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Abstract
In this manuscript we consider the problem of
generalized linear estimation on Gaussian mix-
ture data with labels given by a single-index
model. Our first result is a sharp asymptotic ex-
pression for the test and training errors in the
high-dimensional regime. Motivated by the re-
cent stream of results on the Gaussian universality
of the test and training errors in generalized linear
estimation, we ask ourselves the question: ”when
is a single Gaussian enough to characterize the
error?”. Our formulas allow us to give sharp an-
swers to this question, both in the positive and
negative directions. More precisely, we show that
the sufficient conditions for Gaussian universality
(or lack thereof) crucially depend on the align-
ment between the target weights and the means
and covariances of the mixture clusters, which
we precisely quantify. In the particular case of
least-squares interpolation, we prove a strong uni-
versality property of the training error and show it
follows a simple, closed-form expression. Finally,
we apply our results to real datasets, clarifying
some recent discussions in the literature about
Gaussian universality of the errors in this context.

1. Introduction
It is commonsense in machine learning that structure in
the data is an important ingredient for successful learning.
Quantifying this statement and in particular, how structure
in the features impact the training and generalization errors
the most, is an important endeavor in the broad program of
“seeing through” the modern machine learning black box.
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On the theoretical side, there have been some important re-
cent progress in this direction in the context of generalized
linear estimation. For instance, a recent line of work on
linear regression trained on Gaussian data has shown that
good generalization can arise even in the “overparametrized
regime” where the training error is exactly zero (Bartlett
et al., 2020; Hastie et al., 2022; Wu & Xu, 2020). This
benign overfitting property crucially depends on the covari-
ance structure, occurring when the signal components of the
target align with a lower-dimensional of the data, leaving
space for the noise to spread along the higher-dimensional
orthogonal subspace (Bartlett et al., 2020). Analogous con-
clusions hold, under similar conditions, to generalized linear
tasks (Muthukumar et al., 2021; Wang & Thrampoulidis,
2021; Shamir, 2022). Indeed, this is only one example of
many surprising insights learned from the study of general-
ized linear models on Gaussian data over the past few years
(Gardner & Derrida, 1988; Krogh & Hertz, 1992; Donoho
& Tanner, 2009; Candès et al., 2020). Despite the seem-
ingly constraining assumption on the distribution of the
features, a recent line of work provides strong evidence for
the Gaussian universality of the training and generalization
errors in generalized estimation in different settings. These
includes rigorous results for non-Gaussian designs (Mon-
tanari & Nguyen, 2017; Panahi & Hassibi, 2017), random
feature maps (Mei & Montanari, 2019; Gerace et al., 2020;
Goldt et al., 2022; Hu & Lu, 2022), neural tangent features
(Montanari & Saeed, 2022), Gaussian mixtures with random
labels (Gerace et al., 2023), as well as extensive numerical
evidence for other feature maps (Goldt et al., 2022; Loureiro
et al., 2021a) and even real datasets (Loureiro et al., 2021a;
Jacot et al., 2020; Bordelon et al., 2020). These works beg
the question “When are Gaussian features a good model
for learning?”. Our aim is to give precise answers to this
question in the context of generalized linear estimation on
a popular model for multi-modal data, known to be able to
approximate any distribution (Stone, 1948): the Gaussian
mixture model.

1.1. Main Results

Our main contributions in this work are as follows:

• Exact asymptotics of GLMs: We provide the exact
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asymptotic limit for the training and test errors of a gen-
eralized linear model with convex loss in high dimensions,
when the data is drawn from a Gaussian mixture model with
a single-index target. These asymptotics are based on the
so-called replica method from statistical physics, and follow
the same line as (Loureiro et al., 2021b), which considered
instead the task of learning the mixture labels.

• Universality of training and test errors: We provide a
set of sufficient conditions on the target weights θ0 such that
both the asymptotic training and test errors for a Gaussian
mixture model are independent from the cluster means. In
particular, these conditions are satisfied by a target whose
direction is uniform on Sd−1. In the case of ridge regression,
we show an even stronger result: namely, the training loss is
also independent from the cluster covariances, and reduces
to that of a single Gaussian with identity covariance.

• The importance of Homoscedasticity: In the particu-
lar case of a homoscedastic Gaussian mixture (a mixture
of Gaussians that share the same covariance matrix), we
further demonstrate universality results that can actually
be observed on real data after a random feature map (see
e.g. Fig. 1 and 2). We also unveil the universal behavior of
the linear separability transition, a phenomenon studied in
detail for pure Gaussian data in (Candès et al., 2020) and
that appears to be universal for a homoscedastic mixture.

• Breaking universality: In contrast to the results of the
previous paragraph, we show that there are two ways to
break Gaussian universality. First, strong heteroscedastic-
ity can break the universal behavior. Second, in the ho-
moscedastic case, we show that the correlation between the
data and the task matters: even a small correlation between
the target weights and the cluster means suffice to break uni-
versality, in the sense that the asymptotic errors of a model
trained in a Gaussian mixture differ from the one of a model
trained on Gaussian data. Rather than the structure of the
data itself, what appears to matter is thus the correlation
between this structure and the task to be learned.

1.2. Related Works

Exact asymptotics: An appealing feature of Gaussian
data is that the asymptotic performance of different mod-
els can be sharply characterized in the proportional high-
dimensional limit where n, d → ∞ at fixed sample com-
plexity α := n/d. This is particularly the case for ridge
regression, because of the close connection to a random
matrix theory problem; see e.g. (Dobriban & Wager, 2018;
Hastie et al., 2022; Wu & Xu, 2020). Those results are
related to the concept of deterministic equivalents around
which the regression matrices concentrate (Couillet & Liao,
2022).

Beyond the quadratic case, there exist many asymptotic rig-

orous studies: (Lei et al., 2018; Thrampoulidis et al., 2018)
studied m-estimators, (Celentano et al., 2020) the perfor-
mance of the LASSO estimator, (Liang & Sur, 2022) mini-
mum ℓ1-norm interpolators, while (Loureiro et al., 2021a)
provided a general result for convex losses and penalties
with arbitrary covariances.

In the case of Gaussian mixtures, most of the effort has been
geared towards classification, i.e. recovering the cluster
label instead of teacher-generated ones. For binary classifi-
cation, examples include (Mai et al., 2019; Mignacco et al.,
2020; Deng et al., 2022), the latter of which also shows an
equivalence between classification and a single-index model.
In the multi-class setting, (Thrampoulidis et al., 2020) stud-
ied the performance of ridge regression classifiers; the most
general result in this line is (Loureiro et al., 2021b), which
considers any convex (not necessarily separable) loss. On
the other hand, the exact asymptotics for teacher-generated
binary labels has been studied in (Mannelli et al., 2023) for
2-classes GMMs.

Gaussian universality: The works presented in the pre-
vious paragraphs share one common point: the techniques
used to show those results, either the Gordon min-max iden-
tity (Gordon, 1985) or the rigorous study of an Approximate
Message Passing (AMP) sequence (Donoho et al., 2009),
are only valid for Gaussian (or Gaussian mixture) distri-
butions. Remarkably, however, those results are also able
to capture the errors of particular classes of non-Gaussian
features. This Gaussian universality property (GEP) (Goldt
et al., 2020) was proven to hold for generalized linear estima-
tion with random features (Karoui, 2008; Mei & Montanari,
2019; Gerace et al., 2020; Goldt et al., 2022; Hu & Lu,
2022), neural tangent features (Montanari & Saeed, 2022)
and kernel features (Bordelon et al., 2020; Mei et al., 2022;
Cui et al., 2021; 2022). (Ba et al., 2022) showed that Gaus-
sian universality is preserved on the random features model
when the weights are trained at order one steps, but break if
an extensive number of steps are taken. Beyond the realm
of theorems, (Loureiro et al., 2021a) provided numerical
evidence of Gaussian universality for a broader class of real-
istic features from trained neural networks. On a close line,
(Gerace et al., 2023) studied the Gaussian universality for
pure random labels, while (Bordelon et al., 2020; Spigler
et al., 2020; Jacot et al., 2020; Loureiro et al., 2021a; Cui
et al., 2021; Wei et al., 2022) has numerically shown that for
ridge regression in particular, the Gaussian formula captured
the learning curves of some simple real datasets.

2. Setting & Motivation
Let (xν , yν) ∈ Rd × Y denote ν=1, · · · , n pairs of inde-
pendently sampled training points. We shall be interested
in studying the properties of generalized linear estimation
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ŷ(x) = f̂(θ⊤x) with weights θ ∈ Rd learned from the
training data by minimizing the following empirical risk:

R̂λ
n(θ) =

1

n

n∑
ν=1

ℓ

(
yν ,

θ⊤xν

√
d

)
+ λr(θ) (1)

where ℓ : Y × R → R+ is a convex loss function and
r : Rd → R is a convex penalty. For example, this includes
the particular case of ridge regression where ℓ(y, ŷ) = (y−
ŷ)2 and r(θ) = ||θ||22. The key quantities of interest in
the following will be the training and generalization error,
defined as:

εtr(θ̂) =
1

n

n∑
ν=1

ℓ

(
yν ,

θ̂
⊤
xν

√
d

)
(2)

εgen(θ̂) = E

[
g

(
ynew, f̂

(
θ̂
⊤
xnew√
d

))]
(3)

where g : Y × R → R+ is a performance metric of
the choice of the statistician, not necessarily equal to
the loss function ℓ(y, ŷ). For example, in the case of
binary classification with Y = {−1,+1}, we can take
ℓ(y, ŷ) = log(1 + e−yŷ) to be the logistic loss, while tak-
ing g(y, ŷ) = I [y ̸= ŷ] to be the classification error. Note
that in eq. (3) the expectation is taken over a new data pair
(xnew, ynew) which we assume is independently drawn from
the same distribution of the training data.

In particular, we will be interested in characterizing these
errors under the assumption that the labels have been gener-
ated by the following target distribution:

yν ∼ P0

(
·
∣∣ θ0⊤xν

√
d

)
(4)

for some fixed vector θ0 ∈ Rd and distribution P0. A com-
mon choice for P0 is yν = f0

(
θ0

⊤xν
√
d

+ ξ
)

for additive
Gaussian noise ξ ∼ N (0,∆). This setting is sometimes
referred to as a teacher-student setting. We will sometimes
adopt this convenient terminology, refereeing to the target
distribution P0 as the teacher and θ0 ∈ Rd as the teacher
weights. Similarly, we will sometimes refer to the model
ŷ as the student and θ̂ ∈ Rd the student weights. As previ-
ously mentioned, we shall be considering both regression
Y = R and binary classification Y = {−1,+1}.

This model has been the subject of a plethora of works in
the high-dimensional statistics literature over the past few
years, in particular under the Gaussian design assumption:
Model 2.1 (Gaussian covariate model). In the Gaussian
covariate model (GCM), we assume the inputs are indepen-
dently drawn from a Gaussian distribution:

xν ∼ N
(

µ√
d
,Σ

)
, ν = 1, · · · , n. (5)

We denote Gθ0,Σ,µ the teacher-student problem under this
data assumption.

A key motivation for this work is the common intuition that
data from standard classification tasks such as MNIST are
closer to multi-modal distributions than to a single-mode
Gaussian. Therefore, in this manuscript, we ask ourselves
the question: “when is Gaussian data all you need?”. In par-
ticular, we focus our attention on a prototypical distribution
to model multi-modal data (and a universal approximator of
densities): the K cluster Gaussian mixture:

Model 2.2 (Gaussian mixture model). In the Gaussian mix-
ture model (GMM), we assume the inputs are independently
drawn from a mixture of K Gaussians:

xν ∼
∑
c∈C

pc N
(
µc√
d
,Σc

)
, ν = 1, · · · , n. (6)

where C := {1, · · · ,K} is the set of possible clusters, and
pc ∈ [0, 1] is the probability of belonging to cluster c ∈ C,
whose means and covariance are given by (µc,Σc). We
assume the following scaling for the means and covariances
of the clusters, as the dimension diverges:

||µc||22 = O(d), tr Σc = O(d), ∀c ∈ C. (7)

We note that despite Model 2.1 being a special case K = 1
of Model 2.2 when the labels yν do not depend on the input
cluster, it will be instructive to treat the K = 1 and K > 1
case as two different models.

3. Main Theoretical Results
In this section, we introduce our main theoretical results
concerning universality of high-dimensional generalized lin-
ear estimation of GMMs. Our result builds on a long line
of works providing an exact asymptotic characterization
of empirical risk minimizers (2) on the proportional high-
dimensional limit for Model 2.1 (Dobriban & Wager, 2018;
Hastie et al., 2022; Thrampoulidis et al., 2018; Loureiro
et al., 2021a). In particular, closer to our derivation are
the rigorous results in (Loureiro et al., 2021b;a). We prove
that the training and generalization errors concentrate in
high-dimensions in a deterministic expression given by the
solution of a set of self-consistent equations. Then we an-
alyze Gaussian universality, provably characterizing a set
of sufficient conditions the learning task must respect such
that the test and training errors of Model 2.2 asymptotically
agree with the ones from Model 2.1.

Since we deal with sequences of random variables, we
will need a rigorous definition of convergence. For two
sequences of numbers (an), (bn), we write

an ≃ bn iff lim
n→∞

an − bn = 0. (8)
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Figure 1. An illustration of Gaussian universality with vanishing regularization λ = 0+ for a selection of datasets (MNIST, Fashion-
MNIST, Cifar10) with a random teacher function, after a random feature map: Generalization (left) and training (right) errors as a function
of the number of samples per dimension α = n/d for ridge regression (top pannels) and logistic classification (bottom pannels). The
solid purple line is the exact asymptotics formula for Gaussian covariates with identity covariance, while the vertical green lines are
the threshold values α⋆(∆) at which an unique minimizer of the loss starts to exist. Dots show numerical simulations for different real
datasets with random features maps. All data follows the Gaussian predictions for the training loss, illustrating Theorems 3.4 and 3.6. In
particular, the separability, or interpolation, threshold is the one of the Gaussian model (see corollary 3.5). Each learning task was run for
two different values for the noise variance corrupting the labels - crosses are associated to ∆ = 3 while pluses to ∆ = 0.3. Error bars are
built using standard deviation over 30 runs.

Accordingly, for two sequences of random variables
(Xn), (Yn), we define closeness in probability by

Xn
P≃ Yn iff Xn − Yn

P→ 0, (9)

where P→ denotes convergence in probability.

3.1. Exact Asymptotics

Our first result is to give closed-form asymptotic charac-
terization of the performance of the minimizer of 2 for the
Gaussian Mixture model 2.2, generalizing the rigorous re-
sults of (Loureiro et al., 2021b):
Proposition 3.1. (Exact asymptotics, informal statement)
Consider the empirical risk minimization problem intro-

duced in eq. (1) under Gaussian mixture data given by
Model 2.2. For any pseudo-Lispchitz performance metric
g, the training and generalization errors (2) converge in
the high-dimensional limit of n, d → ∞ with fixed ratio
α = n/d to deterministic expressions which are entirely de-
termined by the solution of a set of self-consistent replica
saddle-point equations (36).

εtr(θ̂)
P≃ εtr(θ0, {µc}c∈C , {Σc}c∈C)

εgen(θ̂)
P≃ εgen(θ0, {µc}c∈C , {Σc}c∈C)

(10)

In order to emphasize the data model considered, we refer
to the errors in the following as:

εgen/tr(θ̂)
P≃ εGMM

gen/tr (θ0, {µc}c∈C , {Σc}c∈C), if |C| > 1.

(11)

εgen/tr(θ̂)
P≃ εGCM

gen/tr (θ0, {µc}c∈C , {Σc}c∈C), if |C| = 1.

(12)

The key difference between Prop. 3.1 and Thm. 1 from
(Loureiro et al., 2021b) is the distribution of the labels.
While the labels in (Loureiro et al., 2021b) are given by the
GMM cluster index, in Prop. 3.1 we consider labels gener-
ated by the target function (4). The generic proof scheme
from (Loureiro et al., 2021b), which maps the solution to the
study of a so-called approximate message passing algorithm
(Donoho et al., 2009), can be readily adapted to our setting.
Indeed, the approximate message passing scheme in our
scenario is the same, and the only difference in the proof is
to include a teacher in its asymptotic analysis, similarly as
was done in (Cornacchia et al., 2022). While we do not pro-
vide a formal proof of these results, we provide a derivation
of the exact asymptotics based on the replica method. The
full proof of Thm. 3.1 relies on encoding the information
obtained in the replica computation into an AMP sequence,
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and using existing results about the convergence of such
sequences. This is a tedious process that yields no new
insights compared to the replica computation, which we
present in detail in Appendix A.

Once we specified the GMM, and properly defined the ERM
in eq. (1) we can evaluate the expressions in eqs. (2),(3) as
a function of low-dimensional quantities which define the
sufficient statistics of the asymptotic errors, and are also
known as order parameters. We refer to Appendix A for a
detailed discussion.

3.2. Uncorrelated Teachers

An in-depth comparison of the asymptotic expressions for
the errors of Models 2.1 & 2.2 reveals that their key differ-
ence lies in the way the leading target direction θ0 correlate
with the cluster means and covariances. A first step towards
universality is therefore to characterize under which condi-
tions the asymptotic errors are independent of the means.
We make the following assumptions:

Assumption 1. The teacher θ0 respects, ∀(c, c′) ∈ C × C:

lim
n,d→∞

θ⊤
0 µc

d
= 0 (13)

lim
n,d→∞

1

d
θ⊤
0 Σc′

(
λ+

∑
c∈C

V̂ ⋆
c Σc

)−1

µc = 0 (14)

where {V̂ ⋆
c }Kc=1 are the fixed points of the (replica) sad-

dle point equations describing the centered GMM problem.
While the condition in eq. (13) clearly characterizes a mea-
sure of uncorrelation between the teacher vector and the data
distribution, this is not evident for eq. (14). However, in the

particular case of ridge regression,
(
λ+

∑
c∈C V̂

⋆
c Σc

)−1

corresponds exactly to the deterministic equivalent of the
Stieltjes transform of XXT (Couillet & Liao, 2022). There-
fore, it makes sense for this term to appear in the computa-
tions, see Appendix. B for more details.

Assumption 2. The loss function and the teacher distribu-
tion are both symmetric:

ℓ(x, y) = ℓ(−x,−y) (15)
P0 (y|τ) = P0 (−y| − τ) , (16)

and the regularization is an ℓ2 penalty λ/2∥·∥22.

Theorem 3.2. (Mean Universality)

Under Assumptions 1 and 2, the cluster means {µc}c∈C are
not relevant in high-dimensional ERM estimation:

εGMM
gen

(
θ0, {µc}Kc=1, {Σc}Kc=1

)
≃ εGMM

gen

(
θ0,0, {Σc}Kc=1

)
(17)

εGMM
tr

(
θ0, {µc}Kc=1, {Σc}Kc=1

)
≃ εGMM

tr

(
θ0,0, {Σc}Kc=1

)
(18)

Therefore, intuitively mean universality can be achieved
when the label generation process is uncorrelated with the
data structure. In order to prove this result, we exploit the
symmetries induced by Assumptions 1 and 2 to remove
the means from the set of self-consistent replica equations
(36), we refer to Appendix B for a detailed discussion. The
assumptions on the target and loss function are not restric-
tive and are easily satisfied by odd target activation f0 and
margin-based losses of the form ℓ(y, z) = ℓ(yz). Stronger
universality can be shown by simplifying the data structure.
Indeed, if the mixture is homogeneous (in the sense that
all the covariance are identical, a condition often called ho-
moscedasticity in statistics) we have Gaussian universality:

Theorem 3.3. (Gaussian Universality of homoscedastic
GMMs) Under the assumption of 3.2, consider an ho-
moscedastic GMM:

Σc = Σ ∀c ∈ C

Then for all α and ∆, the errors of the GMM are asymptoti-
cally equal to those of a GCM:

εGMM
gen

(
θ0, {µc}Kc=1,Σ

)
≃ εGCM

gen (θ0,0,Σ) (19)

εGMM
tr

(
θ0, {µc}Kc=1,Σ

)
≃ εGCM

tr (θ0,0,Σ) (20)

These results follow in a straightforward way from Theo-
rem 3.2. We have mapped under controllable assumptions a
GMM problem to a simpler Gaussian one.

Additionally, if we consider vanishing regularization, we
can prove that errors are independent of the shape of the
covariance, and therefore we can take an isotropic mixture:

Theorem 3.4. (Covariance universality for λ = 0+) Under
the assumption of Thm. 3.3, assume that it exists a unique
minimizer of the empirical risk (1) with zero regularization.
Then, the test & training errors a homoscedastic GMM (2.2)
estimation problem asymptotically coincide with those of a
centered, isotropic Gaussian model G(θ0,I,0) (2.1).

The proof of this general result is given in Appendix B.

Since the training error for losses such as logistic or hinge
characterizes the separability transition at λ = 0+, an inter-
esting consequence of Thm. 3.4 is the following:

Corollary 3.5. (Universality of linear separability for
homoscedastic GMMs) The location of the separabil-
ity/interpolation transition αc above which the data stop to
be linearly separable is the same for homoscedastic GMMs
and the Gaussian model.

This universality is particularly interesting in light of the de-
tailed study of the separability transition for random teacher
weights and Gaussian data in (Candès et al., 2020). Similar
universality phenomena were observed for the reconstruc-
tion transition in linear estimation in (Abbasi et al., 2019).

5



Are Gaussian data all you need?

Figure 2. An illustration of Gaussian universality with finite regularization λ for a selection of datasets (MNIST, Fashion-MNIST, Cifar10)
with a random teacher function, after a random feature map: Generalization (left) and training (right) errors as a function of the number of
samples per dimension α = n/d. In the upper panel, we show ridge regression on Cifar10 preprocessed with RF and tanh activation,
while the lower one is logistic regression on MNIST with RF and erf activation. The dashed curves are the exact asymptotics prediction
of the Gaussian theory by matching covariance. The good agreement illustrates the property of theorem 3.3. The different colors represent
different regularization strength λ ∈ {0.1, 1, 10} respectively in yellow, blue, and red. Error bars are built over 30 runs.

Surprisingly, if we further consider a square loss minimiza-
tion, the estimation of any GMM (homoscedastic or not!)
under mean universality condition can be mapped to those
of a trivial Gaussian problem:
Theorem 3.6. (Strong universality of the square loss for
λ = 0+) Consider underparametrized learning of GMMs
with general means and covariance respecting the assump-
tions of Theorem 3.2. Set in eq. (1): l(y, ŷ) = (y − ŷ)2

and consider a generic noisy linear teacher activation
P0(τ ; ∆) = N (τ,∆), with ξ ∼ N (0, 1). Then, the training
error for a GMM estimation problem is given by

εGMM
tr

(
θ0, {µc}Kc=1, {Σc}Kc=1

)
≃ (α− 1)∆

α
(21)

Note that the strong universality statement does not hold for
the test error (a counterexample is discussed in Appendix C
using a strongly heteroscedastic case). However, as we see
from Fig. 1, it seems surprisingly true that random teacher
regression on real data follows the Gaussian asymptotic pre-
diction in the underparametrized region. Moreover, we ob-
serve in the lower panel of Fig. 1 that even for non-quadratic
losses we can draw a similar conclusion, and we investigate
this further in the next section.

Finally, we note that in the limit of infinite noise and binary
labels, our results give back the ones observed for purely
random Rachemacher labels proven in (Gerace et al., 2023).

3.3. Correlated Teachers

We now consider the general case where the target weights
correlate with the structure in the data, relaxing the assump-
tions in Theorem 3.2. Can we still say something? Our
first result shows that the answer is yes. We focus on a
simple controlled setting in which we can express the ERM
performance in a closed form for any teacher vector:

Theorem 3.7. (Exact asymptotics for isotropic covariance)
Consider a ridge regression task with a 2-clusters GMM

(2.2). Note that, without loss of generality we can take
µ+ = −µ− = µ. Assume isotropic covariances:

Σ+ = Σ− = Σ = Id, (22)

and denote:

ρ = lim
d→∞

1

d
θ⊤
0 Σθ0, γ = lim

d→∞

1

d
||µ||22 (23)

π = lim
d→∞

1

d
µ⊤θ0 P0(τ ; ∆) = N (τ,∆). (24)

Defining:

A(η) =
(η − 1)2

(
γη2 + 2η − 1

)
(∆ + (η − 1)2ρ) (1 + γη)2

with (25)

η = 1 +
1

2

(
α− 1 + λ−

√
4λ+ (α− 1 + λ)

2

)
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The asymptotic errors admit a closed-form expression in
terms of η:

εGMM
gen (θ0,µ±,Σ) ≃ g(α,∆, ρ, η)(1− π2A(η)) (26)

εGMM
tr (θ0,µ±,Σ) ≃ t(α,∆, ρ, η)(1− π2A(η)) (27)

where g and t are the asymptotic limits of the generalization
εGCM

gen (θ0,0, I) and training εGCM
tr (θ0,0, I) error for a sin-

gle Gaussian model with unit covariance and uncorrelated
teacher:

g(α,∆, ρ, η) =
α
(
∆+ (η − 1)2ρ

)
(α− η2)

(28)

t(α,∆, ρ, η) =
(α− η)2

(
∆+ (η − 1)2ρ

)
α (α− η2)

(29)

The full closed-form expressions are derived in Appendix C.
Note that the correction factor to the Gaussian performance
scales with π2, a measure of the correlation between teacher
vector and data structure. Hence, we would be tempted to
state that targets that correlate with the data structure, i.e.
π ̸= 0, always break Gaussian universality. Although this
is usually the case, in the limit of vanishing regularization
we are in the position to present an interesting corollary of
Theorem 3.7:

Corollary 3.8. (Restoration of universality for λ = 0+)
Consider the same setting of Theorem 3.7, further consider
underparametrized learning in the limit of vanishing regu-
larization. Then, the test and training errors for a GMM
estimation are equal to a Gaussian one for any teacher
vector (that is eqs (26) and (27) at η = 0):

εGMM
gen (θ0,µ±,Σ) = ∆

α

α− 1
(30)

εGMM
tr (θ0,µ±,Σ) = ∆

(α− 1)

α
(31)

We thus restore Gaussian universality for correlated teach-
ers in the underparametrized regime, in a similar fashion
to what Theorem 3.4 is stating for general convex losses
and covariances under the mean universality condition. The
universality property for correlated teachers is valid also
for more general homoscedastic mixtures with identity co-
variance. For the sake of brevity, we refer to Appendix C
where we discuss in detail this interesting extension to more
general homoscedastic mixtures.

4. Illustration on Synthetic and Real Datasets
In this section, we investigate the consequences of our main
theoretical results. First, we consider the case of real data,
illustrating the applicability of our universality theorems
in cases in which the target is not correlated with the data
structure. Based on these observations we move on to study-
ing simple synthetic settings described in Theorem 3.7 and

for which we can derive analytical results and systemati-
cally probe Gaussian universality. All the codes used in our
experiments are available in a GitHub repository.

4.1. Random Teacher Universality

We analyze Gaussian universality of real data under the
random teacher function assumptions of Theorem 3.2. We
consider three standard datasets: MNIST, Fashion-MNIST,
and grayscale CIFAR-10, as well as synthetic data.

Universality with random feature maps — To go be-
yond simple linear fit, we pre-process the data with a random
feature map (Rahimi & Recht, 2007) as follows: take an
image ων ∈ Rd′

and map it to xν = σ(Fων), where the
elements F ∈ Rd×d′

are i.i.d drawn from N (0, 1) and σ(·)
is an activation function. As shown in (Rahimi & Recht,
2007), for d → ∞ this converges to a kernel method. For
each dataset we take a different non-linearity (erf ,tanh, and
sign as described in Fig. 1). We then build new labels by
plugging in eq. (4) θ0 ∼ N (0, Id), and we set for regres-
sion tasks f0(τ) = τ + ∆, while for classification tasks
f0(τ) = sign(τ +∆).

First, we analyze the vanishing regularization case in Fig. 1:
random teacher regression on pre-processed real datasets
respects the strong universality of the training loss as stated
in Theorem 3.6. Interestingly, we also observe a perfect
match between the Gaussian asymptotics prediction and
the simulations in Fig. 1 for the generalization error. This
suggests that after the random features map the data is suffi-
ciently close to a homoscedastic mixture. Further, the lower
panel of Fig. 1 shows that the strong universality property
seems to hold beyond square loss minimization.

We analyze as well the finite regularization setting in Fig. 2:
we compare the simulations on real data with the prediction
of the exact Gaussian asymptotics: we match the covariance
of each pre-processed real dataset and compute the perfor-
mance of the ERM estimator thanks to the deterministic
replica formula. 3.1. The predictions of the Gaussian theory
match the numerical simulations. As discussed for Fig. 1, it
seems that the homoscedasticity assumption in Theorem 3.3
can be sometimes relaxed.

Universality of the double descent phenomena — One
finding in modern machine learning that goes against the
classical statistical theory wisdom is the double descent be-
havior of learning curves (Opper & Kinzel, 1996; Belkin
et al., 2019; Spigler et al., 2019; Mei & Montanari, 2019),
see the upper panel of Fig. 1: the test error does not de-
teriorate as the number of parameters is increased with a
characteristic divergence at α = 1, known as the interpola-
tion peak. As shown in Fig. 1 and Fig. 2, the generalization
error and its characteristic “double descent” behavior for
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Figure 3. An illustration of Gaussian universality for Training, and lack thereof for Generalization at vanishing regularization. Instead
of a random feature map as in Fig. 1, we pre-processed grayscale Cifar10 with wavelet scattering (blue dots) or orthogonal Hadamard
projections (yellow dots), or used directly the raw data (red dots). Using again a random teacher function, the training error is found to
agree perfectly with the universal Gaussian asymptotics predictions with identity covariance and λ = 0+, as for theorem 3.6, but the
generalization is found to show clear deviation. This highlights the roles of heteroscedasticity in the data. Error bars are built over 30 runs.

α > 1 is universal for homoscedastic data, while the train-
ing error appears universal even for heteroscedastic data
(see Fig. 3).

Universality of linear separability — Recently, (Candès
et al., 2020) investigated the linear separability of Gaus-
sian data with a random teacher and noise ∆, generalizing
the classical results by (Cover, 1965) to a single-index tar-
get. (Candès et al., 2020) has shown the existence of a
critical phase transition αc(∆) that goes continuously from
αc(∞) = 2 (for infinite noise) to αc > 2 for finite ∆ (with
αc → ∞ as ∆ → 0). As discussed in corollary 3.5, this
transition is universal for homoscedastic mixtures. The inter-
est of this transition thus extends way beyond Gaussian data
and in fact agrees with the real data experiment in Figs. 1
and 2. As for the double descent phenomena, we believe it
is a very interesting consequence of our theorems that the
theoretical works mentioned above are valid way beyond
the simple Gaussian assumption.

Non-universal behavior for generalization — Finally,
we implemented different transforms beyond random fea-
tures for the pre-processing step: we considered the wavelet
scattering transform (Andreux et al., 2020), orthogonal ran-
dom projections (Choromanski et al., 2017), and even no
transform at all. Without the shuffling of the random projec-
tion, the fact that the data are complex and probably rather
heteroscedastic than homoscedastic, we expected a weaker
form of universality. We present the results of ridge regres-
sion with labels generated by a random teacher vector in
Fig. 3. The strong universality statement in Theorem 3.6,
which did not require any assumption on the data, remains
valid and we observed a perfect collapse of the training data.
However, as expected, the generalization error shows clear

deviations with respect to the Gaussian behavior. Presum-
ably, these transforms do not homogenize the data enough
such that Gaussian universality for the test error to hold.

4.2. Correlated Teachers

Previously, we showed that ridge regression with a random
teacher model, even when the data is structured, can lead
to universal behavior. We now consider the dual task: take
a simple homogeneous model for the data and study cor-
related target weights. Indeed, some recent works have
studied examples of the lack of universality between Gaus-
sian mixtures and Gaussian models (Tomasini et al., 2022;
Ingrosso & Goldt, 2022); we want to follow this direction
and use the setting described in Theorem 3.7: we consider a
2-cluster GMM with opposite means of norm µ and same
covariance Σ. We build a series of learning tasks at fixed
(α, λ) varying the overlap between the teacher vector and
the cluster means as follows:

θ0(Ω) = Ωµ⊥ +
√
1− Ω2µ (32)

such that µ⊤µ⊥ = 0 (33)

The results are presented in Fig. 4 for both ridge and logis-
tic regression. They clearly show that a small correlation
between the target weights and the mixture means breaks
Gaussian Universality. A neat geometrical intuition of the
result is given in Fig. 4: as we decrease Ω, we generate
labels that are more and more correlated with the data distri-
bution, and consequently there is a correction factor to the
Gaussian prediction as Theorem 3.7 predicts. We refer to
Appendix. C for a more detailed discussion on correlated
teachers. We conclude that universality is broken in tasks
where the labels are correlated with the structure. Note,
however, that as proven in Corollary. 3.8: the discrepancy
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θ0(Ω = 0.5)

θ0(Ω = 1)

θ0(Ω = 0)

Figure 4. On the importance of the correlation of the task and the structure of the data: Left & Center : Training errors achieved in the
ERM for estimation of 2-cluster GMM with µ+ = −µ− and Σ+ = Σ− = Id, plotted versus a correlation parameter Ω: we build a series
of learning tasks with teacher weights dependent on Ω, namely we take θ0(Ω) = Ωµ⊥ +

√
1− Ω2µ+, with µ⊤

+µ⊥ = 0. We fix the
dimension to be d = 500, and (α, λ) = (1.2, 0.7). The solid black line is the theoretical prediction coming from Gaussian asymptotics.
The solid red line is the theoretical prediction for the GMM performance, while the orange dots are the numerical simulations that agree as
expected with the theoretical prediction. In the left panel, we have real labels and perform ridge regression, while on the central one, we
consider binary labels and perform logistic regression. The error bars are built using standard deviation over 30 runs. Right: Geometrical
intuition plotted for d = 2. Three hyperplanes (lines in 2D) are displayed correspondent to Ω = {0, 0.5, 1}, respectively in green, blue,
and orange. As Ω increase the labels become more uncorrelated with the data structure.

between the GMM prediction and the Gaussian one goes to
zero for any correlation measure Ω as λ → 0+, where the
universality is restored as suggested by Thm. 3.6.

To conclude, and to give a short answer to the question
asked in the title, we find that while Gaussian data are not
all you need, they seem more valuable, and certainly more
relevant, than would be naively thought.
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Denny Wu & Lenka Zdeborová for useful discussions. We
acknowledge funding from the Swiss National Science
Foundation grant SNFS OperaGOST, 200021 200390 and
the Choose France - CNRS AI Rising Talents program.

References
Abbasi, E., Salehi, F., and Hassibi, B. Universality in learn-

ing from linear measurements. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Gar-
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A. Replica Computation
A.1. Formal Statement of the Theorem

We first provide the full statement of Proposition 3.1. Consider a minimization problem of the form

θ̂ = argmin
θ∈Rd

1

n

n∑
ν=1

ℓ
(
yν ,θ⊤xν

)
+ r(θ), (34)

where the data (xν , yν) is generated according to the following Gaussian mixture model:

xν ∼
∑
c∈C

pc N
(
µc√
d
,Σc

)
and yν ∼ P0(· |θ⊤

0 x
ν) (35)

and assume the following:

1. The functions ℓ(y, ·) and r are continuous and coercive, and the function ℓ(y, ·) + r(·) is strongly convex,

2. The covariance matrices Σc are positive definite, and their spectral norms are uniformly bounded,

3. The means µc/
√
d and the teacher vector θ0 are uniformly bounded,

4. the number of clusters |C| is finite,

5. the distribution P0 is sub-gaussian with uniformly bounded norm.

Then, as n, d → ∞ with n/d → α > 0, we have

εtr(θ̂)
P≃
∑
c∈C

pc Eω
(s)
c ,ω

(t)
c ,y

[
ℓ
(
y,proxV ⋆

c ℓ(y,·)(ω
(s)
c )
)]

=: εtr(θ0, {µc}c∈C , {Σc}c∈C)

εgen(θ̂)
P≃
∑
c∈C

pc Eω
(s)
c ,ω

(t)
c ,y

[
ℓ
(
y, ω(s)

c

)]
=: εgen(θ0, {µc}c∈C , {Σc}c∈C)

(36)

where (
ω
(s)
c

ω
(t)
c

)
∼ N

([
πc

h⋆
c

]
,

[
ρc m⋆

c

m⋆
c q⋆c

])
and y ∼ P0

(
·
∣∣ω(t)

c

)
. (37)

and the prox function is

proxf (x) = min
z∈R

[
1

2
(z − x)2 + f(z)

]
(38)

The overlaps used in the equation are defined as follows:

ρc =
1

d
θ⊤
0 Σcθ0, πc =

1

d
θ⊤
0 µc, (39)

and (V ⋆
c , q

⋆
c ,m

⋆
c , h

⋆
c)c∈C are the unique fixed point of the following set of self-consistent replica saddle-point equations:

V̂c = αpcEξc∼N (0,1)

[∫
dy Z0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
∂ωfℓ(y, hc +

√
qcξc, Vc)

]
q̂c = αpcEξc∼N (0,1)

[∫
dy Z0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
fℓ(y, hc +

√
qcξc, Vc)

2
]

m̂c = αpcEξc∼N (0,1)

[∫
dy ∂ωZ0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
fℓ(y, hc +

√
qcξc, Vc)

]
ĥc = αpcEξc∼N (0,1)

[∫
dy Z0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
fℓ(y, hc +

√
qcξc, Vc)

]


Vc = E
{ξc}

i.i.d∼ N (0,Id)

[
η̂⊤q̂

−1/2
c Σ

1/2
c ξc

]
qc = E

{ξc}
i.i.d∼ N (0,Id)

[
η̂⊤Σcη̂

]
mc = E

{ξc}
i.i.d∼ N (0,Id)

[
θ⊤
0 Σcη̂

]
hc = E

{ξc}
i.i.d∼ N (0,Id)

[
µ⊤

c η̂
]

(40)
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and we have defined the following auxiliary functions:

Z0(y, ω, V ) =

∫
dλ√
2πV

P0(y|λ) e−
(λ−ω)2

2V (41)

fℓ(y, ω, V ) = −V −1∂ωMV ℓ(y,·)(ω) = V −1
(
proxV ℓ(y,·)(ω)− ω

)
. (42)

Finally, the auxiliary variable η̂ is a function of {ξc, V̂c, m̂c, q̂c, ĥc}:

η̂ = proxr(Σ̂−1/2·)

(
Σ̂−1/2

(∑
c∈C

µ̂c +
√
q̂cΣ

1/2
c ξc

))
(43)

with
µ̂c = ĥcµc + m̂cΣcθ0 and Σ̂ =

∑
c∈C

V̂cΣc (44)

We will not prove this theorem, since the proof is virtually equivalent to the one in (Loureiro et al., 2021b; Cornacchia et al.,
2022). Instead, the next sections are dedicated to the derivation of these equations, using the so-called replica method from
statistical physics (Mezard et al., 1987). Simpler particular cases of these equations can be found in Appendix A.9.

A.2. Gibbs Measure and Free Energy

The starting point for our replica computation is to define the Gibbs measure over the weights W ∈ RK×d:

µβ(θ) =
1

Zβ
e
−β

[
n∑

ν=1
ℓ(yν ,θ⊤xν)+λr(θ)

]
=

1

Zβ
e−βr(θ)

n∏
ν=1

e−βℓ(yν ,θ⊤xν) (45)

where β > 0 is a parameter we eventually want to send to β → 0+, and Zβ ∈ R is the partition function (the normalization
of the Gibbs measure). For convenience, we will define the following useful notation:

Pθ(θ) ≡ e−βr(θ), Pℓ(y
ν |θ⊤xν) ≡ e−βℓ(yν ,θ⊤xν) (46)

which allows us to write the Gibbs measure as:

µβ(θ) =
1

Zβ
Pθ(θ)

n∏
ν=1

Pℓ(y
ν |θ⊤xν) (47)

When β → ∞, the Gibbs measure µβ will concentrate around the θ that minimizes the empirical risk (1). As a result, the
free energy density is defined as

−βfβ = lim
d→∞

1

d
E logZβ (48)

where the limit is taken with n/d = α fixed, and the expectation is over the distribution of the data, will concentrate around
the minimum risk. In order to take the expectation explicitly, we use the replica trick:

logZβ = lim
s→0+

1

s
∂sZs

β |s=0 (49)

Therefore, the replica computation boils down to the computation of the averaged replicated partition function:

EZs
β = E

[∫
Rd

dθ Pθ(θ)

n∏
ν=1

Pℓ

(
yν |θ⊤xν

)]s
(50)

=

n∏
ν=1

E(xν ,yν)

∫ s∏
a=1

dθa Pθ(θ
a)Pℓ

(
yν |θa⊤xν

)
(51)
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A.3. Taking the Average Over the Data

The main difference in this computation with respect to the usual binary Gaussian mixture is that the labels are generated by
a teacher target function. In other words, the joint distribution of the data is given by:

Pθ0
(x, y) = P0(y|τ)

∑
c∈C

ρc N
(
x;

µc√
d
, Id

)
(52)

where P0(y|τ) is the probability induced by the teacher activation f0(τ). The expression in (51) can then be written as:

EZs
β =

∫ s∏
a=1

dθa Pθ(θ
a)

(∫
R
dy

∫
Rd

dxP0(y|θ⊤
0 x)Px(x)

s∏
a=1

Pℓ

(
yν |θa⊤xν

))n

(53)

We make a change of variables by introducing the local fields τ = θ⊤
0 x and λa = θa⊤x. The distribution of the local fields

will be a Gaussian mixture itself, and we can compute the moments for each mode:

πc ≡ Exν [τc] =
1

d
θ⊤
0 µc

ρc ≡ Varxν [τc] =
1

d
θ⊤
0 Σcθ0

ha
c ≡ Exν [λa

c ] =
1

d
θa⊤µc

qabc ≡ Covxν

[
λa
c , λ

b
c

]
=

1

d
θa⊤Σcθ

b

ma
c ≡ Covxν [τc, λ

a
c ] =

1

d
θ⊤
0 Σcθ

a

(54)

Equivalently, the local fields distribution is the following low-dimensional Gaussian mixture distribution:

P (τ,λ) =
∑
c∈C

pc N
([

πc

hc

]
,

[
ρc m⊤

c

mc Qc

])
, (55)

where we have defined the vectors m,h ∈ Rs with entries ma, ha and the matrix Q ∈ Rs×s with entries qab. Therefore,
we can factorize the partition function by only integrating over the local field distribution:

EZs
β =

∫ s∏
a=1

dθa Pθ(θ
a)

[∫
dy

∫
dτ P0(y|τ)

∫ ( s∏
a=1

dλaPℓ(y|λa)

)
P (τ,λ|m,h, q)

]n
(56)

A.4. Writing as a Saddle-Point Problem

Note that (πc, ρc) are fixed inputs in the problem. By Fourier transform arguments, we can write

δ

(
ma

c −
1

d
θ⊤
0 Σcθ

a

)
=

∫
iR

dm̂a
c

2π
em̂

a
c(dm

a
c−θ⊤

0 Σcθ
a), (57)

where the integral is on the imaginary line. By doing the same arguments for the qabc and ha
c , it ensures that:

EZs
β =

∫ ∏
c∈C

s∏
a=1

dma
cm̂

a
c

2π

dha
c ĥ

a
c

2π

∏
1≤a≤b≤s

dqabc dq̂abc
2π

edΦ
(s)
rs (m,m̂,q,q̂) (58)

where we have defined the free energy potential:

Φ(s)
rs (m, m̂, q, q̂) =

∑
c∈C

 s∑
a=1

m̂a
cm

a
c +

s∑
a=1

ĥa
ch

a
c +

∑
1≤a≤b≤s

q̂abc qabc

− αΨ(s)
g (m,h, q)−Ψ

(s)
θ (m̂, ĥ, q̂)

Ψ
(s)
ℓ (m,h, q) ≡ log

∫
dy

∫
dτ P0(y|τ)

∫ s∏
a=1

dλaPℓ(y|λa)P (τ,λ|m,h, q)

Ψ
(s)
θ (m̂, ĥ, q̂) ≡ 1

d
log

∫ s∏
a=1

dθa Pθ(θ)
∏
c∈C

e

s∑
a=1

[ĥa
cθ

a⊤µc+m̂aθ⊤
0 Σcθ

a]+
∑

1≤a≤b≤s

q̂ab
c θa⊤Σcθ

b

(59)
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Therefore, as we take the d → ∞ limit, we can apply the saddle-point method (Mezard et al., 1987) to compute fβ :

−βfβ = extr
m,m̂,h,ĥ,q,q̂

lim
s→0+

Φ(s)(m, m̂,h, ĥ, q, q̂)

s
(60)

Remark A.1. We have introduced the parameters q̂, m̂, ĥ as pure imaginary numbers, but the optimization problem considers
them as real numbers. This stems from the fact that the function Φ is holomorphic, so the integral is independent of the
contour of integration. More details can be found in (Talagrand, 2022).

A.5. Replica Symmetric Ansatz

In order to make progress with the s → 0+ limit, we make the following replica symmetric ansatz:

ma
c = mc m̂a

c = m̂c, a = 1, · · · , s

ha
c = hc ĥa

c = ĥc, a = 1, · · · , s

qaac = rc, q̂aac = −1

2
r̂c, a = 1, · · · , s

qabc = qc, q̂aac = q̂c, 1 ≤ a < b ≤ s (61)

for all c ∈ C. Since ℓ and r are convex, the function Φ(s) has a unique saddle point, which must therefore coincide with the
replica symmetric ansatz. We also define

Vc = rc − qc, and V̂c = r̂c − q̂c (62)

By inserting this ansatz above, we can take the s → 0+ limit. This is done through a classical but computationally heavy
method known as the Hubbard-Stratonovich transform; details can be found in (Gerace et al., 2020), Appendix C. We
simply reproduce the final results here:

−βfβ = extr
{mc,m̂c,hc,ĥc,qc,q̂c,Vc,V̂c}

Φrs({mc, m̂c, hc, ĥc, qc, q̂c, Vc, V̂c}) (63)

The replicated free energy Φrs is given by the following formula:

Φrs({mc, m̂c, hc, ĥc, qc, q̂c, Vc, V̂c}) =
∑
c∈C

[
1

2

(
V̂cqc − q̂cVc

)
− 1

2
V̂cVc + m̂cmc + ĥchc

]
(64)

− αΨℓ({mc, hc, qc, Vc})−Ψθ({m̂c, ĥc, q̂c, V̂c})
(65)

where we have decomposed the contributions coming from the loss (Ψℓ) and the regularization (Ψθ):

Ψℓ =
∑
c∈C

E
ξc

i.i.d∼ N (0,1)

∫
dyZ0

(
y,

mc√
qc
ξ + πc, ρ−

m2
c

qc

)
logZℓ(y, hc +

√
qc ξc, Vc) (66)

Ψθ =
1

d
E
ξc

i.i.d∼ N (0,Id)
logZθ

(∑
c∈C

V̂cΣc,
∑
c∈C

ĥcµc + m̂cΣcθ0 +
√
q̂cΣ

1/2
c ξc

)
, (67)

and defined the following auxiliary free energies:

Zℓ/0(y, ω, V ) =

∫
dλ√
2πV

Pℓ/0(y|λ) e−
(λ−ω)2

2V (68)

Zθ(A, b) =

∫
dθe−βr(θ)e−

1
2θ

⊤Aθ+b⊤θ (69)
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A.6. Taking the Zero Temperature Limit

In order to take the β → ∞ limit, we make the following rescalings:

Vc → β−1Vc V̂c → βV̂c q̂c → β2q̂c m̂c → βm̂c. (70)

It is easy to check how this rescaling affects β−1Φ(rs), so we only need to consider Ψℓ and Ψθ.

We start with the latter: letting

Lθ(θ) =
1

2
θ⊤Aθ − b⊤θ + r(θ)

by the Laplace method for any A, b,

lim
β→∞

1

β
logZθ(βA, βb) = − inf

θ
Lθ(θ) = −Lθ(η) (71)

where
η = proxr(A1/2·)(A

1/2b). (72)

As a result, every integral involved in Ψθ (and, later, its partial derivatives) concentrates around its value at η̂ defined in (43).
For the term Ψℓ, the term Z0 is left unchanged, and by the same reasoning as above

lim
β→∞

1

β
logZℓ(y, ω, βV ) = −V −1MV ℓ(y,·)(ω). (73)

A.7. Saddle-Point Equations

The saddle-point equations are obtained by taking the derivatives of the free energy potential with respect to the overlap
parameters. We obtain a set of self-consistent equations which we should solve in order to find a fixed point:

V̂c = αpcEξc∼N (0,1)

[∫
dy Z0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
∂ωfℓ(y, hc +

√
qcξc, Vc)

]
q̂c = αpcEξc∼N (0,1)

[∫
dy Z0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
fℓ(y, hc +

√
qcξc, Vc)

2
]

m̂c = αpcEξc∼N (0,1)

[∫
dy ∂ωZ0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
fℓ(y, hc +

√
qcξc, Vc)

]
ĥc = αpcEξc∼N (0,1)

[∫
dy Z0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
fℓ(y, hc +

√
qcξc, Vc)

] (74)



Vc = E
{ξc}

i.i.d∼ N (0,Id)

[
η̂⊤q̂

−1/2
c Σ

1/2
c ξc

]
qc = E

{ξc}
i.i.d∼ N (0,Id)

[
η̂⊤Σcη̂

]
mc = E

{ξc}
i.i.d∼ N (0,Id)

[
θ⊤
0 Σcη̂

]
hc = E

{ξc}
i.i.d∼ N (0,Id)

[
µ⊤

c η̂
] (75)

where all the relevant quantities have been defined in Appendix A.1.

A.8. Training and Generalization Errors

It now remains to compute the training and generalization errors from the free energy. Recalling that

εtr(θ̂) =
1

n

n∑
ν=1

ℓ
(
yν , θ̂

⊤
xν
)
,

we can write using the definition of the free energy (48):

lim
n→∞

εtr = lim
β→∞

∂βfβ − r(θ̂).

Computing explicitly the derivative and averaging again over the data yields

lim
n→∞

εtr = − lim
β→∞

∂βΨℓ,
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where Ψℓ is the free energy contribution of the loss defined in (66). Writing explicitly this derivative,

−∂βΨℓ =
∑
c∈C

Eξc∼N (0,1)

∫
R
dy

Z0

(
y, ω

(0)
c , ρ− m2

c

qc

)
Zℓ(y, ω

(ℓ)
c , Vc)

∫
R

dλ√
2πVc

e−(λ−ω(ℓ)
c )V −1

c (λ−ω(ℓ)
c ,Vc))−βℓ(y,λ)ℓ(y, λ)︸ ︷︷ ︸

Z̃ℓ(y,ω
(ℓ)
c ,Vc)

(76)

where

ω(0)
c = πc +

mc√
qc
ξc and ω(ℓ)

c = hc +
√
qcξc.

We can now make the change of variables in (70), and use again Laplace’s approximation: if

ηc = proxV ℓ(y,·)(ω
(ℓ)
c ) and L(λ) = −(λ− ω(ℓ)

c )V −1
c (λ− ω(ℓ)

c )− βℓ(y, λ),

then

Zℓ(y, ω
(ℓ)
c , Vc) ∼ e−βL(ηc) and Z̃ℓ(y, ω

(ℓ)
c , Vc) ∼ e−βL(ηc)ℓ(y, ηc),

and all of the overlaps will concentrate around the solutions of (74), (75). Finally, the term containing Z0 is an expectation
of y according to P0(y | τc), where

τc = ω(0)
c +

√
ρ− m2

c

qc
ξ(0)c

and ξ
(0)
c is a Gaussian variable independent from everything else. Putting all together, we can write

lim
n→∞

εtr(θ̂) =
∑
c∈C

pc Eνc,τc,y

[
ℓ
(
y,proxV ⋆

c ℓ(y,·)(νc)
)]

(77)

with (
νc
τc

)
∼ N

([
πc

hc

]
,

[
ρc m⋆

c

m⋆
c q⋆c

])
and y ∼ P0(· | τc). (78)

The generalization error is much simpler to obtain: since xnew, ynew are independent from the estimator θ̂, we simply have

lim
n→∞

εgen(θ̂) =
∑
c∈C

pc Eνc,τc,y [ℓ (y, νc)] (79)

where νc, τc, y follow the same distribution as above.

A.9. Examples

Ridge penalty Consider a particular case of the general equations reported above: the case of a ridge penalty

r(θ) =
λ

2
||θ||22.

We then have:

proxr(x) = (1 + λ)−1x (80)
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which simplifies the prior equations considerably. Indeed, we can now compute every expectation in (75), which yields the
following fixed-point equations:

V̂c = −αpcEξc∼N (0,1)

[∫
dy Z0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
∂ωfℓ(y, hc +

√
qcξc, Vc)

]
q̂c = αpcEξc∼N (0,1)

[∫
dy Z0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
fℓ(y, hc +

√
qcξc, Vc)

2
]

m̂c = αpcEξc∼N (0,1)

[∫
dy ∂ωZ0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
fℓ(y, hc +

√
qcξc, Vc)

]
ĥc = αpcEξc∼N (0,1)

[∫
dy Z0

(
y, πc +

mc√
q
c
ξc, ρc − m2

c

qc

)
fℓ(y, hc +

√
qcξc, Vc)

] (81)



Vc = 1
d tr

[
Σc

(
λId + Σ̂

)−1
]

qc = 1
d tr

[( ∑
c′∈C

q̂c′Σc′ +
∑

c′,c′′∈C
µ̂c′µ̂

⊤
c′′

)
Σc

(
λId + Σ̂

)−2
]

mc = 1
d tr

[( ∑
c′∈C

µ̂c′θ
⊤
0

)
Σc

(
λId + Σ̂

)−1
]

hc = 1
d tr

[( ∑
c′∈C

µ̂c′µ
⊤
c

)(
λId + Σ̂

)−1
]

(82)

Gaussian covariate model The equations for the Gaussian covariate model can be found in (Loureiro et al., 2021a); they
also correspond to taking |C| = 1 in the ones above. We reproduce them here for completeness:

V̂ = −αEξ∼N (0,1)

[∫
dy Z0

(
y, π + m√

q ξ, ρ−
m2

q

)
∂ωfℓ(y, h+

√
qξ, V )

]
q̂ = αEξ∼N (0,1)

[∫
dy Z0

(
y, π + m√

q ξ, ρ−
m2

q

)
fℓ(y, h+

√
qξ, V )2

]
m̂ = αEξ∼N (0,1)

[∫
dy ∂ωZ0

(
y, π + m√

q ξ, ρ−
m2

q

)
fℓ(y, h+

√
qξ, V )

]
ĥ = αEξ∼N (0,1)

[∫
dy Z0

(
y, π + m√

q ξ, ρ−
m2

q

)
fℓ(y, h+

√
qξ, V )

] (83)



V = 1
d tr

[
Σ
(
λId + Σ̂

)−1
]

q = 1
d tr

[(
q̂Σ+ µ̂µ̂⊤

)
Σ
(
λId + Σ̂

)−2
]

m = 1
d tr

[
µ̂θ⊤

0 Σ
(
λId + Σ̂

)−1
]

h = 1
d tr

[
µ̂µ⊤

(
λId + Σ̂

)−1
]

(84)

where this time
µ̂ = ĥµ+ m̂Σθ0 and Σ̂ = V̂ Σ. (85)

The errors are given by

lim
n→∞

εtr(θ̂) = Eν,τ,y

[
ℓ
(
y,proxV ⋆ℓ(y,·)(ν)

)]
(86)

lim
n→∞

εgen(θ̂) = Eν,τ,y [ℓ (y, ν)] (87)

with (
ν
τ

)
∼ N

([
π
h

]
,

[
ρ m⋆

m⋆ q⋆

])
and y ∼ P0(· | τ). (88)

Ridge regression We place ourselves in the ridge regression case, where

P0(τ |∆) = N (τ,∆) l(y, ŷ) = (y − ŷ)2. (89)
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In this case, the equations in (82) simplify even further, yielding
V̂c = αpc

1+Vc

q̂c = αpc

(1+Vc)2
(ρc +∆+ qc − 2mc + (hc − πc)

2)

m̂c = αpc

1+Vc

ĥc = αpc(πc−hc)
1+Vc

(90)



V = 1
d tr

[
Σ
(
λId + Σ̂

)−1
]

q = 1
d tr

[(
q̂Σ+ µ̂µ̂⊤

)
Σ
(
λId + Σ̂

)−2
]

m = 1
d tr

[
µ̂θ⊤

0 Σ
(
λId + Σ̂

)−1
]

h = 1
d tr

[
µ̂µ⊤

(
λId + Σ̂

)−1
]

(91)

The training and generalization error also benefit from a very simple expression

εtr =
∑
c

q̂⋆c
α

εgen =
∑
c

q̂⋆c (1 + V ⋆
c )

2

α
. (92)

B. Universality of Gaussian Mixture Models
In this section, we prove the main results shown in Sec. 3 regarding the universality properties of Gaussian Mixture Models.

B.1. Mean Universality : Proof of Theorem 3.2

Let us rewrite the assumptions here. Let {V̂ ⋆
c }Kc=1 be the fixed points of the (replica) saddle point equations describing the

centered Gaussian mixture problem, i.e. the solutions of eqs. (81), (82). We assume that the teacher vector and the data
structure respect the following:

lim
n,d→∞

θ⊤
0 µc

d
= 0 ∀c ∈ C (93)

lim
n,d→∞

1

d
θ⊤
0 Σc′

(
λ+

∑
c∈C

V̂ ⋆
c Σc

)−1

µc = 0 ∀(c, c′) ∈ C × C (94)

and the loss and teacher are both symmetric:

ℓ(x, y) = ℓ(−x,−y), P0 (y|τ) = P0 (−y| − τ) . (95)

In the saddle-point equations (81), (82), the mean vectors appear always coupled with the overlaps {hc, ĥc}c∈C . Hence, to
prove Prop. 3.2 it suffices to prove the following result:

Lemma B.1. If eqs. (93),(94),(95) hold, then {hc = ĥc = 0}c∈C is a fixed point for the problem.

First consider the update equations for {hc}c∈C :

hc =
1

d

∑
l

tr

(ĥlµlµ
⊤
c + m̂lΣlθ0µ

⊤
c

)(
λId +

∑
l′

V̂l′Σl′

)−1
 (96)

≃
eqs. (93),(95)

1

d

∑
l

tr

(ĥlµlµ
⊤
c

)(
λId +

∑
l′

V̂l′Σl′

)−1
 (97)
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By continuity of the saddle-point equations, if at the fixed point {ĥ⋆
c → 0}c∈C holds, we also easily have that {h⋆

c → 0}c∈C .
Now assume {h⋆

c = 0}c∈C at the fixed point. We exploit the symmetry argument inherent to the update functions to show
that {ĥ⋆

c = 0}c∈C under weak assumptions on the teacher and loss functions. We write the updates using assumption c):

ĥc = αEξ∼N (0,1)

[∫
dy Z0

(
y,

mc√
qc
ξ + πc, ρc −

m2
c

qc

)
fℓ(y, hc +

√
qcξ, V )

]
(98)

≃
hc→0

αEξ∼N (0,1)

[∫
dy Z0

(
y,

mc√
qc
ξ, ρc −

m2
c

qc

)
fℓ(y,

√
qcξ, Vc)

]
(99)

Reminding the definition of the teacher measure term:

Z0(y, ω, V ) = Eλ∼N (ω,V ) [P0(y|λ)] λ ≡ x⊤θ0√
d

(100)

we see that the symmetry conditions impose basic restrictions on the label generation:

f) Eλ∼N (ω,V ) [P0(y|λ)] = Eλ∼N (−ω,V ) [P0(−y|λ)] (101)

and hence Z0 is even in its second argument. Additionally, we have

fℓ(y, ω, V ) =
1

V
(prox V l(y,·)(ω)− ω) prox V ℓ(y,·)(w) = argmin

z

[
1

2V
(z − w)2 + ℓ(y, z)

]
(102)

The symmetry condition on ℓ then implies that

prox V ℓ(−y,·)(−ω) = − prox V ℓ(y,·)(ω), (103)

so fℓ is odd in its second argument. All that’s left to notice is that (99) is a Gaussian integral of an odd function, hence it is
equal to 0.

B.2. Gaussian Universality : Proof of Theorem 3.3

We proved that the fixed point respects {h⋆
c , ĥ

⋆
c = 0, 0}c∈C under the hypothesis of Prop. 3.2. Assume now that the mixture

is homogeneous:

Σc = Σ ∀c ∈ C (104)

Then we have

εGMM
gen

(
θ0, {µc}Kc=1, {Σ}Kc=1

)
≃ εGMM

gen

(
θ0,0, {Σ}Kc=1

)
(105)

εGMM
tr

(
θ0, {µc}Kc=1, {Σ}Kc=1

)
≃ εGMM

tr

(
θ0,0, {Σ}Kc=1

)
(106)

But the right-hand side of those equations corresponds to a distribution of the form

x ∼
∑
c∈C

N (0,Σ) = N (0,Σ)!

This proves Theorem 3.3

B.3. Covariance Universality

Surprisingly in the limit of vanishing regularization, λ → 0+, the covariance is irrelevant for the high dimensional learning
problem. We show that when a unique minimizer of the loss exists, and we can safely take the limit λ → 0+ in the saddle
point equations, the covariance Σ disappears entirely from the overlap expression. Indeed assuming the minimizer θ̂ is
unique, we can safely simplify expressions of the type:

lim
λ→0+

Σn(λId + V̂ Σ)n
′
=

1

V̂
Σn−n′

(107)
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Then by plugging in the λ → 0+ simplification in eqs. (83), (84) we have complete independence from the covariance
matrix Σ: 

V̂ = −αEξ∼N (0,1)

[∫
dy Z0

(
y, mc√

qc
ξ, ρc − m2

c

qc

)
∂ωfℓ(y,

√
qcξ, Vc)

]
q̂ = αEξ∼N (0,1)

[∫
dy Z0

(
y, mc√

q ξ, ρ−
m2

q

)
fℓ(y,

√
qξ, V )2

]
m̂ = αEξ∼N (0,1)

[∫
dy ∂ωZ0

(
y, m√

q ξ, ρ−
m2

q

)
fℓ(y,

√
qξ, V )

] (108)


V = 1

q = q̂ + ρm̂2

m = m̂ρ

(109)

which concludes the proof.

B.4. Strong Universality

We never made any specific assumption on the loss up to now, apart from the very general symmetry condition in Assumption
2. In this section, we show strong universality for square loss regression for any GMM estimation problem respecting the
mean universality property (Prop. 3.2). We assume to consider a ridge regression problem in the underparametrized regime
α > 1:

P0(τ |∆) = N (τ,∆) ℓ(y, ŷ) = (y − ŷ)2 (110)

the replicas then correspond to equations (90), (91). In the λ → 0+ limit, the equation simplify greatly:
V̂c = αpc

1+Vc

q̂c = αpc

(1+Vc)2
(ρc +∆+ qc − 2mc)

m̂c = αpc

1+Vc

(111)


Vc = 1

d tr
[
Σc(
∑

l∈C V̂lΣl)
−1
]

qc = 1
d

∑K
l∈C tr

[
q̂lΣlΣc(

∑
l′∈C V̂l′Σl′)

−2
]
+ 1

d

∑
(l,l)′∈C×C tr

[
m̂lm̂l′Σlθ0θ

⊤
0 Σl′Σc(

∑
l′′∈C V̂l′′Σl′′)

−2
]

mc = 1
d

∑K
l=1 tr

[
m̂lΣlθ0θ

T
0 Σc(

∑
l′ V̂l′Σl′)

−1
] (112)

Consider the equation for the overlaps {qc}c∈C :

qc =
1

d

K∑
l=1

tr

[
q̂lΣlΣc(

∑
l′

V̂l′Σl′)
−2

]
+

1

d

K∑
l,k=1

tr

[
m̂lm̂kΣlθ0θ

T
0 ΣkΣc(

∑
l′

V̂l′Σl′)
−2

]
(113)

≡ Rc +Gc (114)

The error metrics can be decomposed as:

εtr =
∑
c∈C

pc
(1 + Vc)2

(Rc +∆) +
∑
c∈C

pc
(1 + Vc)2

(ρc +Gc − 2mc) (115)

εgen =
∑
c∈C

pc(Rc +∆) +
∑
c∈C

pc(ρc +Gc − 2mc) (116)

We focus on the second term and show that it is equal to zero. Looking at eqs. (112),(111), we note that:

m̂c = V̂c ∀c ∈ C (117)

By using eq. (117) we can simplify the equations for {m̂c, Gc}:

Gc = ρc, mc = ρc ∀c ∈ C (118)
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Plugging these relations in the saddle point equations we obtain:{
V̂c = αpc

1+Vc
= m̂c

q̂c = αpc

(1+Vc)2
(∆ +Rc)

(119)
Vc = 1

d tr
[
Σc(
∑

l∈C V̂lΣl)
−1
]

qc = 1
d

∑K
l=1 tr

[
q̂lΣlΣc(

∑
l′ V̂l′Σl′)

−2
]
+ ρc ≡ Rc + ρc

mc = ρc

(120)

The fixed point of the equations does not depend on {ρc}∈C anymore and we are left with equations only for
{V̂c, q̂c, Vc, Rc}c∈C : {

V̂c = αpc

1+Vc

q̂c = αpc

(1+Vc)2
(∆ +Rc)

(121)Vc = 1
d tr

[
Σc(
∑

l∈C V̂lΣl)
−1
]

Rc = 1
d

∑K
l=1 tr

[
q̂lΣlΣc(

∑
l′ V̂l′Σl′)

−2
] (122)

The errors can be computed in a closed form with a series of algebraic manipulation. One can verify by algebraic
manipulation the following relations:∑

c

VcV̂c =
∑
c

1

d
tr

[
V̂cΣc(

∑
l∈C

V̂lΣl)
−1

]
= 1 (123)

∑
c

RcV̂c − Vcq̂c =
1

d

K∑
l=1

tr

[
q̂lΣl(

∑
c

V̂cΣc)(
∑
l′

V̂l′Σl′)
−2

]
− 1

d
tr

[∑
c

q̂cΣc(
∑
l∈C

V̂lΣl)
−1

]
= 0 (124)

Now we express everything in eq. (123) in terms of the non-hatted overlaps to obtain:

⋆)
∑
c

αpc
1 + Vc

Vc = 1 (125)

#)
∑
c

αpc
(1 + Vc)2

Rc =
∑
c

αpc
(1 + Vc)2

Vc∆ (126)

We remark that we can write the training and generalization error can be written as:

εtr =
∑
c

q̂c
α

εgen =
∑
c

q̂⋆c (1 + V ⋆
c )

2

α
(127)

So if we compute the quantity
∑

c q̂c we conclude. By plugging in (#) into the expression above we obtain:∑
c

q̂c =
∑
c

αpc
(1 + Vc)2

(Rc +∆) (128)

=
(#)

∆
∑
c

αpc
(1 + Vc)2

+∆
∑
c

αpc
(1 + Vc)2

Vc (129)

= ∆
∑
c

αpc
1 + Vc

(130)

and finally using relation (⋆) we prove the theorem:

εtr =
∑
c

q̂⋆c
α

(131)

=
∑
c

q̂⋆c
α

± ∆

α
(132)

=
(⋆)

∆(1− 1

α
) (133)
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Figure 5. Training and generalization error for ridge regression on the GMM defined in eq. (134). Left: We compare the performance of
the Gaussian asymptotics (solid black line) with the GMM one (solid red line), while the orange dots represent simulations that agree with
the theoretical predictions predicted by Theorem 3.1. Right: Two dimensional toy plot of 10000 samples coming from the heterogeneous
Gaussian mixture.

On the other hand, the generalization error does not respect the strong universality statement as we analyze in the next
section (See Fig. 5).

C. Non-universality of Gaussian Mixture Models
In the previous section, we enumerated a series of results unveiling universality of GMM. Now we want to study the dual
task: when GMMs are not universal? We have two ways to break universality: a) allow strong heterogeneity in the data
structure; b) consider labels that are strongly correlated with the data structure. The plan for this section is to review more in
detail these two processes for universality breaking.

C.1. Strongly Heterogeneous Mixtures

We proved in Theorem 3.6 a strong universality statement for the training loss of ridge regression. However, in this section,
we want to clarify that the theorem is not valid beyond its assumption for general mixtures. We prove this by analyzing a
counterexample: a strongly heterogeneous 2-cluster Gaussian Mixture:

Σ+ = diag(0.1, . . . , 0.1, 1.9, . . . , 1.9) p+ = 0.8 (134)
Σ− = diag(1.9, . . . , 1.9, 0.1, . . . , 0.1) p− = 0.2 (135)

We present in Fig. 5 the comparison of the heterogeneous GMM performance with the Gaussian theory: although the
training errors coincide as predicted by Theorem 3.6, the generalization errors are different. However, we remark that real
data after preprocessing seem homogeneous enough to obtain a good agreement with the exact Gaussian asymptotics as we
see in Fig. 1.

C.2. Correlated Teachers

In this section, we investigate in deeper detail the controlled setting of Theorem 3.7. We do not necessarily consider
estimation problems that respect the assumption of mean universality property (Prop. 3.2), and in fact, we precisely analyze
the consequences if we relax these conditions. We perform ridge regression on a two-mixture GMM with opposite means
and the same covariance matrix proportional to Id. In this scenario, the exact asymptotics for the performance of the ERM
estimator admits a closed-form expression. We remind here the main parameters for the theoretical analysis are:

ρ =
1

d
θ⊤
0 Σθ0 =

1

d
∥θ0∥22 γ =

1

d
||µ||22 ∆ = Eξξ

2 µ̂± = ĥ±µ± + m̂±Σθ0 (136)
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In this simple setting we can simplify the general mixture equations in eqs. (83),(84) without doing any assumption on the
teacher. We first map the equation to a single Gaussian problem Gθ,Id,µ. We have to slightly modify the proof of Thm. 3.3
presented in Sec. B.2, indeed we cannot blindly assume that the mean overlaps {h+, h−} are zero but one can show that at
the fixed point the overlaps respect:

ĥ⋆
+ = −ĥ⋆

−, m̂⋆
+ = m̂⋆

− → µ̂⋆
+ = µ̂⋆

− (137)

V̂ = V̂+ + V̂− q̂ = q̂+ + q̂− m̂ = m̂+ + m̂− ĥ = ĥ+ − ĥ− (138)
V = V+ = V− q = q+ = q− m = m+ = m− h = h+ = −h− (139)

the fixed point of the replica equations for the mixture defined above are mapped to the one of a single Gaussian problem
for the overlaps {V,m, q, h, V̂ , m̂, q̂, ĥ}. Now we can simplify them even further by plugging in the assumption on the
covariance, all the traces simplify and we get:

V = 1
λ+V̂

q = V 2
(
q̂ + ρm̂2 + 2πm̂ĥ+ γĥ2

)
m = V

(
ρm̂+ πĥ

)
h = V

(
γĥ+ πm̂

) (140)

These equations are actually solvable! Define

η := V V̂ =
αV

1 + V
;

Now, we know that the generalization error satisfies:

V 2q̂ =
V 2α

(1 + V )2
εgen =

η2

α
(εgen).

We can plug this into the equation for q to get

εgen = ρ+

(
η2

α
(εgen) + ρ(V m̂)2 + 2π(V m̂)(V ĥ) + γ(V ĥ)2

)
︸ ︷︷ ︸

q

−2
(
ρV m̂+ πV ĥ

)
︸ ︷︷ ︸

m

+(π − h)2 (141)

εtr =
εgen

(1 + V )2
(142)

with the relations:
V =

η

α− η
, V m̂ = η, V ĥ = η(π − h)

and the expression of π − h as a function of η:

π − h = π − V (γĥ+ πm̂) = π − γη(π − h)− πη ⇐⇒ π − h = π
1− η

1 + γη
(143)

we simplify everything in terms only of η to get:

εgen =
α
(
∆+ (η − 1)2ρ

)
(α− η2)

(
1− π2 (η − 1)2

(
γη2 + 2η − 1

)
(∆ + (η − 1)2ρ) (1 + γη)2

)
(144)

εtr =
(α− η)2

(
∆+ (η − 1)2ρ

)
α (α− η2)

(
1− π2 (η − 1)2

(
γη2 + 2η − 1

)
(∆ + (η − 1)2ρ) (1 + γη)2

)
(145)

All that remains is to solve for η using the equations for V and V̂ , which yields

η = 1 +
1

2

(
α− 1 + λ−

√
4λ+ (α− 1 + λ)2

)
. (146)
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Vanishing regularization We can take λ = 0 inside (146) even when α < 1, and we find

η(λ = 0) = min(α, 1) (147)

Finally, this yields

εgen =

{
α∆
α−1 α ≥ 1
π2(α−1)(α2γ+2α−1)

(αγ+1)2 − (α−1)2ρ+∆
α−1 else

(148)

εtrain =

{
(α−1)∆

α α ≥ 1

0 else
(149)

We retrieve the results of Corollary. 3.8: even with correlated teachers we show that in the underparametrized regime we
have Gaussian universality.

Extension of Corollary. 3.8: The Gaussian universality result for correlated teachers at vanishing regularization can be
extended as well to more general balanced mixtures with homoscedastic covariance, i.e. the case where

pc =
1

|C|
, Σc = Σ, λ = 0.

In order to do so, we consider the general saddle point equation for ridge regression in eq. (90),(91), and plug in the
assumptions: 

V̂ = α
|C|(1+V )

q̂c = α
|C|(1+V )2 (ρ+∆+ qc − 2m+ (hc − πc)

2)

m̂ = α
|C|(1+V )

ĥc = α(πc−hc)
|C|(1+V )

(150)



V = 1
d tr

[
ΣΣ̂−1

]
qc = 1

d tr
[(

q̂cΣ+ µ̂µ̂⊤
)
ΣΣ̂−2

]
m = 1

d tr
[
µ̂θ⊤

0 ΣΣ̂
−1
]

hc = 1
d tr

[
µ̂µ⊤

c Σ̂
−1
]

(151)

In particular, these assumptions imply that Vc, V̂c,mc, m̂c do not depend on the class labels c, and hence

Σ̂ = V̂ Σ.

Now, consider the assignment
ĥc = 0 and hc = πc; (152)

it is easy to check that they are a fixed point of the above saddle-point equations, since then

hc =
m̂πc

V̂
= πc

Plugging in this relation in the expression of the update for {q̂c}c∈C we obtain:

q̂⋆c =
αpc

(1 + V ⋆
c )

2
(ρc +∆+ q⋆c − 2m⋆

c + (h⋆
c − πc)

2) =
αpc

(1 + V ⋆
c )

2
(ρc +∆+ q⋆c − 2m⋆

c) (153)

Hence by looking at the expression of generalization and training error for ridge regression in eq. (127) we conclude that
they will not depend on the values of the mean overlaps {h⋆

c}c∈C and we can prove Gaussian universality in the same way
as we did in the proof of Theorem 3.4.
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Figure 6. Theoretical prediction from eq. (160) for the difference between the generalization error computed from the Gaussian theory
and GMM one plotted as a function of the number of samples used in the fit in Algorithm. C.3. We use different regularization strengths
Λ ∈ {1e− 10, 0.1, 1, 10}, increasing clockwise in the figure.

C.3. Interpolating Teachers

Different works observed over different datasets that if we find an interpolating teacher vector, in such a way that we can
keep the real labels to study ERM performance, the theoretical predictions coming from Gaussian asymptotics would agree
with simulations, (Loureiro et al., 2021a) among others. This observation apparently contradicts the result of Theorem 3.7 in
which we show that correlated labels (as we expect real labels to be) break Gaussian universality. We try to motivate this in
the same setting as Theorem 3.7:

Theorem C.1. (Real labels universality) Consider the same setting of Theorem 3.7. Fix now the teacher vector to be the
maximally correlated one θ = µ and find an interpolating teacher θ̃ using ñ samples coming from the GMM. If we compare
the exact asymptotics of Gaussian and GMM for regularization Λ at fixed α = ñ

d we obtain a discrepancy:

∆εgen =
4(E − 1)α2

(
E2γ + 2e− 1

)
(α+ 1)2(Eγ + 1)2

(154)

with E(α,Λ) solution of:

E = 1 +
1

2

(
α− 1 + Λ−

√
4Λ + (α− 1 + Λ)2

)
. (155)

The result above solves the apparent contradiction: if we strongly overparametrize the fitting model, interpolating teachers
can be uncorrelated with the data structure.

Algorithm 1 Get theoretical learning curves keeping real labels
Data generation: Generate the data from the 2-clusters GMM described in C.1 and set:

µ+ = −µ− =
√
γ(1, . . . , 1)⊤, Σ+ = Σ− = Id, θ0 = µ+ (156)

Fit interpolating teacher Perform ridge regression for λ → 0. Take α = n
d < 1 so that the ERM estimator will

interpolate the data.
Run exact asymptotics Compute the theoretical performance of the associated 2-GMM and equivalent GCM from the
estimated θ̂ for the same α with a fixed regularization parameter Λ.

The proof of the results relies strongly on the fact that we can analyze analytically the performance in this scenario, being
the same as the previous section. Reminding from eq. (147) that in the limit λ → 0 we have in the overparametrized setting
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η(α, λ = 0) = α, we can write:

herm =
µ⊤θ̂

d
= γα

γ + 1

1 + γα
(157)

qerm =
θ̂
⊤
Σθ̂

d
= α

(
− ∆

α− 1
− (α− 1)π2

αγ + 1
+ ρ

)
(158)

We summarize the algorithmic procedure in Algorithm. C.3. In order to compute the generalization error from eq. (144) we
need the quantities {ρ, π}. Note that in Algorithm. C.3 we compute the theoretical curve for the GMM and the GCM from
the estimated θ̂. This translates into the fact that the estimated overlaps from numerical simulations in the previous step
become the equivalent to:

π = herm ρ = qerm (159)

We fix the regularization for the theoretical prediction to be Λ, and for simplicity, we use the same sample complexity
parameter α. We are now in a position to compare Gaussian and GMM theoretical prediction, more precisely we analyze
the difference in the generalization errors for the two data models. Recalling the expression for the generalization error in
eq. (144), we just need to plug the estimated overlaps in eq. (159) to obtain:

∆εgen =
4α2(E − 1)

(
E2γ + 2e− 1

)
(α+ 1)2(Eγ + 1)2

(160)

where E(α,Λ) is the solution of eq. (146), retrieving the result in Theorem C.1. For the sake of clarity, we stated the theorem
in a simple setting, indeed once we estimated θ̂ we could have decided to change the value of the sample complexity, as we
are now interested in running theory curves. However, to simplify the equations we assumed to run the theoretical prediction
for the same value of α as in the ERM fit. We present the results in Fig. 6 for γ = 1: although the true labels are maximally
correlated with the data structure, we see that the Gaussian theoretical predictions with the interpolating teacher θ̂ are very
close to the GMM one. We remark that the upper-left plot in Fig. 1 is a nice characterization of Theorem (3.8): as we reach
the underparametrized regime we restore Gaussian universality for Λ → 0+ even for correlated teachers.

D. Details on Real Dataset Simulations
In this section, we report the procedure to create the random regression task on real data, see Algorithm. D. The implementa-
tion of the different numerical simulations described in this work is available in the GitHub respository.
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Algorithm 2 Random teacher regression on real data

Data processing: Load data and perform the preprocessing step with a transform matrix F ∈ Rd×d′
, with d′ dimension

of the images in the chosen dataset. We choose for all the figures in this manuscript d = 2000.
Match covariance Compute Σ̂ = 1

nXX⊤

Create new labels Forget the real labels associated with the dataset and create new label according to:

yν =


θ⊤
0 xν√
d

+
√
∆ξ Ridge regression

sign
(

θ⊤
0 xν√
d

+
√
∆ξ
)

Logistic regression
(161)

θ0 ∼ N (0, Id) ξ ∼ N (0, 1) (162)

Run learning curves Fix the regularization parameter λ.
for α in a given range do

Simulation Solve the ERM in eq. (1) using sklearn package LogisticRegression (Pedregosa et al., 2011) or the
Moore-Penrose pseudo-inverse for the ridge estimator:

θ̂ =

{
X⊤(XX⊤ + λIn)

−1Y n < d

(X⊤X + λId)
−1X⊤y n > d

(163)

Gaussian theory Solve saddle point equations in eqs. (83),(84) defining Gaussian asymptotics for the model. 2.1.
Compute erros Compute the training loss and generalization error using the metrics:

g(y, ŷ) =

{
(y − ŷ)2 Ridge regression
P(y ̸= ŷ) Logistic regression

(164)

end for
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