release of model capacity.

Sub-models and subsystems. A neuron’s dynamical
state, e.g., spatial location, velocity, acceleration, activa-
tion/inhibition, etc., determines its spatial coordinates in a
d-dimensional phase space. Neurons with similar behav-
iors are located closely in the phase space. We call these
dynamical neurons as sub-models to distinguish them from
node-like neurons in the computational sense. A sub-model
is a functional neuron receiving and/or emitting signals and
changing its dynamical states. A group of sub-models shar-
ing identical global settings, e.g., a hidden layer in an MLP
or a convolutional layer in a CNN, refers to a subsystem.

We interpret the dynamical states of a sub-model with in-
dex i as a time-variant embedding: q(l,t)i ∈ Rd, where t
refers to the time-step, and l refers to the index of subsystem
that contains the sub-model. In Figure 2, we define two
vector fields E(l,t)

i , R
(l,t)
i : Rd 7→ Rs. For instance, E(l,t)

i

converts a direction v ∈ Rd into a signal E(l,t)
i (v) ∈ Rs.

Intuitively, we have R
(t∗)
j (0) =

∑
i S

(t,t∗)
ij (q

(t∗)
j) and

E
(t)
i (0) =

∑
j S

(t,t∗)
ij (q

(t)
i). We define R(t∗)

j (0) ≡ R
(t∗)
j

and E(t)
i (0) ≡ E

(t)
i for simplicity, and we set E(t)

i (u) =

E
(t)
i (v), u ̸= v, assuming that a sub-model emits signal

isotropically in any direction. We also define a mapping
S
(t,t∗)
ij : Rd 7→ Rs that describes how the signal emit-

ted from q
(t)
i is varying along the path towards q(t

∗)
j , e.g.,

S
(t,t∗)
ij (v) = E

(t)
i − ∥v − q

(t)
i ∥p/∥q(t

∗)
j − q

(t)
i ∥p.

Accordingly, we can transform any tensor-formed neural
layer into subsystems with a specified topology. As pre-
sented in Table 1, a sub-model refers to a neuron for an
MLP’s fully-connected layer MFC . A convolution layer
MC (kernel’s window k × k, with Nin and Nout channels)
refers to 2k subsystems, each containing Nin +Nout sub-
models. An attention layer with MQ,MK ∈ RT×dk and
MV ∈ RT×dv , where dk and dv are the hidden dimensions

Figure 2: Signal is varying along with the nonlinear path
between sub-models.

and T is the sequence length, refers to two subsystems con-
taining 2dk + dv and T sub-models, respectively. We list
the terminologies of a typical DNN to the related concepts
of DyN in Appendix B.

Table 1: From neural layer to DyN. We denote P (x) as a
subsystem containing x sub-models.

Models Layer Types DyN Types

MLP MFC ∈ Rm×n P (m)+P (n)

CNN MC ∈ Rk×k×Nin×Nout 2k · P (Nin +Nout)

Trans-
former

MQ ∈ RT×dk

P (2dk + dv)+P (T)MK ∈ RT×dk

MV ∈ RT×dv

Universal Approximation Theorem (UAT). This part fo-
cuses on Cybenko’s arbitrary-width UAT (Cybenko, 1989),
which demonstrates the approximation capabilities of a feed-
forward neural network in the space of continuous functions
between two Euclidean spaces. It states that, σ : R 7→ R
is not polynomial if and only if for every n ∈ N, m ∈ N,
compact K ⊆ Rn, f : K 7→ Rm, ε > 0, there exists k ∈ N,
A ∈ Rk×n, b ∈ Rk and C ∈ Rm×k such that

sup
x∈K

∥f(x)− g(x)∥ < ε (1)

where g(x) = C ·(σ(A ·x+b)). There are various UAT for
the arbitrary-depth case and some widely used architectures
like convolutional neural networks. However, they all rely
on a setting in that the trainable units are neural weights
between neurons. Next, we will present an alternative to
this typical UAT by considering the neuronal states rather
than their weights as the trainable units.

Principle of dynamic subsystems. Based on Cybenko’s
UAT, we propose a dynamical UAT with trainable neuronal
states. The dynamical UAT can approximate a time-variant
sequential function. It states that, for d, s,M,N ∈ N,
given a system of sub-models with a set of time-variant
coordinates {q(t)i ∈ Rd, i ∈ [1, N]} that receive and emit
time-variant signals R(t)

i ∈ Rs and E(t)
i ∈ Rs, then for

3

Dynamics-inspired Neuromorphic Visual Representation Learning

arbitrary nonlinear sequential mapping Rs×M 7→ Rs×M

between R(t)
i and E(t)

i for any i ∈ [1, N], there exists a set
of matrices A ∈ Rs×s, B ∈ Rs×d, C ∈ Rs×d, D ∈ Rd×s,
E ∈ Rd×s and F ∈ Rd×d, such that for t ∈ [1,M]:

R
(t)
i =

N∑
j ̸=i

E
(t−ϵ)
j · φ(q(t−ϵ)

j , q
(t)
i)

E
(t)
i = AR(t)

i + Bq(t)i + C d
dt
q
(t)
i

d

dt
q
(t)
i = DR(t)

i + EE(t)
i + Fq(t)i

(2)

where a non-polynomial bi-linear mapping φ : Rd ×Rd 7→
R is used to compute the path integral between sub-models.

The proof is presented in Appendix C. The dynamical UAT
considers neural weights as the covariants of the trainable
neuronal states, implying the equivalence between a weight-
based neural structure and a neuron-state-based one. The
time-invariant parameter matrices {A, ...,F} describe a sub-
model’s emitting and receiving mechanism. There is no
activation function in Eq. 2 because φ already introduces
nonlinearity. As a result, the dynamics amongst trainable
neurons are sufficient to approximate arbitrary time-variant
sequential functions on a specific metric function φ. Despite
that, one can still use the nonlinear activation functions on
the summation of received signals in practical implementa-
tion to introduce more nonlinearity and further enhance the
stability of the whole learning system.

Formulation of a DyN system. Based on Eq. 2, we for-
malize the DyN system that concentrates on learning neu-
ronal dynamics rather than neural weights. The proposed
DyN system contains subsystems {P (l), l ∈ [1, L]} inter-
preted as nodes in a directed graph G , and the directed
edge from P (l∗) to P (l) indicates that the emitted signals of
P (l∗) are received by P (l). Each subsystem contains finite
time-variant sub-models with d-dimensional embedding-
like dynamical states {q(l,t)i ∈ Rd, i ∈ [1, Nl], Nl ∈ N}.
Each sub-model can emit signals E(l,t)

i ∈ Rs and receive
signals R(l,t)

i ∈ Rs. We assume t∗ = t and S(t,t∗)
ij = S

(t)
ij

for simplicity (see Appendix D). Then we generalize the
dynamics among subsystems as follows:

R
(l,t)
i =

Nl∗∑
j=1

Ψ
(l)
R (E

(l∗,t)
j , q

(l∗,t)
j , q

(l,t)
i)

E
(l,t)
i = Ψ

(l)
E (R

(l,t)
i , q

(l,t)
i ,

∂

∂t
q
(l,t)
i)

∂

∂t
q
(l,t)
i = Ψ

(l)
Q (R

(l,t)
i , E

(l,t)
i , q

(l,t)
i)

(3)

where the nonlinear Ψ(l)
R ,Ψ

(l)
E : Rs × Rd × Rd 7→ Rs and

Ψ
(l)
Q : Rs ×Rs ×Rd 7→ Rd describe the I/O properties of a

subsystem l, and l∗ indicates the index of a subsystem that
links to P (l) in graph G . Intuitively, Eq. 3 describes a dy-
namic system where a sub-model interacts with its adjacent
sub-models by transmitting signals.

3. The DyN mechanism
We first show how to convert a fully-connected layer of
Ra×b into a+ b sub-models. Then we generalize this mech-
anism for arbitrary neural layers and show the equivalence
between DyN mechanism and entropy reduction.

Interpreting an FC layer as neuronal path integrals. For
a feed-forward neural network, the l-th fully-connected
layer with M input neurons and N output neurons is a
pre-trained weight matrix T ∈ RM×N . Here, we present a
method to represent T as two subsystems of d-dimensional
sub-models: P (l) = {q(l)i , i ∈ [1,M]} and P (l+1) =

{q(l+1)
j , j ∈ [1, N]}. The received signals of P (l) are

[R
(l,t)
1 , ..., R

(l,t)
M] = R(l,t) ∈ R1×M , and the emitted signals

of P (l+1) are [E
(l+1,t)
1 , ..., E

(l+1,t)
N] = E(l+1,t) ∈ R1×N .

Our goal is to establish the subsystem-related mapping Ψs
(see Eq. 3) such that R(l,t)T → E(l+1,t) with P (l) and
P (l+1). We set ΨQ = 0 for the inference stage with fixed
sub-models. Generally, we interpret Ψs as follows (we ab-
breviate the input arguments as ◦ for convenience):

Ψ
(l+1)
R (◦) = E

(l,t)
j · φ(q(l,t)i , q

(l+1,t)
j)

Ψ
(l)
E (◦) = R

(l,t)
i ; Ψ

(l+1)
E (◦) = R

(l+1,t)
j

Ψ
(l)
Q (◦) = 0; Ψ

(l+1)
Q (◦) = 0

(4)

where the metric function φ refers to a nonlinear path in-
tegral, which is not a computation-friendly formulation.
Instead, we can convert the nonlinear φ into the weighted
sum of multiple linear relations and efficiently deal with the
non-linearity by splitting each sub-model into H copies, i.e.,
q
(l,t)
i → {q(l,t)ih , h ∈ [1, H]}. Unless specified, we initial-

ize H as (d)−1 ·MN · (M + N)−1. Next, we define the
nonlinear relations between sub-models via the Lp-norm:

φ(q
(l)
i , q

(l+1)
j) =

H∑
h=1

µ
(l;l+1)
h

∥∥∥q(l)ih − q
(l+1)
jh

∥∥∥
p

(5)

where p ∈ N+, and µ
(l;l+1)
h ∈ R is a trainable shared

coefficient related to q(l)∗h and q(l+1)
∗h . The total amount of

sub-models is flexible during training, as we can merge a
set of sub-models with similar dynamical behaviors. For
example, q(lx,t)ihx

and q(ly,t)jhy
can be merged at time-step T if∑T

t=T−5∥q
(lx,t)
ikx

− q
(ly,t)
jky

∥ ≤ 0.1. Once the adjacent sub-
models are merged, their subsequent dynamical behaviors
will be synchronous and stored as a single sub-model. In
the next section, we will show how to find proper P (l) and
P (l+1) with Eq. 4 and Eq. 5.

4

Dynamics-inspired Neuromorphic Visual Representation Learning

Training a fixed FC layer with DyN mechanism. We
describe theDyN mechanism to learn P (l) and P (l+1) such
that R(l,t)T → E(l+1,t) with Ψs defined in Eq. 4 and Eq. 5.
We denote vij;h = q

(l)
ih − q

(l+1)
jh , and the stress force Fij =

Tij − φ(q
(l)
i , q

(l+1)
j) between sub-models under the target

T. A sub-model moves in the direction of its stress force:

∂q
(l)
ih

∂t
= −µ(l;l+1)

h

M∑
i=1

vij;h
∥vij;h∥p

· Fij

∂q
(l+1)
jh

∂t
= µ

(l;l+1)
h

N∑
j=1

vij;h
∥vij;h∥p

· Fij

∂µ
(l;l+1)
h

∂t
+

M∑
i=1

N∑
j=1

∥vij;h∥p · Fij = 0

(6)

The last line of Eq. 6 follows the energy and momentum
conservation laws, the mechanism in Eq. 6 can approximate
arbitrary linear transformation and is consistent with back-
propagation (Appendix G and F).

Training an MLP with DyN from scratch. Now we pro-
ceed to train an MLP from scratch, i.e., we only know the
input R(in) ∈ RNin and the target output T (out) ∈ RNout

of each training sample. Given an MLP that contains two
randomly initiated weights W (in;hid) ∈ RNin×Nhid and
W (hid;out) ∈ RNhid×Nout , the transmitting signals along
with each layer are defined as E(hid) = σ(R(in)W (in;hid))
and E(out) = σ(E(hid)W (hid;out)). Following Eq. 6, we
can represent this MLP as three subsystems: P (in) =

{q(in)i , i ∈ [1, Nin]}, P (hid) = {q(hid)k , k ∈ [1, Nhid]},
and P (out) = {q(out)j , j ∈ [1, Nout]}. The path inte-
gral between sub-models of P (x) and P (y) respectively
is denoted by φ(xy) ∈ RNx×Ny . We denote Φ

(xy)
j =∑

i σ(R
(x)
i) · v(xy)ij as the signals received by q

(y)
j from

all the sub-models in P (y), where v(xy)ij = q
(x)
i − q

(y)
j .

Our goal is to update the sub-models such that T (out) =
σ(σ(R(in)φ(in;hid))φ(hid;out)). Using back-propagation to
replace Fij in Eq. 6 with the gradients regarding neural
weights, we can update the sub-models as follows:

∂q
(in,t)
i;h

∂t
≈ µ

(in;hid)
h Φ

(in)
i Φ

(hid;in)
i

∂q
(out,t)
j;h

∂t
≈ µ

(hid;out)
h Φ

(out)
j Φ

(h;out)
j

∂q
(hid)
k;h

∂t
≈ µ

(in;hid)
h Φ

(in;hid)
j + µ

(hid;out)
h Φ

(out;hid)
j

(7)

where Φ(in)
i = σ(R

(in)
i) and Φ

(out)
j = T

(out)
j −E(out)

j . The
coefficients µh are updated recursively using Eq. 6, i.e., we
first update the sub-models, then reconstruct the nonlinear
φ and obtain the gradients of ∥Φ(out)∥2 to φ. The resulting
gradients are the stress F updating µh as in Eq. 6.

Converting general tensor data flow into signals. The pre-
viously introduced cases focus on constructing DyN mecha-
nism based on a fixed neural structure, i.e., the prior knowl-
edge that tells a sub-model exactly it should process which
signals have been provided. However, to build a DyN sys-
tem from scratch without any reference neural structure,
a sub-model should be able to distinguish the signals to
be processed from all the received signals. Therefore, we
need more signal components to store the positional fea-
tures. For example, as presented in Fig. 3, a sub-model q11
in 2-dimensional neural state space emits signal E11 that
contains the unique ID of q11 by appending a positional
encoding [0, 0]

⊤ on its original signal [X11], then the other
sub-models can know that E11 is emitted by q11 based on
the positional features.

Figure 3: Converting a tensor into signals emitted by
sub-models. Suppose we have a tensor input [Xij] ∈ R3×3,
then there could be 9 sub-models receiving the tensor input.
Each sub-model qij receives signals Xij and emits signals
Eij that contain the positional features.

Generally, for a tensor of rank r, i.e., X ∈ Rd1×...×dr ,
we use at most

∏r
k=1 dk sub-models to receive the signals

referring to X. A sub-model receives a signal that refers to
an entry of X and emits a signal of R1+r that contains the r-
dimensional positional feature. There are many techniques
to reduce the number of sub-models necessary to represent
the tensor input. Let’s denote Vx as a set of reduced X by
specifying the index of its x-th dimension, e.g., for X ∈
R3×3×2, we have V2[y] = X[:, y, :]. If we observe that the
components of Vx are similar (using a method like KL-
divergence), then we can reduce the sub-models along with
the x-th dimension, i.e., we need only

∏r
k ̸=x dk sub-models.

For a neural structure with hidden layers, we might need a
larger shape of signals, e.g., Rr+2, to store the layer-wise
feature that shows the signals come from which hidden lay-
ers. The formulation of positional features is not unique,
and they are generally concatenated with the original sig-
nal vectors. Based on the trained positional features, the
subsystem-related function Ψs can tell the sub-model to
receive signals from which sub-models. The target label
T (out) ∈ RNout corresponds toNout sub-models, each emit-
ting signal E(out)

i ∈ Rs. Then we obtain the normalized

5

Dynamics-inspired Neuromorphic Visual Representation Learning

feedback signal Φ(out)
i = T

(out)
i − ∥E(out)

i ∥p, where s and
p are hyper-parameters introduced in previous sections.

Training arbitrary layer with DyN. The Eq. 7 can be seen
as dynamical back-propagation, which implicitly updates
neural connections while minimizing the stress force be-
tween neuronal states, see Appendix F. To train arbitrary
layer, e.g., convolution or self-attention, with DyN mecha-
nism, we first obtain the dummy states by computing the
path integrals amongst neurons, recovering the weight-based
layers according to Table 1. Next, we compute the dummy
stress force (gradient descent) and apply Eq. 6 to reduce the
stress force. See Alg. 1 for the whole procedure.

Algorithm 1 DyN learning for general neural structure

Input: Neuronal dynamics Q, Desired Output T
repeat

Dummy States A = Rel(Q,Q) via Eq. 5
Stress force F = Grad(A, T) via Eq. 7
Update Q = Reduce(F,Q) via Eq. 6

until Q reaches equilibrium

There are some practical tips to reduce computational com-
plexity and memory. For example, one can cluster dynam-
ically similar sub-models. The dynamical states of sub-
models can be encoded as a sparse matrix via methods like
vector quantization (see Eq. 12). The lossy dynamical states
with an exact resolution 1/δ can be implemented via a Can-
tor expansion Rd 7→ N ∈ [1, δ−d], where δ−d should not
exceed the maximal allowable integer allowed in the current
computing system, e.g., 1.8× 10108 for any floating-point
number represented as a 64-bit double-precision value.

Inference stage for a DyN system. The inference stage in-
volves the specific matrix-vector query designed for distance
matrices via faster linear algebra (Indyk & Silwal, 2022).
Now we present how to feedforward an MLP on a DyN
system with L1-norm. Given an MLP that contains weights
W (in;hid) ∈ RNin×Nhid and W (hid;out) ∈ RNhid×Nout . Its
DyN alternative has three subsystems: P (in) = {q(in)i , i ∈
[1, Nin]}, P (hid) = {q(hid)k , k ∈ [1, Nhid]} and P (out) =

{q(out)j , j ∈ [1, Nout]}. The input signalsR(in) ∈ RNin are
received by P (in), which emits E(in) = R(in) to P (hid).
Then P (hid) receives R(hid) ∈ RNhid from P (in) and emits
E(hid) = σ(R(hid)) to P (out). Finally, P (out) receives
R(out) ∈ RNout from P (hid) and emits E(out) = R(out).
Specifically, the inference stage that convertsE(in) toR(hid)

is as follows:

R(hid)[x] =

Nin∑
i=1

E
(in)
i · φ(q(in)i , q(hid)x)

=

H∑
h=1

µh ·
d∑

y=1

Nin∑
i=1

E
(in)
i · |q(in)ih [y]− q

(hid)
xh [y]|

(8)

Let’s denote π+
y as a set of i such that q(in)ih [y] ≥ q

(hid)
xh [y],

and likewise, denote π−
y . We now focus on the inner loop

and rearrange it as follows:

E
(in)
i

(∑
i∈π+

y

(q
(in)
ih [y]− q

(hid)
xh [y])+

∑
i∈π−

y

(q
(hid)
xh [y]− q

(in)
ih [y])

)
= qx[y] · (Zneg − Zpos) + ∆pos −∆neg

(9)

where Zneg =
∑

π−
y
E

(in)
i , Zpos =

∑
π+
y
E

(in)
i , ∆pos =∑

π+
y
E

(in)
i q

(in)
ih [y], and ∆neg =

∑
π−
y
E

(in)
i q

(in)
ih [y] are

preprocessed values. This method reduces the computa-
tional complexity of matrix-vector query from O(NinNhid)
to O(Hd ·max(Nin, Nhid)). Similarly, we can compute
the inference stage of any tensor-based layer containing n
neurons on a DyN system with Lp-norm using Eq. 8 and
Eq. 9. This mechanism roughly reduces these tensor-based
inference stages from O(n2) to O(Hndp), where H is the
number of copies as presented in Eq. 5.

Understanding DyN mechanism as entropy-reduction.
Updating the dynamical states of the sub-models to approx-
imate arbitrary mapping in Eq. 7 is equivalent to reducing
the structural entropy among the sub-models. Based on
the Euler-Lagrange equation, we can conclude that (see
Appendix G for details):

∂q
(t)
i

∂t
= ηi · exp

(
−
∑

k ̸=i
∂
∂tL

(t)
ik∑

k ̸=i L
(t)
ik

· t

)
(10)

where ηi ∈ R is a trainable parameter related to q(t)i , and
L(t)
ik is a Lagrangian that measures the energy flow for q(t)k .

The form of L(t)
ik is not unique. For example, it can be:

L(t)
ik =

1

2
mi ·

∂2q
(t)
i

∂t2
− Ui · S(t)

ki (q
(t)
i) (11)

where mi ∈ R and Ui ∈ Rd×s are trainable parameters,
referring to the mass and potential energy of a sub-model
i. Intuitively, a sub-model tends to move toward the region
with a lower structural entropy of the energy distribution,
and the dynamical signals can be regarded as packets of
energy (visualized in Figure 6 of Appendix H). This re-
sult verifies the potential prospect that a well-formed DyN
system can be updated via global dynamics.

Issues with Activation functions. The input-to-output func-
tion of a sub-model is non-linear even without an activation
function, because the path integral of DyN has already in-
duced non-linearity. Recall that when a signal is transmitted
from a sub-model to another, it will be multiplied by the path
integral between these two sub-models, and the path integral

6

Dynamics-inspired Neuromorphic Visual Representation Learning

Table 2: Evaluating weight-based neural models and their DyN forms on MNIST. We evaluate each model’s original
form on MNIST and convert its layers into DyN forms trained using DyN mechanisms. We also test the case of training
LeNet-5 with Eq. 6 only, i.e., we simply convert the layers of a pre-trained LeNet-5 into DyN forms without further training.

MODEL LAYER TYPE
NO.COPIES NO.PARAMS TEST ACC. (%)

FC CONV MEMORY DISK FIXED (EQ. 6) UNFIXED (ALG. 1)

3-LAYERED NN
FC - 2,290K 97.89±0.10

DYN 50 - 1360K 160K - 98.32±0.03
DYN 75 - 2170K 250K - 98.36±0.02

LENET-5

FC, CONV - 61.8K 99.06±0.10
DYN 2 3 14.50K 2.03K 81.44 99.13±0.10
DYN 2 5 16.48K 2.25K 84.95 99.15±0.07
DYN 3 6 23.01K 2.98K 96.28 99.21±0.05
DYN 5 8 36.04K 4.44K 98.10 99.21±0.09
DYN 7 7 46.11K 5.56K 98.83 99.23±0.06

Table 3: Evaluating weight-based neural models and their DyN forms on ImageNet and WebVision. We convert the
layers of the pretrained neural models into DyN forms and finetune them using Alg. 1 on the training sets. All the pre-trained
weight-based neural models come from torch.hub.

MODEL CONFIGS NO.PARAMS
(MILLIONS)

MACS
(GFLOPS)

IMAGENET (%) WEBVISION (%)

STRUCTURE LAYER TYPE IDEAL δ=1e−3 IDEAL δ=1e−3

DENSENET-161 FC, CONV 28.68 7.82 75.254 71.336 68.973 61.429
DYN 6.05 3.28 (0.089) 75.314 75.246 69.033 68.984

RESNET-152 FC, CONV 60.40 11.58 77.014 75.776 69.879 59.435
DYN 6.51 5.25 (3.5E-3) 77.203 76.604 70.005 69.998

VIT-S-224 FC, CONV, ATTN 36.38 1.11 80.108 80.038 72.665 72.509
DYN 3.71 0.45 (0.75E-3) 80.150 80.122 72.728 72.716

SWINT-S-224
FC, CONV, ATTN 49.94 8.52 82.634 82.070 72.755 72.604

DYN 10.38 3.35 (0.024) 82.646 82.604 72.802 72.740
DYN 6.65 2.37 (0.018) 82.688 82.660 72.934 72.842

is computed using the weighted sum of several linearities as
in Eq. 5. However, a DyN model without an explicit acti-
vation function risks non-convergence and depends heavily
on a good initialization of the learnable parameters. Thus,
we implement the activation function like the corresponding
ANN to stabilize the implementation. When a sub-model
receives signals from the other sub-models, it simply takes
an activation function (Sigmoid, ReLU, or GELU) similar
to its ANN counterpart on the summation of the currently
received signals. Then it emits the activated summed sig-
nal to the others. The activation endows DyN with more
non-linearity and larger model capacity.

4. Experiments
Datasets and compared approaches. We evaluate DyN on
three visual classification datasets, MNIST (Deng, 2012),
ImageNet (Deng et al., 2009)) and WebVision (Li et al.,
2017). We first conduct experiments on MNIST to compare

a 3-layered feedforward neural network trained via back-
propagation with its DyN -formed alternative trained from
scratch via Eq. 7. Likewise, we compare the LeNet-5 (Le-
Cun et al., 2015) with its DyN alternative trained from
scratch. Each convolutional layer is converted into DyN
forms based on the policy presented in Table 1. We further
validate our approaches on ImageNet and WebVision, by
converting mainstream pre-trained neural models built on
ImageNet training split from torch.hub, including DenseNet-
161 (Huang et al., 2017), ResNet-152 (He et al., 2016),
ViTs (Dosovitskiy et al., 2020) and Swin-Transformer (Liu
et al., 2021), to their DyN forms. On all datasets, for a fair
comparison, we set the model configuration of the original
ANNs and their DyN alternatives (e.g., the number of hid-
den units, validation criterion, SEED, etc.) to be the same.
The training/testing splits of all the datasets follow the offi-
cial settings. For Webvision results, we only use the testing
split to report accuracy, while the finetuning is conducted
on the training split of ImageNet instead of Webvision.

7

Dynamics-inspired Neuromorphic Visual Representation Learning

Evaluation metrics and implementation details. We re-
port the top-1 accuracy, the number of parameters, and the
computational complexity that measures how many opera-
tions are needed for each model during the inference phase.
We repeat the training procedure for each configuration 20
times to calculate its mean and standard deviation. In addi-
tion to the typical evaluation (e.g., ideal columns in Table 3),
we also conduct experiments under varying parameter res-
olution 1/δ, where δ > 0 to measure a model’s robustness
during inference. We truncate a trainable parameter matrix
X into its quantized form pδ(X) as:

pδ(Xij) = min(X) + ⌊Xij −min(X)

δ · J
⌋δ · J (12)

where J = max(X) −min(X). For an idealized weight-
based or DyN model, we set δ = 0 or δ = 1e−6. When
δ = 0, pδ(Xij) = Xij . The trainable units in a weight-
based ANN are the weights {Wij , i ∈ [1, a], j ∈ [1, b]},
while the ones in aDyN model are the input neuronal states
Qi ∈ Rd×a and output neuronal states Qj ∈ Rd×b. The
computational complexities of a weight-based model and its
DyN alternative are measured using Multiply-Accumulate
units (MACs), i.e., the number of FLOPs (Patil & Kulkarni,
2018). For a DyN model, we also compute its computa-
tional complexity in a physically meaningful way (denoted
in brackets next to the MACs), which assumes that the com-
putation of path integral amongst sub-models is executed
instantaneously (a phenomenon that exists in the spatiotem-
poral liquid crystal structures (Zhang et al., 2021)). The
dimension d defaults to 9 unless otherwise noted. Note
that d can still be tuned for numerical model optimization
with higher/lower values. We fine-tune the models with one
NVIDIA RTX3090 24GB GPU on a cloud server. The infer-
ence stage is implemented on a laptop with 32GB memory.

4.1. Visual classification

The main results on three datasets are presented in Table 2
and Table 3. Compared against feedforward neural net-
works and LeNet-5, our randomly initialized DyN models
trained from scratch via Alg. 1 demonstrate higher accuracy,
lower computational complexity, and reduced parameter
size. Then we use several pre-trained models as backbone
networks and convert their FC, convolution, and attention
layers into DyN forms. The final dynamical states of the
sub-models are determined by fine-tuning the transformed
neural models on ImageNet’s training set. This process con-
tinues until the stress force amongst sub-models is lower
than a certain threshold, e.g., 10−3 of the normalized dis-
tances between sub-models. We observe that the DyN
alternative of each neural model achieves significant im-
provement in accuracy, especially under lower parameter
resolution, i.e., a higher δ value, see Figure 5 and Appendix I.
Besides, a neural model with more neural blocks trans-
formed via DyN mechanism performs better than the one

with less DyN blocks, e.g., swinDyN in Table 3 and Fig-
ure 8a. These results show that DyN mechanism preserves
more information efficiently by encouraging all-dynamic
neuron interaction.

4.2. Relation to the asymmetric convolutions

Given a convolutional layer MC ∈ Rk×k×Nin×Nout , we
have two policies to convert MC into its DyN form. The
first is the k2 policy: converting MC into k2 subsystems
{P (11)(n), P (12)..., P (kk)(n)}, where n = Nin + Nout,
such that φ(q(ij)k , q

(ij)
l) =MC [i, j, k, l]. The second is the

2k policy (Table 1): converting MC into 2k subsystems
{P (in,1)(n), ..., P (in,k)(n), P (out,1)(n), ..., P (out,k)(n)},
making each subsystem correspond to an input or output
channel, such that φ(q(in,i)k , q

(out,j)
l) = MC [i, j, k, l].

We notice that the 2k policy significantly reduces the
parameters while preserving the accuracy in Table 4
compared with the k2 policy. The experiments use the 2k
policy to convert a convolutional layer.

Table 4: Comparison of k2 and 2k policies in convolution.

KERNEL
NO.COPIES NO.PARAMS TEST ACC (%)
FC CONV

k2 5 5 6.27 K 99.15±0.07
2k 5 5 3.97 K 99.16±0.06

k2 5 8 7.99 K 99.19±0.06
2k 5 8 4.32 K 99.20±0.08

k2 7 7 8.65 K 99.24±0.04
2k 7 7 5.43 K 99.24±0.03

k2 8 5 8.11 K 99.22±0.05
2k 8 5 5.81 K 99.23±0.04

This idea is similar to the asymmetric convolution, which
converts k × k convolution into stacked 1 × k and k × 1
ones (Szegedy et al., 2016). It implies that the parameter-
sharing mechanism also works in DyN and explores the
neuronal covariants that induce a way to boost performance.

4.3. Correlation with structural entropy

We examine DyN under different δ via Eq. 12. Though
larger δ leads to lower parameter precision, we observe an
existence of peak that corresponds to the optimal setting
of δ such that a model achieves its best testing accuracy
(Figure 7b in Appendix H). We postulate that the peak cor-
responds to some regularization effect that prevents over-
fitting, which is also related to the cross-entropy and the
system’s structural configuration. To validate our postulate,
we first evaluate the new coordinates qi of sub-models with
a varying δ by qi(δ) = δ×⌊qi/δ⌋, then we count the spatial
distribution of each newly resulted sub-model in terms of

8

Dynamics-inspired Neuromorphic Visual Representation Learning

(a) 2-layered DyN models on MNIST

(b) Deep DyN models on ImageNet

Figure 4: Scattered points and their expectations that rep-
resent model performances for simple 2-layer DyN model
with distinct resolution on MNIST (a), and for several main-
stream neural models transformed via DyN approach on
ImageNet (b).

coordinates Pr(vx, δ) = |{qi|qi(δ) = vx}|/|{qi}|, where
vx ∈ Rd. Moreover, we calculate the structural entropy

ψ(δ) = −
∑
vx

Pr(vx, δ) · logPr(vx, δ) (13)

to measure the structural disorder in terms of the system’s
energy distribution. To connect the structural entropy with
its physical meaning, we evaluate the Laplacian of curvature
κ of ψ(δ) (denoted by LapCurSE), which accounts for the
energy of surface diffusion flow (Sethian & Chopp, 1999)

LapCurSE(δ) =

∥∥∥∥ ∂2∂δ2κ(ψ(δ))
∥∥∥∥ (14)

and we observe that an optimal structural setting always
refers to a lower LapCurSE, whose expected value is neg-
atively correlated with model performance (Figure 4a). This
observation implies that optimal performance requires a
stable structure instantiated as a minimal surface of energy
distribution: δoptimal = argminδ LapCurSE(δ), which
ensures that all sub-models find the dynamical states that

make them the most stable with the lowest energy. We
evaluate the LapCurSEs of the DyN models of several
mainstream models on ImageNet and observe that an op-
timal performance always refers to a lower LapCurSE
(Figure 4b). We also observe that the total computational
cost of neurons that follow the dynamical UAT is theoreti-
cally and experimentally conservative (Appendix H).

Figure 5: On ImageNet, as the noise δ−1 increases, the
accuracy of a neural model decreases, while that of the DyN
alternative almost retains.

5. Limitations
See Appendix J.

6. Conclusion
We propose a dynamics-inspired neuromorphic architec-
ture that interprets neural representation and learning from
dynamics theory. It emphasizes the state representation
of the neurons rather than the neural weights. In visual
classification, our architecture fully exploits each neuronal
parameter, demonstrating superiority in accuracy, parame-
ters, and computational complexity. More investigation on
the correlation between model performance and structural
entropy reveals that learning via structural mechanism is
better than numerical mechanism in efficiency and explain-
ability. Future work includes applying DyN on multimodal
data, new tasks (e.g., retrieval, and QA), and providing an
in-depth physical interpretation of the neuronal state space.

Acknowledgements
This work was supported in part by the National Key
R&D Program of China under Grant 2018AAA0102000,
in part by National Natural Science Foundation of China:
62022083 and 62236008. We thank anonymous reviewers
for helpful suggestions that improved this work.

9

Dynamics-inspired Neuromorphic Visual Representation Learning

References
Abarbanel, H. D. and Rouhi, A. Phase space density rep-

resentation of inviscid fluid dynamics. The Physics of
fluids, 30(10):2952–2964, 1987.

Akrout, M., Wilson, C., Humphreys, P., Lillicrap, T., and
Tweed, D. B. Deep learning without weight transport.
Advances in neural information processing systems, 32,
2019.

Assunção, F., Lourenço, N., Machado, P., and Ribeiro, B.
Evolving the topology of large scale deep neural networks.
In European Conference on Genetic Programming, pp.
19–34. Springer, 2018.

Basegmez, E. The next generation neural networks: Deep
learning and spiking neural networks. In Advanced Semi-
nar in Technical University of Munich, pp. 1–40. Citeseer,
2014.

Braverman, M., Schneider, J., and Rojas, C. Space-bounded
church-turing thesis and computational tractability of
closed systems. Physical review letters, 115(9):098701,
2015.

Chklovskii, D. B., Mel, B., and Svoboda, K. Cortical
rewiring and information storage. Nature, 431(7010):
782–788, 2004.

Cho, R. W., Buhl, L. K., Volfson, D., Tran, A., Li, F., Ak-
bergenova, Y., and Littleton, J. T. Phosphorylation of
complexin by pka regulates activity-dependent sponta-
neous neurotransmitter release and structural synaptic
plasticity. Neuron, 88(4):749–761, 2015.

Cooper, S. J. Donald o. hebb’s synapse and learning rule: a
history and commentary. Neuroscience & Biobehavioral
Reviews, 28(8):851–874, 2005.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Deng, L. The mnist database of handwritten digit images
for machine learning research [best of the web]. IEEE
signal processing magazine, 29(6):141–142, 2012.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey. The Journal of Machine Learning
Research, 20(1):1997–2017, 2019.

Gaier, A. and Ha, D. Weight agnostic neural networks.
Advances in neural information processing systems, 32,
2019.

Golubeva, A., Neyshabur, B., and Gur-Ari, G. Are wider
nets better given the same number of parameters? arXiv
preprint arXiv:2010.14495, 2020.

Han, Y., Huang, G., Song, S., Yang, L., Wang, H., and Wang,
Y. Dynamic neural networks: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hinton, G. E., Osindero, S., and Teh, Y. W. A fast learning
algorithm for deep belief nets. Neural Computation, 18:
1527–1554, 2006.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Huynh, P. K., Varshika, M. L., Paul, A., Isik, M., Balaji,
A., and Das, A. Implementing spiking neural networks
on neuromorphic architectures: A review. arXiv preprint
arXiv:2202.08897, 2022.

Indyk, P. and Silwal, S. Faster linear algebra for distance
matrices. arXiv preprint arXiv:2210.15114, 2022.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Commun. ACM, 60(6):84–90, may 2017. ISSN 0001-
0782.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

LeCun, Y. et al. Lenet-5, convolutional neural networks.
URL: http://yann. lecun. com/exdb/lenet, 20(5):14, 2015.

Li, W., Wang, L., Li, W., Agustsson, E., and Van Gool, L.
Webvision database: Visual learning and understanding
from web data. arXiv preprint arXiv:1708.02862, 2017.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. Swin transformer: Hierarchical vision
transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 10012–10022, 2021.

10

Dynamics-inspired Neuromorphic Visual Representation Learning

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning, pp. 1310–1318. PMLR,
2013.

Patil, P. A. and Kulkarni, C. A survey on multiply accu-
mulate unit. In 2018 Fourth International Conference
on Computing Communication Control and Automation
(ICCUBEA), pp. 1–5. IEEE, 2018.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Chen, X.,
and Wang, X. A comprehensive survey of neural architec-
ture search: Challenges and solutions. ACM Computing
Surveys (CSUR), 54(4):1–34, 2021.

RoyChowdhury, A., Sharma, P., and Learned-Miller, E. G.
Reducing duplicate filters in deep neural networks. 2018.

Scarselli, F. and Tsoi, A. C. Universal approximation using
feedforward neural networks: A survey of some existing
methods, and some new results. Neural networks, 11(1):
15–37, 1998.

Sethian, J. A. and Chopp, D. Motion by intrinsic laplacian of
curvature. Interfaces and Free boundaries, 1(1):107–123,
1999.

Stanley, K. O. and Miikkulainen, R. Evolving neural net-
works through augmenting topologies. Evolutionary com-
putation, 10(2):99–127, 2002.

Stork, J., Zaefferer, M., and Bartz-Beielstein, T. Improv-
ing neuroevolution efficiency by surrogate model-based
optimization with phenotypic distance kernels. In Inter-
national Conference on the Applications of Evolutionary
Computation (Part of EvoStar), pp. 504–519. Springer,
2019.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,
Z. Rethinking the inception architecture for computer vi-
sion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2818–2826, 2016.

Weinberg, S. The quantum theory of fields, volume 2. Cam-
bridge university press, 1995.

Zhang, R., Redford, S. A., Ruijgrok, P. V., Kumar, N.,
Mozaffari, A., Zemsky, S., Dinner, A. R., Vitelli, V.,
Bryant, Z., Gardel, M. L., et al. Spatiotemporal control
of liquid crystal structure and dynamics through activity
patterning. Nature materials, 20(6):875–882, 2021.

11

Dynamics-inspired Neuromorphic Visual Representation Learning

A. Symbol Glossary
The label on the right indicates the first time the symbol or notation is defined or used. As usual, R, Z, C, and N denotes the
reals, the integers, the complex numbers and the natural numbers, respectively.

q
(l,t)
i ∈ Rd The dynamical states of a sub-model i of subsystem l at time-step t Sec 2

E
(l,t)
i : Rd 7→ Rs Vector field for the signals emitted by q(l,t)i Figure 2

R
(l,t)
i : Rd 7→ Rs Vector field for the signals received by q(l,t)i Figure 2

R
(l,t)
i , E(l,t)

i The simplified notations for R(l,t)
i (0) and E(l,t)

i (0) Figure 2

Nl The number of sub-models in the subsystem P (l) Sec 3

R(l,t), E(l,t) The simplified notations for [R(l,t)
1 , ..., R

(l,t)
Nl

] and [E
(l,t)
1 , ..., E

(l,t)
Nl

] Sec 3

S
(l,t,t∗)
ij (v) ∈ Rs The temporal signal at v ∈ Rd from q

(l,t)
i to q(l,t

∗)
j Figure 2

P (x) Subsystem containing x sub-models Table 1

A,B, C,D, E ,F The matrices used to present the principle of dynamic subsystems Eq. 2

φ : Rd × Rd 7→ R A metric function that helps to compute the path integral between sub-models Eq. 2

P (l) Subsystem with an index of l Sec 2

G A directed graph that describes the topological relations amongst the subsystems Sec 2

ΨR,ΨE ,ΨQ The subsystem-related mappings that describe the dynamic properties of a subsystem l Eq. 3

l∗ The index of a subsystem such that there is a directed edge from P (l∗) to P (l) in graph G Eq. 3

Fij The stress force between sub-models qi and qj Eq. 6

vij Relative position between the current q(l,t)i and its adjacent q(l+1,t)
j Eq. 6

v
(xy)
ij Relative position between arbitrary q(x)i and another arbitrary q(y)j Eq. 7

φ(xy) Path integrals between each sub-model in P (x) and P (y) Eq. 7

Φ
(xy)
j The signals received by q(y)j from all the sub-models in P (y) Eq. 7

µ
(x;y)
h The shared coefficient related to the sub-models q(x)∗h and q(y)∗h Eq. 5

σ An activation function, e.g., Sigmoid function Eq. 1

δ The inverse resolution; a lower δ means a better parameter precision Eq. 12

pδ A function that truncates the model’s parameters in terms of δ Eq. 12

ε An error threshold Eq. 1

ϵ A variational unit that approaches to zero Eq. 2

ψ The structural entropy Eq. 4

H The number of copies Eq. 5

L The Lagrangian function Eq. 56

L The loss function Eq. 34

T (out) The target output for a neural model Eq. 7

T A target matrix that a DyN system approximates Eq. 4

12

Dynamics-inspired Neuromorphic Visual Representation Learning

B. Terminologies Comparison between DNN and DyN

Table 5: Intuitional Comparisons of DNN and DyN.

Framework DNN DyN

Basic components Artificial neurons Sub-models

Structured components Neural layer Subsystem

Component interaction Connection between
neurons

Path integral between
neuronal dynamics

Model update manner Adjust neural weights Adjust neuronal dynamics

Objective function Classification loss function
based on gradient descent

Entropy reduction
based on stress force

Data flow Layered representation Signals

System propagation manner Layer-by-layer Time-by-time

End of training criteria Convergence Neuronal states
reach equilibrium

C. Some Principles and Proofs
Theorem C.1. Principle of dynamic subsystems (the existence of global neuronal rules for the dynamic system as a
universal approximator): For every d, s,M,N ∈ N, given a system of sub-models with a set of time-variant coordinates
{q(t)i ∈ Rd, i ∈ [1, N]} that receive and emit time-variant signals R(t)

i ∈ Rs and E(t)
i ∈ Rs, then for arbitrary sequential

mapping Rs×M 7→ Rs×M that defines the nonlinear relations between R(t)
i and E(t)

i for any i ∈ [1, N], there exists a set of
matrices A ∈ Rs×s, B ∈ Rs×d, C ∈ Rs×d, D ∈ Rd×s, E ∈ Rd×s, and F ∈ Rd×d, such that t ∈ [1,M]:

R
(t)
i =

N∑
j ̸=i

E
(t−ϵ)
j · φ(q(t−ϵ)

j , q
(t)
i)

E
(t)
i = AR(t)

i + Bq(t)i + C d
dt
q
(t)
i

d

dt
q
(t)
i = DR(t)

i + EE(t)
i + Fq(t)i

(15)

where the non-polynomial 2-form φ : Rd × Rd 7→ R is used to compute the path integral between sub-models.

Proof. According to Lemma C.2 and Lemma C.3, an arbitrary linear transformation requires finite distinct subsystems, and
an arbitrary nonlinear transformation TS(R(t)

i) = E
(t+ϵ)
i can be achieved by a universal rule of dynamics Ψ̂(S),

TS(R(t)
i), q

(t+ϵ)
i = Ψ̂(S)(R

(t)
i , q

(t)
i) (16)

where E(t)
i is the signal emitted from the sub-model q(t)i itself, and R(t)

i is the resultant signals received by q(t)i from all the
other sub-models. Eq. 16 can be regarded as the static form of Theorem C.1. Likewise, Lemma C.3 reveals that we can also
approximate an arbitrary nonlinear transformation TQ(q(t)i) = q

(t+ϵ)
i by a universal rule of dynamics Ψ̂(Q),

E
(t+ϵ)
i , TQ(q(t)i) = Ψ̂(Q)(R

(t)
i , TLQ(q

(t)
i ,

∂

∂t
q
(t)
i)) (17)

where TLQ is a linear transformation to interpret the continuous transformation of the dynamical states. Thus, Eq. 17 can be
reinterpreted via a rule of dynamics in the linear form Ψ̂(LQ),

E
(t+ϵ)
i , TQ(q(t)i) = Ψ̂(LQ)(R

(t)
i , q

(t)
i ,

∂

∂t
q
(t)
i) (18)

13

Dynamics-inspired Neuromorphic Visual Representation Learning

Then the dynamical form Eq. 15 can be proved by induction. Specifically, given a set of signals E(t) = {E(t)
i } and

R(t) = {R(t)
i } accompanied by Q(t) = {q(t)i }, we first reach arbitrary expected states of signals {R(t), E(t+ϵ)} via Eq. 16,

then we reach arbitrary expected states of sub-models Q(t+ϵ) via Eq. 18, followed by a successive reaching for an arbitrary
targeted signals {R(t+ϵ), E(t+2ϵ)}. This recursive step finally constructs a complete dynamic form of Lemma C.3. This
fact implies that the sub-models with specific dynamical states can approximate arbitrary instant nonlinear transformation.
A specific predecessor state can obtain such specified dynamical states under the constraint that the received signals are
provided.

Lemma C.2. The weighted sum of H distinct distance matrices is sufficient to approximate any matrix T ∈ Rm×n in any
degree of precision. Specifically, the upper bound of an optimized H is given by

Hoptimized ≤ ⌈ mn

d · (m+ n)
⌉ (19)

where d refers to the dimension of units whose L2-norms are computed to generate those distance matrices.

Proof. First, we count the number of distinguished values an arbitrary quantized matrix can have. The matrix elements
Tij range from 0 to 1 with a resolution 1/δ that divides the domain into 1/δ partitions. Then the total number of
distinguished values is Φ(T) = δ−mn. Likewise, the permutations of m units Qrow ∈ Rm×d and n units Qcol ∈ Rn×d are
Ω(Qrow) = δ−md and Ω(Qcol) = δ−nd, implying that the number of combinations ofQrow andQcol is Ω([Qrow;Qcol]) =
Ω(Q) = δ−d(m+n). Then we need to eliminate the duplicate states of Q, which can be categorized into three cases, i.e.,
self-permutation (SP), transitional invariance (TI), and rotational invariance (RI). Specifically, SP refers to the case that
when the identities of sub-models are exchanged, the resulting distance matrix remains unchanged. TI and RI mean that
when the sub-models of Qrow and Qcol move together in a translational or rotational way, the resulting distance remains
unchanged. The numbers of the three cases are approximated as follows:

ΩSP (Q) = (m! · n!)d

ΩTI(Q) = δ−1 ·
d∏

k=1

(1− Lrow
k Lcol

k)

ΩRI = Sf (d)(max(Lrow
k Lcol

k) · δ−1)

(20)

where Lrow
k = max(Qrow[:, k])−min(Qrow[:, k]) measures the maximum range of Qrow in the k-th dimension, and Sf (d)

is the spherical area of d-sphere. Therefore, each pair of Qrow and Qcol covers Ω̂(Q) non-duplicate states:

Ω̂(Q) =
Ω(Q)

ΩSP (Q) · ΩTI(Q) · ΩRI(Q)
(21)

Then the total number of non-duplicate states achieved by H subsystems is

Ω([Q(1);Q(2)...Q(H)]) = ΩH(Q) =
(Ω̂(Q))

H

(H!)
d

(22)

Our goal is to find a proper H such that ΩH(Q) = Ω(T), yielding

lim
δ→0

H = ⌈ mn

d · (m+ n)
⌉ (23)

which is consistent with Eq. 19.

Lemma C.3. Existence of universal rule for static subsystems: given a DyN system composed of sub-models whose
rules of dynamics determine their successive states interacted with emitted or received signals, for any continuous function
that maps the receival signals to the emitted signals of all the sub-models, there exists a universal rule of dynamics followed
by every sub-model, ensuring that the relation between the receival signals and the emitted signals of all the sub-models
approximates the provided continuous function. The universal dynamics rule is mathematically equivalent to a set of linear
transformations.

14

Dynamics-inspired Neuromorphic Visual Representation Learning

Proof. Suppose there exists an expected universal rule Ψ, and a fake sub-model q(t)∗ that complements the signals received
by each real sub-model. Each real sub-model q(t)i is equipped with an exclusive rule of dynamics Ψi that might be different
from Ψ, we have

E
(t+ϵ)
i , q

(t+ϵ)
i = Ψi(R

(t)
i , q

(t)
i) = Ψ(R

(t)
i + S

(t)
∗i , q

(t)
i) (24)

Taking the total derivatives over time-step on the middle and right sides of Eq. 24

∂Ψi

∂q
(t)
i

· ∂q
(t)
i

∂t
+

∂Ψi

∂R
(t)
i

· ∂R
(t)
i

∂t
=

∂Ψ

∂q
(t)
i

· ∂q
(t)
i

∂t
+

∂Ψ

∂R
(t)
i

· ∂R
(t)
i

∂t
+

∂Ψ

∂S
(t)
∗i

· ∂S
(t)
∗i
∂t

(25)

The signal emitted from the fake sub-model is expected to be a zero constant, therefore,(
∂Ψi

∂q
(t)
i

− ∂Ψ

∂q
(t)
i

)
· ∂q

(t)
i

∂t
=
(∂Ψ

∂R
(t)
i

− ∂R
(t)
i

∂t

)
· ∂R

(t)
i

∂t
(26)

since q(t)i and R(t)
i cannot be constant variables, the Eq. 26 is satisfied for all cases if and only if

∂Ψi

∂q
(t)
i

− ∂Ψ

∂q
(t)
i

=
∂Ψ

∂R
(t)
i

− ∂R
(t)
i

∂t
= 0 (27)

which implies that
Ψ(R

(t)
i , q

(t)
i) =Wq · q(t)i +WR ·R(t)

i + b = Ψi(R
(t)
i , q

(t)
i) + b

′
(28)

where Wq, WR, b and b
′

are proper matrices. Hence, if each sub-model’s rule of dynamics refers to its complete linear
transformation ψi, then there exists a universal linear transformation, substituting for each specified ψi such that the expected
nonlinear transformation of the DyN system remains unchanged based on Lemma C.4.

Lemma C.4. If each sub-model’s dynamics rule is a linear transformation, the configured system can approximate any
continuous function to the expected precision.

Proof. According to Lemma C.2, the configured system can approximate any matrix corresponding to the tensor-based
neural weights by manipulating the sub-models. Therefore, the combination of each sub-model’s linear transformation and
the overall weights between each pair of sub-models is equivalent to a feedforward neural network with arbitrary width as
illustrated in the universal approximation theorem (Scarselli & Tsoi, 1998).

D. Path integral formulation for neuromorphic system

Recall that the emitting signals are denoted by E(t)
i ∈ Rd, and the receiving signals are denoted by R(t)

i . We also introduce
the dynamical signal S(t∗,t)

ij (v) ∈ Rd to analyze the temporal state of the signal from q
(t∗)
i to q(t)j . As presented in

Eq. 3, we can represent the relation between S(t∗,t)
ij (q

(t∗)
i) and S(t∗,t)

ij (q
(t)
j) via a nonlinear subsystem-related function

Ψ : Rs × Rd 7→ Rs as follows:
S
(t∗,t)
ij (q

(t)
j) = Ψ

(
S
(t∗,t)
ij

(
q
(t∗)
i

)
, q

(t)
j − q

(t∗)
i

)
(29)

This equation is also mathematically equivalent to the path integral between q(t
∗)

i and q(t)j as follows:

S
(t∗,t)
ij (q

(t)
j) =

∫ q
(t)
j

q
(t∗)
i

Ψ̂
(
S
(t∗,t)
ij (v), v

)
dv (30)

where Ψ̂ : Rs × Rd 7→ Rs refers to the global field consisting of several Ψ(l)s corresponding to distinct subsystems P (l)s.
In fact, we can conclude that the relation between Ψ̂ and Ψ(l)s holds for:

Ψ̂(S, u) =
∑
l

W(l)Ψ(l)(S, u) (31)

where W(l)s are trainable linear transformations. Under this setting, we can assume that the emitting time t∗ is irrelevant
because the biases induced by the time delay can be learned by the W(l)s. Specifically, the bias induced by each subsystem
is polynomial to the resultant bias induced by all the subsystems. Thus, the relation between the biases can be approximated
via a weighted sum of linear transformations.

15

Dynamics-inspired Neuromorphic Visual Representation Learning

E. Principle of hierarchical structures

Let’s define S(k,t)
ij as the signals emitted from q

(l,t∗)
i at an unspecified time-step t∗ and received by q(k,t)j at a specified time-

step t. Then the directed edge from P (l) to P (k) means that there exists a linear mapping T (lk) : E
(l,t)
i × q(l,t)i × q(k,t+1)

j 7→
S
(k,t+1)
ij and a linear mapping T (k) : q

(k,t)
j × S

(k,t)
ij 7→ q

(k,t+1)
j such that

E
(k,t+1)
j =

∑
i ̸=j

T (lk)(E
(l,t)
i , q

(l,t)
i , T (k)(q

(k,t)
j , T (lk)(E

(l,t−1)
i , q

(l,t−1)
i , q

(k,t)
j))) (32)

According to Lie algebra homomorphism, there exists a nonlinear mapping T (lk) such that

∂

∂t
E

(k,t+1)
j ,

∂

∂t
q
(k,t)
j =

∑
i ̸=j

T (lk)(
∂

∂t
E

(l,t−1)
i ,

∂

∂t
q
(l,t)
i) (33)

The Eq. 33 is the principle of hierarchical structures (PoHS). Suppose a tree-based structure describes the recursive relations
between the root system and its subsystems, sub-subsystems, etc.. Then PoHS states that this tree-based structure is
equivalent to a linearly hierarchical structure containing a set of subsystems. Furthermore, Eq. 33 reveals that a well-formed
neuromorphic system does not require a specified set of discrete trainable units isolated from each other.

F. Consistency with back-propagation
First, let’s deduce Eq. 6 using approaches applied in back-propagation. This equation is initially derived from a dynamics-
inspired view in the main paper. Specifically, we will deduce Eq. 6 by computing the gradient of the loss function for
each trainable parameter by the chain rule. The loss function between two arbitrary sub-models q(l)i and q(l+1)

j of distinct
subsystems is defined as

Lij = (Aij − φ(q
(l)
i , q

(l+1)
j))2

Li =

M∑
j=1

Lij

(34)

where A ∈ RM×N and [φ(q
(l)
i , q

(l+1)
j)]M,N ∈ RM×N are, respectively, the target matrix and the weighted distance between

sub-models (defined in Eq. 5). Then we calculate the partial derivative of the loss function Lij for a sub-model q(l)i;h as

∂Lij

∂q
(l)
i;h

= 2Fij · µ(l;l+1)
h · vij;h

∥vij;h∥p (35)

where vij;h = q
(l)
i;h − q

(l+1)
j;h , and the stress force between sub-models under a target A is denoted by Fij = Aij −

φ(q
(l)
i , q

(l+1)
j). Since the collective loss function for a sub-model q(l)i;h is Li, thus,

∂q
(l)
i;h

∂t
= −

M∑
j=1

∂Lij

∂q
(l)
i;h

= −µ(l;l+1)
h ·

M∑
j=1

vij;h
∥vij;h∥p

· Fij (36)

which is consistent with Eq. 6. Similarly, the update rules for q(l+1)
j;h and µ(l;l+1)

h are accessible via computing the gradient
of the relevant loss function. These facts guarantee that these dynamics-inspired update rules are consistent with the rules
derived via computing gradient descent for a specified loss function like back-propagation does. Therefore, we can extend
Eq. 6 to a detailed formulation by applying back-propagation on the stress force Fij , which is replaced with the gradient of
loss function for the sub-models rather than the neural weights.

Given a multilayer perceptron that contains two tensor-formed weights W (ih) ∈ RNin×Nh and W (ho) ∈ RNh×Nout .
The transmitting signals along with each layer are defined using a sequence: [R(in), E(in) = R(in), R(h), E(h) =
σ(R(h)), R(out), E(out) = R(out)]. Our goal is to make E(out) → T (out). First, we define a computation-friendly
formulation of the path integral between two arbitrary sub-models q(x)i and q(y)j as follows.

I
(xy)
ij =

1

2
(q

(x)
i − q

(y)
j)

2
=

1

2
v
(xy)
ij

2
=

1

2

H∑
h=1

µh · v(xy)ij;h

2
(37)

16

Dynamics-inspired Neuromorphic Visual Representation Learning

where H is the number of shared coefficients required to convert non-linearity into a good linearity set. The number of H is
discussed in Lemma C.2. Recall that the signals along with each layer are computed as follows

R
(h)
j =

∑
i

σ(R
(in)
i) · I(in;h)ij

R
(out)
k =

∑
j

σ(R
(h)
j) · I(h;out)jk

(38)

The loss function is defined by

L =
∑
k

1

2
(R

(out)
k − T

(out)
k)

2
=
∑
k

1

2
ε2k (39)

The resultant signals received by different sub-models are defined by

Φ
(xy)
j =

∑
i

E
(xy)
ij =

∑
i

σ(S
(x)
i) · v(xy)ij

Φ
(in)
i = σ(S

(in)
i)

Φ
(out)
k = T

(out)
k − S

(out)
k

(40)

Instead of computing the gradient of the loss function for the weights (path integral Iij), we compute the gradients for the
dynamical states of a sub-model as q(out)k

∂q
(out)
k

∂t
∝ ∂L

∂q
(out)
k

=
∑
j

∂L

∂I
(h;out)
jk

∂I
(h;out)
jk

∂q
(out)
k

= εk ·
∑
j

σ(S
(h)
j) · v(h;out)jk

= Φ
(out)
k · Φ(h;out)

k

(41)

A more detailed update rule regarding µh is as follows:

∂q
(out)
k;h

∂t
∝ ∂L

∂q
(out)
k;h

= Φ
(out)
k · Φ(h;out)

k · µh (42)

Similarly, we compute the gradient of the loss function for q(in)i ,

∂q
(in)
i

∂t
=

∂L

∂q
(in)
i

=
∑
j

∂L

∂I
(in;h)
ij

∂I
(in;h)
ij

∂q
(in)
i

=
∑
j

∂L

∂S
(out)
k

∂S
(out)
k

∂S
(h)
j

∂S
(h)
j

∂I
(in;h)
ij

∂I
(in;h)
ij

∂q
(in)
i

=
∑
j

∑
k

εk · I(h;out)jk ·
∂σ(S

(h)
j)

∂S
(h)
j

· σ(S(in)
i) · v(in;h)ij

= σ(S
(in)
i) ·

∑
j

v
(in;h)
ij ·

∂σ(S
(h)
j)

∂S
(h)
j

·
∑
k

εk · I(h;out)jk

= Φ
(in)
i ·

∑
j

v
(h;in)
ji · σ(S(h)

j) · (1− σ(S
(h)
j)) · Φ(out;h)

j

(43)

In the equilibrium state (meaning that the feedback signal Φ(ou;h)
j is extremely weak and stable), term (1−σ(S(h)

j))·Φ(out;h)
j

is degenerated to a specific constant independent of index j, so that Eq. 43 can be approximated as

∂q
(in)
i

∂t
∝ Φ

(in)
i ·

∑
j

v
(h;in)
ji · σ(S(h)

j)

= Φ
(in)
i · Φ(h;in)

i

(44)

17

Dynamics-inspired Neuromorphic Visual Representation Learning

Eq. 44 is obviously consistent with Eq. 7. Now we have the dynamical forms of update rules for sub-models toward a
specific loss function. In other words, we can approximate arbitrary nonlinear functions via training the sub-models rather
than the neural weights connecting them.

G. Generalized rules of dynamics in DyN systems
The neuromorphic dynamics are derived from Hamilton’s principle and the Euler-Lagrange equation:

d

dt

∂L(l,t)
i

∂
˙

q
(l,t)
i

− ∂L(l,t)
i

∂q
(l,t)
i

= 0 (45)

where the Lagrangian L(l,t)
i = S

(l,t)
i · ψ(l,t)

i measures the energy distribution of signals S(l,t)
i and structural entropy ψ(l,t)

i .
According to Lagrangian mechanics described in Eq. 45, where the non-relativistic Lagrangian L for sub-models in a
specific subsystem is defined by

L = T − V = T =
1

2
m0ṙ

2 (46)

where r represents the dynamical state of a sub-model. Thus

∂L
∂q̇

=
∂L
∂ṙ

= m0
∂r

∂t
(47)

Then substitute Eq. 47 into Eq. 45, obtaining

m0
∂r

∂t

∂2r

∂t2
=
∂L
∂t

(48)

Summing both sides of Eq. 49

m0 ·
∑
k ̸=x

∂r
(t)
xk

∂t
·
∂2r

(t)
xk

∂t2
=
m0

2
·
∑
k ̸=x

∂

∂t

(
∂r

(t)
xk

∂t

)2

=
∑
k ̸=x

∂L(t)
xk

∂t
(49)

To satisfy the conservation of momentum and Newton’s third law, we have

∑
k ̸=x

(
∂r

(t)
xk

∂t

)2

=

(
∂r

(t)
xx

∂t

)2

∑
k ̸=x

∂

∂t

(
∂r

(t)
xk

∂t

)2

= − ∂

∂t

(
∂r

(t)
xx

∂t

)2
(50)

Then the middle term of Eq. 49 can be simplified to

m0

2
·
∑
k ̸=x

∂

∂t

(
∂r

(t)
xk

∂t

)2

= −m0

2
· ∂
∂t

(
∂r

(t)
xx

∂t

)2

= −m0 ·
∂r

(t)
xx

∂t
· ∂

2r
(t)
xx

∂t2
(51)

Summing both sides of Eq. 46 ∑
k ̸=x

L(t)
xk =

m0

2
·
∑
k ̸=x

(
∂r

(t)
xk

∂t

)2

(52)

Then according to Eq. 50, Eq. 52 can be simplified to

∑
k ̸=x

L(t)
xk =

m0

2
·

(
∂r

(t)
xx

∂t

)2

(53)

Then we substitute Eq. 53 into Eq. 51 to eliminate m0, obtaining

∂2r
(t)
xx

∂t2
= −1

2
·
∑

k ̸=x
∂
∂tL

(t)
xk∑

k ̸=x L
(t)
xk

· ∂r
(t)
xx

∂t
= −Λ

(t)
x

2
· ∂r

(t)
xx

∂t
(54)

18

Dynamics-inspired Neuromorphic Visual Representation Learning

(a) Frame-id=1 (b) Frame-id=5 (c) Frame-id=10

Figure 6: Equivalence between neuromorphic learning and entropy reduction. As presented by Eq. 56, the sub-models
tend to move toward the region with lower structural entropy, which is visualized by colored spatial distribution.

Note that L can be approximated as time-invariant when ∂t 7→ 0 since L varies with the combination of all sub-models and
signals, whose overall dynamics are relatively static for a particular sub-model. Then we solve the differential Eq. 54, which
yields

∂r
(t)
xx

∂t
= ηx · exp

(
− Λ

(t)
x

2
· t

)
(55)

where the entropy indicator Λ(t)
x measures the structural entropy (can be evaluated via methods similar to Eq. 13) of L over

the system of sub-models, and ηx is a constant value related to its corresponding sub-model q(t)x .

The comprehensive form of Eq. 55 is as follows:

∂r
(l,t)
i

∂t
= ηi · exp

(
−
∑

k ̸=i
∂
∂tL

(l,t)
ik∑

k ̸=i L
(l,t)
ik

· t

)
= ηi · exp

(
− Λ

(l,t)
i · t

)
(56)

where r(l,t)i is the positional vector of a sub-model, and ηi is a constant related to q(l,t)i . This equation is equipped with an
unspecific Lagrangian L, for instance, L(l,t)

ik = S
(l,t)
ik Φ

(l,t)
i , where S(l,t)

ik is emitted from q
(L,t∗)
i and received by q(l,t)k , being

influenced by the resultant potential field Φ
(L,t)
i around q(L,t)

i . The signals S(l,t)
ik refers to the feedback control correlated

with the loss function for the current task, and the potential field Φ
(l,t)
i is a trainable parameter related to distinct sub-models.

Note that we can simplify Φ
(l,t)
i as a constant field by adding shared coefficients applied in Eq. 5.

H. Conservation of workload and computational complexity with increasing number of
sub-models

By Hamilton’s principle, the variables in Eq. 54 and Eq. 55 should have several restrictions, including∑
x

ηx = Cη∑
x

∑
k ̸=x

L(t)
xk = CL

∑
x

∑
k ̸=x

∂

∂t
L(t)
xk = C∂L

(57)

where Cη, CL and C∂L are time-invariant constants. Therefore, the summation of the entropy indicator Λ(t)
x can also be

approximated as a time-invariant constant

lim
N 7→∞

N∑
x=1

Λ(t)
x ≈ C∂L

CL
= N · Λ̄ (58)

19

Dynamics-inspired Neuromorphic Visual Representation Learning

(a) (b)

Figure 7: (a) The ratio of output Cv to input Cv as the number of layers increases with different numbers of sub-models
in the hidden layer (width). (b) The horizontal axis measures the logarithm of the ratio of parameters’ size and resolution
(LRPR); the vertical axis measures the testing accuracy of the truncated models corresponding to each specific LRPR.

where N is defined as the total number of sub-models, and Λ̄ is defined as a constant referring to the averaged entropy
indicator. Therefore, the total path length of all sub-models can be approximated in terms of Eq. 54 as a time-variant function
I(t)

I(t) =

N∑
x=1

∂r
(t)
x

∂t
=

N∑
x=1

ηx · exp (−Λ
(t)
i · t) ≈ Cη · exp (−Λ̄ · t) (59)

The time-step t is a small value since the sub-models of a DyN system generate signals almost instantaneously. The total
workload W (T) that is linearly correlated with the computational complexity is evaluated

W (T) =

∫ T

0

I(t)dt =
NCηCL

C∂L
· (1− e−Λ̄T) (60)

where T is the total time required to reach an equilibrium state. Based on Eq. 60, as the required number of sub-models
increases largely to deal with an increasingly complicated computational task, the total workload and computational
complexity do not increase accordingly but gradually approach a specific value. This fact also implies a neuro-biological
correlation that when the brain arises a concept, the power of the cortical regions related to the concept remains unchanged
after several learning events that supply more specified knowledge.

I. Learning with more subsystems and more sub-models
We apply an interactive mechanism to the current architecture to boost the computational ability of a DyN system without
explosive growth of computational complexity. The principle of hierarchical structures (Eq. 33) implies that a well-formed
neuromorphic system does not require a specified set of discrete trainable units isolated from each other. Besides, inspired
by the phase space density representation (Abarbanel & Rouhi, 1987), a dynamic system represented by infinite interactive
particles can be treated as a linear combination of many shallow layers, each of which is interpreted as an isolated dynamic
system of different density. Specifically, each layer of density ρi refers to a subsystem with a specific shared coefficient hi,
which disassembles the overall neuromorphic system into several partially independent subsystems. Therefore, a discrete sub-
model q(l;t)i;ki

is equivalent to an interactive region with a density of hki
. The variational density gij = ρki

− ρkj
= hki

− hkj

measures the potential energy generated by the interaction (receiving or emitting signals) between sub-models

mi
∂

∂t
q
(l,t)
i;ki

=

∫
q
(l,t)
j;kj

∈P (l)

ψ(v
(l,t)
ij , f

(l,t)
ij , g

(l,t)
ij)dP (l)

(61)

where mi is a constant related to the density hki
, and ψ is a linear transformation concatenates sub-models’ variational

dynamics. The notations here are consistent with Eq. 6. Therefore, a DyN system with infinite sub-models can be
approximated as the one with finite subsystems, in which the dynamical states of sub-models are interactively correlated
with other sub-models from all subsystems. The increased number of computing units has led to some burden in the

20

Dynamics-inspired Neuromorphic Visual Representation Learning

software implementation but no increase in the overall computational complexity. This fact is validated experimentally and
mathematically (Appendix H).

(a) (b)

Figure 8: (a) As the number of parameters transformed and instantiated via physical view increases, the DyN models out-
perform their original forms more significantly as the improved accuracy increases. The presented models are distinguished
in terms of the inverse of resolution δ and the stress-threshold that determines when DyN process ends. (b) The SwinDyN
refers to the pre-trained SwinT-S-224 model whose neural layers are converted into DyN forms. As δ increases, though the
original model performance greatly degrades, the DyN alternatives remain almost unchanged. The interactive one (Eq. 61)
outperforms the isolated one (Eq. 6). This phenomenon is attributed to the global dynamics of sub-models that are moving
and interacting with others in a fully stabilized manner.

J. Limitations
Initialization and convergence. In most cases, with a better initialization and a proper setting of hyper-parameters, there
could be a phenomenon of few-step convergence. However, this phenomenon is not stable if we initialize DyN with some
extreme settings. Even though the overall convergence rate of DyN is better than ANN, we still need to dig inside before
reaching a validated conclusion.

Simultaneity and time delay. In our simulation and the experiments, we update the sub-models similarly to an ANN
(epochs-by-epochs). An epoch is undertaken as follows, i.e., the feedback signals result in the stress forces amongst each
sub-model, and the stress forces cause the sub-models to change their dynamical states. This setting works in the software
implementation, and we do not need to guarantee that the neurons are strictly updated simultaneously. However, in the
idealized setting where the physical properties matter, we need to consider the issues with simultaneity.

Memory usage and parallelism. In the common cases of DyN , the memory used in the inference stage is much lower than
that of ANN. For model training, the memory consumed by the trainable parameters (neural states in sub-models) is far less
than that of an ANN. Nevertheless, we need extra memory to expand the dynamical states to compute the path integrals.
The upper bound of the total memory, including the trainable parameters and the calculation of path integrals, would not
exceed the original ANN (Lemma C.2). However, there is still room for further reduction of the memory consumption for
model training.

21

