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Abstract

We study the efficient estimation of predictive con-
fidence intervals for black-box predictors when
the common data exchangeability (e.g., i.i.d.) as-
sumption is violated due to potentially feedback-
induced shifts in the input data distribution. That
is, we focus on standard and feedback covariate
shift (FCS), where the latter allows for feedback
dependencies between train and test data that oc-
cur in many decision-making scenarios like exper-
imental design. Whereas prior conformal predic-
tion methods for this problem are in general either
extremely computationally demanding or make
inefficient use of labeled data, we propose a col-
lection of methods based on the jackknife+ that
achieve a practical balance of computational and
statistical efficiency. Theoretically, our proposed
JAW-FCS method extends the rigorous, finite-
sample coverage guarantee of the jackknife+ to
FCS. We moreover propose two tunable relax-
ations to JAW-FCS’s computation that maintain
finite-sample guarantees: one using only K leave-
one-out models (JAW-KLOO) and a second build-
ing on K-fold cross validation+ (WCV+). Practi-
cally, we demonstrate that JAW-FCS and its com-
putational relaxations outperform state-of-the-art
baselines on a variety of real-world datasets under
standard and feedback covariate shift, including
for biomolecular design and active learning tasks.

1. Introduction
To safely and effectively deploy machine learning (ML) sys-
tems in high-stakes decision making, a promising approach
is to communicate to users whether a given prediction can
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be trusted via reliable predictive uncertainty quantification.
The use of standard approaches to ML uncertainty quantifi-
cation (UQ) in practice, however, is often hindered by at
least two key challenges. Firstly, real-world scenarios often
involve data shifts that violate the common ML assumption
that “the future will look like the past” (Finlayson et al.,
2021)—indeed, even the mere use of ML-generated insights
to inform future decisions can induce feedback-loop shifts
between training (e.g., development) and test (e.g., deploy-
ment) data that invalidate standard UQ methods (Fannjiang
et al., 2022). Secondly, even if data shift is accounted for,
many UQ methods are too resource-demanding to imple-
ment without sacrificing overall model performance. For
instance, many UQ methods have extreme or prohibitive
computational demands (e.g., extensive retraining of large
ML predictors), while others impose strict data-availability
requirements that can be unrealistic (e.g., requiring infinite
data in “asymptopia”) or harm model performance (e.g.,
requiring sample splitting to form a “holdout” UQ dataset
that cannot be used in training, which degrades accuracy
relative to if all labeled data were used to learn parameters).

Figure 1: Illustration of biomolecular design data shift scenario.

For a concrete example, take an experimental design sce-
nario, where a biomolecular engineer aims to propose a
novel protein sequence with high “fitness”—strong expres-
sion of a desired property such as fluorescence or medicinal
efficacy—using predictions of an ML model trained on a
protein dataset with experimentally-labeled fitness values.
This biomolecular design problem often requires leveraging
UQ to balance exploring novel sequences that are “far” from
the training data with exploiting “close” sequences whose
fitness values are already estimated with high confidence.
However, by selecting (for downstream experimental de-
sign) novel protein sequences according to the models’ pre-
dicted fitness, the engineer induces a dependency between
the training and test (designed sequence) distributions (Fig-
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Table 1: Summary of key properties for JAWS-X and baseline predictive inference methods for standard and feedback covariate shift.
Finite-sample Statistical Computational cost:

“Proposed” or Method coverage guarantee for efficiency: Total # trained black-box
reference if baseline name standard & feedback No sample predictors for n train & m

covariate shift splitting test points, Y label space
Tibshirani et al. (2019) weighted split CP ✓ ✗ 1
Fannjiang et al. (2022) full CP-FCS ✓ ✓ (n + 1) · m · |Y|

Proposed JAW-FCS ✓ ✓ n
Proposed JAW-KLOO ✓ ✓ K ≤ n
Proposed WCV+ ✓ ✓ K ≤ n

ure 1), which violates the common UQ assumption of data
being independent and identically distributed (i.i.d.). Com-
putational and statistical (data-use) efficiency are critical in
this setting: the scale of modern, nonlinear ML models im-
poses computational budget constraints, while the expensive
process of labeling new protein sequences via experimenta-
tion makes paramount the economical use of available data.
Similar examples could be given in other decision-making
scenarios, including active learning, ML for scientific dis-
covery, and safe exploration in reinforcement learning.

Distribution-free predictive inference under standard
and feedback covariate shift Within UQ we focus on wrap-
per methods for distribution-free predictive inference, by
which we refer to computing predictive confidence intervals
(or sets, more generally) around black-box ML predictions
without any assumptions about the parametric family of the
data distribution. The first necessary property for a predic-
tive interval is reliable coverage, for example meaning that
a 90% predictive confidence interval actually “covers” the
true target label with at least 90% frequency. Secondarily,
without sacrificing coverage, predictive intervals are more
useful when they are smaller (i.e., more informative), which
is often a byproduct of statistical efficiency.

Conformal prediction (CP) (Vovk et al., 2005) is a frame-
work for distribution-free predictive inference that achieves
finite-sample coverage guarantees, traditionally for any i.i.d.
(or exchangeable, more generally) samples. Full CP (Vovk
et al., 2005) is the most data-efficient CP variant but with
notorious computational demands, whereas split CP (Pa-
padopoulos et al., 2002) is the computationally cheapest but
least statistically efficient CP variant due to sample splitting.
Tibshirani et al. (2019) extend full and split CP to standard
covariate shift (SCS). Fannjiang et al. (2022) further allow
for a type of feedback-loop data shift they call feedback
covariate shift (FCS), which characterizes the biomolecular
design problem as a special case (see Section 2.4). In partic-
ular, the main contribution of Fannjiang et al. (2022) extends
full CP to FCS, and secondarily Fannjiang et al. (2022) de-
scribe how the weighted split CP method of Tibshirani et al.
(2019) de factor maintains its guarantee under FCS. How-
ever, these two prior methods with coverage guarantees

for distribution-free predictive inference under FCS—full
CP-FCS (Fannjiang et al., 2022) and weighted split CP (Tib-
shirani et al., 2019)—inherit corresponding computational
and statistical limitations from standard CP: For an arbitrary
predictor, full CP-FCS is extremely (and often prohibitively)
burdensome to compute, while weighted split CP suffers
from sample-splitting statistical inefficiencies (see Table 1).

As an alternative to the computational-statistical tradeoff
poles of (weighted) full and split CP under SCS, Prinster
et al. (2022) develop a collection of methods based on the
jackknife+ (Barber et al., 2021) called JAWS, which can
offer favorable computational and statistical efficiency com-
promises (see Sections 2.3 & 2.6). JAWS is based on the
JAW method, the jackknife+ weighted with likelihood-ratio
weights for SCS (hereon JAW-SCS for clarity), which ex-
tends the finite-sample coverage guarantee of the jackknife+
to SCS. The JAWS framework does not allow for the train-
test dependencies present in FCS, however, and moreover
the JAW-SCS method can still be expensive to compute.

In this work, we propose JAWS-X, a collection of methods
for distribution-free predictive inference with finite-sample
guarantees under SCS or FCS that flexibly and favorably
balance statistical and computational efficiency. Building
on the JAWS framework (Prinster et al., 2022), the letter
“X” partly alludes to the “cross” of our weighted cross-
validation+ method, along with the extension to FCS. Table
1 summarizes key properties of our methods and baselines.

Our contributions can be summarized as follows:

• We propose JAW-FCS, a first method for distribution-
free predictive inference under FCS that can favorably
balance statistical and computational efficiency. This
method generalizes both the jackknife+ (Barber et al.,
2021) and JAW-SCS (Prinster et al., 2022) methods to
feedback covariate shift (FCS) while achieving the same
rigorous, finite-sample coverage guarantee.

• We propose two computational relaxations of JAW-FCS
that apply to both the SCS and FCS settings. The first
approach, JAW-KLOO, leverages only K ≤ n leave-
one-out models while maintaining the JAW-FCS guaran-
tee. The second approach, K-fold WCV+, generalizes
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K-fold cross validation+ (CV+) developed in (Barber
et al., 2021) to SCS and FCS with a slightly weaker
finite-sample coverage guarantee.

• Empirically, we demonstrate that JAW-FCS and its com-
putational relaxations outperform state-of-the-art base-
lines on a variety of real-world datasets under SCS and
FCS, including for protein design and active learning
tasks. In particular, JAW-FCS and K-fold WCV+ main-
tain target coverage levels under SCS and FCS with bet-
ter performing black-box predictors and sharper (more
informative) predictive intervals than baselines.

2. Background and Related Work
2.1. Predictive Inference Preliminaries

We assume a multiset of training data Z1:n =
{Z1, ..., Zn} = {(X1, Y1), ..., (Xn, Yn)} and a test point
Zn+1 = (Xn+1, Yn+1) with unknown label Yn+1, where
(Xi, Yi) ∈ X × Y for all i ∈ {1, ..., n + 1} (and for a
standard regression setup X = Rd and Y = R). More-
over, let µ̂ = A({(X1, Y1), ..., (Xn, Yn)}) denote a black-
box predictor of interest, where A is a model-fitting algo-
rithm. Then, a predictive interval is a function Ĉn,α : Rd →
{subsets of R} that maps a test point Xn+1 to an interval
Ĉn,α(Xn+1) around the prediction µ̂(Xn+1), for some sig-
nificance level α ∈ (0, 1). A coverage guarantee states that
Ĉn,α(Xn+1) is guaranteed to contain the true label Yn+1

with high probability, such as satisfying

P{Yn+1 ∈ Ĉn,α(Xn+1)} ≥ 1− α (1)

for all α ∈ (0, 1). It is important to note that we focus on
marginal rather than conditional coverage (see Foygel Bar-
ber et al. (2021) for more on this distinction).

2.2. Standard Conformal Prediction

Conformal prediction (CP) (Vovk et al., 2005; Shafer &
Vovk, 2008) is a principled and increasingly popular frame-
work for distribution-free predictive inference; see An-
gelopoulos & Bates (2021) for a gentle introduction. Stan-
dard CP methods rely on the assumption of exchangeabil-
ity, meaning that the distribution of the training and test
data is invariant to permutations (i.i.d. is a special case);
additionally, non-holdout-set CP methods require that the
fitting algorithm A treat the training data symmetrically
(Barber et al., 2022). CP methods use a fitted score function
Ŝ : X × Y → R to quantify the extent to which labeled
points “conform” to previous data (e.g., the residual score
Ŝ(x, y) = |y−µ̂(x)|), and CP intervals are then constructed
from subsets of Y whose scores lie within a (conservative)
quantile on the empirical distribution of score values.

Full (or transductive) CP (Vovk et al., 2005) and split (or
inductive) CP (Papadopoulos et al., 2002; Papadopoulos,

2008) are the two main types of standard CP. Together these
methods represent polar-opposite ends on the computational-
statistical efficiency tradeoff spectrum, with full CP being
the most statistically efficient but computationally burden-
some, and split CP being the computationally cheapest but
with the least efficient use of available data (due to sample
splitting to form a holdout set that cannot be trained on).

2.3. Jackknife+ and Cross Validation+

The jackknife+ and cross validation+ (CV+) methods of
Barber et al. (2021), which are closely related to cross-
conformal prediction (Vovk, 2015; Vovk et al., 2018), offer
a range of intermediate, often beneficial compromises be-
tween the computational-statistical tradeoff extremes of full
and split CP. The jackknife+ is a modified version of clas-
sic leave-one-out or “jackknife” resampling (Miller, 1974;
Steinberger & Leeb, 2018; 2016), which requires rerunning
the training algorithm A a total of n times, once for each
leave-one-out predictor. Assuming exchangeable data and
a symmetric algorithm A (as in standard full CP), Barber
et al. (2021) prove that jackknife+ satisfies a slightly weaker
coverage guarantee than standard CP methods, namely

P{Yn+1 ∈ Ĉ jackknife+
n,α (Xn+1)} ≥ 1− 2α. (2)

However, jackknife+ typically achieves target (1− α) em-
pirical coverage for exchangeable data (Barber et al., 2021).

CV+ offers a computational relaxation of jackknife+ to al-
low for retraining K ≤ n predictors that each withhold n

K
datapoints from training, where n is assumed to be divisible
by K (Barber et al., 2021); CV+ can thus be understood as
a modification to K-fold cross validation resampling. For
each training point i ∈ {1, ..., n}, let k(i) ∈ {1, ...,K}
denote the index of a cross-validation fold, where the mul-
tisets of points in each fold are denoted {S1, ..., SK}. Let
µ̂−Sk

= A
(
(Xi, Yi) : i ∈ {1, ..., n}\Sk

)
denote the predic-

tor trained with the k-th cross-validation fold Sk removed,
and denote the residuals for the model µ̂−Sk

applied to
points in its left-out fold Sk as RCV

i =
∣∣µ̂−Sk(i)

(Xi)− Yi

∣∣
for i : k(i) = k. Then, the CV+ interval is defined as

ĈCV+
n,K,α(x) =[

Qα

( n∑
i=1

[
1

n+1δµ̂−Sk(i)
(x)−RCV

i

]
+ 1

n+1δ−∞

)
,

Q1−α

( n∑
i=1

[
1

n+1δµ̂−Sk(i)
(x)+RCV

i

]
+ 1

n+1δ+∞

)]
, (3)

where δv denotes a point mass at v and Qβ(·) denotes the
level β empirical quantile function. Note that the special
case of K = n recovers jackknife+. Barber et al. (2021) pro-
vide a finite-sample coverage guarantee for the CV+ (under
exchangeability) that depends on K, where the strength of
the guarantee approaches that of jackknife+ (2) as K → n.
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2.4. Standard and Feedback Covariate Shift

Under the standard covariate shift (SCS) assumption, the
conditional Y | X distribution is assumed to be the same
between training and test data but the marginal X distri-
butions may change (Sugiyama et al., 2007; Shimodaira,
2000). Crucially, SCS assumes that the test data distribution
is independent of the training data:

(Xi, Yi)
i.i.d.∼ PX × PY |X , i = 1, ..., n

(Xn+1, Yn+1) ∼ P̃X × PY |X , independently. (4)

Feedback covariate shift (FCS) as described by Fannjiang
et al. (2022), however, can be understood as a generalization
of SCS where the marginal distribution of the test inputs
may depend on the realization of the training data Z1:n:

(Xi, Yi)
i.i.d.∼ PX × PY |X , i = 1, ..., n

(Xn+1, Yn+1) ∼ P̃X;Z1:n × PY |X . (5)

FCS thus characterizes the biomolecular design scenario
from the introduction (Figure 1), where a predictor trained
on i.i.d. protein training data Z1:n shifts the distribution
of designed sequences P̃X;Z1:n

, and where, as a property
determined by nature, Y | X is expected to remain invariant.

2.5. Conformal Prediction for SCS and FCS

Tibshirani et al. (2019) develop a weighted generalization of
exchangeability that the authors then used to extend full and
split CP to the SCS setting using likelihood-ratio weights.
However, Tibshirani et al. (2019) do not account for depen-
dencies between the train and test data, and in later work
Fannjiang et al. (2022) describe how full CP for SCS thus
loses its formal guarantee under FCS (though empirically,
Fannjiang et al. (2022) find that full CP-SCS can main-
tain target coverage but with overly conservative interval
widths). The main result of Fannjiang et al. (2022) extends
full CP to FCS (full CP-FCS) while maintaining a guaran-
tee of the form (1). However, for an arbitrary (potentially
nonlinear) predictor with n train points, m test points, and
|Y| as the cardinality of the label space, full CP-FCS de-
mands the often prohibitive computational price of training
(n+1) ·m · |Y| distinct predictors (in regression, Y must be
approximated by a fine grid of values). Only in special cases
such as for linear models can full CP-FCS’s computation be
reduced to (n+ 1) ·m runs of the training algorithm A.

Secondarily, Fannjiang et al. (2022) also describes how Tib-
shirani et al. (2019)’s split CP for SCS (hereon “weighted
split CP”) de facto maintains its guarantee under FCS: due
to sample splitting, the test distribution depends on weighted
split CP’s “proper” training data but not on its holdout cal-
ibration set, which reduces the holdout-to-test shift from
FCS to SCS. However, weighted split CP remains statis-
tically inefficient due to its sample splitting requirement,

which (as we will demonstrate) results in reduced model
performance and overly wide (and thus less informative)
predictive intervals relative to our proposed methods.

2.6. JAW: Jackknife+ Under Standard Covariate Shift

Prinster et al. (2022) propose the jackknife+ weighted with
likelihood ratio weights for SCS, or JAW (JAW-SCS for
clarity), which relaxes the jackknife+’s assumption of data
exchangeability to allow for SCS while achieving the same
finite-sample coverage guarantee (2). However, JAW-SCS
does not allow for train-test dependencies and thus loses
its guarantee under FCS. Prinster et al. (2022) also propose
a computationally fast JAW approximation (JAWA) that
uses higher-order influence functions to estimate JAW’s
leave-one-out models and thus avoid retraining, but with an
asymptotic guarantee that requires regularity conditions. In
our current work, we extend JAW-SCS to FCS and moreover
propose computational relaxations to JAW under either SCS
or FCS that maintain finite-sample coverage guarantees
without any regularity assumptions.

3. JAW-FCS: Jackknife+ Weighted for FCS
Our first proposed method for efficient distribution-free pre-
dictive inference under FCS generalizes both the jackknife+
(Barber et al., 2021) and JAW-SCS (Prinster et al., 2022)
methods to FCS. Let training data Z1:n = {Z1, ..., Zn} and
a test point Zn+1 be generated from FCS (5), and denote
w(x;D) = dP̃X;D(x)/dPX(x) as the likelihood ratio func-
tion for the data that depends on D for D ⊆ Z1:n. Then, for
each j ∈ {1, ..., n+1}, let Z−j = Z1:n\Zj denote the train-
ing data with point j removed (where Z−(n+1) = Z1:n), and
define the normalized weight function

w̃n+1,j(x) = (6)

w(x;Z−j)w(Xj ;Z−j)∑n
j′=1

[
w(x;Z−j′)w(Xj′ ;Z−j′)

]
+ w(x;Z1:n)2

.

Given Xn+1 as an argument, w̃n+1,j(Xn+1) can be thought
of as a weight applied to the training point Xj that is care-
fully normalized with respect to the other training data and
the test point Xn+1 (see Appendix A.2 for further details).
To condense notation slightly, for j = n + 1 we will also
write w̃n+1,n+1(x) as w̃(n+1)2(x). We then define the pre-
dictive interval for JAW-FCS, as follows:

ĈJAW-FCS
n,α (x) = (7)[

Qα

( n∑
j=1

w̃n+1,j(x)δµ̂−j(x)−RLOO
j

+ w̃(n+1)2(x)δ−∞

)
,

Q1−α

( n∑
j=1

w̃n+1,j(x)δµ̂−j(x)+RLOO
j

+ w̃(n+1)2(x)δ∞

)]
,
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where δv denotes a point mass at v and Qβ(·) denotes the
level β empirical quantile function. The following theorem
presents the finite-sample coverage guarantee for the JAW-
FCS interval (7), which relaxes the assumption in Prinster
et al. (2022) from standard to feedback covariate shift.

Theorem 3.1. Suppose data are generated under feedback
covariate shift (5) and assume P̃X;D is absolutely continu-
ous with respect to PX for all possible values of D. Then,
for any miscoverage level, α ∈ (0, 1), the JAW-FCS predic-
tive interval in (7) satisfies

P{Yn+1 ∈ ĈJAW-FCS
n,α (Xn+1)} ≥ 1− 2α. (8)

We defer the proof to Appendix A.2, but here note two
key differences from the JAW-SCS proof in Prinster et al.
(2022): Firstly, weights are selected to maintain “pseudo-
exchangeability”, rather than weighted exchangeability, in
a weighted comparison matrix; secondly, in our first proof
step we establish a bound on an expectation term whose
analog in Prinster et al. (2022) is deterministic.

4. Further Computational Relaxations
4.1. Relaxation of JAW with K Leave-One-Out Models

While the calculation of the JAW-FCS prediction interval
(7) is in general computationally efficient relative to full
CP-FCS from Fannjiang et al. (2022) (see Table 1), the
retraining requirements of JAW-FCS can be relaxed even
further to enable rerunning the model-training algorithm A
only K ≤ n times. As our first proposed computational
relaxation, we demonstrate that using only K ≤ n of the
leave-one-out models required by the JAW-FCS method still
achieves the same coverage guarantee, though often at the
cost of wider or more variable predictive intervals. We call
this computational relaxation JAW-KLOO. The K training
points used for JAW-KLOO’s leave-one-out retraining can
be selected in a range of ways, either deterministically or
randomly. For simplicity, we mainly focus on JAW-KLOO
deterministically selecting the K points with largest weights,
though in the Appendix A.3 we discuss adjustments for
random sampling and in Section 5.3 we compare empirical
performance of deterministic versus random sampling in
terms of interval width and coverage variance.

Let SLOO ⊆ {1, ..., n} denote a subset of the training data
where |SLOO| = K. Then, we define the JAW-KLOO
normalized weights similarly as for JAW-FCS, except only
using leave-one-out models for points j : j ∈ SLOO:

w̃KO
n+1,j(x) = (9)

w(x;Z−j)w(Xj ;Z−j)∑
j′∈SLOO

[
w(x;Z−j′)w(Xj′ ;Z−j′)

]
+ w(x;Z1:n)2

,

where to condense notation slightly we also write
w̃KO

(n+1)2(x) to denote w̃KO
n+1,n+1(x). Then, we define the

JAW-KLOO prediction interval as follows

ĈJAW-KLOO
n,α (x) = (10)[
Qα

( ∑
j∈SO

w̃KO
n+1,j(x)δµ̂−j(x)−RLOO

j
+ w̃KO

(n+1)2(x)δ−∞

)
,

Q1−α

( ∑
j∈SLOO

w̃KO
n+1,j(x)δµ̂−j(x)+RLOO

j
+ w̃KO

(n+1)2(x)δ∞

)]
.

The JAW-KLOO model then satisfies the same coverage
guarantee as the full JAW-FCS model, which we state for-
mally in the following theorem (proof in Appendix A.3).
Theorem 4.1. Suppose data are generated under feedback
covariate shift (5) and assume P̃X;D is absolutely continu-
ous with respect to PX for all possible values of D. Then,
for any miscoverage level, α ∈ (0, 1), the JAW-KLOO pre-
dictive interval in (10) satisfies

P{Yn+1 ∈ ĈJAW-KLOO
n,α (Xn+1)} ≥ 1− 2α. (11)

4.2. K-fold Weighted Cross-Valdation+

We now propose an alternative computational relaxation of
JAW-FCS that relies on a weighted K-fold cross validation
resampling procedure with K leave- n

K -out models (in con-
trast to JAW-KLOO that uses K leave-one-out models). In
particular, this second computational relaxation generalizes
the K-fold cross validation+ (CV+) method of Barber et al.
(2021) to allow for feedback or standard covariate shift—we
call this method K-fold WCV+FCS or WCV+ for short.

Prior to defining the WCV+ predictive interval, we first need
to generalize the normalized weights defined in (6) using
likelihood ratio functions w(x;D) = dP̃X;D(x)/dPX(x)
that depend on all the training data aside from a specific
fold (rather than depending on leave-one-out subsets Z−j

as in (6)). For k(j) ∈ {1, ...,K} denoting the index of the
cross validation fold Sk(j) ⊆ Z1:n that point j belongs to,
let Z−Sk(j)

= Z1:n\Sk(j). Then, we define

w̃CV
n+1,j(x) = (12)

w(x;Z−Sk(j)
)w(Xj ;Z−Sk(j)

)∑n
j′=1

[
w(x;Z−Sk(j′))w(Xj′ ;Z−Sk(j′))

]
+ w(x;Z1:n)2

for training data j ∈ {1, ..., n}. We can now define the
K-fold WCV+ predictive interval as follows:

ĈWCV+
n,K,α(x) = (13)[
Qα

( n∑
j=1

w̃CV
n+1,j(x)δµ̂−Sk(i)

(x)−RCV
i

+ w̃CV
(n+1)2(x)δ−∞

)
,

Q1−α

( n∑
j=1

w̃CV
n+1,j(x)δµ̂−Sk(i)

(x)+RCV
i

+ w̃CV
(n+1)2(x)δ∞

)
,
]
,
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where the w̃CV
n+1,j(x) are defined in (12), and where

w̃CV
(n+1)2(x) = w̃CV

n+1,n+1(x). We now present the coverage
guarantee for WCV+, which is weaker than the JAW-FCS
guarantee by a term that approximately represents the ex-
pected normalized weight of a cross-validation fold minus
one point, but with a more technical formulation that we
defer with the WCV+ coverage proof to Appendix A.4.

Theorem 4.2. Suppose data are generated under feedback
covariate shift (5) and assume P̃X;D is absolutely continu-
ous with respect to PX for all possible values of D. Then,
for any miscoverage level, α ∈ (0, 1), the K-fold WCV+
predictive interval in (13) satisfies

P
{
Yn+1 ∈ ĈWCV+FCS

n,K,α (Xn+1)
}
≥

1− 2α− E
[ ∑
j∈Sk(i)\i

w̃CV
ij (Xn+1)

]
. (14)

Remark 4.3. JAW-KLOO and WCV+ also extend to SCS as
a special case, which to our best knowledge is also a novel
contribution—that is, the first computational relaxations of
JAW-SCS (Prinster et al., 2022) without requiring a holdout
dataset and maintaining finite-sample guarantees.

5. Experiments
To demonstrate the practical performance of our JAW-FCS
method and its computational relaxations in a real-world
FCS scenario, we first focus on the protein design prob-
lem (Figure 1), where a common goal is to design a novel
protein sequence with high functional fitness (Yang et al.,
2019; Sinai & Kelsic, 2020; Wu et al., 2021), such as strong
fluorescence. We next consider an active learning task to
evaluate how our methods perform when the FCS likelihood-
ratio weights need to be estimated, and we lastly evaluate
our two computational relaxations in the SCS setting.

5.1. Protein Design Experiments under FCS

Datasets In protein engineering, the labels for designed
sequences are usually unknown, so we follow Fannjiang
et al. (2022) by using the workaround offered by combi-
natorially complete protein datasets. In particular, we use
data from Poelwijk et al. (2019) where each sequence was
measured for both a “red” and a “blue” wavelength fluo-
rescence, thus resulting in two combinatorially complete
datasets corresponding to the two distinct fitness functions.

Creation of Feedback Covariate Shift In line with Fan-
njiang et al. (2022) and other biomolecular engineering
papers (Biswas et al., 2021; Zhu et al., 2021), we sample
design or “test point” protein sequences from a distribu-
tion over fluorescent protein sequences (Poelwijk et al.,
2019) with log-likelihood proportional to the regression
model’s prediction. That is, we sample design sequences

from P̃X;Z1:n
(Xn+1) ∝ exp(λ · µ̂(Xn+1)), where the hy-

perparameter λ ≥ 0 is the “inverse temperature”. Thus,
larger λ values correspond to larger shift magnitudes of
FCS. Artificial measurement noise was also added to the
sampling procedure as in Fannjiang et al. (2022) to simulate
a real experimental scenario where repeat measurements of
the same sequence can result in different observations.

Oracle Weights Are Often Known in the Design Prob-
lem The one-shot design problem is a special case of FCS
where the distribution of the inputs is usually known or
can be reliably simulated, which substantially reduces or
removes altogether the challenge of likelihood-ratio weight
estimation (Fannjiang et al., 2022). The intuition is that
the training data are selected by a known procedure defined
by a domain expert (e.g., random substitutions to a known
wild-type sequence as in Brookes et al. (2019); Biswas et al.
(2021); Bryant et al. (2021)), and the (shifted) test distribu-
tion is a designed distribution shift, intentionally selected so
that “test” protein sequences that are expected to have high
fitness. In particular, the biomolecular engineering literature
commonly uses optimization procedures (such as training
a generative model) where the test (design) distribution is
explicitly known (Brookes et al., 2022; Fannjiang & List-
garten, 2020; Popova et al., 2018; Kang & Cho, 2018; Russ
et al., 2020; Wu et al., 2020; Hawkins-Hooker et al., 2021;
Shin et al., 2021) or that produce an implicit test distribution
that can be easily simulated, and thus estimated (Killoran
et al., 2017; Gómez-Bombarelli et al., 2018; Linder et al.,
2020; Sinai et al., 2020; Bashir et al., 2021; Bryant et al.,
2021), relative to naive density estimation with unknown
shifts. For our protein design experiments we thus evaluate
our methods and relevant baselines using oracle weights.

Protein design experimental details We used the scikit-
learn package (Pedregosa et al., 2011) MLPRegressor
method (with L-BFGS solver and logistic activation func-
tion) for the neural network µ̂ and the package’s Random-
ForestRegressor method (with 20 trees and the absolute error
criterion) for the random forest µ̂. The baselines are jack-
knife+ (orange squares), weighted split conformal (green
triangles), and traditional split conformal (pink diamonds);
the predicted fitness values for JAW-FCS and jackknife+ are
identical, as are those for weighted and traditional split CP.
All values are for 20 repeated experiments, which each have
a distinct random seed, 192-sample training set, and set of
200 test points (for 4000 total test points per plotted value).

5.1.1. PROTEIN DESIGN RESULTS FOR JAW-FCS

A predictive inference method is reliable if its confidence
intervals achieve coverage at the target level 1 − α. Be-
yond this necessary criterion, however, for protein design
a predictive inference method is most useful if it moreover
enables a protein engineer to identify promising candidate

6
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Figure 2: Mean predictive interval coverage, median interval width, and mean predicted fitness (i.e., mean predicted fluorescence for test
point “designed” protein sequence) for our proposed JAW-FCS method (blue circles) and its baselines, across four datasets and predictor
conditions: (a) red fluorescence with neural network µ̂, (b) red fluorescence with random forest µ̂, (c) blue fluorescence with neural
network µ̂, (d) blue fluorescence with random forest µ̂. For coverage, at or above the target level (black dotted line at 1−α = 0.9) is best;
for median interval width, smaller is better (more informative) so long as target coverage is achieved; for predicted fitness, higher is better.
Black error bars for coverage and predicted fitness represent standard error, and gray error bars for median interval width represent upper
and lower quartiles. JAW-FCS maintains coverage at the target level regardless of shift magnitudes λ, with higher mean predicted fitness
and smaller, more informative prediction intervals than weighted split conformal, the only baseline that also maintains target coverage.

Figure 3: Mean coverage and median interval width for computational relaxations of JAW-FCS—that is, WCV+ (red Xs) and JAW-KLOO
(violet plus shape) methods—relative to baselines across a range of computational budgets for training K distinct predictors. The
other baseline that depends on K is standard CV+ (brown triangles); meanwhile, the proposed JAW-FCS (blue line) and weighted split
conformal (green line) methods are also included as baselines, though with dashed lines indicating that their computational budgets
are fixed independently of K (see Table 1). For coverage, at or above the target level (black dotted line at 1− α = 0.9) is best, while
for median interval width, smaller is better (more informative) only for methods that achieve coverage at or above target level. Shift
magnitude of FCS is fixed at λ = 2. Black error bars for coverage represent standard error and gray bars for median interval width
represent upper and lower quartiles. Both WCV+ and JAW-KLOO maintain coverage above the target level of 1− α = 0.9 for all tested
computational budget values K; WCV+ interval widths are comparable to JAW-FCS, while JAW-KLOO are overly wide for smaller K.

sequences that are predicted, with minimal uncertainty (min-
imal interval width), to have maximum fitness. Accordingly,
we consider a predictive inference method to have ideal
statistical performance if it maintains coverage at or above
the user-specified target level 1 − α, if its interval widths
are as small and thus as informative as possible, and if the
predicted fitness of its designed sequences are as high as

possible. In Figure 2 we thus plot these three performance
criteria (coverage, interval width, and predicted fitness) for
JAW-FCS and several baselines across a grid of shift magni-
tudes λ ∈ {0, 1, 2, 3}, for both the red and blue fluorescence
datasets with both a neural net and random forest predictor.

For all dataset × predictor conditions in Figure 2, JAW-FCS
and weighted split conformal prediction maintain coverage

7
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at the target level of 1 − α = 0.9 regardless of data shift
magnitude λ, whereas the traditional, exchangeable-data
versions of each of the two methods (jackknife+ and split
conformal) lose coverage. However, for all dataset × pre-
dictor conditions, the JAW-FCS prediction intervals are gen-
erally smaller and thus more informative than the weighted
split intervals, and designed sequences from the JAW-FCS’s
µ̂ predictor have higher mean predicted fitness than those
of the weighted split method. The superior predicted fitness
and interval width values for JAW-FCS relative to weighted
split CP largely reflect the former’s greater statistical ef-
ficiency. That is, by avoiding sample splitting, JAW-FCS
maintains a µ̂ predictor that is trained on more data and
therefore more “competent” than that of weighted split, and
JAW-FCS is also able to efficiently use all of its labeled data
for the construction of more precise predictive intervals.

5.1.2. RESULTS FOR PROTEIN DESIGN WITH JAW-FCS
COMPUTATIONAL RELAXATIONS

We now turn to evaluate WCV+ and JAW-KLOO, our
two proposed computational relaxations of JAW-FCS, rel-
ative to JAW-FCS, standard CV+, and weighted split CP.
In Figure 3, we compare these methods’ coverage and in-
terval width values across a grid of computational budgets
K ∈ {4, 8, 16, 24, 32, 48, 96, 192} denoting the number of
retrained predictors, across the same dataset × predictor
conditions. We omit the predicted fitness values, which
would be largely overlapping for non-holdout-set methods.
We observe that both WCV+ and JAW-KLOO maintain
coverage at or above the target 1 − α = 0.9 level for all
evaluated computational budgets, whereas standard CV+
loses coverage. Notably, the prediction interval widths for
WCV+ are largely comparable to those of the full JAW-FCS
method for all evaluated computational budgets K, but for
smaller values of K, JAW-KLOO has overly conservative
prediction intervals. Values for JAW-KLOO are not plotted
for K < 24, where the method’s intervals can often become
uninformative for small K. These results favor WCV+ as a
practical computational relaxation of JAW-FCS that empiri-
cally appears to avoid degraded coverage or interval widths
even for fairly small computational budgets K. Meanwhile,
in cases with severe miscoverage penalties, JAW-KLOO
could potentially be used as a conservative computational
relaxation to JAW-FCS that achieves the same guarantee.

5.2. Experiments with Estimated FCS Weights

Active Learning Exploration with Probabilistic Bounds
While in Section 5.1 the input distributions (and thus the
FCS weights) are known for the protein design task, in
other settings of FCS the weights may need to be estimated.
For instance, take high-stakes or resource-constrained ex-
ploration in active learning, where predictive intervals for
query (test) points can help (probabilistically) bound risks

Figure 4: Mean coverage (left), median interval width (middle),
and validation-set mean squared error (right), for active learning
predictive inference experiments on the airfoil dataset (Dua &
Graff, 2017). Coverage and MSE error bars are standard error,
width error bars are interquartile range. Values are for 30 exper-
imental replicates each with 8 active learning query iterations,
where 16 points were queried in each iteration. Weighted split
interval widths are not shown when small sample size in early
iterations results in median widths being uninformative (infinite
length). The results show that our proposed methods (JAW-FCS,
JAW-KLOO, WCV+) can achieve target coverage (1− α = 0.9)
even with estimated rather than oracle weights while maintaining
smaller (more informative) interval widths and lower MSE.

or costs associated with the “annotation” procedure (e.g.,
invasive medical diagnostic procedures or expensive lab ex-
periments). In each active learning iteration, the training
data are updated with newly labeled “query” points based
on a systematic querying strategy, which will usually re-
sult in the training distribution in the early stage differing
drastically from the distribution at a later iteration. Mean-
while, the distribution of the query (test) points can also
change as the model becomes more “informed”. However,
with common active learning setups such as pool-based ac-
tive learning with uncertainty sampling, the query or test
distribution shift is a direct function of an attribute of the
model predictions (e.g., least confidence, prediction entropy)
(Nguyen et al., 2022; Brochu et al., 2010; Settles, 2009),
which means that the test distribution is known. Therefore,
FCS likelihood-ratio weight estimation in active learning
often reduces to density estimation of only the training data.

To empirically evaluate our proposed predictive inference
methods with estimated rather than oracle weights, we im-
plemented a pool-based active learning task with the NASA
Airfoil Self-Noise Dataset (Dua & Graff, 2017). We used
kernel density estimation (with a Gaussian kernel) to esti-
mate the density of the labeled training data, and query/test
data were sampled from a larger pool of unlabeled points
with likelihoods proportional to the predicted variance at
each point from a Gaussian process (with a dot product
kernel and added white noise), which is a common practice
(Yue et al., 2020). Figure 4 firstly demonstrates that our
proposed (JAW-FCS, JAW-KLOO, and WCV+) methods
can achieve predictive interval coverage above the target
level of 1− α = 0.9 even with estimated rather than oracle
weights. Moreover, in Figure 4 our methods generally main-
tain smaller (and thus more informative) interval widths
than the weighted split conformal prediction baseline as
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Figure 5: Mean coverage, median interval width, and coverage variance for proposed WCV+ (red Xs), deterministic JAW-KLOO (violet
plus shape), and random JAW-KLOO (gray plus shape) under standard covariate shift (SCS), compared to JAW-SCS (blue line), weighted
split (green line), and standard CV+ (brown triangles) baselines, for a range of computational budgets K. For coverage, at or above
the target level of 1 − α = 0.9 is best; for interval width, smaller is better (more informative) so long as target coverage is reached;
for coverage variance, lower is better (more reliable). Results are across 20 repeated experiments each with a neural net predictor with
200 training points and 200 test points. WCV+ and both JAW-KLOO sampling approaches maintain coverage at the target level of
1−α = 0.9 across all tested conditions: WCV+ does so while performing comparable to JAW-SCS, while deterministic JAW-KLOO-det
has overly conservative interval widths and random-sampling JAW-KLOO-rand has high coverage variance.

well as achieve smaller validation-set mean squared error.

5.3. Computational Relaxations Under SCS

To evaluate our proposed computational relaxations in the
SCS setting, we use four UCI datasets (Dua & Graff, 2017)
used for experiments in Prinster et al. (2022): airfoil self-
noise, red wine quality prediction (Cortez et al., 2009), su-
perconductivity (Hamidieh, 2018), and communities and
crime (Redmond & Baveja, 2002), which represent a range
of different dimensionalities. We follow the procedure de-
scribed in Prinster et al. (2022) for the creation of SCS, and
we refer to that work for details. Figure 5 shows the mean
coverage, median interval width, and coverage variance
results for our proposed WCV+ method, as well as for JAW-
KLOO with both deterministic and random sampling when
K ≥ 20 (as JAW-KLOO often becomes uninformative for
smaller K). WCV+ and both JAW-KLOO sampling meth-
ods maintain coverage above the target level of 1−α = 0.9
for all datasets and predictor functions µ̂, along with the
other methods with coverage guarantees under standard
covariate shift (JAW-SCS and weighted split conformal pre-
diction). These results suggest that our proposed WCV+
and JAW-KLOO methods, which relax the computational
requirements of JAW-FCS, achieve similar target coverage
performance under SCS as in the FCS setting. Moreover,
across datasets, the predictive intervals for WCV+ have com-
parable width to the JAW-SCS method, which suggests that
WCV+ is a practical computational relaxation of JAW-SCS
that appears to avoid sacrificing either empirical coverage or
interval sharpness. Meanwhile, JAW-KLOO with determin-
istic sampling tends to have overly large interval widths for
small K, while JAW-KLOO with random sampling tends to
have more variable coverage, which indicates less reliability
(see Appendix A.3 for details on JAW-KLOO variants).

6. Conclusion
In this paper we propose JAWS-X, a collection of
distribution-free predictive inference methods for standard
and feedback covariate shift that can flexibly and favor-
ably balance computational and statistical efficiency. We
provide rigorous, finite-sample coverage guarantees and val-
idate them in real-world feedback covariate shift problems
including protein design, active learning with estimated
weights, and standard covariate shift scenarios with real-
world datasets. Our methods achieve a substantial speedup
in computational demands relative to full conformal for
FCS as well as a considerable improvement to predictor per-
formance and interval sharpness relative to weighted split
conformal, without losing coverage. We moreover demon-
strate that our proposed methods achieve target performance
even with estimated rather than oracle weights on an active
learning task, although the fact that our guarantees assume
oracle weights is a limitation of our work. Promising fu-
ture directions include examining how weight estimation
error impacts guarantees, exploring if stronger guarantees
are possible for the WCV+ method, improving the selection
of leave-one-out models for the JAW-KLOO method, and
generalizations to other distribution shift settings.

Software and Data
GitHub repository with code for all experiments: https:
//github.com/drewprinster/jaws-x
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Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B., She-
berla, D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams,
R. P., and Aspuru-Guzik, A. Automatic chemical de-
sign using a data-driven continuous representation of
molecules. ACS central science, 4(2):268–276, 2018.

Hamidieh, K. A data-driven statistical model for predicting
the critical temperature of a superconductor. Computa-
tional Materials Science, 154:346–354, 2018.

Hawkins-Hooker, A., Depardieu, F., Baur, S., Couairon, G.,
Chen, A., and Bikard, D. Generating functional protein
variants with variational autoencoders. PLoS computa-
tional biology, 17(2):e1008736, 2021.

Kang, S. and Cho, K. Conditional molecular design with
deep generative models. Journal of chemical information
and modeling, 59(1):43–52, 2018.

Killoran, N., Lee, L. J., Delong, A., Duvenaud, D., and Frey,
B. J. Generating and designing dna with deep generative
models. arXiv preprint arXiv:1712.06148, 2017.

Landau, H. On dominance relations and the structure of
animal societies: Iii the condition for a score structure.
The bulletin of mathematical biophysics, 15(2):143–148,
1953.

Linder, J., Bogard, N., Rosenberg, A. B., and Seelig, G.
A generative neural network for maximizing fitness and
diversity of synthetic dna and protein sequences. Cell
systems, 11(1):49–62, 2020.

Miller, R. G. The jackknife-a review. Biometrika, 61(1):
1–15, 1974.

Nguyen, V.-L., Shaker, M. H., and Hüllermeier, E. How to
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A. Proofs for theoretical results.
A.1. Preliminaries

Data from feedback covariate shift (FCS) as in (5) are a special case of what Fannjiang et al. (2022) call pseudo-exchangeable
random variables.

Definition A.1. Random variables V1, ..., Vn+1 are pseudo-exchangeable with factor functions w1, ..., wn+1 and core
function h if the density, f , of their joint distribution can be factorized as

f(v1, ..., vn+1) =

n+1∏
i=1

wi(vi; v−i) · h(v1, ..., vn+1) (15)

where v−i = v1:(n+1)\vi , each wi(·; v−i) is a function that depends on the multiset v−i (that is, on the values in v−i but
not on their ordering), and h is a function that does not depend on the ordering of its n+ 1 inputs.

The proofs for our theoretical results leverage the observation that any subsequence of pseudo-exchangeable random
variables is itself pseudo-exchangeable, which we state formally in the following lemma.

Lemma A.2. Let (V1, ..., Vn+1) be a sequence of pseudo-exchangeable random variables with factor functions w1, ..., wn+1.
For any J = {j1, ..., jm} ⊆ {1, ..., n+ 1}, the subsequence (Vj1 , ..., Vjm) is pseudo-exchangeable.

Proof. Let J = {j1, ..., jm} ⊆ {1, ..., n+ 1} denote an arbitrary set of indices so that (Vj1 , ..., Vjm) is a subsequence of
(V1, ..., Vn+1), and let JC = {j′1, ..., j′n+1−m}. Then, we can integrate (15) over all vj′ such that j′ ∈ JC :∫

vj′1

. . .

∫
vj′

n+1−m

f(v1, ..., vn+1) dvj′1 . . . dvj′n+1−m
=

∫
vj′1

. . .

∫
vj′

n−m

n+1∏
i=1

wi(vi; v−i) · h(v1, ..., vn) dvj′1 . . . dvj′n+1−m

(16)

such that the right-hand side of (16) no longer depends on any specific value of vj′ for j′ ∈ JC . That is, letting
vJ = {vj : j ∈ J}, we can write (16) as

fJ(vj1 , ..., vjm) =
∏
j∈J

wj(vj ; vJ\vj) · gJ(vj1 , ..., vjm), (17)

for some weight functions wj(·; vJ\vj) and some core function gJ that does not depend on the ordering of its inputs.
Therefore, the subsequence (Vj1 , ..., Vjm) is pseudo-exchangeable.

A.2. Proof for JAW-FCS coverage under feedback covariate shift

We first restate the JAW-FCS coverage guarantee before proceeding with the proof.

Theorem 3.1 Suppose data are generated under feedback covariate shift (5) and assume P̃X;D is absolutely continuous with
respect to PX for all possible values of D. Then, for any miscoverage level, α ∈ (0, 1), the JAW-FCS predictive interval in
(7) satisfies

P{Yn+1 ∈ ĈJAW-FCS
n,α (Xn+1)} ≥ 1− 2α.

Our proof technique generalizes the proof for JAW-SCS presented in Prinster et al. (2022) from standard covariate shift to
feedback covariate shift. Since the proof for JAW-SCS in Prinster et al. (2022) is itself a generalization of the jackknife+
coverage proof (for exchangeable data) in Barber et al. (2021), the proof we present here is thus also a generalization of the
jackknife+ coverage proof.

We use (a) - (d) to denote four setup steps, and after the setup we use 1-3 to denote the main steps in the proof. Our first two
initial setup steps (a) and (b) are identical to the corresponding setup steps in the proof for both Theorem 1 in Prinster et al.
(2022) and Theorem 1 in Barber et al. (2021):

12
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(a) First, we suppose the hypothetical case where in addition to the training data {(X1, Y1), ..., (Xn, Yn)}, we also have
access to the labeled test point (Xn+1, Yn+1). For each pair of indices i, j ∈ {1, ..., n + 1} with i ̸= j, we define
µ̃−(i,j) as the regression function fitted on the training and potentially on the test data except with the points i and j
removed. (We follow the notation in Barber et al. (2021) where µ̃ rather than µ̂ reminds us that the former is fit on a
subset of data 1, ..., n + 1 that may contain the test point n + 1.) We note that µ̃−(i,j) = µ̃−(j,i) for any i ̸= j, and
µ̃−(i,n+1) = µ̂−i for any i = 1, ..., n.

(b) We also define the same matrix of residuals in Barber et al. (2021), R ∈ R(n+1)×(n+1), with entries

Rij =

{
+∞ i = j,

|Yi − µ̃−(i,j)(Xi)| i ̸= j

such that the off-diagonal entries Rij represent the residual for the ith datapoint where both i and j are not seen by the
regression fitting.

At this point we begin to introduce some changes to the proof techniques in both Prinster et al. (2022) and Barber et al.
(2021) (see footnotes for additional comparison to prior proofs):

(c) We define a weighted comparison matrix Âw ∈ R(n+1)×(n+1). To describe Âw, we first define A as an unweighted
comparison matrix1 with entries Aij = 1{Rij > Rji}—that is, each entry Aij is an indicator for the event that, when
i and j are excluded from the regression fitting, the prediction on point i yields a larger residual than that for point
j. Next, we also define Ŵ as the weight matrix2 with entries Ŵij = w(Xi; z−{i,j}). We are now able to define
Âw = Ŵ ⊙ A ⊙ Ŵ⊤ where ⊙ denotes pointwise multiplication, so that Âw has entries Âw

ij = w(Xi; z−{i,j}) ·
w(Xj ; z−{j,i}) · 1{Rij > Rji}, where both weights depend on the same data observations z−{j,i} = z−{i,j}. For
any i, j ∈ {1, ..., n + 1}, note that Âw

ij > 0 implies Âw
ji = 0 for any i, j ∈ {1, ..., n + 1}. Note that in the special

case of standard covariate shift where w(Xi;D) = w(Xi) for any D ⊆ {Z1, ..., Zn+1}, that Âw is equivalent
(up to a row-specific normalization constant) to the weight matrix used in the JAW proof in Prinster et al. (2022);
moreover, in the further specialized case of exchangeable data we have w(Xi; z−{i,j}) = w(Xj ; z−{i,j}) = 1 for all
i, j ∈ {1, ..., n+ 1} and thus Âw recovers the unweighted comparison matrix A used in the jackknife+ proof in Barber
et al. (2021).

(d) Next, as in Prinster et al. (2022) and Barber et al. (2021) we are interested in identifying points that have unusually
large residuals and are thus hard to predict. Barber et al. (2021) defined such points with unusually large residuals as
points i where 1{Rij > Rji} for a sufficiently large fraction of other points j. However, in the feedback covariate
shift (similarly as in the standard covariate shift case in Prinster et al. (2022)) we need to account for the fact that the
informativeness of the comparison 1{Rij > Rji} depends on relative weight or likelihood of the points i and j in the
test distribution relative to the training distribution. In other words, we are interested in identifying points i where
1{Rij > Rji} for a sufficiently large weighted portion of other points j that we might compare point i to, and we can
thus reference the ith row of our weighted comparison matrix Âw for this information. In particular, we define the set
of “strange” points S(Âw) ⊆ {1, ..., n+ 1} as the set of points i where the sum of the ith row in Âw is at least a 1− α
portion of the sum of the ith row in Ŵ ⊙ Ŵ⊤:

S(Âw) =
{
i ∈ [n+ 1] :

n+1∑
j=1

Âw
ij ≥ (1− α)

n+1∑
j′=1

[Ŵ ⊙ Ŵ⊤]ij′
}

=
{
i ∈ [n+ 1] :

n+1∑
j=1

[
w(Xi; z−{i,j})w(Xj ; z−{i,j}) · 1{Rij > Rji}

]
≥ (1− α)

n+1∑
j′=1

[
w(Xi; z−{i,j′})w(Xj′ ; z−{i,j′})

]}
. (18)

1This is the same unweighted comparison matrix A as in the jackknife+ proof in Barber et al. (2021).
2The proof for JAW under standard covariate shift in Prinster et al. (2022) defined a similar weight matrix, but with two main

differences from ours here: firstly, unlike in Prinster et al. (2022), here the unnormalized weights w(·;D) depend on data D ⊆ Z1:n; and
secondly whereas Prinster et al. (2022) define a normalized weight matrix, here our current proof is more straightforward if we defer the
normalization step until later.
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Dividing both sides of the inequality in our definition of S(Âw) by
∑n+1

j′=1

[
w(Xi; z−{i,j′})w(Xj′ ; z−{i,j′})

]
yields

S(Âw) =

{
i ∈ [n+ 1] :

n+1∑
j=1

(
w(Xi; z−{i,j})w(Xj ; z−{i,j})∑n+1

j′=1

[
w(Xi; z−{i,j′})w(Xj′ ; z−{i,j′})

] · 1{Rij > Rji}

)
≥ 1− α

}
,

and to further simplify notation we denote the resulting fraction on the left side of the inequality as w̃i,j(Xn+1), that is

w̃i,j(Xn+1) =
w(Xi; z−{i,j})w(Xj ; z−{i,j})∑n+1

j′=1

[
w(Xi; z−{i,j′})w(Xj′ ; z−{i,j′})

] , (19)

so our strange point definition becomes

S(Âw) =
{
i ∈ [n+ 1] :

n+1∑
j=1

(
w̃i,j(Xn+1) · 1{Rij > Rji}

)
≥ 1− α

}
. (20)

We will call the quantity w̃i,j(Xn+1) defined in (19) a “normalized weight for point j, normalized with respect
to i”3 since it is normalized with respect to the sum over the ith row in the matrix Ŵ ⊙ Ŵ⊤. Note that letting
i = n + 1 in (19) yields the normalized weights w̃n+1,j(Xn+1) defined in the main paper (6) (given argument
Xn+1) for the JAW-FCS predictive interval. We moreover point out that under standard covariate shift where
w(Xi; z−{i,j′}) = w(Xi) = w(Xi; z−{i,j}) for all j, j′ ∈ {1, ..., n + 1}, the normalized weights in (19) and our
definition of strange points S(Âw) reduce to the analogous quantities in Prinster et al. (2022); additionally, for
exchangeable data where w(Xi; z−{i,j}) = 1 for all i, j ∈ {1, ..., n+ 1}, the weights reduce to uniform weights 1

n+1
and the set of strange points reduces to that in the jackknife+ coverage proof in Barber et al. (2021).

We now proceed to the main steps of our proof, which generalize the corresponding proof steps in Prinster et al. (2022) and
Barber et al. (2021) to allow for feedback covariate shift:

• Step 1: Establish that E
[∑

j∈S(Âw) w̃i,j(Xn+1)
]
≤ 2α. That is,

∑
j∈S(Âw) w̃i,j(Xn+1), the total normalized weight

of strange points in any row i of any comparison matrix Âw, is in expectation no more than 2α.

• Step 2: Using the fact that the datapoints are pseudo-exchangeable, show that the probability that the test point n+ 1 is
strange (i.e., n+ 1 ∈ S(Âw)) is thus bounded by 2α.

• Step 3: Lastly, verify that the JAW interval can only fail to cover the test label value Yn+1 if n+ 1 is a strange point.

Step 1: Bounding the expected total normalized weight of the strange points. This proof step follows the corresponding proof
step for Theorem 1 in Barber et al. (2021) (for jackknife+ with exchangeable data) and for Theorem 1 in Prinster et al. (2022)
(for JAW with standard covariate shift), which rely on Landau’s theorem for tournaments (Landau, 1953). The analogous
proof step in Barber et al. (2021) derives a bound on the number of strange points from a bound on the number of pairs of
strange points, and Prinster et al. (2022) extend this step to bound the total weight of the strange points from a bound on the
sum of the product of weights for two strange points in a pair. Here, however, we use more general weights than in Prinster
et al. (2022) that allow for feedback covariate shift. In addition, there are a few technical and stylistic differences from our

3A reader might question why in our definition w̃i,j(Xn+1) takes Xn+1 as an argument, since the point n+1 does not appear to have
special privilege in the definition. This is to maintain some notational similarity between w̃i,j(Xn+1) and the analogous “normalized
weight” quantities in related work—that is denoted pwi (Xn+1) in Tibshirani et al. (2019) and Prinster et al. (2022), and denoted wy

i (Xtest)
in Fannjiang et al. (2022)—where in cases of weighted exchangeability more general than standard covariate shift these normalized
weight functions can take as input any subset of data D ⊆ {Z1, ..., Zn+1}. Similarly, in pseudo exchangeability cases more general than
feedback covariate shift we could have defined more general quantities w̃i,j(·) that take as input any subset of data D ⊆ {Z1, ..., Zn+1}
and are defined based on multiple other weight or factor functions {wi} other than the one we use in the FCS case, but we focus on
FCS for simplicity. We also note that we choose to use the character w̃ rather than pw to also maintain at least a loose connection with
the analogous normalized weight terms in Fannjiang et al. (2022) (which they denote with wy). Our notation thus attempts to balance
simplicity with the flexibility of notation used in related work.
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current proof step to that in Prinster et al. (2022), most notable of which is that here we establish a bound on expected total
normalized weight of strange points (whereas Prinster et al. (2022) obtain a deterministic bound in this step). 4

Consider a tournament between pairs of points: for each pair of points i and j, we say that i “wins” its game against point j if
Âw

ij > 0, that is if both i and j have nonzero density in the test distribution and if there is a higher residual on point i than on
point j for the regression model µ̃−(i,j). We say that i loses its game with j otherwise (so, if Rij = Rji then we say both i and
j lose, and moreover in this construction a point i plays against itself, but this “game” is counted as a loss). We furthermore
“weight” the importance of the game between points i and j by the product w(Xi; z−{i,j})w(Xj ; z−{i,j}) = [Ŵ ⊙ Ŵ⊤]ij ,
so that games between points with larger (unnormalized) weights are given greater “importance” than games between
points with smaller (unnormalized) weights. To further aid with intuition, it may also be helpful to think of the product
w(Xi; z−{i,j})w(Xj ; z−{i,j}) as the area of a rectangle with width w(Xi; z−{i,j}) and height w(Xj ; z−{i,j}), so we let
Lw
ij denote the rectangle with these dimensions: Area(Lw

ij) = Area(Lw
ji) = w(Xi; z−{i,j})w(Xj ; z−{i,j}) = [Ŵ ⊙ Ŵ⊤]ij .

Moreover, note that we can interpret
∑n+1

j′=1 Area(Lw
ij′) =

∑n+1
j′=1

[
w(Xi; z−{i,j′})w(Xj′ ; z−{i,j′})

]
=
∑n+1

j′=1[Ŵ⊙Ŵ⊤]ij′
as the total weighted importance of the games that point i plays in (including a “game” against itself), so thus the normalized
weight w̃i,j(Xn+1) defined in (19) could be interpreted as the relative importance of the game between i and j among all
the games that point i plays in the tournament.

We now interpret our definition of strange points (18) with our tournament in mind to write an upper bound that will soon be
useful to us. That is, we can interpret (18) as telling us that, if i is a strange point, then the total importance of the games
that point i wins in is greater than or equal to a 1− α portion of the total importance of all the games that i plays in—that is,
(18) tells us that if i is strange, then

Total weighted importance of games
where strange point i wins =

∑
j s.t. i wins against j

Area(Lw
ij) ≥ (1− α)

n+1∑
j′=1

Area(Lw
ij′).

Which implies that the total weighted importance of the games that strange point i loses in against other points (j ̸= i) is at
most an α portion of the total importance of i’s games minus the weight of i’s “game” against itself (our construction does
not allow i to win against itself):

Total weighted importance of games against
other points where strange point i loses =

∑
j s.t. j ̸= i, i loses against j

Area(Lw
ij) ≤ α ·

n+1∑
j′=1

Area(Lw
ij′)− Area(Lw

ii).

(21)

Now, as in Barber et al. (2021), consider that every pair of distinct strange points i and j (i ̸= j) is also a pair of points
where one point is strange and the other point is a point that the strange point loses to (since in our construction no game can
be won by both points). In other words, the set of all pairs of strange points is a subset of the set of all pairs of points where
at least one point is strange and the other point is a point that the strange point loses to. Accordingly, the total weighted
importance of all the games played between two strange points is at most the total weighted importance of all the games
between a strange point and a point that the strange point loses to:

∑
i∈S(Âw)

∑
j∈S(Âw)\i

1

2
· Area(Lw

ij) ≤
∑

i∈S(Âw)

(
α ·

n+1∑
j′=1

Area(Lw
ij′)− Area(Lw

ii)
)
, (22)

where the 1
2 on the left hand side is to avoid double-counting games (without the 1

2 , then the double summation would
count Area(Lw

ij) and Area(Lw
ji) separately, while with the 1

2 we appropriately count the weight of the game between
i and j as 1

2Area(Lw
ij) +

1
2Area(Lw

ji) = Area(Lw
ij)). Note that for exchangeable data where the weights are uniform

4Here we focus on a bound on the expectation of the total normalized weight of strange points roughly because in the current setting
the weight normalization is done with respect to a given row of Âw (whereas in Prinster et al. (2022) the weight for each row cancels out
in the strange point definition). This bound on the expectation of total strange point weights is still sufficient for use later in proof step 2.
We also have some stylistic differences from the proof step 1 in Prinster et al. (2022) intended to improve clarity: in particular here we
aim to simplify the argument for obtaining the initial bound (22) in part by initially using unnormalized rather than normalized weights to
set up the argument.
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w(Xi; z−{i,j}) = w(Xj ; z−{i,j}) = 1 ∀ i ∈ {1, ..., n+ 1}, then Area(Lw
ij) = 1 ∀ i, j ∈ {1, ..., n+ 1} and (22) reduces to

the bound on the number of pairs of strange points in Barber et al. (2021). Moreover, in the standard covariate shift case,
(22) is equivalent up to a normalization constant with the analogous bound in Prinster et al. (2022).

Writing out (22) explicitly with how we defined the rectangles Lw
ij , we have

∑
i∈S(Âw)

( ∑
j∈S(Âw)\i

1

2
w(Xi; z−{i,j})w(Xj ; z−{i,j})

)

≤
∑

i∈S(Âw)

(
α ·

n+1∑
j′=1

[
w(Xi; z−{i,j′})w(Xj′ ; z−{i,j′})

]
− w(Xi; z−{i})

2
)
.

Recall that
∑n+1

j′=1

[
w(Xi; z−{i,j′})w(Xj′ ; z−{i,j′})

]
is a positive normalization term that depends only on point i, so let us

temporarily denote this term Cw
i =

∑n+1
j′=1

[
w(Xi; z−{i,j′})w(Xj′ ; z−{i,j′})

]
. Substituting in this notation and multiplying

each summand within the summation
∑

i∈S(Âw) on both sides by 1 =
Cw

i

Cw
i

, we obtain

∑
i∈S(Âw)

Cw
i

Cw
i

·
( ∑

j∈S(Âw)\i

1

2
w(Xi; z−{i,j})w(Xj ; z−{i,j})

)
≤

∑
i∈S(Âw)

Cw
i

Cw
i

·
(
α · Cw

i − w(Xi; z−{i})
2
)

∑
i∈S(Âw)

Cw
i ·
( ∑

j∈S(Âw)\i

1

2

w(Xi; z−{i,j})w(Xj ; z−{i,j})

Cw
i

)
≤

∑
i∈S(Âw)

Cw
i ·
(
α−

w(Xi; z−{i})
2

Cw
i

)
and recalling our definition of normalized weights in (19), along with our notation for the normalizing term Cw

i , this is
equivalent to ∑

i∈S(Âw)

Cw
i ·
(1
2

∑
j∈S(Âw)\i

w̃ij(Xn+1)
)
≤

∑
i∈S(Âw)

Cw
i ·
(
α− w̃ii(Xn+1)

)
.

Adding 1
2

∑
i∈S(Âw) C

w
i · w̃ii(Xn+1) to each side and simplifying we have

∑
i∈S(Âw)

Cw
i ·
(1
2

∑
j∈S(Âw)\i

w̃ij(Xn+1)
)
+
1

2

∑
i∈S(Âw)

Cw
i · w̃ii(Xn+1)

≤
∑

i∈S(Âw)

Cw
i ·
(
α− w̃ii(Xn+1)

)
+

1

2

∑
i∈S(Âw)

Cw
i · w̃ii(Xn+1)

∑
i∈S(Âw)

Cw
i ·
(1
2

∑
j∈S(Âw)

w̃ij(Xn+1)
)
≤

∑
i∈S(Âw)

Cw
i ·
(
α− 1

2
w̃ii(Xn+1)

)
.

Note that we have written a form of the inequality where both sides take the form
∑

i∈S(Âw) C
w
i · (second term), that is

the left and right side only differ in the second term in the summand of
∑

i∈S(Âw). With this observation we can take the
expectation of this second term on either side while maintaining the inequality, factor out the expectation terms, and simplify∑

i∈S(Âw)

Cw
i · E

[1
2

∑
j∈S(Âw)

w̃ij(Xn+1)
]
≤

∑
i∈S(Âw)

Cw
i · E

[
α− 1

2
w̃ii(Xn+1)

]
E
[1
2

∑
j∈S(Âw)

w̃ij(Xn+1)
]
·
∑

i∈S(Âw)

Cw
i ≤ E

[
α− 1

2
w̃ii(Xn+1)

]
·
∑

i∈S(Âw)

Cw
i

1

2
E
[ ∑
j∈S(Âw)

w̃ij(Xn+1)
]
≤ α− 1

2
E
[
w̃ii(Xn+1)

]
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where E[w̃ii(Xn+1)] > 0, so we can write

E
[ ∑
j∈S(Âw)

w̃ij(Xn+1)

]
≤ 2α, (23)

which completes step 1 of the proof.

Step 2: Pseudo-exchangeability of the datapoints. We now leverage the pseudo-exchangeability of the data to show that,
since the total weight of the strange points, normalized with respect to any point i ∈ {1, ..., n+ 1}, is in expectation at most
2α, that a test point has at most 2α probability of being strange. We organize this step into the following pieces:

◦ Step 2.1: Argue that Âw d
= PπÂ

wP⊤
π for any (n+ 1)× (n+ 1) permutation matrix Pπ .

◦ Step 2.2: Argue that P{n+ 1 ∈ S(Âw)} = P{j ∈ S(Âw)} for all j ∈ {1, ..., n+ 1}.

◦ Step 2.3: Use the fact that the total expected weight of the strange points is at most 2α (from Step 1) to show that
P{n+ 1 ∈ S(Âw)} ≤ 2α.

Beginning with Step 2.1, for a permutation π of {1, ..., n+ 1}, let Pπ denote the corresponding permutation matrix—that is,
π(i′) = i ⇐⇒ Pπ(i

′, i) = 1, which corresponds to the ith row in A becoming the i′th row in PπA. Then, observe that
Âw

ii = 0 for all i ∈ {1, ..., n+ 1}, since 1{Rii > Rii} = 0 for all i. So, since an entry in the diagonal of Âw will always
be mapped to another location in the diagonal of PπÂ

wP⊤
π , then, deterministically, the diagonal entries of both Âw and

PπÂ
wP⊤

π will be all zeros. So, to prove Âw d
= PπÂ

wP⊤
π it is sufficient to prove that Âw and PπÂ

wP⊤
π are equivalent in

distribution in their off-diagonal entries.

Recall that Ŵ ⊙A has entries (Ŵ ⊙A)ij = w(Xi; z−{i,j}) · 1{Rij > Rji} (equivalent to A with each ith row weighted
by w(Xi; z−{i,j})) and that A ⊙ Ŵ⊤ has entries (A ⊙ Ŵ⊤)ij = w(Xj ; z−{i,j}) · 1{Rij > Rji} (equivalent to A with
each jth column weighted by w(Xj ; z−{i,j})). Moreover, note that Pπ(Ŵ ⊙A)—which results from permuting the rows
of Ŵ ⊙ A—does not change the column membership of any entry in Ŵ ⊙ A. In particular, Pπ(Ŵ ⊙ A) has entries
(Pπ(Ŵ ⊙A))ij = (Ŵ ⊙A)π(i)j . Similarly, (A⊙ Ŵ⊤)P⊤

π does not change the row membership of any entry in A⊙ Ŵ ,
such that (A⊙Ŵ⊤)P⊤

π has entries ((A⊙Ŵ⊤)P⊤
π )ji = (A⊙Ŵ⊤)jπ(i). So, to show that Âw and PπÂ

wP⊤
π are equivalent

in distribution in their off diagonal entries, it is sufficient to show each jth column in Ŵ ⊙A is equivalent in distribution
to the jth column in Pπ(Ŵ ⊙ A) aside from the initial diagonal entries in Ŵ ⊙ A, and that each jth row in A ⊙ Ŵ⊤ is
equivalent in distribution to the corresponding jth row in (A⊙ Ŵ⊤)P⊤

π aside from the initial diagonal entries in A⊙ Ŵ⊤.

To show Pπ(Ŵ ⊙ A)
d
= Ŵ ⊙ A aside from the initial diagonal entries of Ŵ ⊙ A, we draw on and adapt ideas

from the proof for Lemma 3 in Tibshirani et al. (2019). Using condensed notation for the data as {Z1, ..., Zn+1} =
{(X1, Y1), ..., (Xn+1, Yn+1)}, denote by Ez the event that {Z1, ..., Zn+1} = {z1, ..., zn+1}, and let f denote the density
function of the joint sample Z1, ..., Zn+1. To do so, we begin by conditioning on Ez and then inspecting the probability of
the joint event Rn+1,j = rij , Rj,n+1 = rji for each i ∈ {1, ..., n+ 1} in each jth column, which occurs when Zn+1 = zi:

P{Rn+1,j = rij , Rj,n+1 = rji | Ez} = P{Zn+1 = zi | Ez}

=

∑
π:π(n+1)=i f(zπ(1), ..., zπ(n+1))∑

π f(zπ(1), ..., zπ(n+1))
,

where the second line above follows by the same reasoning as in the proof for Lemma 3 in Tibshirani et al. (2019). Then,
recalling that data from feedback covariate shift (5) are pseudo-exchangeable with weight functions w1 = ... = wn = 1 and

wn+1 = w =
dP̃X;D

dPX
, this becomes

P{Rn+1,j = ri,j , Rj,n+1 = rj,i | Ez} =

∑
π:π(n+1)=i w(xπ(n+1); z−{π(n+1),j})h(zπ(1), ..., zπ(n+1))∑

π w(xπ(n+1); z−{π(n+1),j})h(zπ(1), ..., zπ(n+1))
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where the core function h does not depend on the order of its inputs, so we have

P{Rn+1,j = ri,j , Rj,n+1 = rj,i | Ez} =

∑
π:π(n+1)=i w(xπ(n+1); z−{π(n+1),j})h(z1, ..., zn+1)∑

π w(xπ(n+1); z−{π(n+1),j})h(z1, ..., zn+1)

=

∑
π:π(n+1)=i w(xπ(n+1); z−{π(n+1),j})∑

π w(xπ(n+1); z−{π(n+1),j})

=
w(xi; z−{i,j})∑n+1

i′=1 w(xi′ ; z−{i′,j})
,

which is equivalent to the jth column of Ŵ divided by a normalization constant. We can then rewrite this probability
statement as

(Rn+1,j , Rj,n+1) | Ez ∼
n+1∑
i=1

w(xi; z−{i,j})∑n+1
i′=1 w(xi′ ; z−{i′,j})

δ(rij ,rji).

Due to the conditioning on Ez , this is equivalent to

(Rn+1,j , Rj,n+1) | Ez ∼
n+1∑
i=1

w(Xi;Z−{i,j})∑n+1
i′=1 w(Xi′ ;Z−{i′,j})

δ(Rij ,Rji),

and since this statement holds for any {Z1, ..., Zn+1} = {z1, ..., zn+1}, marginalization yields

(Rn+1,j , Rj,n+1) ∼
n+1∑
i=1

w(Xi;Z−{i,j})∑n+1
i′=1 w(Xi′ ;Z−{i′,j})

δ(Rij ,Rji).

More generally, substituting in any index i′ ∈ {1, ..., n+ 1} in for n+ 1 in the argument above yields

(Ri′,j , Rj,i′) ∼
n+1∑
i=1

w(Xi;Z−{i,j})∑n+1
i′=1 w(Xi′ ;Z−{i′,j})

δ(Rij ,Rji), (24)

where the only difference is on the left-hand side.

Statement (24) tells us that within each jth column, draws of (Ri′,j , Rj,i′) from this discrete distribution resemble the
analogous draw (Rn+1,j , Rj,n+1) for the test point. That is, the distribution of (Ri′,j , Rj,i′) in (24) is irrespective of the
index i′ and so these draws “look exchangeable”. Thus, the distribution of the off diagonal entries in the jth column of
Ŵ ⊙A do not depend on the ordering of the elements. By a similar argument, the distribution of the off diagonal entries in
the ith row of A⊙Ŵ do not depend on the ordering of the elements, and therefore PπÂ

wP⊤
π

d
= Âw for any (n+1)×(n+1)

permutation matrix Pπ , the desired result for Step 2.1.

Because PπÂ
wP⊤

π
d
= Âw from Step 2.1, this implies P{j ∈ S(PπÂ

wP⊤
π )} = P{j ∈ S(Âw)}. Now, let Pπ denote

a specific permutation matrix that maps n + 1 to j, that is where Pπ(j, n + 1) = 1. Then, deterministically, n + 1 ∈
S(Âw) ⇐⇒ j ∈ S(ΠÂwΠ⊤), so we have

P{n+ 1 ∈ S(Âw)} = P{j ∈ S(PπÂ
wP⊤

π )} = P{j ∈ S(Âw)}

for all j = 1, ..., n+ 1. That is, an arbitrary training point j is equally likely to be strange as the test point n+ 1, which
concludes Step 2.2.
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Then, we begin Step 2.3 by multiplying the result from Step 2.2 by w̃i,j(Xn+1) and summing over j to obtain

n+1∑
j=1

w̃i,j(Xn+1) · P{n+ 1 ∈ S(Âw)} =

n+1∑
j=1

w̃i,j(Xn+1) · P{j ∈ S(Âw)}

P{n+ 1 ∈ S(Âw)} ·
n+1∑
j=1

w̃i,j(Xn+1) =

n+1∑
j=1

w̃i,j(Xn+1) · P{j ∈ S(Âw)}

P{n+ 1 ∈ S(Âw)} =

n+1∑
j=1

w̃i,j(Xn+1) · P{j ∈ S(Âw)}

= E
[ ∑
j∈S(Âw)

w̃i,j(Xn+1)

]
≤ 2α,

where the last line follows from Step 1.

Step 3: Connection to JAW-FCS: We would now like to connect our strange point result from Step 2 to coverage of the
JAW-FCS prediction interval. Following the approach of Barber et al. (2021), suppose that Yn+1 ̸∈ ĈJAW-FCS

n,α (Xn+1). Then,
either

Yn+1 > Q1−α

( n∑
j=1

[
w̃n+1,j(Xn+1)δµ̂−j(Xn+1)+RLOO

j

]
+ w̃(n+1)2(Xn+1)δ∞

)
=⇒

n∑
j=1

w̃n+1,j(Xn+1) · 1
{
Yn+1 > µ̂−j(Xn+1) +RLOO

j

}
≥ 1− α

or otherwise

Yn+1 < Qα

( n∑
j=1

[
w̃n+1,j(Xn+1)δµ̂−j(Xn+1)+RLOO

j

]
+ w̃(n+1)2(Xn+1)δ−∞

)
=⇒

n∑
j=1

w̃n+1,j(Xn+1) · 1
{
Yn+1 < µ̂−j(Xn+1)−RLOO

j

}
≥ 1− α

And we can write the union of these two events as

1− α ≤
n∑

j=1

w̃n+1,j(Xn+1) · 1
{
Yn+1 ̸∈ µ̂−j(Xn+1)±RLOO

j

}
=

n∑
j=1

w̃n+1,j(Xn+1) · 1
{∣∣Yj − µ̂−j(Xj)

∣∣ < ∣∣Yn+1 − µ̂−j(Xn+1)
∣∣}

=

n+1∑
j=1

w̃n+1,j(Xn+1) · 1
{
Rj,n+1 < Rn+1,j

}
from which we see that n+ 1 ∈ S(Âw)—that is, n+ 1 is a strange point. This result together with the result from Step 2
gives us

P
{
Yn+1 ̸∈ ĈJAW-FCS

n,α (Xn+1)
}
≤ P

{
n+ 1 ∈ S(Âw)

}
≤ 2α

∴ P
{
Yn+1 ∈ ĈJAW-FCS

n,α (Xn+1)
}
≥ 1− 2α

A.3. Proof for JAW-KLOO coverage under feedback covariate shift

We first restate the theorem before proceeding with the proof.
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Theorem 4.1 Suppose data are generated under feedback covariate shift (5) and assume P̃X;D is absolutely continuous
with respect to PX for all possible values of D. Then, for any miscoverage level, α ∈ (0, 1), the JAW-KLOO predictive
interval in (10) satisfies

P{Yn+1 ∈ ĈJAW-KLOO
n,α (Xn+1)} ≥ 1− 2α.

Theorem 4.1 follows from Lemma A.2 and Theorem 3.1. With training data Z1, ..., Zn and test point Zn+1 generated under
feedback covariate shift (5), let SLOO ⊆ {1, ..., n} denote a subset of the training data selected using a procedure that is
invariant to the ordering of the data, where we retrain a leave-one-out model µ̂−j for each j ∈ SLOO. By Lemma A.2
the random variables {Zj : j ∈ SLOO} ∪ {Zn+1} are pseudo-exchangeable, generated under FCS. Note that the training
procedure for every leave-one-out model µ̂−j for j ∈ SLOO includes the points in the subset {Zj′ : j

′ ̸∈ SLOO} in its training
data, so assuming that the model-fitting algorithm A treats the data symmetrically, in the fitting each µ̂−j , training on the
data {Zj′ : j

′ ̸∈ SLOO} can be considered a subroutine of the model-fitting algorithm that is invariant to the ordering of the
remaining data. Thus, treating JAW-KLOO as an instance of JAW-FCS where the former is given a smaller dataset SLOO and
a different model-fitting algorithm A−SLOO that depends on the data {1, ..., n}\SLOO but that still treats data symmetrically,
the JAW-KLOO coverage guarantee follows from the guarantee for JAW-FCS given in Theorem 3.1.

We note that K points in SLOO used for leave-one-out training can be selected in a range of ways, for example based on
the K points with largest weight or using uniform random sampling. Different approaches to selecting SLOO will result
in different tradeoffs—for example, as we saw in the experimental results of our main paper, deterministically selecting
SLOO as the points with the largest weight can result in overly wide intervals, whereas uniform random sampling (without
replacement) could result in higher coverage variance. A further alternative variant to JAW-KLOO would be to sample
points with replacement using sampling probabilities proportional to the normalized weights, and then using the standard
jackknife+ on the sampled points (which could include duplicates due to sampling with replacement, thus approximating
the JAW-KLOO weighted quantiles based on the empirical sampling frequencies). This last approach of random sampling
with probabilities proportional to normalized weights is the approach that we take for the randomized JAW-KLOO variant
evaluated in Figure 5, which pays the price of higher coverage variance.

A.4. Proof of WCV+ coverage under feedback covariate shift

We first restate the theorem before proceeding with the proof.
Theorem A.3. Suppose data are generated under feedback covariate shift (5) and assume P̃X;D is absolutely continuous
with respect to PX for all possible values of D. Then, for any miscoverage level, α ∈ (0, 1), the K-fold WCV+ predictive
interval in (13) satisfies

P
{
Yn+1 ∈ ĈWCV+FCS

n,K,α (Xn+1)
}
≥ 1− 2α− E

[ ∑
j∈Sk(i)\i

w̃CV
ij (Xn+1)

]
.

The proof for weighted cross validation+ under feedback covariate shift (WCV+FCS) coverage follows a similar structure as
the proof for JAW-FCS coverage presented in Appendix A.2, so here we try to focus on the key differences.

The first two setup steps are identical to the corresponding setup steps in the proof for CV+ coverage, or Theorem 4, in
Barber et al. (2021):

(a) We now suppose the hypothetical scenario where we have access to n/K − 1 additional test points, for a total of
m = n/K test points {(Xn+1, Yn+1), ..., (Xn+m, Yn+m)}. We then partition the training data into sets S1, ..., SK

with m datapoints each and define SK+1 = {n+1, ..., n+m} as the set of test points. For any pair of distinct partition
indices k, k′ ∈ {1, ...,K + 1} such that k ̸= k′ we define µ̃−(Sk,Sk′ ) as the regression model fit with training and test
data except with Sk and Sk′ removed (i.e., fit with {1, ..., n+m}\{Sk ∪ Sk′}).

(b) We then define the matrix of residuals RCV ∈ R(n+m)×(n+m) as follows, where k(i) denotes the index of the partition
that contains point i (so that for i, j ∈ {1, ..., n+m} where i ̸= j, k(i) = k(j) ⇐⇒ i, j ∈ Sk):

RCV
ij =

{
+∞ k(i) = k(j)

|Yi − µ̃−(Sk(i),Sk(j))| k(i) ̸= k(j)
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In the next two setup steps we introduce changes to the proof for Theorem 4 in Barber et al. (2021) that are analogous to
setup steps (c) and (d) in our proof for JAW-FCS coverage.

(c) We define a weighted comparison matrix ÂwCV ∈ R(n+m)×(n+m) analogously as with the JAW-FCS proof, but
with some modifications to appropriately account for whether or not points are in the same cross-validation fold.
First, let ACV be the unweighted comparison matrix with entries ACV

ij = 1{RCV
ij > RCV

ji } (where ACV
ij = 0 if

k(i) = k(j)); ACV is thus a block off-diagonal matrix with square, size m × m zero matrices along the diagonal
and block off-diagonal entries ACV

ij = 1{RCV
ij > RCV

ji }. Next, we define ŴCV as the weight matrix with entries
ŴCV

ii = w(Xi; z−{Sk(i)}) along the diagonal; with entries ŴCV
ij = w(Xi; z−{Sk(i),Sk(j)}) in the block off-diagonal

which corresponds to pairs of points not in the same cross-validation fold (k(i) ̸= k(j)); and with zero otherwise for
distinct points in the same cross-validation fold (k(i) = k(j), i ̸= j). Then, define ÂwCV = ŴCV ⊙A⊙ ŴCV⊤ to
be the block off-diagonal matrix with entries ÂwCV

ij = w(Xi; z−{Sk(i),Sk(j)})w(Xj ; z−{Sk(i),Sk(j)}) · 1{Rij > Rji}
in the block off-diagonal entries, and square, size m×m zero matrices along the diagonal.

(d) Next, as in the JAW-FCS proof we define a set of strange points as points with unusually large residuals. By “unusually
large” we again mean points i where 1{RCV

ij > RCV
ji } for a sufficiently large weighted portion of other points j that

we might compare point i to, and we can thus similarly reference the ith row of our weighted comparison matrix ÂwCV

for this information. In particular, we define the set of “strange” points S(ÂwCV ) ⊆ {1, ..., n+m} as the set of points
i where the sum of the ith row in ÂwCV is at least a 1− α portion of the sum of the ith row in ŴCV ⊙ ŴCV⊤:

S(ÂwCV ) =
{
i ∈ [n+m] :

n+m∑
j=1

ÂwCV
ij ≥ (1− α)

n+m∑
j′=1

[ŴCV ⊙ ŴCV⊤]ij′
}

=
{
i ∈ [n+m] :

∑
j∈{1,...,n+m}\Sk(i)

[
w(Xi; z−{Sk(i),Sk(j)})w(Xj ; z−{Sk(i),Sk(j)}) · 1{Rij > Rji}

]
≥ (1− α)

∑
j′∈{i}∪{1,...,n+m}\Sk(i)

[
w(Xi; z−{Sk(i),Sk(j′)})w(Xj′ ; z−{Sk(i),Sk(j′)})

]}
.

(25)

Dividing both sides of the inequality in our definition of S(ÂwCV ) by the normalization term∑
j′∈{i}∪{1,...,n+m}\Sk(i)

[
w(Xi; z−{Sk(i),Sk(j′)})w(Xj′ ; z−{Sk(i),Sk(j′)})

]
yields

S(ÂwCV ) =

{
i ∈ [n+m] :

∑
j∈{1,...,n+m}\Sk(i)

w(Xi; z−{Sk(i),Sk(j)})w(Xj ; z−{Sk(i),Sk(j)}) · 1{Rij > Rji}∑
j′∈{i}∪{1,...,n+m}\Sk(i)

[
w(Xi; z−{Sk(i),Sk(j′)})w(Xj′ ; z−{Sk(i),Sk(j′)})

] ≥ 1− α

}
,

and to further simplify notation we denote the resulting fraction on the left side of the inequality as w̃CV
i,j (Xn+1), that is

w̃CV
i,j (Xn+1) =

w(Xi; z−{Sk(i),Sk(j)})w(Xj ; z−{Sk(i),Sk(j)})∑
j′∈{i}∪{1,...,n+m}\Sk(i)

[
w(Xi; z−{Sk(i),Sk(j′)})w(Xj′ ; z−{Sk(i),Sk(j′)})

] , (26)

so our strange point definition becomes

S(ÂwCV ) =
{
i ∈ [n+ 1] :

∑
j∈{1,...,n+m}\Sk(i)

(
w̃CV

i,j (Xn+1) · 1{Rij > Rji}
)
≥ 1− α

}
. (27)

As in the proof for JAW-FCS, we will call the quantity w̃CV
i,j (Xn+1) defined in (26) a “normalized cross-validation

weight for point j, normalized with respect to i” since it is normalized with respect to the sum over the ith row in the
matrix ŴCV ⊙ ŴCV⊤. Note that letting i = n + 1 in (26) yields the weights w̃CV

n+1,j(Xn+1) defined in the main
paper (12) for the WCV+ predictive interval, and moreover for exchangeable data where w(Xi; z−{Sk(i),Sk(j)}) = 1,
the weights reduce to uniform weights and the set of strange points reduces to that in the CV+ coverage proof in Barber
et al. (2021).
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Step 1: Bounding the expected normalized weight of strange points

We begin similarly as Step 1 in our JAW-FCS coverage proof, except we need to make several adjustments to account for the
fact that points in the same fold do not play against each other in the “tournament”. This proof step extends the analogous
exchangeable cross validation+ coverage proof in Barber et al. (2021) to feedback covariate shift.

The tournament setup for WCV+ is similar as that for JAW-FCS, except with the key difference that distinct points in the
same cross-validation fold (i and j s.t. i ̸= j, k(i) = k(j)) do not play a game against each other in the tournament. For
the remaining pairs of points that do play games against each other in the tournament, as before we say that i “wins” its
game against point j if ÂwCV

ij > 0 and that i loses against j otherwise, and we similarly “weight” the importance of a game
between points i and j by the product w(Xi; z−{Sk(i),Sk(j)})w(Xj ; z−{Sk(i),Sk(j)}) = [ŴCV ⊙ ŴCV⊤]ij . We moreover
define LwCV

ij as the rectangle with width w(Xi; z−{Sk(i),Sk(j)}) and height w(Xj ; z−{Sk(i),Sk(j)}), so that Area(LwCV
ij ) =

Area(LwCV
ji ) = w(Xi; z−{Sk(i),Sk(j)})w(Xj ; z−{Sk(i),Sk(j)}) = [ŴCV ⊙ ŴCV⊤]ij . We can thus again interpret∑

j′∈{i}∪{1,...,n+m}\Sk(i)
Area(LwCV

ij′ ) =
∑

j′∈{i}∪{1,...,n+m}\Sk(i)

[
w(Xi; z−{Sk(i),Sk(j)})w(Xj ; z−{Sk(i),Sk(j)})

]
=∑

j′∈{1,...,n+m}[Ŵ
CV ⊙ ŴCV⊤]ij′ as the total weighted importance of the games that point i plays in (including a

“game” against itself), and w̃CV
i,j (Xn+1) in (26) as the relative importance of i’s game against j, with respect to all the games

that i plays.

With a similar argument as in the corresponding JAW-FCS proof step, from our definition of strange points we can again
obtain a bound on the total weighted importance of the games where strange point i plays against and loses to as

Total weighted importance of
games against other points
where strange point i loses

=
∑

j s.t. j ̸= i, i loses against j

Area(Lw
ij) ≤ α ·

∑
j′∈{i}∪{1,...,n+m}\Sk(i)

Area(Lw
ij′)− Area(Lw

ii).

(28)

Now, whereas in the JAW-FCS coverage proof we derive the inequality (22) by leveraging the observation that (in JAW-FCS’s
leave-one-out construction) a pair of strange points is also a pair of points where one point is strange and the other is a point
that loses to the strange point, the same statement is not true for the WCV+. In particular, in WCV+ a pair of strange points
{i, j} s.t. i, j ∈ S(Aw) might consist of points in the same fold, that is where k(i) = k(j), which implies that i and j do
not play against each other in the tournament, and thus there is no loser. We thus need to separately account for two types of
pairs of strange points {i, j} s.t. i, j ∈ S(Aw), i ̸= j: one type where the strange points in the pair play against each other
in the tournament (i.e., where k(i) ̸= k(j)), and another type where the strange points in a pair do not play against each
other in the tournament (i.e., where k(i) = k(j)).

For the first type of strange point pair, by essentially the same arguments as in the JAW-FCS coverage proof to obtain (22),
we can obtain an inequality that appears similar to (22) but with summations restricted only to pairs of strange points that
play each other in the tournament:

∑
i∈S(ÂwCV )

∑
j∈S(ÂwCV )\Sk(i)

1

2
· Area(LwCV

ij ) ≤
∑

i∈S(ÂwCV )

(
α ·

∑
j′∈{i}∪{1,...,n+m}\Sk(i)

Area(LwCV
ij′ )− Area(LwCV

ii )
)
.

(29)

Separately, we also account for the weights of strange point pairs in the same fold. We can write the (adjusted by 1
2 ) sum of

Area(LwCV
ij ) = w(Xi; z−{Sk(i),Sk(j)})w(Xj ; z−{Sk(i),Sk(j)}) (which we can interpret as the weight of a hypothetical game

between points i and j that do not play each other in the tournament) over all pairs of distinct strange points in the same
fold (i, j ∈ S(ÂwCV ), k(i) = k(j), i ̸= j) as 1

2

∑
i∈S(AwCV )

∑
j∈Sk(i)∩S(AwCV )\i Area(LwCV

ij ), and adding this quantity
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to both sides of (29) we obtain∑
i∈S(ÂwCV )

∑
j∈S(ÂwCV )\i

1

2
· Area(LwCV

ij )

≤
∑

i∈S(ÂwCV )

(
α ·

∑
j′∈{i}∪{1,...,n+m}\Sk(i)

Area(LwCV
ij′ )− Area(LwCV

ii ) +
1

2

∑
j∈Sk(i)∩S(AwCV )\i

Area(LwCV
ij )

)
(30)

Then, as in the JAW-FCS proof, we can denote the normalization term CwCV
i =∑

j′∈{i}∪{1,...,n+m}\Sk(i)

[
w(Xi; z−{Sk(i),Sk(j′)})w(Xj′ ; z−{Sk(i),Sk(j′)})

]
, and multiplying each summand inside∑

i∈S(ÂwCV ) by CwCV
i

CwCV
i

and simplifying using our definitions of LwCV
ij , CwCV

i , and w̃CV
ij (Xn+1) to obtain

∑
i∈S(ÂwCV )

CwCV
i ·

∑
j∈S(ÂwCV )\i

1

2
· w̃CV

ij (Xn+1)

≤
∑

i∈S(ÂwCV )

CwCV
i ·

(
α− w̃CV

ii (Xn+1) +
1

2

∑
j∈Sk(i)∩S(AwCV )\i

w̃CV
ij (Xn+1)

)
.

Then, adding 1
2

∑
i∈S(ÂwCV ) C

wCV
i · w̃CV

ii (Xn+1) and simplifying, we have

∑
i∈S(ÂwCV )

CwCV
i

∑
j∈S(ÂwCV )

1

2
· w̃CV

ij (Xn+1)

≤
∑

i∈S(ÂwCV )

CwCV
i

(
α− 1

2
w̃CV

ii (Xn+1) +
1

2

∑
j∈Sk(i)∩S(AwCV )\i

w̃CV
ij (Xn+1)

)
∑

i∈S(ÂwCV )

CwCV
i ·

∑
j∈S(ÂwCV )

w̃CV
ij (Xn+1) ≤

∑
i∈S(ÂwCV )

CwCV
i ·

(
2α− w̃CV

ii (Xn+1) +
∑

j∈Sk(i)∩S(AwCV )\i

w̃CV
ij (Xn+1)

)

As in the JAW-FCS proof, the inequality is of the form
∑

i∈S(ÂwCV ) C
wCV
i · (second term) for a second term on each side.

We can thus take the expectation of the second term on each side while maintaining the inequality, factor out the expectation
term, and simplify to obtain

∑
i∈S(ÂwCV )

CwCV
i · E

[ ∑
j∈S(ÂwCV )

w̃CV
ij (Xn+1)

]

≤
∑

i∈S(ÂwCV )

CwCV
i · E

[
2α− w̃CV

ii (Xn+1) +
∑

j∈Sk(i)∩S(AwCV )\i

w̃CV
ij (Xn+1)

]

E
[ ∑
j∈S(ÂwCV )

w̃CV
ij (Xn+1)

]
·

∑
i∈S(ÂwCV )

CwCV
i

≤ E
[
2α− w̃CV

ii (Xn+1) +
∑

j∈Sk(i)∩S(AwCV )\i

w̃CV
ij (Xn+1)

]
·

∑
i∈S(ÂwCV )

CwCV
i

E
[ ∑
j∈S(ÂwCV )

w̃CV
ij (Xn+1)

]
≤ 2α− E[w̃CV

ii (Xn+1)] + E
[ ∑
j∈Sk(i)∩S(AwCV )\i

w̃CV
ij (Xn+1)

]
.

Note that the added expectation term on the right hand side E[
∑

j∈Sk(i)∩S(AwCV )\i w̃
CV
ij (Xn+1)] is the expected normalized

weight of strange points j ̸= i in cross-validation a fold k(i), so as an upper bound for this term we can use the expected
normalized weight of all (strange and not strange) points j ̸= i in fold k(i), that is E[

∑
j∈Sk(i)\i w̃

CV
ij (Xn+1)]. With this

23



JAWS-X: Addressing Efficiency Bottlenecks of Conformal Prediction Under Standard and Feedback Covariate Shift

observation and noting that E[w̃CV
ii (Xn+1)] is positive, we obtain the bound

E
[ ∑
j∈S(ÂwCV )

w̃CV
ij (Xn+1)

]
≤ 2α+ E

[ ∑
j∈Sk(i)\i

w̃CV
ij (Xn+1)

]
, (31)

which completes step 1 for our WCV+ proof.

Step 2: Pseudo exchangeability of the datapoints. We now leverage the pseudo exchangeability of the data to show that,
since the expected total weight of the strange points is at most 2α+ E

[∑
j∈Sk(i)\i

(
w̃CV

ij (Xn+1)
)]

, that a test point has at

most 2α+ E
[∑

j∈Sk(i)\i
(
w̃CV

ij (Xn+1)
)]

probability of being strange.

This step proceeds similarly as the analogous step 2 in the JAW-FCS proof, except with a restriction on the permutation
matrix Pπ to maintain the fold structure of the data. That is, for any (n +m) × (n +m) permutation matrix Pπ where
i ∼ j if k(i) = k(j), through a similar argument as in the JAW-FCS proof we can show that d

= PπÂ
wP⊤

π for any such
permutation matrix Pπ . When combined with (31), the result for this step then follows.

Step 3: Connection to weighted CV+: The last proof step proceeds similarly as the third main step in the JAW-FCS proof.
Through the same procedure, we establish that

∴ P
{
Yn+1 ∈ ĈJAW

n,α (Xn+1)
}
≥ 1− 2α− E

[ ∑
j∈Sk(i)\i

(
w̃CV

ij (Xn+1)
)]

(32)
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