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Abstract
Recent advances in deep learning have relied heav-
ily on the use of large Transformers due to their
ability to learn at scale. However, the core build-
ing block of Transformers, the attention opera-
tor, exhibits quadratic cost in sequence length,
limiting the amount of context accessible. Ex-
isting subquadratic methods based on low-rank
and sparse approximations need to be combined
with dense attention layers to match Transform-
ers, indicating a gap in capability. In this work,
we propose Hyena, a subquadratic drop-in re-
placement for attention constructed by interleav-
ing implicitly parametrized long convolutions
and data-controlled gating. In recall and reason-
ing tasks on sequences of thousands to hundreds
of thousands of tokens, Hyena improves accuracy
by more than 50 points over operators relying
on state-spaces and other implicit and explicit
methods, matching attention-based models. We
set a new state-of-the-art for dense-attention-free
architectures on language modeling in standard
datasets (WIKITEXT103 and THE PILE), reach-
ing Transformer quality with a 20% reduction in
training compute required at sequence length 2K.
Hyena operators are twice as fast as highly opti-
mized attention at sequence length 8K, and 100×
faster at sequence length 64K.

1. Introduction
Large Transformers have enabled a number of breakthrough
advances in modeling language, vision, audio, biology and
numerous other domains (Vaswani et al., 2017), (Dosovit-
skiy et al., 2020), (Radford et al., 2022), (Cramer, 2021).
Much of the success of Transformers, powered by the atten-
tion operator (Vaswani et al., 2017), relies on their scaling
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properties (Hoffmann et al., 2022) and the emergence of
in-context learning (Garg et al., 2022), which allows them
to generalize to unseen data and tasks given context as input.
The Transformer block is a powerful tool for sequence mod-
eling, but it is not without its limitations. One of the most
notable is the computational cost, which grows rapidly as
the length of the input sequence increases. Specifically, the
cost scales quadratically with the length L of the sequence,
which places a strict limit on the amount of context that
can be considered by the model. Breaking the quadratic
barrier is a key step towards new possibilities for deep learn-
ing, such as using entire textbooks as context, generating
long-form music or processing gigapixel scale images.

Efforts to reduce the computational cost of attention in mod-
els primarily involve the use of linearized, low-rank, and
sparse approximations (Child et al., 2019; Wang et al., 2020;
Kitaev et al., 2020; Zhai et al., 2021; Roy et al., 2021;
Schlag et al., 2021; Tu et al., 2022). These approaches
introduce a trade-off between expressivity and speed, re-
quiring hybridization with standard attention layers to reach
Transformer quality (Mehta et al., 2022; Dao et al., 2022a).

A growing amount of evidence suggests that attention mech-
anisms only utilize a small portion of their quadratic capabil-
ities for language processing (Olsson et al., 2022; Dao et al.,
2022a), leading us to question its role as the gold-standard
operator for deep learning at scale. Specifically, we ask:

Is attention all we need? Are there subquadratic operators
that, inspired by its properties, are able to match its quality
at scale?

We obtain a positive answer based on a composition of
efficient subquadratic primitives, such as element-wise mul-
tiplication (gating) and long convolutions i.e., convolutions
with filter sizes as long as the input. We rely on a set of
targeted reasoning tasks, grounded in recent work on mech-
anistic interpretability (Elhage et al., 2021; Power et al.,
2022; Olsson et al., 2022; Zhang et al., 2022) such as recall
and induction, to distill three properties of attention corre-
lated with its performance and the quality gap with existing
subquadratic approaches:
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Figure 1. The Hyena operator is defined as a recurrence of two efficient subquadratic primitives: an implicit long convolution h (i.e.
Hyena filters parameterized by a feed-forward network) and multiplicative element-wise gating of the (projected) input. The depth of the
recurrence specifies the size of the operator. Hyena can equivalently be expressed as a multiplication with data-controlled (conditioned
by the input u) diagonal matrices Dx and Toeplitz matrices Sh. In addition, Hyena exhibits sublinear parameter scaling (in sequence
length) and unrestricted context, similar to attention, while having lower time complexity.

a. Data control: Attention implements an expressive data-
controlled (Massaroli et al., 2020) linear operator1, encod-
ing an entire family of linear functions in a single block.

b. Sublinear parameter scaling: Parameter counts of atten-
tion layers are decoupled from sequence length, allowing
Transformers to allocate more parameters elsewhere e.g.,
the feed-forward neural networks (FFNs) between atten-
tion layers.

c. Unrestricted context: For a given input, attention has
an unrestricted context i.e., it can approximate dependen-
cies between any two inputs, without arbitrary restrictions
such as locality (except in cases using masking such as
autoregressive models).

The Hyena hierarchy Guided by these findings, we in-
troduce the Hyena hierarchy, an operator defined by a re-
currence of two efficient subquadratic primitives: a long
convolution and element-wise multiplicative gating (see
Figure 1). A specified depth (i.e., number of steps) of the
recurrence controls the size of the operator. For short re-
currences, existing models are recovered as special cases
(Mehta et al., 2022; Dao et al., 2022a). By mapping each
step in the Hyena recurrence to its corresponding matrix
form, we reveal Hyena operators to be equivalently defined
as a decomposition of a data-controlled matrix i.e., a matrix
whose entries are functions of the input. Furthermore, we
show how Hyena operators can be evaluated efficiently with-
out materializing the full matrix, by leveraging fast convolu-
tion algorithms (Selesnick and Burrus, 2017). Empirically,
Hyena operators are able to significantly shrink the quality
gap with attention at scale, reaching similar perplexity and
downstream performance with a smaller computational bud-
get (Section 4.2) and without hybridization of attention.

Narrowing the capabilities gap The design of Hyena is
motivated by a quality gap between standard dense attention
and alternative subquadratic operators, which we identify

1Self-attention can be expressed as y = A(k, q)v where A is
the attention matrix conditioned by linear projections k, q of the
input and multiplied by v, another projection.

by focusing on reasoning tasks correlated with language
modeling performance at scale. We extend the suite of ba-
sic mechanistic interpretability benchmarks (induction and
recall) with additional tasks that probe how quickly model
performance degrades when task complexity increases (e.g.
vocabulary size grows). In addition, we investigate the op-
timal parameterization of long convolutions in Hyena. In
the most challenging settings with hundreds of thousands of
tokens, our implicit parameterization scheme improves over
other operators leveraging state spaces (Gu et al., 2021),
frequency-domain parametrizations (Li et al., 2020), or stan-
dard convolutions by over 50% accuracy.

Scaling in language and vision Next, we aim to verify
whether rankings in our reasoning benchmark suite are pre-
dictive of quality at scale. We test Hyena on autoregressive
language modeling at the sub-billion parameter scale, setting
a new state-of-the-art for dense-attention-free architectures
in standard datasets (WIKITEXT103 and THE PILE) and
matching Transformer quality. On the THE PILE at the
335M parameter scale, we match Transformer perplexity
with a 20% reduction in the total count of floating point op-
erations (FLOPs). As an extension, we investigate the gen-
erality of Hyena operators by testing on large-scale image
recognition, replacing attention in the Vision Transformer
(ViT) (Dosovitskiy et al., 2020). In image classification,
Hyena is able to match attention in accuracy when training
on ImageNet-1k from scratch.

Toward much longer context Finally, we benchmark the
efficiency of Hyena on long sequences. We measure 5x
speedups over dense self-attention at length 8192 – 2x over
highly optimized FlashAttention2 (Dao et al., 2022b) – and
100x speedup over FlashAttention at sequence lengths of
64k, where standard attention implementation in PyTorch
runs out of memory.

2FlashAttention is already 2-4x faster than a standard attention
implementation in PyTorch.
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2. Preliminaries and Related Work
A discrete convolution is a function of two arguments: an
input u signal of length L and a learnable filter h. The
linear (aperiodic) convolution of a (possibly infinitely long)
measurable3 filter hwith a length-L input signal u is defined
as

yt = (h ∗ u)t =
L−1∑
n=0

ht−nun. (1)

Generally, ut ∈ RD where D is the width of the signal, or
in deep learning parlance, the number of channels. Without
loss of generality, we specialize our analysis to single input
single output (SISO) layers, i.e. with D = 1. The multiple
input multiple output (MIMO) case, canonical in standard
convolutional layers, follows directly.

In this case, the input signal can be represented as a vector
u ∈ RL and the convolution as a matrix-vector product be-
tween the input and the Toeplitz kernel matrix Sh ∈ RL×L
induced by the filter h:

(h ∗ u) =


h0 h−1 · · · h−L+1

h1 h0 · · · h−L+2

...
...

. . .
...

hL−1 hL−2 · · · h0



u0
u1
...

uL−1

 (2)

2.1. Explicit and Implicit Convolutions

Parametrizing and optimizing convolution filters ht is a
standard procedure in deep learning and more broadly signal
processing. The classical approach of convolutional neural
networks (CNNs) (Fukushima and Miyake, 1982; LeCun
et al., 1998; Ronneberger et al., 2015; He et al., 2016) is to
optimize directly the values ht of the filter’s response at M
prescribed steps, a parametrization we call explicit. M is
referred to as the filter size and is typically much shorter than
the input sequence length M ≪ L. Such filters are denoted
in signal processing as finite impulse response (FIR).

FIR filters are local and can capture dependencies between
inputs separated at most by M steps. Their main advantage
is their speed, with complexity O(ML). However, the
number of parameters of FIR filters scales linearly with
filter size, which can be computationally prohibitive. To
disentangle the parameter count from the filter size, we can
instead represent the filter ht as a parametric function of the
time step t, i.e. ht = γθ(t), where θ are the parameters of
the function γθ. This parametrization is called implicit. The
class of functions γθ is a design choice with a significant
impact on the expressivity and computational complexity of
the layer.

One choice of implicit parametrization is to select h as the re-
sponse function of a linear state-space model (SSM) (Chen,

3In the L1(Z) sense:
∑∞

t=−∞ |ht| < ∞

1984), described by the first-order difference equation:
xt+1 = Axt + But state equation
yt = Cxt + Dut output equation

Here, the convenient choice of x0 = 0 renders the input-
output map to a simple convolution

yt =

t∑
n=0

(
CAt−nB+ Dδt−n

)
un

where δt denotes the Kronecker delta. We can then identify
the filter h as

t 7→ ht =

{
0 t < 0

CAtB+ Dδt t ≥ 0

where the entries of A,B,C and D are the learned parameters
of the filter. In terms of layer design, the degrees of freedom
of SSMs are the dimension of the state and the structure of
the matrices. SSMs are a canonical example of how long
convolutions with sub-linear parameter counts can improve
deep learning models for long sequences (Gu et al., 2020;
2021). Other implicit approaches include parametrizing
filters as maps from (a positional encoding of) t to the filter
response i.e. γθ : t 7→ ht = γθ(t), for example with feed-
forward neural networks (Romero et al., 2021a;b).

Long convolutions and memory: A crude proxy
for memory of a single computational unit is how
far in the past it can access information to pro-
duce the output at a certain step. This can be
roughly quantified by the number of non-zero en-
tries ∂yt/∂ut−n for n = 0, . . . , t. The memory
of CNNs filters is equivalent to the filter size M
since ∂yt/∂ut−n = hn. The total mnemonic ca-
pacity of an all-convolutions CNN therefore scales
with the number of model’s parameters. Implicit
parametrizations, on the other hand, allow us to
disentangle the memory of each filter from the pa-
rameter count and where the length of the filter is
implicitly controlled by the learned parameters. In
an SSM, ∂yt/∂ut−n = CAnB and the memory ex-
tent is solely determined by the spectral radius of A
and can be finely tuned by the training processa. On
the other hand, the number of parameters controls
the expressivity of the memory unit, e.g. the number
of basis functions forming ht.

aSee e.g.(Gu et al., 2020; 2021)

Fast Methods for Convolutions One of the first appli-
cations of the Cooley-Tukey fast Fourier transform (FFT)
algorithm was to implement convolution faster than the
direct evaluation of (1). At first glance (1) comes with
O(L2) an asymptotic time complexity. A common approach
to achieve fast long convolutions in subquadratic time is
through the FFT algorithm. The method first converts the
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aperiodic convolution into a circular convolution (Selesnick
and Burrus, 2017) by appropriate zero-padding of input and
filter sequences. The resulting kernel Ŝh is a circulant matrix
and is diagonalized by the discrete Fourier basis

Ŝh = W−1DHW

where W is the DFT matrix, Wtt′ = z−t, z = ei2πt
′/L and

H is the DFT of the padded filter h, H = Wpad(h). Thus,
the calculation of such convolutions is performed as

pad(y) = Ŝhpad(u)

= W−1DHW pad(u)

= iFFT(DHFFT(pad(u)))
where DH is the matrix with Wh on its diagonal. The above
is known as the convolution theorem of DFT (Oppenheim
et al., 1997). In this FFTConv form the convolution can be
performed without materializing the operator Sh with the
same asymptotic cost O(L log2 L) of FFT.

2.2. The Self-Attention Operator

At the heart of Transformers is the multi-head attention
(MHA) mechanism. Given a length-L sequence u ∈ RL×D,
each head of scaled self-attention (Vaswani et al., 2017) is
a map from RL×D to RL×D which performs the following
operations

A(u) = SoftMax
(

1√
D
uMqM

⊤
k u

⊤
)

y = SelfAttention(u)

= A(u)uMv,

(3)

where Mq,Mk,Mv ∈ RD×D are learnable linear projec-
tions and SoftMax is intended to be applied row-wise. At-
tention parametrizes a family of dense linear operators
and for an input u, indexes through it via projections of
u i.e., A(u). We refer to operators of this type as data-
controlled, as they encode a linear transformation u 7→ y,
that is, however, nonlinearly defined by u. This approach
yields expressive nonlinear operators in u, and we hypoth-
esize contributes, together with other mechanisms (Olsson
et al., 2022), to the ability of certain operators to learn in-
context i.e., to adapt to unseen tasks by leveraging context.
In deep learning, the projections take on specific names:
query q = uMq, key k = uMk and value v = uMv. We
often rewrite the attention operator as y = A(q, k)v.

Remark 2.1. Similarly to implicit convolutions,
SelfAttention does not entangle its ability to access
distant information with the number of parameters: it looks
at the whole sequence at the price of O(L2) operations.

Subquadratic Operators Existing approaches to sub-
quadratic alternatives to attention can be summarized by
altering the way the data control is implemented i.e., how
the operator is nonlinearly defined by u, and then applied
to v. For example, a layer of Attention-Free Transformers
(AFTs) (Zhai et al., 2021) constructs the operator through

a combination of gating and SoftMax (AFT full) or gating
and a single explicit convolution (AFT conv). Gated State
Spaces (GSS) instead compose the operator via gating and
a long convolution parametrized via SSMs. Taking this idea
further, Hungry Hungry Hippo (H3) (Dao et al., 2022a),
motivated by gaps of GSS on associative recall, extend the
mechanism to include an additional gate and a short convo-
lution obtained via a shift SSM. Hyena generalizes this body
of work by introducing a recurrence of gates and implicit
long convolutions, evaluated efficiently.

3. Hyena: Definition and Properties
In this section, we define Hyena, a class of data-controlled
operators consisting of a recurrence of multiplicative gat-
ing interactions and long convolutions. Instead of seeking
an approximation to attention, we guide our design by in-
tentionally incorporating key computational properties of
attention, including the decoupling of sequence length and
parameter counts.

3.1. Hyena Recurrences

At a high level, Hyena consists of the following steps (set-
ting D = 1 for clarity):

i. Compute a set of N + 1 linear projections of the input,
similarly to attention. Differently from attention, we
perform short convolutions on the projections. Further,
the number of projections (vt, x

1
t , . . . , x

N
t ) need not

be three. One projection takes the role of value, such
that a linear input-output function can be defined as
y = H(u)v for some H(u).

ii. The matrix H(u) is defined by interleaving implicit
long convolutions and element-wise multiplication
with one projection xi at a time, until all projections
are exhausted. Evaluation of H(u)v is done efficiently
without materializing H(u). By doing so, we implic-
itly define a data-controlled operator as a factorization
of a matrix. The long convolutions forming H(u) are
parametrized implicitly to retain sublinear parameter
scaling in sequence length.

Next, we formally define Hyena, starting with its computa-
tional model. We leave the analysis of its data-controlled
matrix form for the latter part of the section.

Definition 3.1 (Order–N Hyena Operator). Let
(v, x1, · · · , xN ) be projections of the input and let
h1, . . . , hN be a set of learnable filters. The HyenaN
operator is defined by the recurrence:

z1t = vt

zn+1
t = xnt (h

n ∗ zn)t n = 1, . . . , N

yt = zN+1
t

(4)
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Figure 2. Comparison between data-controlled matrices: SelfAttention and Hyena.

Remark 3.1. The time complexity of a Hyena recurrence is
O(NL log2 L). The input-output map can be rewritten as

y = xN · (hN ∗ (xN−1 · (hN−1 ∗ (· · · ))))
where each convolution is performed through the Fourier
domain in O(L log2 L).

Interestingly, the element-wise product in time domain cor-
responds to convolution in frequency domain, i.e.

xtut = (x̂ ∗ û)t,
where x̂, û denote the DFT of x and u, respectively. Thus,
Hyena is alternatively applying convolutions in the time
and then the frequency domain (or alternatively applying
element-wise products in the time and frequency domain).
One potential explanation for the effectiveness of this pro-
cedure is that the convolution in the time domain (element-
wise multiplication in the frequency domain) increases the
memory length, allowing for a broader context to be taken
into account. On the other hand, the element-wise multi-
plication in the time domain (convolution in the frequency
domain) allows for more fine-grained selection of specific
frequency components of the signal.

3.2. Hyena Matrices

Hyena operators build on the H3 mechanism developed
by (Dao et al., 2022a). For clarity of exposition, we once
again consider the SISO case (D = 1). Let Dq and Dk
be the L-by-L diagonal matrices whose respective main
diagonal entries are the respective entries of q and k. H3
realizes a surrogate attention matrix with a data-controlled,
parametrized decomposition in four terms:

A(q, k) = DqSψDkSφ

H3(q, k, v) = A(q, k)v
(5)

where Sφ,Sψ are the Toeplitz matrices of learnable causal
filters φ,ψ parametrized via SSMs4. Alongside the qkv-
projections the filters constitute our degrees of freedom in
the layer design. This decomposition allows evaluation of
(8) in justO(L log2 L) time (two FFT convolutions and two
element-wise products), i.e.

zt = kt(φ ∗ v)t
yt = qt(ψ ∗ z)t

(6)

4For consistency with our discussion, we have swapped k and
v compared to the notation in (Dao et al., 2022a).

Hyena represents a generalization of (8) for an arbitrary
number of projections – not limited to three – and with
implicit free-form long filters for the convolutions. The
resulting recurrence (4) can be also represented in matrix
form y = H(u)v. Let Dnx = diag(xn) ∈ RL×L and let
Snh be the Toeplitz matrix corresponding to filter hn. The
resulting Hyena recurrence is linear in v and can be rewritten
in matrix form:

y = H(u)v = DNx SNh · · ·D2
xS

2
hD

1
xS

1
hv

Figure 2 visualizes an example decomposition.

Remark 3.2 (Hyena generalizes H3 and GSS.). The H3
mechanism (Dao et al., 2022a) corresponds to Hyena2 and
GSS (Mehta et al., 2022) is Hyena1, with a particular choice
of parametrization for the long convolutions (SSMs).

Analysis of the H3 mechanism as a decomposition
DqSψDkSφ of its surrogate attention matrix5 clarifies a con-
nection to fast evaluation algorithms for matrix-vector mul-
tiplications. In particular, the generalization of (8) to an
arbitrary order is inspired by fast evaluation algorithms for
structured dense matrices based on butterfly decompositions
(Li et al., 2015; Dao et al., 2019; 2022c), with length of the
decomposition closely tied to its expressivity (in the classes
of matrices it can represent). The Hyena operator blends
data control with a special case of butterfly decomposition.

Remark 3.3. Hyena operators have unbounded context.
Namely, they are not artificially restricted by e.g., locality,
and can learn long-range dependencies between any of the
elements of v via long convolutions, which we discuss next.

3.3. Hyena Filters

Here we provide details on the convolution parametrization.
We represent the filters of each Hyena operator as a map
from the time (or space) domain t to values ht, and learn it
with a shallow feed-forward neural network (FFN):
ht = Window(t) · (FFN ◦ PositionalEncoding)(t) (7)

This approach builds on the neural implicit representation
literature (Mildenhall et al., 2021; Sitzmann et al., 2020),
which has found application in long convolution layers
(Romero et al., 2021a;b). One advantage of (7) is given
by the decoupling of filter length and parameter cost.

5Some of this analysis is reported in the Appendix.

5



Hyena Hierarchy: Towards Larger Convolutional Language Models

FFN(t)

Sequence Length

Window Window ◦ FFN(t)

Figure 3. [Top]: Example of long convolution parametrization for
Hyena operators, with a decay Window(t) = exp{−αt}. Param-
eter α is modified across the independent channels of Hyena to
regularize filters to be of different lengths. In practice, we add a
bias term to our window, so that the filters are not constrained to
be zeros after a length determined by the decay rate.

Specializing filters in Hyena The window and positional
encoding functions are used to specialize filters in Hyena
operators, biasing them towards a specific type. Figure 3
provides an important example: we choose at least one of
the convolutions in Hyena to be shaped towards exponential
decay, mirroring the findings of (Li et al., 2022) in other
applications. Interestingly, we find that long exponentially
decaying filters display synergy with high-frequency filters,
as they enable the operator to select specific inputs at spe-
cific steps6. Similarly to (Romero et al., 2021a), we use
high-frequency periodic activations (sine) in the FFN. This
allows (7) to learn filters with high-frequency content, ad-
dressing the low-frequency bias of neural networks (Basri
et al., 2020). Owing to the FFN, the parametrization in
(7) can approximate filters obtained through other means,
such as S4 (Gu et al., 2020; 2021), CKConv (Romero et al.,
2021a), SGConv (Li et al., 2022) and Fourier Neural Oper-
ator (FNO) (Li et al., 2020).

Preserving causality Causality is necessary to train au-
toregressive language models, in order for the output at a
given position to depend only on the past. For example,
Transformers mask the attention matrix to be lower trian-
gular. In the case of Hyena, causality can be guaranteed by
parametrizing causal convolutions:

Proposition 3.1 (Causal Hyenas). If each filter hn, n =
1, . . . , N is causal, then the corresponding HyenaN opera-
tor is causal.

In practice, we need not constrain the learning of the filter
(7) to ensure its numerical causality. If we use FFT-based
convolution algorithms, all we need is to evaluate the filter at
t = 0, . . . , L−1 and zero-pad the input and filter sequences
to 2L− 1 before taking FFT.

Efficiency One bottleneck of long convolution models can
be their low utilization of hardware accelerators, especially
when they involve iterative numerical methods to materi-

6This observation finds mirrors in the parametrization of the
convolutions in H3 (Dao et al., 2022a) as a shift SSM and a diago-
nal SSM.

alize the filter7. Evaluation of 7 is fast, since it involves a
single forward pass of an FFN, and can be performed in
parallel across sequence length and all orders of an Hyena
operator as displayed in Algorithm 2, increasing hardware
utilization. An additional source of low utilization is the
FFT, which is also shared by other long other convolutional
layers. This bottleneck can be partially addressed by block-
ing (Selesnick and Burrus, 2017), and optimization of the
underlying routines (Dao et al., 2022a). We benchmark
runtime in Section 4.5.

3.4. Hyena Algorithm

A forward pass of Hyena is summarized below.

Algorithm 1 Projection
Require: Input sequence u ∈ RL×D

1. In parallel across L: ẑ = Linear(u), Linear : RD →
R(N+1)D

2. In parallel across D: z = DepthwiseConv1d(h, ẑ), h
is a short convolution filter
3. Reshape and split z into x1, . . . , xN , v. Dimensions of
one element are xn ∈ RD×L

Return x1, . . . , xN , v, xn

Algorithm 2 Hyena Filter
Require: Sequence length L, positional embedding dimen-

sion De

1. t = PositionalEncoding(L), t ∈ RL×De

2. In parallel across N,L: ĥ = FFN(t), FFN : RDe →
RND, ĥ ∈ RL×ND
3. Reshape to ĥ ∈ RN×D×L

4. h = ĥ ·Window(t), h ∈ RN×D×L

5. Split h into h1, . . . , hN

Return h1, . . . , hN

Algorithm 3 Forward pass of Hyena
Require: Input sequence u ∈ RL×D, order N , model

width D, sequence length L, positional embedding di-
mension De

1. x1, . . . , xN , v = Projection(u)
2. h1, . . . , hN = HyenaFilter(L,De)
for n = 1, . . . , N do

3. In parallel across D: vt ← xnt · FFTConv(hn, v)t
end for
Return y = v

Proposition 3.2 (Computational Complexity). The compu-
tational cost of processing an input u ∈ RL×D with an

7In contrast, deep learning primitives are designed for high
GPU utilization, with FFNs and attention usually reaching 50−
70% or higher, if optimized.
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order-N Hyena operator is
O(NDL(log2 L+D)).

4. Experiments
4.1. Shrinking the gap on in-context learning

We begin by empirically motivating the Hyena design, in-
cluding the choice of long convolution parametrization. We
consider the suite of tasks described in Table 1. Our evalua-
tion is grounded in recent work on mechanistic interpretabil-
ity of Transformers (Elhage et al., 2021; Power et al., 2022;
Olsson et al., 2022; Zhang et al., 2022). Recently, associa-
tive recall, in particular, has been successfully used to guide
the design of H3 (Dao et al., 2022a). We extend the suite
of tasks from these works and include benchmarking more
challenging versions of each task . For example, solving
associative recall with a vocabulary size of only 10 reveals
whether a model is structurally capable of performing recall.
Testing on much longer sequences and larger vocabularies
reveals additional gaps in performance that are otherwise
hidden.

How to parametrize long convolutions We compare the
performance of the following long convolution parametriza-
tions for S1 and S2 in an order 2 Hyena:

• Conv1d: Explicit convolutions (regular convolution layers
with fixed filter size).

• FNO: Filters parametrized explicitly in the frequency-
domain (Li et al., 2020).

• H3: Implicit parametrization using state-space models
(SSMs), in particular S4 (Gu et al., 2021; Gupta et al.,
2022).

• TransferFunc: Implicit parametrization via transfer func-
tions, a classical system-theoretic generalization of SSMs8

• CKConv: Implicit parametrization using FFNs (Romero
et al., 2021a).

8Transfer functions roughly correspond to a frequency-domain
representation of SSMs.

Table 1. A selection of our mechanistic design benchmarks.
Task Prompt Target

Associative Recall a, 1, b, e, 3, f, b e
Majority a, g, g, g, e, f, g g
Counting a, b, b, b, a, c, b 4

ICL of Functions x0, f(x0), . . . xn f(xn)
Arithmetic 1, 3, 5, +, 6, 8, 3 8, 1, 8

• Hyena: Combination of implicit parametrizations via
FFNs (with exponential decay modulation as shown in
Figure 3), and short explicit filters.

All models have the same width and 2 layers. Figure 4 shows
implicit approaches based on FFNs outperform other long
convolutions, with the gap widening on longer sequences
and larger vocabulary sizes. We train a different model on
each setting of sequence length and vocabulary size. The
ranking is correlated with the ability to decouple sequence
length from parameter count (Hyena, CKConv, Transfer-
Func, H3) and expressivity (Hyena, CKConv). We observe
similar trends on the other tasks.

Pushing sequence length to the limit Next, we evaluate
associative recall performance on extremely long sequences
of length 131k. To the best of our knowledge, these repre-
sent the first empirical display of attention-free in-context
learning on sequences of this length. The gap between
parametrization schemes widens as shown in Appendix A,
with Hyena outperforming CKConv by 80 points.

Comparing operators We repeat our associative recall
experiment, this time benchmarking different 2 layer mod-
els rather than changing the convolution parametrization:
an order 2 Hyena, GSS (Mehta et al., 2022), H3 (Dao et al.,
2022a), AFT-conv (Zhai et al., 2021), RWKV (Peng, 2021),
and a standard GPT (Brown et al., 2020) using FlashAtten-
tion (Dao et al., 2022b). As shown in Table 4.1, Hyena is
the only operator able to solve the task. Our results chal-
lenge the observation that only Transformers are capable
of challenging in-context learning. Surprisingly, rankings
of model performance at a fixed sequence length on The
Pile are consistent with rankings on aggregate scores on our
synthetics (Appendix C).

Generality of Hyena operators and filters Hyena oper-
ators and filters can also applied successfully beyond lan-
guage tasks. We experiment on sequential CIFAR, where
pixels are flattened as a sequence, and use the same operator
defined for language. We reach the accuracy of standard
S4 (Gu et al., 2021) with same model size (91%). In Sec-
tion 4.5 and Appendix A, we discuss larger-scale image
classification experiments with Hyena.

4.2. Language Modeling

Next, we verify the scaling of Hyena on autoregressive
language modeling. We evaluate the perplexity on WIKI-
TEXT103 (Table A.2) and THE PILE (Table 4.2). On the
THE PILE, we train different models for 5, 10, 15 billion
tokens (different runs), adjusting the learning rate scheduler.
Hyena is the first attention-free, convolution architecture to
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Figure 4. Benchmark of long convolution parametrizations in order 2 Hyena on associative recall (%). Our results show that implicit
parametrizations scale more favorably in vocabulary size (number of possible values of tokens in the input) and length of the sequence.

Sequence length Hyena FlashTransformer Transformer GSS H3 AFT RWKV

30k 100.0 32.4 ✗ 5.3 8.4 2.3 12.4
64k 100.0 26.7 ✗ 2.1 4.3 1.2 6.5
131k 97.2 ✗ ✗ 0.1 0.6 0.8 2.3

Table 2. Test accuracy (%) for associative recall on longer sequences, vocabulary size 30. The symbol ✗ is used to mark settings where
the model does not fit in memory.

1.3 1.6 2.6 3.2 3.9 4.9

·1019
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2.21
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L
o
ss

Data Scaling on The Pile, 355M parameters

Hyena
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Figure 5. Preliminary "scaling law" of language models on THE

PILE. Comparison of our approach (red) based on long convolu-
tions and gating (Hyena) and a standard GPT (blue) (Brown et al.,
2020). We reach perplexity of GPT with less training FLOPs.

match GPT quality with a 20%9 reduction in total FLOPs.
Preliminary scaling laws are shown in Figure 5, collecting
the training runs at 5, 10, 15 billion tokens. Each point is a
different training run. In Appendix A, we provide results on
the PG-19 long-range benchmark (Rae et al., 2019).

4.3. Downstream Evaluation

We perform a downstream evaluation on SuperGLUE (Wang
et al., 2019) tasks. We compare Hyena (trained for 137 bil-
lion tokens) with the best available pre-trained attention-free
model, RWKV (Peng, 2021) (trained for 332 billion tokens),

9The FLOP reduction consists in the non-parametric FLOPs
of SelfAttention devoted to attention matrix computation. The
ratio of parametric to non-parametric FLOPs (and hence the gains)
depend on the ratio of model width D and sequence length L used
in training.

Model 5B 10B 15B FLOPS (1019)

GPT (125M) 13.3 11.9 11.2 1.88
Hyena-2 (153M) 13.3 11.8 11.1 1.87

GPT (355M) 11.4 9.8 9.1 4.77
Hyena-2 (355M) 11.3 9.8 9.2 3.93

Table 3. Perplexity on THE PILE for models trained until a total
number of tokens e.g., 5 billion (different runs for each token total).
All models use the same tokenizer (GPT2). FLOP count is for the
15 billion token run.

and a reference GPTNeo (Black et al., 2021) (trained for
300 billion tokens) of the same size. Tables 9 and 10 summa-
rize the results. Hyena performs similarly to other models
despite having been trained on less than half the number
of total tokens. We observe Hyena to display character-
istic few-shot capabilities of standard Transformers, with
some tasks e.g., MultiRC seeing a lift of more than 20%
accuracy over zero-shot when the model is provided ad-
ditional prompts as context. The improvements are more
noticeable in generation tasks, where the additional prompts
can instruct the model on how it should be responding to
the questions. We report an additional evaluation on the
LAMBADA task (Paperno et al., 2016) in Appendix A.

4.4. Benchmarking

We benchmark runtime of an order 2 Hyena operator com-
pared to attention and FlashAttention layers (Dao et al.,
2022b). Hyena uses a fused CUDA kernel to perform
FFTConv (Dao et al., 2022a). We set batch size to 64
and measure runtime (in milliseconds). Results are pro-
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Figure 6. Benchmarking runtime of Hyena, Attention and FlashAt-
tention with varying sequence lengths. Batch size is set to 64. The
figure on the right is an inset showing a zoomed-in portion.

vided in Figure 6. Hyena speedups reach 100× at sequence
length 64K. Crossover points for Hyena and attention is
at length 2048, and for Hyena and FlashAttention is be-
tween 4096 and 8196. Despite the absolute reduction in
FLOPs, speedups are achieved only on longer sequences
when the gap grows sufficiently large. This occurs because
hardware utilization of Hyena is lower than FlashAttention.
We expect the gap between theoretical maximum speedup
to shrink with improved implementations of FFTConv and
specialized hardware.

4.5. Large-Scale Image Classification

Finally, we demonstrate the potential of Hyena as a general
deep learning operator by applying it to image classification.
On ImageNet, we drop-in replace attention layers in the
Vision Transformer (ViT) (Dosovitskiy et al., 2020) with the
Hyena operator (without changes from its language counter-
part) and match performance with ViT. We also show that
using smaller image patches boosts performance in both
attention and Hyena. Since this results in longer sequence
lengths, we expect Hyena to outperform in speed as patches
get more fine-grained approaching pixel-level. On CIFAR-
2D, we test a 2D version of Hyena long convolution filters
in a standard convolutional architecture, which improves
on the 2D long convolutional model S4ND (Nguyen et al.,
2022) in accuracy with a 8% speedup and 25% fewer param-
eters. See Appendix A.4 for additional vision architectures,
training procedure and results.

5. Discussion and Conclusion
In this work, we introduced an attention-free drop-in re-
placement to the core building block of many large-scale
language models. Hyena operators are a recurrence of gat-
ing and implicitly parametrized long convolutions, can be
evaluated efficiently in subquadratic time, and can learn in-
context on very long sequences. On THE PILE, deep stacks
of Hyena operators constitute one of the first attention-free,
convolutional architectures to match perplexity and down-

stream performance of Transformers with a significant re-
duction in training compute. Our promising results at the
sub-billion parameter scale suggest that attention may not
be all we need, and that simpler subquadratic designs such
as Hyena, informed by a set of simple guiding principles
and evaluation on mechanistic interpretability benchmarks,
may form the basis for efficient large models.
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Hyena Hierarchy
Supplementary Material

A. Experimental Details
An implementation of Hyena can be found at this link.

A.1. Mechanistic Design Synthetic Benchmarks

Our synthetic reasoning are inspired by mechanistic interpretability (Elhage et al., 2021), in-context learning (ICL) (Garg
et al., 2022) and language model benchmarking (Liang et al., 2022) research. The evaluation revolves around 4 main tasks:

• Associative recall: Each string is produced by concatenating key-value tuples from a different random dictionary. This
test verifies whether a model is able to extract right value given a key as prompt, effectively applying a data-controlled
shift (delay).

• Majority voting and counting: Testing if a model can densely activate its data-controlled matrix i.e., through many
non-zero entries (consider the string ’a a a a a a a a a a b→ a’).

• ICL of linear functions: Verifying whether a model can perform ICL on real-valued inputs. Prompts are generated as
x1, w

kx1, . . . , xn → wkxn, where both xk and wk ∈ Rno are sampled from a normal distribution.

• Arithmetic: Basic capability check.

For each task, we train models using the hyperparameters shown in Table 4. We consider increasing settings of difficulty
controlled by sequence length, spanning values 1024, 2048, 4098, 8196, 16392, 32784, 65568, 131136 and vocabulary sizes
10, 20, 30, 40. For ICL of functions, we vary instead the dimension no.

Note that for associative recall on longer sequences, multiple copies of key-value tuples appear in the prompt. To see this,
consider how likely it is to sample multiple copies of a particular key-value pair with a vocabulary size of 40, in order to
form a sequence of 100k characters. Models capable of looking further back in the sequence effectively see more data, and
can solve challenging versions of the in-context learning task. Increasing the vocabulary size has the increasing the average
distance between instances of the same key-value pair in each prompt, highlighting performance gaps between different
approaches.

Table 4. (Hyperparameter settings for reasoning and in-context learning tasks.).
Optimizer AdamW
Optimizer momentum β1, β2 = 0.9, 0.98
Base learning rate 0.0005
Weight decay 0.1
Dropout None
Batch size 32
Training epochs 200
Num samples 2000
Learning rate schedule cosine decay
Warmup epochs 10
Warmup schedule linear
Number of layers 2
Width 64
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Long convolution comparisons: We compare different convolution parametrizations, embedding them in an order 2
Hyena operator. All convolutions are applied separately to input channels (referred to as single-input single-output (SISO)
in signal processing, or depthwise in other machine learning contexts).

• Conv1d: Explicit convolutions (regular convolution layers with fixed filter size). We use a fixed filter size of 64, to match
parameters of the other approaches.

• FNO: Filters parametrized explicitly in the frequency-domain (Li et al., 2020). We set the number of modes to 64.

• H3: Implicit parametrization using state-space models (SSMs), and in particular the standard S4 (Gu et al., 2021). We set
the state dimension to 64.

• TransferFunc: Implicit parametrization via transfer functions, a classical system-theoretic generalization of SSMs. Transfer
functions are defined by a ratio of polynomials (we parametrize the coefficients, and evaluate the polynomials efficiently
via FFTs). We set the order to 64.

• CKConv: Implicit parametrization using FFNs (Romero et al., 2021a).

• item Hyena: Combination of implicit parametrizations via FFNs (with exponential decay modulation as shown in Figure
3), and short explicit filters.

CKConv and Hyena use the same size of FFNs (width 32 to match in parameters).

In Table A.1, we report additional results on the challenging setting of sequence length 131072 and vocabulary size 30.
Implicit parametrizations of convolutions outperform explicit parametrizations on associative recall, with CKConv and
Hyena greatly improving on the ability to extract the right key, value relations from different inputs. In Appendix C, we
discuss how results on our synthetic tasks can be indicative of performance at a larger scale.

Table 5. Test accuracy (%) in associative recall on sequences of length 131072, vocabulary size 30.

Hyena CKConv TransferFunc H3 FNO Conv1d

97.2 14.3 0.5 0.6 0.3 0.5

Operator comparisons: We compare different models on the same associative recall task, using hyperparameters in Table
4. Hyena uses our filter parametrization with decay windowing for long convolutions, and short explicit convolutions of size
3 after the dense input projections. All other models use defaults from their largest scale experiment, while keeping the size
to 2 layers and width 64.

A note on Transformer performance Transformers can solve associative recall tasks with longer sequences, provided
the length does not prevent them from fitting in memory, and enough examples are present in the training data. In all our
experiments, we keep the number of samples fixed (2000), a regime where Transformers struggle to find the generalizing
solution (see Table A.1).

For shorter sequences (see Appendix C), Transformers solve the task easily even with limited data, comparably to Hyena.

More broadly, these different properties of attention and attention-free token-mixing layers may explain improved perfor-
mance when they are combined in hybrid architectures (Dao et al., 2022a). The focus on this work has been identifying
an architecture capable of performing without attention, which is necessary to tackle domains where long sequences are
common. However, when training with shorter sequences (up to 8k), if final downstream performance is the only metric of
interest, improved results can be obtained by hybridizing our models similarly to H3 (Dao et al., 2022a).

A.2. Language Modeling

WikiText103: We train 125M parameter models on WIKITEXT103 and compare perplexity to Transformers, hybrid
models such as H3 (Dao et al., 2022a), and other variants of subquadratic attention. All models use the same GPT2 tokenizer
with vocabulary size 50257. We test order 3 Hyena with our proposed filter parametrization for two long convolutions,
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and a shorter explicit convolution on the third. We also consider Hyena (slim) that are 1.5x deeper than Transformers (12
versus 18 layers), with width multiplier of the FFNs set to 2. We find trading-off width for depth to be generally favourable.
These modifications are made possible by the reduction in overall FLOPs of Hyena operators compared to self-attention,
in particular non-parametric FLOPs which include materialization of the attention matrix, application of softmax, and
matrix-value reduction.

Table 6. Hyperparameter settings for THE PILE, 125M).
Optimizer AdamW
Optimizer momentum β1, β2 = 0.9, 0.98
Peak learning rate 0.0006
Warmup learning rate init 0.000001
Learning rate min 0.00006
Weight decay 0.1
Dropout None
Batch size 256
Learning rate schedule cosine decay
Warmup schedule linear

The Pile: We follow a same procedure and train 125M and 355M-sized models on THE PILE (Gao et al., 2020).
Hyperparameters are reported in Table 6. Hyperparameters for 355M are the same beyond a reduction in peak learning rate
to 4 · 10−4. For larger models (1.3B), we set a learning rate of 2.2 · 10−4.

We perform three experiments for each model type and size, and train for 5, 10, 15 billion tokens at a sequence length 2024
and global batch size 256. All models are trained on a single node of 8 A100 80GB GPUs. We use order 2 Hyenas, with
the same architectural considerations described above for WIKITEXT103. In addition to our data scaling experiments at
5, 10 and 15 billion tokens, we provide preliminary results for models at the 1.3B parameter scale (10.8 perplexity after 5
billion tokens), and train a 153M model (130 billion tokens), reaching a perplexity of 9.8. The 153M is the same used in our
downstream evaluation on SuperGLUE.

Training hyperparameters match those of standard GPT training pipelines, and are thus likely suboptimal for new attention-
free architectures such as Hyena. We run some preliminary experiments and find that e.g., some modifications to the
learning rate schedule, currently involving linear warmup and cosine decay, to improve perplexity at convergence of Hyena
models (we recommend slightly lower learning rates for Hyena models compared to GPT of a similar size). Despite these
findings, we use standard GPT hyperparameters for both GPT and Hyena.

PG-19 We also report results of additional training runs on other datasets. We train a Hyena 153M model on the standard
PG-19 long-range corpus (Rae et al., 2019), with a context length of 16k tokens, reaching a test perplexity of 14.6 (using the
standard GPT2 tokenizer) in 8 epochs.

Architectures Architectural hyperparameters for Hyena are shown in Table 8. We use sine as an activation function for
the FFN of Hyena filters.

FLOP computation The number of floating point operations (FLOPs) reported in the main text are computed using the
same strategy as in (Hoffmann et al., 2022). For GPT, we do not use the approximation, opting instead for the more accurate
formula based on FLOP counts of individual layers. In the case of Hyena, FLOPs are computed using the same method,
except attention layers are replaced by:

i. Projections: order × d_model × d_model × seq_len.

ii. Short conv on projections: order × d_model × seq_len × filter_len (usually 3).

iii. FFTConv: 5 × (order - 1) × d_model × log(seq_len) × seq_len.

iv. Output: d_model × d_model × seq_len.

with a leading factor 2 to account for both additions and multiplications.
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Model PERPLEXITY

Transformer (125M) 18.6
Hybrid H3 (125M) 18.5∗

Performer (125M) 26.8∗

Reformer (125M) 25.6∗

AFT-conv (125M) 28.2
Linear Attention (125M) 25.6∗

Hyena-3 (125M) 18.6
Hyena-3-slim (125M) 18.5

Table 7. Perplexity on WIKITEXT103 (same tokenizer). ∗ are results from (Dao et al., 2022a). Deeper and thinner models (Hyena-slim)
achieve lower perplexity.

A.3. Downstream Evaluation

SuperGLUE: We evaluate models on the SuperGLUE (Wang et al., 2019) with the parsing pipeline of (Arora et al., 2022).
For all tasks except WIC, CB and BoolQ, we generate a response using greedy decoding, then check for the gold label. WIC,
CB and BoolQ use logit scoring instead of generation. The results are providedi n Table 10.

Models The models considered are the open-source checkpoint of GPTNeo 125M trained for 300B tokens THE PILE, and
the RWKV-v4 169M checkpoint trained for 332B tokens on THE PILE. Hyena is a 153M model trained for 137B tokens on
THE PILE.

LAMBADA: We evaluate Hyena on the LAMBADA (Paperno et al., 2016) task. We apply a stop word filter and check
whether predictions for all tokens corresponding to the last word agree with the ground truth. The small Hyena model
trained on 137B tokens reaches 44.64% accuracy.

A.4. Image Classification

ImageNet: We use ImageNet-1k which consists of 1000 classes and 1.3M images and train from scratch with no outside
data on 8 Nvidia A100 GPUs. In our ViT benchmark, we swap the attention layers with the Hyena operator defined in
our language experiments, and remove the class token and positional embeddings, similar to S4ND (Nguyen et al., 2022).
The parameter count is kept similar at 87M ViT-B (base) vs 88M Hyena-ViT. The training procedure from T2T-ViT (Yuan
et al., 2021) is used, including augmentations such as RandAugment (Cubuk et al., 2020), Mixup (Zhang et al., 2017), and
AugMix (Hendrycks et al., 2019). See table 11 for hyperparameter settings used. The results are provided in Table 12.

CIFAR-10: We use CIFAR-10 in sequential and 2D experiments. For sequential, we use the Hyena operator defined in
our language tasks and compare with an S4 model (Gu et al., 2021) of the same size by swapping layers in the residual
blocks. In 2D, we learn Hyena filters (in both x and y dimensions) that are equal to the size of the input shape, and forgo the
gating mechanism from our language experiments. We window (i.e., apply a soft mask spatially to) the Hyena filters with a
decay term. The rate of decay varies across channels, ensuring different sizes of the filters at initialization. We compare with
another implicit 2D convolution, S4ND (Nguyen et al., 2022), by swapping the model layers with the 2D Hyena filters. The
"isometric" model consists of 4 residual blocks of model dimension 128. We use basic image augmentations, 0.1 dropout,
0.03 weight decay and train for 100 epochs using a Nvidia T4 GPU.

Table 8. Hyena architecture hyperparameters.
Size depth width FFN width filter FFN width filter FFN depth sine freq.

125M 12 768 3072 64 4 14
125M-slim 18 768 1536 64 4 14

153M 18 864 1728 64 4 14
355M 36 1024 2048 64 4 14
1.3B 36 2048 4096 64 4 14
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Table 9. Zero-shot accuracy (%) on SUPERGLUE tasks for small models.

Model WSC WIC RTE CB MULTIRC RECORD BOOLQ COPA AVERAGE

GPTNeo (Black et al., 2021) 27.9 50.0 45.1 41.1 0.0 61.7 62.2 62.0 43.8
RWKV (Peng, 2021) 13.4 52.3 46.9 25.0 0.0 58.5 59.2 66.0 40.2

Hyena 21.2 50.5 46.6 39.3 1.1 59.4 51.8 70.0 41.5

Table 10. Few-shot (3) accuracy (%) on SUPERGLUE tasks for small models.

Model WSC WIC RTE CB MULTIRC RECORD BOOLQ COPA AVERAGE

GPTNeo (Black et al., 2021) 38.5 50.0 53.8 42.9 22.4 61.4 61.0 63.0 49.1
RWKV (Peng, 2021) 32.7 49.4 47.2 37.5 0.0 58.3 55.0 64.0 43.0

Hyena 39.4 50.1 47.6 46.4 26.7 58.1 56.0 70.0 49.3

Table 11. ViT and ViT-Hyena settings for ImageNet-1k).

Image size 2242

Optimizer AdamW
Optimizer momentum β1, β2 = 0.9, 0.999
Weight init trunc. normal (std=0.02)
ViT base learning rate 1e−3

Hyena-ViT base learning rate 2e−4

ViT weight decay 0.05
Hyena-ViT weight decay 0.01
Dropout None
Batch size 1024
Training epochs 300
Learning rate schedule cosine decay
Warmup epochs 10
Warmup schedule linear
Randaugment (Cubuk et al., 2020) (9,0.5,layers=2)
Mixup (Zhang et al., 2017) 0.8
Cutmix (Yun et al., 2019) 1.0
Random erasing (Zhong et al., 2020) 0.25
Label smoothing (Szegedy et al., 2016) 0.1
Stochastic depth (Huang et al., 2016) 0.1
Exp.mov. avg (EMA) (Polyak and Juditsky, 1992) None

Table 12. Image classification top-1 accuracy.
Model PATCH SEQ.LEN. DATASET ACC. (%)

ViT (87M) 16x16 196 ImageNet-1k 78.5
Hyena-ViT (88M) 16x16 196 ImageNet-1k 78.5

ViT (87M) 8x8 1024 ImageNet-1k 80.0
Hyena-ViT (88M) 8x8 1024 ImageNet-1k 79.8

S4ND-ISO (268k) - - CIFAR-10 89.9
Hyena-ISO (202k) - - CIFAR-10 91.2
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B. Theoretical Results and Details
B.1. Proofs

Proof of Proposition 3.1

Proof. A discrete L-by-L operator is causal if it is lower triangular, i.e., when there is no leakage of future input information
to the output. The Hyena operator H is the product of alternating diagonal and Toeplitz matrices. Thus, if all the Toeplitz
matrices Snh are lower triangular then H is lower triangular. In turn, each Snh is lower triangular if and only if the filter h is
causal, concluding the proof.

B.2. Analysis of Data-Controlled Mechanisms

We discuss the surrogate attention mechanism of Hyena-2: q, k, v 7→ y:
zt = kt(φ ∗ v)t
yt = qt(ψ ∗ z)t

(8)

If φ and ψ are convolutions parametrized via state-space models (SSMs), the above resembles the H3 mechanism (Dao
et al., 2022a). We investigate the effect of the convolutional kernels φ and ψ on the attention layer. We start by introducing a
matrix representation of the layer, and we isolate the attention matrix Aψφ(q, k) such that

y = Aψφ(q, k)v. (9)

Isolating the surrogate attention matrix In the case of length-L discrete sequences

zt = kt

L−1∑
m=0

φt−mvm

yt = qt

L−1∑
m=0

ψt−mzm

(10)

Therefore we can rewrite (8) as

yt = qt

L−1∑
m=0

ψt−mkm

L−1∑
n=0

φm−nvn

= qt

L−1∑
m=0

L−1∑
n=0

ψt−mkmφm−nvn Move ψ, k inside inner sum

= qt

L−1∑
n=0

L−1∑
m=0

ψt−mkmφm−nvn Index shift

=

L−1∑
n=0

qt

L−1∑
m=0

ψt−mkmφm−nvn

(11)

And we can define the surrogate attention matrix Aψφ(q, k)

[Aψφ(q, k))]t,t′ = qt

L−1∑
m=0

ψt−mkmφm−t′ . (12)

Continuous Signals: We can also consider the case of continuous signals on a group G. In the continuous case, we
can expand the convolutions in (8) as

(φ ∗ v)t =
∫
G

φt−gvgdg, (ψ ∗ z)t =
∫
G

ψt−gzgdg (13)
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This allows us to rewrite (8) as
yt = qt(ψ ∗ k(φ ∗ v))t

= qt

∫
G

ψt−g

[
kg

∫
G

φg−τvτdτ

]
dg

= qt

∫
G

[∫
G

ψt−gkgφg−τvτdτ

]
dg

= qt

∫
G

[∫
G

ψt−gkgφg−τvτdg

]
dτ Variable swap

=

∫
G

[
qt

∫
G

ψt−gkgφg−τvτdg

]
dτ Pull qt in τ integral

=

∫
G

[
qt

∫
G

ψt−gkgφg−τdg

]
vτdτ Pull vτ out of g integral.

(14)

There is a linear operator A : v 7→ y = Av which we interpret as the surrogate attention operator. A is conditioned
on the query q, key k and filters φ and ψ, A = Aψφ(q, k). The kernel K of the operator is given by

K(t, t′) = qt

∫
G

ψt−gkgφg−t′dg (15)

Operator decomposition of the surrogate attention matrix We can decompose the linear map v 7→ y; y = Aψφ(q, k)v

into a sequence of factors, each dependent on a projection of the input Aψφ(q, k) = Aψ(q)Aφ(k). Let Dq and Dk be the
L-by-L diagonal matrices whose respective main diagonal entries are the respective entries of q and k. Then, we have that

Aψ(q) = DqSψ, Dq = diag(q),

Aφ(k) = DkSφ, Dk = diag(k).
(16)

The matrix has been decomposed into two terms Aψ(q) and Aφ(k) constructed by multiplying the diagonal matrices Dq
and Dk with the Toeplitz matrices Sψ and Sφ. Sψ and Sφ are the kernels of the convolution operators with filter’s impulse
responses ψ and φ respectively. In the current applications of interest, ψ and φ are chosen to be causal, i.e. ψ[t] = 0 for t < 0
and φ[t] = 0 for t < 0. This results in Sψ and Sφ to be lower triangular matrices

Sψ =


ψ0 0 · · · 0
ψ1 ψ0 · · · 0
...

. . . . . .
...

ψL−1 ψL−2 · · · ψ0

 , Sφ =


φ0 0 · · · 0
φ1 φ0 · · · 0
...

. . . . . .
...

φL−1 φL−2 · · · φ0

 . (17)

The surrogate attention matrix is then given by
Aψφ(q, k) = DqSψDkSφ (18)

We can expand the matrix multiplications in (16) in the case of causal filters φ and ψ as
Dq

q0
q1

. . .
qL−1



Sψ
ψ0

ψ1 ψ0

...
. . . . . .

ψL−1 ψL−2 · · · ψ0



Dk
k0

k1
. . .

kL−1



Sφ
φ0

φ1 φ0

...
. . . . . .

φL−1 φL−2 · · · φ0



=


q0ψ0

q1ψ1 q1ψ0

...
. . . . . .

qL−1ψL−1 qL−1ψL−2 · · · qL−1ψ0


Aψ(q)


k0φ0

k1φ1 k1φ0

...
. . . . . .

kL−1φL−1 kL−1φL−2 · · · kL−1φ0


Aφ(k)

(19)

Fourier decomposition of convolution operators: The kernels of the convolution operators Sψ and Sφ are
diagonalized by the Fourier transform matrix W ∈ CL×L, Wnm = zm, z = ej2πn/L. The Fourier transform of the
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convolution operator Sψ is given by
Sψ = W∗DΨW, SΦ = W∗DΦW (20)

where DΨ,DΦ ∈ CL×L are diagonal matrices constructed from the frequency responses (the discrete Fourier
transform) Ψ = Wψ,Φ = Wφ, respectively. This decomposition can be used to simplify the matrix multiplication
in (19):

A = DqSψDkSφ = DqW
∗DΨWDkW

∗DΦW (21)
An important property of the above is the non-commutativity of Dq and Sk with W∗. If the two operators commuted,
we would obtain

A = DqW
∗DΨWDkW

∗DΦW = W∗DqDΨDkDΦW (22)
which reduces the entire layer to a simple convolution. The non-commutativity of the gating term acts as a
non-linearity in chain of convolution operators.
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C. Discussion and Additional Results
Vocabulary size scaling Table 13 showcases interesting correlation between associative recall performance for varying
vocabulary sizes and loss on the THE PILE. In this case, we fix sequence length for associative recall to be 2048, the same
sequence length used to train all models on the THE PILE.

We observe a similar phenomenon on other slices of tasks from our mechanistic design benchmarks, indicating that it may be
possible to derive predictive laws for performance at scale, based on fast experimentation on synthetic tasks with models of
1 or 2 layers. Surprisingly, performance on our language synthetics appears to be further linked to performance as attention
replacement in other domains (Appendix A.4 for results on image classification).

Table 13. Hyena Accuracy on associative recall with varying vocabulary size 10, 20, 30, 40 in relation to test loss on THE PILE after 5
billion tokens. We notice a correlation between the two performance metrics, suggesting that slices of our mechanistic design synthetics
may be potentially predictive of performance at scale.

Model Acc @ 10 Acc @ 20 Acc @ 30 Acc @ 40 Loss @ 5B on THE PILE

Conv1d 32 11 10 8 4.21
AFT-conv 55 21 12 10 3.57

H3 92 60 13 10 2.69
Transformer 100 100 92 82 2.59

Hyena 100 100 98 85 2.59

Single layer recall All experiments on our synthetic tasks default to 2 layer models. We choose 2 as it is the canonical
number for mechanistic analysis of Transformers (Elhage et al., 2021) based on circuits. Interestingly, a single layer of
Hyena (width 64) is capable of performing associative recall, solving the task completely even in the challenging setting
with vocabulary size 40. Reverse engineering exactly how the single Hyena operator is able to perform recall is left for
future work.

C.1. Learning Arithmetic

We showcase an additional task in our mechanistic design benchmark: learning arithmetic. We train Hyena models of
increasing depth (1, 2 and 3 layers) on a dataset of Dn-digit addition. As an example, a 3-digit addition input sample is
given by the sequence

1, 2, 3, 9, 5, 4, 1, 0, 7, 7

where the first 6 digits contain the two 3 digits numbers to add, and the last 4 the result. Our models are optimized using
standard autoregressive training i.e., predicting the next token, since they are causal. In particular, we optimize models to
learn a map x 7→ y where x is the original prompt without the last element, and y equal to x shifted right by one position.
We mask the first 2Dn − 1 elements of the loss for each sequence since they contain predictions for addends and not results.

We report results in Figure 7. A single layer of Hyena is able to learn to perform addition with up to 4 digits. Longer
numbers require deeper models. In our experiments, alternative architectures such as AFT-conv struggle to learn arithmetic,
signaling a cap in capability.
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Figure 7. Test loss and accuracy of Hyena on addition with different numbers of digits and model depths. Each plot reports the results of a
different experiment, with the curve tracing test results during training.
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D. Samples and Visualizations
D.1. Hyena Matrices

We provide visualizations of attention and Hyena matrices activated by test strings. In 8, 9, we compare GPTNeo (Black
et al., 2021) attention matrices with Hyena matrices extracted by our pre-trained small Hyena model. In 10 and 11, we
provide additional Hyena matrices for the 355M model, activated by test strings of different length.

For attention, we visualize the raw post-softmax matrix. For Hyena matrices, we plot the (element-wise) absolute value of
H(u):

H(u) = DNx SNh · · ·D2
xS

2
hD

1
xS

1
h

Ĥ(u)ij = |H(u)ij |
Since Hyena does not normalize the entries of its matrices with e.g., softmax, there are notable differences with attention:
(1) the entries of H(u) can be either positive and negative, and (2) the magnitude is unconstrained. We observe the magnitude
of matrices in pre-trained Hyena models to be around 10−3.
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Figure 8. Attention matrices from a GPTNeo small model. "We use the test string "Attention is all you need. Attention is".
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Figure 9. Hyena matrices from a Hyena small (same model used for SuperGLUE downstream evaluations). "We use the test string
"Attention is all you need. Attention is". We note that Hyena has a different data-controlled matrix for each channel i.e. for each
dimension in its width, since it does not use heads.
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Figure 10. Data-controlled Hyena matrices (355M model), activated by the string "When a doctor doctors a doctor, does the doctor doing
the doctoring doctor as the doctor being doctored wants to be doctored or does the doctor doing the doctoring doctor as they want
to doctor?". Rows in the plot are matrices from different layers, columns are matrices from different channels. The operator shows
characteristic patterns of attention matrices, without attention.
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Figure 11. Data-controlled Hyena matrices (355M model), activated by the string "Mrs. Dursley, Mr. Dursley, Dudley Dursley", from
Causal scrubbing: results on induction heads. Rows in the plot are matrices from different layers, columns are matrices from different
channels.
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D.2. Hyena Filters

Figure 12 provides a visualization of Hyena long convolution filters at initialization and after training to completion on THE
PILE.

We find a substantial performance difference (up to 5% perplexity) between initialization schemes. If the filters at
initialization are excessively smooth (see Appendix D.3 for a discussion of positional encoding and activation), the model
finds a worse solution and takes longer to converge. Further, we observe initialization schemes that regularize filters towards
typical filters learned at convergence to decrease performance. These observations are in line with performance gaps between
convolution parametrization schemes discussed in main text and Appendix A.1. In particular, the performance improvements
obtained via Hyena filters could be due to easier optimization in the space of convolutional filters.

At convergence, Hyena learns a collection of lower-order filters with a similar structure, which can be exploited to further
speed up inference after training.

D.3. Positional Encoding and Filters Initialization

The positional encoding chosen for the Hyena filters is a truncated complex exponential basis. Specifically, with ρk(t) =
ei2πkt/L for k = 0, . . .K − 1, the positional encoding is defined as a map from R to R2K+1 such that

PositionalEncoding(t) =
[
t R[ρ0](t) · · · R[ρK−1](t) I[ρ0](t) · · · I[ρK−1](t)

]
where R[·], I[·] denote the real and imaginary part of their argument, respectively. In the main text, we use De = 2K + 1 to
denote the size of a positional encoding with K features. The number of features of the positional encoding has an impact on
the filter initialization and training performances. In particular, we show how K leads to a preconditioning of the spectrum
of the filter at initialization. Figures 13, 14, 15 display the initialized filters (with no Window function) for different values
of K ({8, 32, 64}) for L = 128 and frequency ωa of sinusoidal activation σ(·) = sin(ωa·) set to 1. We notice how the
choice of K induces a bias in the modeled frequencies at initialization. Specifically the filters resemble low-pass filters with
a cut-off frequency of approximatively 2K + 1.

This cut-off frequency is strongly related to the smoothness of the filter; as previously mentioned, we empirically observe
better training dynamics of filters initialized to be non-smooth, i.e. with a rich high-frequency content. While we can achieve
good initializations by increasing K, this results in larger FFNs (its input dimension is 2K + 1, i.e. the number of positional
encoding features) which come with a higher parameter count. A more efficient solution is to increase the frequency ωa of
the sinusoidal activation. Figure 16 show how with K = 8 we can cover the full spectrum simply by setting ωa = 10.
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Figure 12. [Top]: Long convolution Hyena filters at initialization (153M parameters, 18 layer model). [Bottom]: Filters after training for
130 billion tokens on THE PILE.
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Figure 13. Hyena filters at initialization with 17 positional encoding features K = 8.
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Figure 14. Hyena filters at initialization with 65 positional encoding features K = 32.
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Figure 15. Hyena filters at initialization with 65 positional encoding features K = 64.
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Figure 16. Hyena filters at initialization with 17 positional encoding features K = 8 and frequency of sinusodial activation set to 10.
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D.4. Downstream Examples

MultiRC We report examples of downstream evaluation of small models on the MultiRC question-answering task. We
report answers of small Hyena (153M, trained for 130B tokens on THE PILE) and the public checkpoint RWKV-v4 (Peng,
2021) (169M, trained for 332B tokens on THE PILE). We select randomized examples with indices being powers of 2.
Alignment of Hyena’s responses to the task format is greatly improved by providing few-shot examples in the prompt,
which may be a promising sign for larger models based on the proposed attention-free architecture. Each example shows
responses for specific examples in the validation set (example indices are listed at the beginning of each example).

MultiRC index: 2, 4

Passage: What causes a change in motion? The application of a force. Any time
an object changes motion, a force has been applied. In what ways can this happen?
Force can cause an object at rest to start moving. Forces can cause objects to
speed up or slow down. Forces can cause a moving object to stop. Forces can also
cause a change in direction. In short, forces cause changes in motion. The moving
object may change its speed, its direction, or both. We know that changes in motion
require a force. We know that the size of the force determines the change in motion.
How much an object’s motion changes when a force is applied depends on two things.
It depends on the strength of the force. It also depends on the object’s mass.
Think about some simple tasks you may regularly do. You may pick up a baseball.
This requires only a very small force.

Question: Based on the previous passage, Would the mass of a baseball affect
how much force you have to use to pick it up? Is "Less the mass, less the force
applied" a correct answer?

Answer: Yes

RWKV zero-shot: The mass of a baseball depends on the force applied. if the mass
of the baseball is small, the force applied is small.

Hyena zero-shot: Yes it is.

RWKV few-shot: The mass, less the force applied, is a more important force. it is
the force that changes the mass of a baseball.

Hyena few-shot: Yes.

Question: Based on the previous passage, What do you apply to an object to make it
move or stop? Is "Strength" a correct answer?

Answer: No

RWKV zero-shot: The force applied to the object is the force applied to the object.

Hyena zero-shot: Yes.

RWKV few-shot: The force applied to a baseball is a force. it is a force that is
applied to a baseball.

Hyena few-shot: Yes.
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MultiRC index: 32, 64

Passage: The film opens with Sunita, a medical student, and her friends working
on a project about the human brain. She wants to investigate the curious case of
Sanjay Singhania, a notable city businessman, who is reported to have anterograde
amnesia. Her professor denies access to Sanjay’s records as it is currently
under criminal investigation. Sunita, nonetheless, decides to investigate the
matter herself. Sanjay is introduced as he brutally murders a man. He takes a
Polaroid picture of the man, and writes on it “done”. It is revealed that Sanjay
has anterograde amnesia where he loses his memory every 15 minutes. Sanjay uses a
system of photographs, notes, and tattoos on his body to recover his memory after
each cycle. It is revealed that Sanjay is ultimately out to avenge the death of
his sweetheart Kalpana, and that he is systematically killing the people who were
responsible for it. His main target is “Ghajini”, a notable social personality in
the city. Police Inspector Arjun Yadav, on the case of the serial murders, tracks
Sanjay down to his flat and attacks and disables him. Yadav finds two diaries
where Sanjay has chronicled the events of 2005 and 2006 . The film flashes back
to 2005 as Yadav reads the diary. Sanjay Singhania is shown as the owner of the
Air Voice mobile telephone company. In the course of his business, Sanjay sends
his men to meet Kalpana, a struggling model, about putting up a billboard above
her apartment. The owner of Kalpana’s advertising firm misinterprets this as a
romantic advance, and in view of a possible lucrative Air Voice ad campaign and
other benefits, encourages Kalpana to accept the overture.

Question: Based on the previous passage, Why did Sanjay murder a man? Is "Sanjay"
a correct answer?

Answer: Yes

RWKV zero-shot: The answer is "Sanjay".

Hyena zero-shot: The answer is

RWKV few-shot: The question is not about Sanjay’s death.

Hyena few-shot: No.

Question: Based on the previous passage, Every 15 minutes, Sanjay goes through what
process, Which frustrates his attempts to avenge the death of his sweetheart? Is
"He forgets about facts" a correct answer?

Answer: Yes

RWKV zero-shot: Yes, it is a correct answer..

Hyena zero-shot: The answer is.

RWKV few-shot: The answer is "yes".

Hyena few-shot: The answer is "yes.
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MultiRC index: 128

Passage: In 1863, Alexander II re-convened the Diet of Finland and initiated
several reforms increasing Finlandś autonomy from Russia including establishment
of its own currency, the markka. Liberation of business led to increased foreign
investment and industrial development. Finland also got its first railways,
separately established under Finnish administration. Finally, the elevation of
Finnish from a language of the common people to a national language equal to Swedish
opened opportunities for a larger proportion of the society. Alexander II is still
regarded as "The Good Tsar" in Finland. These reforms could be seen as results of
a genuine belief that reforms were easier to test in an underpopulated, homogeneous
country, than in the whole of Russia. They may also be seen as a reward for the
loyalty of its relatively western-oriented population during the Crimean War and
during the Polish uprising. Encouraging Finnish nationalism and language can also
be seen as an attempt to dilute ties with Sweden.

Question: Based on the previous passage, Alexander II is considered what in Finland
since 1863? Is "The good tsar" a correct answer?

Answer: Yes

RWKV zero-shot: The correct answer is "yes".

Hyena zero-shot: Yes, the question is correct.

RWKV few-shot: The Finnish language is a language of the people.

Hyena few-shot: Yes.
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MultiRC index: 1024

Passage: Einstein and Maric married in January 1903. In May 1904, the couple’s
first son, Hans Albert Einstein, was born in Bern, Switzerland. Their second son,
Eduard, was born in Zurich in July 1910. In 1914, the couple separated; Einstein
moved to Berlin and his wife remained in Zurich with their sons. They divorced
on 14 February 1919, having lived apart for five years. Eduard, whom his father
called "Tete" (for petit), had a breakdown at about age 20 and was diagnosed with
schizophrenia. His mother cared for him and he was also committed to asylums for
several periods, including full-time after her death. The marriage with Maric does
not seem to have been very happy. In letters revealed in 2015, Einstein wrote to
his early love, Marie Winteler, about his marriage and his still strong feelings
for Marie. In 1910 he wrote to her that "I think of you in heartfelt love every
spare minute and am so unhappy as only a man can be" while his wife was pregnant
with their second child. Einstein spoke about a "misguided love" and a "missed
life" regarding his love for Marie. Einstein married Elsa Lowenthal on 2 June
1919, after having had a relationship with her since 1912. She was a first cousin
maternally and a second cousin paternally. In 1933, they emigrated to the United
States. In 1935, Elsa Einstein was diagnosed with heart and kidney problems; she
died in December 1936.

Question: Based on the previous passage, How much time passed, after Albert
Einstein’s father divorced his mother, that he re-married? Is "3 months and 18
days" a correct answer?

Answer: Yes

RWKV zero-shot: Albert Einstein was born on 3 march 1916 in Gerlin, Germany. he
was the son of a German doctor and a german woman.

Hyena zero-shot: "3 months and 18 days"

RWKV few-shot: It is not a correct answer. The exact date is not known.

Hyena few-shot: Yes, according to the previous passage.
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