
Universal Physics-Informed Neural Networks: Symbolic Differential
Operator Discovery with Sparse Data

Lena Podina * 1 Brydon Eastman * 2 Mohammad Kohandel 3

Abstract
In this work we perform symbolic discovery of
differential operators in a situation where there is
sparse experimental data. This small data regime
in machine learning can be made tractable by
providing our algorithms with prior information
about the underlying dynamics. Physics Informed
Neural Networks (PINNs) have been very suc-
cessful in this regime (reconstructing entire ODE
solutions using only a single point or entire PDE
solutions with very few measurements of the ini-
tial condition). The Universal PINN approach
(UPINN) adds a neural network that learns a rep-
resentation of unknown hidden terms in the dif-
ferential equation. The algorithm yields both a
surrogate solution to the differential equation and
a black-box representation of the hidden terms.
These hidden term neural networks can then be
converted into symbolic equations using symbolic
regression techniques like AI Feynman. In order
to achieve convergence of the neural networks,
we provide our algorithms with (noisy) measure-
ments of both the initial condition as well as (syn-
thetic) experimental data obtained at later times.
We demonstrate strong performance of UPINNs
even when provided with very few measurements
of noisy data in both the ODE and PDE regime.

1. Introduction
Machine learning algorithms, for instance neural networks
(NN), are particularly helpful in representing unknown quan-
tities in a data-driven way (Belohlav et al., 1997). NNs with
a wide enough hidden layer can be used to approximate any

*Equal contribution 1Cheriton School of Computer Science,
University of Waterloo, Waterloo, Canada 2OpenAI, San Fran-
cisco, USA 3Department of Applied Mathematics, University
of Waterloo, Waterloo, Canada. Correspondence to: Lena Po-
dina <lpodina@uwaterloo.ca>, Mohammad Kohandel <kohan-
del@uwaterloo.ca>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

function (Pinkus, 1999) by tuning its parameters (henceforth
‘NN parameters’). Hence, NNs have been used to infer DE
parameters or even entire DE models, due to their ability to
approximate functions. Many recent applications use NNs
augmented with prior knowledge in order to learn underly-
ing DE models1 from data (Chakraborty, 2020; Raissi et al.,
2019; Lu et al., 2021b; Rackauckas et al., 2020; Meng &
Karniadakis, 2020; Lu et al., 2021a). However, acquiring
sufficient data to fit these values accurately using NNs is
difficult. A method that can function in low-data regimes by
leveraging the known structure of the model is needed.

Two prominent NN-based methods that learn DE mod-
els from data are physics-informed neural networks
(PINN) (Raissi et al., 2019) and universal differential equa-
tions (UDE) (Rackauckas et al., 2020). In UDEs, each
unknown component of the DE model is approximated by
a NN and a hard DE constraint is employed. That is, the
best-fit DE is satisfied at all times during training. How-
ever, UDEs are not robust to noise, require a lot of data,
and SINDy, as employed in (Rackauckas et al., 2020), does
not succeed in finding the true mechanistic model reliably.
PINNs assume the form of the true DE and fits its parame-
ters via a soft constraint (relaxing the requirement that the
NN should satisfy the best-fit DE exactly), which is added
to the NN loss function as an additional loss term referred
to as the ‘PINN loss’. A drawback of PINNs is that the
structure of the DE model must be determined in advance,
and there is no way to learn its unknown components using
the method as originally proposed. Additionally, as iterative
optimization is computationally expensive, PINN loss can
fail on stiff DEs (Wang et al., 2021).

Our approach, Universal PINNs (UPINNs), bridges the limi-
tations of both PINNs (cannot be used when the structure of
the DE is not fully known) (Raissi et al., 2019) and UDEs
(not robust to noise and requires lots of data) (Rackauckas
et al., 2020). To address this, we replace the hard constraint
of the UDE with that of PINN loss, which allows the ap-
proach to learn unknown components of the DE model from
data. This approach is robust to noise and performs well
in low-data regimes. Additionally, using the AI Feynman

1The (underlying or true) DE model of a process refers to the
DEs that produced the experimental data.

1

Universal Physics-Informed Neural Networks

algorithm (Udrescu & Tegmark, 2020) yields good results
in identifying the underlying hidden terms of the DE model.

In this paper, we claim the following contributions:

1. We propose a novel training methodology, Universal
PINN, which combines PINN loss with the UDE frame-
work to allow a PINN-based approach to learn unknown
parts of the DE model from data

2. Our method is robust to noise and learns the unknown
DE model components to significantly higher accuracy
in the Lotka-Volterra model compared to the state of the
art (UDE approach)

3. UPINNs perform very well in systems biology ODEs,
and the Viscous Burgers’ equation partial differential
equation

4. Using a symbolic regression algorithm, we reached better
identification of the tested systems than in the original
UDE paper

2. Background
As per (Raissi et al., 2019), suppose that the following DE
governs a physical process. u(t, x) is an unknown real-
valued function of time (t) and position (x). Its time deriva-
tive is related to its value for each tuple (t, x) with a known
function N , and unknown vector of parameters θ. Fur-
thermore, there are N potentially noisy DE measurements
{ti, xi, ui}.

∂u(t, x)

∂t
= N [u; θ], x ∈ Ω,Ω ∈ RD, t ∈ [0, T] (1)

Although θ is required in order to find a numerical or ana-
lytical function u that satisfies 1, θ is unknown in this setup.
Using the given data, the PINN method from (Raissi et al.,
2019) can estimate θ and u simultaneously. Its key com-
ponent is a neural network U , which predicts u given any
tuple (t, x). The following loss function is used to train U :

L =
1

N

N∑
i=1

|U(ti, xi)− ui|+ 1

M

M∑
j=1

∣∣∣∣dUdtj −N [u; θ]

∣∣∣∣
(2)

where dU
dtj

is auto-differentiated through the neural network
and evaluated at time tj and position xj . The first term
penalizes U for making predictions that do not match the
DE at a predefined set of M collocation points {tj , xj}.
The second term penalizes U for making predictions that do

not match the data. Note that the second term contains θ,
which allows parameter estimate θ̂ to be updated using its
gradient with respect to L. At every optimization iteration,
the parameters of U are updated along with θ̂.

A UDE (Rackauckas et al., 2020) is a DE which is defined
in part using universal approximators, e.g. a neural net-
work. These NNs can be used to approximate unknown
components of N . We will assume that possibly noisy data
{ti, xi, ui} is available from Eq. 1. Suppose that N is a
function g composed of k unknown functions hi and known
parameters θ:

N [u; θ] = g(u, h1(u; θ), . . . , hk(u; θ); θ) (3)

In (Rackauckas et al., 2020), the hi terms are approximated
by a single neural network H with k outputs and fit using
iterative optimization such as Adam (Kingma & Ba, 2014)
or gradient descent (Bishop & Nasrabadi, 2006). Since
Eq. (1) always holds, the loss function only consists mean
squared error between the DE solution and the data. Note
that with any particular approximation H , the DE (1) is
defined fully and u can be solved for numerically. Hence,
the training loop for UDEs involves numerically solving
Eq. (1), computing the error between the solution and the
data, and updating H to better approximate the unknown
components of N . At the end of training, H will represent
the unknown component of N and the numerical solution
of Eq. (1) will yield u that matches the solution of the true
DE.

Symbolic regression is a general technique of finding a
model that fits data while balancing the simplicity of the
model with its accuracy. This problem has been solved
with various genetic algorithms (see, among others, (McKay
et al., 1995; Schmidt & Lipson, 2009)) but since this method
is computationally expensive, newer techniques are becom-
ing more popular. For example, AI Feynman (Udrescu &
Tegmark, 2020) leverages NNs and symmetry, units, compo-
sitionality, etc. and finally returns a list of potential models
ranked by error and complexity. Some work (Valipour
et al., 2021; Kamienny et al., 2022) makes use of transform-
ers to find the correct functional form. In our work, we only
use them at the final stage after our method has learned an
approximate representation of the missing components.

3. Methods
Our proposed method, Universal PINNs, is a modifica-
tion of the PINNs to discover the functional form of an
unknown term within a differential equation. Suppose
u⃗(x⃗, t) ∈ Rm for x⃗ ∈ Rd. Let N be a (potentially non-

2

Universal Physics-Informed Neural Networks

linear) differential operator, then consider time t in the do-
main [0, T] ⊂ R along with a d dimensional, bounded
spatial domain Ω ⊂ Rd where ∂Ω denotes the boundary of
Ω. Notably, if N contains any derivatives, we assume that
those derivatives are with respect to the spatial variables
only. We then consider problems of the form

d

dt
u⃗(x⃗, t) = N [u⃗](x⃗, t), t ∈ [0, T], x⃗ ∈ Ω

subject to initial condition

u⃗(x⃗, 0) = u⃗0(x⃗), x⃗ ∈ Ω

and boundary conditions

β[u⃗](x⃗, t) = 0, x⃗ ∈ ∂Ω, t ∈ [0, T]

where β is a (potentially non-linear) differential operator
whose derivatives are only with respect to the spatial vari-
ables.

Further, suppose

N [u⃗](x⃗, t) = NK [u⃗](x⃗, t) + F [u⃗](x⃗, t)

where NK is some differential operator with known func-
tional form and F represents some unknown, target differ-
ential operator. Similarly, suppose β = βK + B for some
known βK and some unknown B.

Finally, one can consider Ω = ∅, in which case the underly-
ing differential law is governed by an ordinary differential
equation (ODE). In this situation, there is no boundary con-
dition and so no need for β (or, equivalently, β is the empty
function).

Suppose we have n data points D = {(tk, x⃗k, u⃗k)}n−1
k=0

where u⃗k = u⃗(tk, x⃗k) + ϵk where ϵk is some noise term
(potentially ϵk = 0). We will use this measured data to fit
the parameters of (up to) three neural networks. The first
network, F (u⃗; θF), will approximate the target differential
operator F [u⃗] by using a neural network with parameters
θF . The second network, U(x⃗, t; θU), will approximate the
value of u⃗(x, t) by a neural network with parameters θU .
The third network, B(u⃗; θB), will approximate the value of
B[u⃗], the unknown target for the boundary condition, with a
neural network parameterized by θB . To fit these networks,
we consider another two sets of collocation points: these sets
are XP = {(x⃗k, tk)}nP−1

k=0 ⊂ (Ω \ ∂Ω)× (0, T] and XB =
{(x⃗k, tk)}nB−1

k=0 ⊂ (∂Ω)× (0, T]. These sets correspond to
locations in the space-time domain where we enforce that
our network U satisfies the underlying differential equation
(in the case of XP) and the boundary conditions (in the case
of XB).

To calculate the gradients for fitting these networks, we
consider the loss function

L(θU , θB , θF) = LM (θU) + LB(θU , θB) + LP (θU , θF).

The first component of the loss is the MSE loss. This loss
is the difference in MSE between the measurement value
of u⃗ ≈ u⃗k from the input data with the neural network
approximation of u⃗ ≈ U(x⃗k, tk), evaluated at the same
space-time location and is given by

LM (θU) =
1

n

∑
(x⃗k,tk,u⃗k)∈D

(U(x⃗k, tk; θU)− u⃗k)
2.

The second component of the loss is the boundary loss. This
loss is the mean squared value of the approximated value of
the boundary condition and is given by

LB(θU , θB) =

1

nB

∑
(x⃗k,tk)∈XB

(βK [U](x⃗k, tk; θU) +B(U(x⃗k, tk; θU); θB))
2

The final component of the loss is the PINN loss. This loss
is the mean squared error between the value Ut, the time
derivative of the neural network approximation of U , and
the value NK [U] + F (U).

LP (θU , θF) =

1

nP

∑
(x⃗k,tk)∈XP

(NK[U](x⃗k, tk; θU)+F (U(x⃗k, tk; θU); θF)

− Ut(x⃗k, tk; θU))
2.

This loss function is quite similar to the loss function for
PINNs given in (Raissi et al., 2019), however here we insert
two additional neural networks into the loss function corre-
sponding to the unknown parts of the underlying dynamics
in the boundary conditions and the differential equation. To
compensate for these additional parameters, we extend the
first component of the loss to include more than just initial
data (but solution data as well). In this way, D could contain
data from the initial condition, data from the boundary, or
data from the interior of the domain.

Practically, one way to select XP is to simply choose nP

and use Latin hypercube sampling to select nP points in
(Ω \ ∂Ω) × (0, T]. A similar construction works for se-
lecting XB . In this way, we are sampling the domain in a
space-filling manner.

The architecture of the fully-connected neural networks is
as follows, for each of our models examined in Results:

1. Burgers: two inputs for t and x followed by scaling
layer; 8 hidden layers of 20 units for the surrogate
network and the hidden component network; sigmoid
activation

2. Lotka-Volterra and Apoptosis model: one input for t
followed by a scaling layer; 2 hidden layers of 64 units
for the surrogate solution; 2 hidden layers of 16 units
for the hidden component approximation; sigmoid ac-
tivation

3

Universal Physics-Informed Neural Networks

4. Results
To demonstrate our approach, we show high accuracy in
identifying the hidden terms in three test-cases: the Lotka-
Volterra equations (an ODE model), and the viscous Burgers’
equation (a parabolic PDE model), and a model for cell
apoptosis (an ODE model). Additionally, we show that AI
Feynman is able to correctly identify the functional form
of hidden terms within the Lotka-Volterra model from the
output of our model.

4.1. Lotka-Volterra System

We begin our analysis by testing our method on the Lotka-
Volterra (LV) model (Berryman, 1992) of predator-prey
interactions. The DE is formulated as follows:

dx

dt
= αx− βxy

dy

dt
= −δy + γxy .

We take the known portion of the differential equation as
NK[U] = [αx,−δ y] for known parameters α and δ, and
seek to learn F = [F1, F2] ≈ [−β x y, γ x y] from data
only, without knowing the target form and without knowing
β and γ.

To generate the synthetic data, α, β, γ, δ were fixed at
(1.3, 0.9, 0.8, 1.8) respectively, with initial conditions at
(x0, y0) = (0.44249296, 4.6280594) just as in (Rackauckas
et al., 2020). The time interval was chosen as [0, 3] and
stayed the same throughout every LV experiment.

An ODE solver was used to generate data satisfying the
LV equations. This yields a set of points {ti, xi, yi}. Then,
Gaussian noise is added to each xi and yi. Given a partic-
ular noise level ϵ, Gaussian noise was added to the data as
follows:

(xi)noise = xi + ϵ · x̄ ·N(0, 1)

(yi)noise = yi + ϵ · ȳ ·N(0, 1)

where x̄ denotes the element-wise mean of xi over all i
(similarly for y).

First, we demonstrate our approach on noise-free data (Ta-
ble 1) and data with ϵ = 5×10−3 noise (Table 2) for various
values of n (number of data points) and nP (number of col-
location points). We want to show how the hard-to-acquire
data can be augmented by taking more collocation points
which require no experiments/measurements and come at
only the cost of increased computing power. We see that, in
contrast to a standard PINN approach, we need to provide
more data than just the initial condition. However, even with
very sparse measurement data, we can acquire a good dis-
covery by only increasing the number of collocation points.

The additional benefit gained from increasing the colloca-
tion points is only realized when there is already ample
enough experimental data for the algorithm to leverage.

Table 1. MSE between F and the true hidden target after training
for various values of n and nP – noiseless data

n
nP 102 103 104

1 2× 101 2× 101 2× 101

5 9× 10−4 1× 10−3 9× 10−4

10 2× 10−4 4× 10−5 5× 10−6

Table 2. MSE between F and the true hidden target after training
for various values of n and nP – noisy (ϵ = 5× 10−3) data

n
nP 102 103 104

1 2× 101 2× 101 2× 101

5 6× 10−2 4× 10−3 5× 10−3

10 1× 10−3 6× 10−4 8× 10−4

Next, we compare UPINN performance to the UDE method.
We test the two methods on noiseless sparse data (1) and
on noisy data (Fig 2). The error is computed as a mean
squared error (MSE) taken with respect to the true interac-
tion. At minimal noise level, the UDE approach and UPINN
approach perform similarly and for the densest data UDEs
slightly outperform UPINNs. Although increasing either
noise or sparsity degrades the performance of both meth-
ods, the UPINN method consistently attains a lower MSE
compared to the UDE method as noise or sparsity increases.

Figures 6 and 9 show the surrogate solution and hidden
terms as recovered by the UDE and UPINN methods. The
noise level of the noisy data was set at 0.1 and, for the
noiseless sparse data, there were 5 points each 0.6 units
apart. It is clear that UPINNs are quite robust to noise
and perform well in low-data regimes. The UDE approach
performs reasonably on sparse data, but is not robust to
noise.

Finally, AI Feynman symbolic regression is run on the neu-
ral network output from both our approach and the UDE
approach, in order to find the best functional form. These re-
sults are presented in Table 4. A dash indicates AI Feynman
did not recover the functional form Cxy. The best perfor-
mance between the two methods is bolded. In cases of both
sparse and noisy data, AI Feynman correctly recovers the
hidden interaction terms more often for our method than it
does for the UDE method. If a formula is recovered for both
methods, the one recovered for the PINN method is often
more accurate.

The terms γ x y and −β x y in the LV equations correspond
to the predator’s uptake function in the ecological model.

4

Universal Physics-Informed Neural Networks

Figure 1. Sparse data regime

Figure 2. Noisy data regime

Figure 3. Mean squared error (MSE) of the recovery of the true
interaction, comparing between the UPINN and UDE method.
The spacing parameter determines how much time passes between
datapoints, but the overall time interval [0, 3] remains the same.

This represents the predators’ feeding habits as a function
of prey population and its resulting effect on both the prey
population and the predator’s population. The actual form of
these functions can take various forms in predator-prey mod-
els (see, for instance, (Harrison, 1979; Bolger et al., 2020)).
While we initially modelled this as two unknown, decoupled
functions F1 and F2 and learned them independently, we
could also have modeled them by a single function with

Figure 4. Noisy data regime. Reconstructed trajectory (top) and
learned hidden interaction (bottom).

Figure 5. Sparse data regime. Reconstructed trajectory (top) and
learned hidden interaction (bottom).

Figure 6. UDE method performance on the Lotka-Volterra model

an additional learned parameter as a scaling factor. That
is, we could take F1 = −ϕF2 and then only explicitly
learn F2 and a single parameter ϕ. This results in regres-
sions that are near identical to the ones presented above, but
showcases an important modelling methodology that our
method is amenable to and, for more complicated models
than LV, may be necessary in order to achieve a high-quality

5

Universal Physics-Informed Neural Networks

Figure 7. Noisy data regime. Reconstructed trajectory (top) and
learned hidden interaction (bottom).

Figure 8. Sparse data regime. Reconstructed trajectory (top) and
learned hidden interaction (bottom).

Figure 9. UPINN performance on the Lotka-Volterra model

regression.

4.2. Viscous Burger’s Equation

Finally, our method is easily applied to PDEs (as in the orig-
inal PINN implementation). Here we present the discovery

Table 3. Coefficients (with MSE) recovered by AI Feynman from
the approximations of F1, comparing over datasets (rows) and
method of finding F1 (columns). The true coefficient is -0.9.

spacing noise level F1 (UDE) F1 (UPINN)
0.1 0 -0.901 (2.8e-7) –
0.2 0 – –
0.3 0 – -0.897 (4e-6)
0.4 0 – -0.888 (8.2e-5)
0.5 0 – -0.889 (8.9e-5)
0.6 0 -0.892 (4e-3) -0.890 (1e-5)
0.1 8e-3 -9.25 (1.8e-3) -0.906 (1e-5)
0.1 1e-2 – -0.911 (3.45e-5)
0.1 3e-2 – -0.960 (1e-3)
0.1 5e-2 – –
0.1 8e-2 – –
0.1 1e-1 – –

Table 4. Coefficients (with MSE) recovered by AI Feynman from
the approximations F2, comparing over datasets (rows) and method
of finding F2 (columns). The true coefficient is 0.8 for F2.

spacing noise level F2 (UDE) F2 (UPINN)
0.1 0 0.802 (1.1e-6) 0.797 (2.5e-6)
0.2 0 0.797 (3.4e-6) 0.799 (3.8e-7)
0.3 0 – 0.798 (1.9e-6)
0.4 0 – 0.797 (5.2e-6)
0.5 0 0.760 (1e-3) –
0.6 0 – 0.800 (1e-32)
0.1 8e-3 – 0.798 (3e-5)
0.1 1e-2 0.791 (2.3e-5) 0.777 (1.5e-4)
0.1 3e-2 – 0.777 (1.5e-4)
0.1 5e-2 – 0.740 (1.1e-3)
0.1 8e-2 – –
0.1 1e-1 0.887 (2e-3) –

of both the solution to the PDE where the underlying hidden
dynamics of the operator were partially hidden. This recon-
struction used only noisy (ϵ = 5×10−3) data obtained from
two time points (the initial condition, t = 0, and a later time
at t = 0.5). While this method can be used to discover the
form of the boundary condition as well, here we assume that
the homogeneous Dirichlet boundary conditions are known.
The PDE in question is

∂u

∂t
= −u

∂u

∂x
+ν

∂2u

∂x2
, ν =

1

1000π
, u(x, 0) = − sin(π x)

Here we took NK = ν uxx and let the algorithm learn the
hidden term −uux. To do this, we gave the F network
u, ux, and ut as inputs. This represents an inductive prior
where we are assuming that the hidden term depends on
first order and lower derivatives of the solution. In our
approach, such a prior is necessary (that is, the algorithm
cannot learn what order of derivatives to include or not
include, it can merely choose which inputs presented to it

6

Universal Physics-Informed Neural Networks

to utilize). For collocation data we used nP = 104 and
nB = 102 points sampled from the appropriate parts of the
domain [−1, 1]× [0, 1] via Latin hypercube sampling. The
PDE solution was reconstructed with MSE of 3× 10−4 and
the hidden term was discovered with MSE of 2×10−2. The
resulting solution is visualized in Figure 10.

Figure 10. The reconstructed solution of Burgers’ equation. The
two vertical dashed white lines indicate the noisy experimental
data that were sampled for the algorithm.

4.3. Cell Apoptosis Model

We also test the method on a biological application, which
is the Q1 cell apoptosis model from (Wee & Aguda, 2006).
This is an ODE with three variables, serine-threonine ki-
nase Akts (active Akt), Akt (inactive Akt) and tumour sup-
pressor protein p53. p53 promotes cell apoptosis, or pro-
grammed cell death, and Akt inhibits it. Here, we only focus
on the system of ODEs and learning its nonlinear terms. We
refer readers to the paper for the biological motivation and
discussion. We denote the concentrations of p53, active Akt
and inactive Akt as x, y, z respectively.

v0 = k0

v1 = k1 · z · (j1 + y)

vm1 =
km1 · y
jm1 + y

v2 =
k2 · y · x
j2 + x

vm3 =
km3 · x · y
jm3 + y

dx

dt
= v0 − v2 − kd · x

dy

dt
= v1 − vm1 − vm3

dz

dt
=

−dy

dt

All parameter values were taken from the paper. With the
initial condition (x, y, z) = (0.248, 0.0973, 0.0027) and
30 noiseless datapoints, both the v1 and v2 interactions
(including the parameters) were learned to a high degree of
accuracy. In Figures 11 and 12 it can be seen that although
the general shape does not match the true interaction 100%,
the mean squared error between the true interaction and the
learned function is in fact very small (on the order of 10−4)
and the surrogate solution fits the data very well. This case
study reveals a key trait of the method – in some DE’s, the
hidden interaction is not unique given a particular trajectory
and data. Furthermore, when the derivatives of the trajectory
are very small (as can be seen by the saturation past t =
100) the method can have difficulty learning the hidden
term. As is done in (Yazdani et al., 2020), if this method
were augmented to handle very small and very large values
through scaling, more accurate learning of the interaction
would be possible.

5. Conclusion
In conclusion, the Universal PINN approach is able to re-
cover, with a great degree of accuracy, the symbolic func-
tional form of hidden terms within a differential operator
using very sparse measurements of noisy data. This ap-
proach is robust to both noise and sparsity of the data by
increasing the number of collocation points (an operation
that doesn’t require any additional experimentation, just
stronger compute capacities). This approach can be applied
to discovering the functional form of an unknown ordinary
differential equation (ODE) as well as both the functional
form of a partial differential operator in a partial differential
equation (PDE) and unknown terms in the boundary condi-
tion of a PDE. Although PINNs have been noted to perform
sub-optimally on stiff equations without modification (Ji

7

Universal Physics-Informed Neural Networks

Figure 11. Learning the v1 term using UPINNs. Reconstructed
trajectory (top) and learned hidden interaction (bottom).

Figure 12. Learning the v2 term using UPINNs. Reconstructed
trajectory (top) and learned hidden interaction (bottom).

et al., 2021; Moya & Lin, 2021), we have noted promising
results in this direction. However, more investigation is
needed.

Software and Data
A GitHub link will be included with the “camera-ready”
version of the manuscript.

References
Belohlav, Z., Zamostny, P., Kluson, P., and Volf, J. Applica-

tion of random-search algorithm for regression analysis
of catalytic hydrogenations. The Canadian Journal of
Chemical Engineering, 75(4):735–742, 1997.

Berryman, A. A. The orgins and evolution of predator-prey
theory. Ecology, 73(5):1530–1535, 1992.

Bishop, C. M. and Nasrabadi, N. M. Pattern recognition
and machine learning, volume 4. Springer, 2006.

Bolger, T., Eastman, B., Hill, M., and Wolkowicz, G. A
predator-prey model in the chemostat with holling type ii
response function. Mathematics in Applied Sciences and
Engineering, 1(4):333–354, 2020.

Chakraborty, S. Transfer learning based multi-fidelity
physics informed deep neural network. CoRR,
abs/2005.10614, 2020. URL https://arxiv.org/
abs/2005.10614.

Harrison, G. W. Global stability of predator-prey interac-
tions. Journal of Mathematical Biology, 8(2):159–171,
1979.

Ji, W., Qiu, W., Shi, Z., Pan, S., and Deng, S. Stiff-pinn:
Physics-informed neural network for stiff chemical ki-
netics. The Journal of Physical Chemistry A, 125(36):
8098–8106, 2021.

Kamienny, P.-A., d’Ascoli, S., Lample, G., and Charton, F.
End-to-end symbolic regression with transformers. arXiv
preprint arXiv:2204.10532, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Lu, J., Bender, B., Jin, J. Y., and Guan, Y. Deep learning
prediction of patient response time course from early data
via neural-pharmacokinetic/pharmacodynamic modelling.
Nature machine intelligence, 3(8):696–704, 2021a.

Lu, J., Deng, K., Zhang, X., Liu, G., and Guan, Y. Neural-
ode for pharmacokinetics modeling and its advantage to
alternative machine learning models in predicting new
dosing regimens. Iscience, 24(7):102804, 2021b.

8

https://arxiv.org/abs/2005.10614
https://arxiv.org/abs/2005.10614

Universal Physics-Informed Neural Networks

McKay, B., Willis, M. J., and Barton, G. W. Using a tree
structured genetic algorithm to perform symbolic regres-
sion. In First international conference on genetic algo-
rithms in engineering systems: innovations and applica-
tions, pp. 487–492. IET, 1995.

Meng, X. and Karniadakis, G. E. A composite neural net-
work that learns from multi-fidelity data: Application to
function approximation and inverse pde problems. Jour-
nal of Computational Physics, 401:109020, 2020.

Moya, C. and Lin, G. Dae-pinn: A physics-informed neural
network model for simulating differential-algebraic equa-
tions with application to power networks. arXiv preprint
arXiv:2109.04304, 2021.

Pinkus, A. Approximation theory of the mlp model in
neural networks. Acta Numerica, 8:143–195, 1999. doi:
10.1017/S0962492900002919.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov,
K., Supekar, R., Skinner, D., Ramadhan, A., and Edelman,
A. Universal differential equations for scientific machine
learning. arXiv preprint arXiv:2001.04385, 2020.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning frame-
work for solving forward and inverse problems involv-
ing nonlinear partial differential equations. Journal
of Computational Physics, 378:686–707, 2019. ISSN
0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.
045. URL https://www.sciencedirect.com/
science/article/pii/S0021999118307125.

Schmidt, M. and Lipson, H. Distilling free-form
natural laws from experimental data. Science,
324(5923):81–85, 2009. doi: 10.1126/science.
1165893. URL https://www.science.org/
doi/abs/10.1126/science.1165893.

Udrescu, S.-M. and Tegmark, M. Ai feynman: A physics-
inspired method for symbolic regression. Science Ad-
vances, 6(16):eaay2631, 2020.

Valipour, M., Panju, M., You, B., and Ghodsi, A. Sym-
bolicgpt: A generative transformer model for symbolic
regression. In Preprint Arxiv, 2021. URL https:
//arxiv.org/abs/2106.14131. Under Review.

Wang, S., Teng, Y., and Perdikaris, P. Understanding and
mitigating gradient flow pathologies in physics-informed
neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021.

Wee, K. B. and Aguda, B. D. Akt versus p53 in a network
of oncogenes and tumor suppressor genes regulating cell
survival and death. Biophysical journal, 91(3):857–865,
2006.

Yazdani, A., Lu, L., Raissi, M., and Karniadakis, G. E.
Systems biology informed deep learning for inferring
parameters and hidden dynamics. PLoS computational
biology, 16(11):e1007575, 2020.

9

https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.science.org/doi/abs/10.1126/science.1165893
https://www.science.org/doi/abs/10.1126/science.1165893
https://arxiv.org/abs/2106.14131
https://arxiv.org/abs/2106.14131

