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Abstract

We study the efficient estimation of predictive con-
fidence intervals for black-box predictors when
the common data exchangeability (e.g., i.i.d.) as-
sumption is violated due to potentially feedback-
induced shifts in the input data distribution. That
is, we focus on standard and feedback covariate
shift (FCS), where the latter allows for feedback
dependencies between train and test data that oc-
cur in many decision-making scenarios like exper-
imental design. Whereas prior conformal predic-
tion methods for this problem are in general either
extremely computationally demanding or make
inefficient use of labeled data, we propose a col-
lection of methods based on the jackknife+ that
achieve a practical balance of computational and
statistical efficiency. Theoretically, our proposed
JAW-FCS method extends the rigorous, finite-
sample coverage guarantee of the jackknife+ to
FCS. We moreover propose two tunable relax-
ations to JAW-FCS’s computation that maintain
finite-sample guarantees: one using only K leave-
one-out models (JAW-KLOO) and a second build-
ing on K -fold cross validation+ (WCV+). Practi-
cally, we demonstrate that JAW-FCS and its com-
putational relaxations outperform state-of-the-art
baselines on a variety of real-world datasets under
standard and feedback covariate shift, including
for biomolecular design and active learning tasks.

1. Introduction

To safely and effectively deploy machine learning (ML) sys-
tems in high-stakes decision making, a promising approach
is to communicate to users whether a given prediction can
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be trusted via reliable predictive uncertainty quantification.
The use of standard approaches to ML uncertainty quantifi-
cation (UQ) in practice, however, is often hindered by at
least two key challenges. Firstly, real-world scenarios often
involve data shifts that violate the common ML assumption
that “the future will look like the past” (Finlayson et al.|
2021)—indeed, even the mere use of ML-generated insights
to inform future decisions can induce feedback-loop shifts
between training (e.g., development) and test (e.g., deploy-
ment) data that invalidate standard UQ methods (Fannjiang
et al.,[2022)). Secondly, even if data shift is accounted for,
many UQ methods are too resource-demanding to imple-
ment without sacrificing overall model performance. For
instance, many UQ methods have extreme or prohibitive
computational demands (e.g., extensive retraining of large
ML predictors), while others impose strict data-availability
requirements that can be unrealistic (e.g., requiring infinite
data in “asymptopia’) or harm model performance (e.g.,
requiring sample splitting to form a “holdout” UQ dataset
that cannot be used in training, which degrades accuracy
relative to if all labeled data were used to learn parameters).
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Figure 1: Illustration of biomolecular design data shift scenario.

For a concrete example, take an experimental design sce-
nario, where a biomolecular engineer aims to propose a
novel protein sequence with high “fitness”—strong expres-
sion of a desired property such as fluorescence or medicinal
efficacy—using predictions of an ML model trained on a
protein dataset with experimentally-labeled fitness values.
This biomolecular design problem often requires leveraging
UQ to balance exploring novel sequences that are “far” from
the training data with exploiting “close” sequences whose
fitness values are already estimated with high confidence.
However, by selecting (for downstream experimental de-
sign) novel protein sequences according to the models’ pre-
dicted fitness, the engineer induces a dependency between
the training and test (designed sequence) distributions (Fig-
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Table 1: Summary of key properties for JAWS-X and baseline predictive inference methods for standard and feedback covariate shift.

Finite-sample Statistical Computational cost:
“Proposed” or Method coverage guarantee for | efficiency: Total # trained black-box
reference if baseline name standard & feedback | No sample | predictors for n train & m
covariate shift splitting test points, ) label space
| [Tibshirani et al[(2019) | weighted split CP v 3 1
| [Fannjiang et al.| (2022) full CP-FCS v v (n+1)-m-|Y|
B Proposed JAW-FCS v v
Proposed JAW-KLOO v 4
Proposed WCV+ v 4

ure[T)), which violates the common UQ assumption of data
being independent and identically distributed (i.i.d.). Com-
putational and statistical (data-use) efficiency are critical in
this setting: the scale of modern, nonlinear ML models im-
poses computational budget constraints, while the expensive
process of labeling new protein sequences via experimenta-
tion makes paramount the economical use of available data.
Similar examples could be given in other decision-making
scenarios, including active learning, ML for scientific dis-
covery, and safe exploration in reinforcement learning.

Distribution-free predictive inference under standard
and feedback covariate shift Within UQ we focus on wrap-
per methods for distribution-free predictive inference, by
which we refer to computing predictive confidence intervals
(or sets, more generally) around black-box ML predictions
without any assumptions about the parametric family of the
data distribution. The first necessary property for a predic-
tive interval is reliable coverage, for example meaning that
a 90% predictive confidence interval actually “covers” the
true target label with at least 90% frequency. Secondarily,
without sacrificing coverage, predictive intervals are more
useful when they are smaller (i.e., more informative), which
is often a byproduct of statistical efficiency.

Conformal prediction (CP) (Vovk et al., 20035)) is a frame-
work for distribution-free predictive inference that achieves
finite-sample coverage guarantees, traditionally for any i.i.d.
(or exchangeable, more generally) samples. Full CP (Vovk
et al.,|2005)) is the most data-efficient CP variant but with
notorious computational demands, whereas split CP (Pa{
padopoulos et al.}2002) is the computationally cheapest but
least statistically efficient CP variant due to sample splitting.
Tibshirani et al.| (2019) extend full and split CP to standard
covariate shift (SCS). Fannjiang et al.| (2022) further allow
for a type of feedback-loop data shift they call feedback
covariate shift (FCS), which characterizes the biomolecular
design problem as a special case (see Section[2.4). In partic-
ular, the main contribution of|[Fannjiang et al.| (2022)) extends
full CP to FCS, and secondarily |[Fannjiang et al.| (2022)) de-
scribe how the weighted split CP method of [Tibshirani et al.
(2019) de factor maintains its guarantee under FCS. How-
ever, these two prior methods with coverage guarantees

for distribution-free predictive inference under FCS—full
CP-FCS (Fannjiang et al.,|2022) and weighted split CP (Tib{
shirani et al., 2019)—inherit corresponding computational
and statistical limitations from standard CP: For an arbitrary
predictor, full CP-FCS is extremely (and often prohibitively)
burdensome to compute, while weighted split CP suffers
from sample-splitting statistical inefficiencies (see Table [T)).

As an alternative to the computational-statistical tradeoff
poles of (weighted) full and split CP under SCS, |Prinster
et al.| (2022) develop a collection of methods based on the
jackknife+ (Barber et al.| [2021)) called JAWS, which can
offer favorable computational and statistical efficiency com-
promises (see Sections 2.3| & [2.6). JAWS is based on the
JAW method, the jackknife+ weighted with likelihood-ratio
weights for SCS (hereon JAW-SCS for clarity), which ex-
tends the finite-sample coverage guarantee of the jackknife+
to SCS. The JAWS framework does not allow for the train-
test dependencies present in FCS, however, and moreover
the JAW-SCS method can still be expensive to compute.

In this work, we propose JAWS-X, a collection of methods
for distribution-free predictive inference with finite-sample
guarantees under SCS or FCS that flexibly and favorably
balance statistical and computational efficiency. Building
on the JAWS framework (Prinster et al., 2022}, the letter
“X” partly alludes to the “cross” of our weighted cross-
validation+ method, along with the extension to FCS. Table
summarizes key properties of our methods and baselines.

Our contributions can be summarized as follows:

* We propose JAW-FCS, a first method for distribution-
free predictive inference under FCS that can favorably
balance statistical and computational efficiency. This
method generalizes both the jackknife+ (Barber et al.}
2021)) and JAW-SCS (Prinster et al., |2022) methods to
feedback covariate shift (FCS) while achieving the same
rigorous, finite-sample coverage guarantee.

* We propose two computational relaxations of JAW-FCS
that apply to both the SCS and FCS settings. The first
approach, JAW-KLOO, leverages only K < n leave-
one-out models while maintaining the JAW-FCS guaran-
tee. The second approach, K-fold WCV+, generalizes
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K-fold cross validation+ (CV+) developed in (Barber
et al., |2021)) to SCS and FCS with a slightly weaker
finite-sample coverage guarantee.

* Empirically, we demonstrate that JAW-FCS and its com-
putational relaxations outperform state-of-the-art base-
lines on a variety of real-world datasets under SCS and
FCS, including for protein design and active learning
tasks. In particular, JAW-FCS and K-fold WCV+ main-
tain target coverage levels under SCS and FCS with bet-
ter performing black-box predictors and sharper (more
informative) predictive intervals than baselines.

2. Background and Related Work

2.1. Predictive Inference Preliminaries

We assume a multiset of training data 7Z;,, =
{Z1,...2,} = {(X1,Y1),...,(Xp,Ys)} and a test point
Znt1 = (Xn+1, Ynt1) with unknown label Y;, 11, where
(X;,V;)) € X xYforalli € {1,..,n + 1} (and for a
standard regression setup X = R? and ) = R). More-
over, let i = A({(X1,Y1), ..., (X5, Ys)}) denote a black-
box predictor of interest, where A is a model-fitting algo-
rithm. Then, a predictive interval is a function C’n,a R¢ —
{subsets of R} that maps a test point X, to an interval
CA',L7Q(Xn+1) around the prediction fi(X,,+1), for some sig-
nificance level o € (0, 1). A coverage guarantee states that
ama(XnH) is guaranteed to contain the true label Y,
with high probability, such as satisfying

P{Yns1 € Cpa(Xnt1)} 21— a M)

for all « € (0,1). It is important to note that we focus on
marginal rather than conditional coverage (see Foygel Bar-
ber et al.| (2021) for more on this distinction).

2.2. Standard Conformal Prediction

Conformal prediction (CP) (Vovk et al.l 2005 Shafer &
'Vovk! |2008)) is a principled and increasingly popular frame-
work for distribution-free predictive inference; see |An-
gelopoulos & Bates|(2021) for a gentle introduction. Stan-
dard CP methods rely on the assumption of exchangeabil-
ity, meaning that the distribution of the training and test
data is invariant to permutations (i.i.d. is a special case);
additionally, non-holdout-set CP methods require that the
fitting algorithm A treat the training data symmetrically
(Barber et al.| 2022). CP methods use a fitted score function
S:XxY - Rto quantify the extent to which labeled
points “conform” to previous data (e.g., the residual score
S(z,y) = |y—1i(x)|), and CP intervals are then constructed
from subsets of ) whose scores lie within a (conservative)
quantile on the empirical distribution of score values.

Full (or transductive) CP (Vovk et al., [2005) and split (or
inductive) CP (Papadopoulos et al., |2002; |Papadopoulos),

2008)) are the two main types of standard CP. Together these
methods represent polar-opposite ends on the computational-
statistical efficiency tradeoff spectrum, with full CP being
the most statistically efficient but computationally burden-
some, and split CP being the computationally cheapest but
with the least efficient use of available data (due to sample
splitting to form a holdout set that cannot be trained on).

2.3. Jackknife+ and Cross Validation+

The jackknife+ and cross validation+ (CV+) methods of
Barber et al.| (2021), which are closely related to cross-
conformal prediction (Vovk, 20155 Vovk et al.,[2018), offer
a range of intermediate, often beneficial compromises be-
tween the computational-statistical tradeoff extremes of full
and split CP. The jackknife+ is a modified version of clas-
sic leave-one-out or “jackknife” resampling (Miller, |1974;
Steinberger & Leeb, [2018;|2016), which requires rerunning
the training algorithm A a total of n times, once for each
leave-one-out predictor. Assuming exchangeable data and
a symmetric algorithm A (as in standard full CP), Barber
et al.|(2021) prove that jackknife+ satisfies a slightly weaker
coverage guarantee than standard CP methods, namely

P{Y,41 € ClKinifer (X, 1)} > 1~ 2a. 2)

However, jackknife+ typically achieves target (1 — «) em-
pirical coverage for exchangeable data (Barber et al.|[2021).

CV+ offers a computational relaxation of jackknife+ to al-
low for retraining K < n predictors that each withhold
datapoints from training, where n is assumed to be divisible
by K (Barber et al.|2021)); CV+ can thus be understood as
a modification to K-fold cross validation resampling. For
each training point ¢ € {1,...,n}, let k(i) € {1,..., K}
denote the index of a cross-validation fold, where the mul-
tisets of points in each fold are denoted {5, ..., Sk }. Let
fies, = A((X:,Y;) i € {1,...,n}\S}) denote the predic-
tor trained with the k-th cross-validation fold S}, removed,
and denote the residuals for the model fi_g, applied to
points in its left-out fold S}, as RCV |p S )(X Y,;|
for i : k(i) = k. Then, the CV+ interval is defined as

Ot ala) =

n

Q0 (3 [y 1] + r6-oc).

i=1

3

Qu-a (D (107 ep, erev] + hp01ec ) |, B

i=1

where §,, denotes a point mass at v and ()g(-) denotes the
level 8 empirical quantile function. Note that the special
case of ' = n recovers jackknife+. Barber et al.|(2021)) pro-
vide a finite-sample coverage guarantee for the CV+ (under
exchangeability) that depends on K, where the strength of
the guarantee approaches that of jackknife+ (2) as K — n.
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2.4. Standard and Feedback Covariate Shift

Under the standard covariate shift (SCS) assumption, the
conditional Y | X distribution is assumed to be the same
between training and test data but the marginal X distri-
butions may change (Sugiyama et al., 2007} Shimodaira,
2000). Crucially, SCS assumes that the test data distribution
is independent of the training data:

(X:,Y:) "™ Py x Pyjx,i=1,.,n

(Xnt1, Ynt1) ~ ﬁX X Py|x,independently.  (4)

Feedback covariate shift (FCS) as described by |Fannjiang
et al.|(2022), however, can be understood as a generalization
of SCS where the marginal distribution of the test inputs
may depend on the realization of the training data Z;.,:

(XT)}/?) 1/]\9 PX XPY|X57::17"'7”

(Xnt1, Yni1) ~ Px.z,., X Py x. Q)

FCS thus characterizes the biomolecular design scenario
from the introduction (Figure[T)), where a predictor trained
on ii.d. protein training data Z., shifts the distribution
of designed sequences Py.z, . , and where, as a property
determined by nature, Y | X is expected to remain invariant.

2.5. Conformal Prediction for SCS and FCS

Tibshirani et al.|(2019) develop a weighted generalization of
exchangeability that the authors then used to extend full and
split CP to the SCS setting using likelihood-ratio weights.
However, Tibshirani et al.|(2019) do not account for depen-
dencies between the train and test data, and in later work
Fannjiang et al.[(2022) describe how full CP for SCS thus
loses its formal guarantee under FCS (though empirically,
Fannjiang et al.| (2022) find that full CP-SCS can main-
tain target coverage but with overly conservative interval
widths). The main result of Fannjiang et al.| (2022) extends
full CP to FCS (full CP-FCS) while maintaining a guaran-
tee of the form (I). However, for an arbitrary (potentially
nonlinear) predictor with n train points, m test points, and
| V| as the cardinality of the label space, full CP-FCS de-
mands the often prohibitive computational price of training
(n+1)-m-|Y| distinct predictors (in regression, ) must be
approximated by a fine grid of values). Only in special cases
such as for linear models can full CP-FCS’s computation be
reduced to (n + 1) - m runs of the training algorithm A.

Secondarily, |[Fannjiang et al.[(2022) also describes how [Tib{
shirani et al.| (2019)’s split CP for SCS (hereon “weighted
split CP”) de facto maintains its guarantee under FCS: due
to sample splitting, the test distribution depends on weighted
split CP’s “proper” training data but not on its holdout cal-
ibration set, which reduces the holdout-to-test shift from
FCS to SCS. However, weighted split CP remains statis-
tically inefficient due to its sample splitting requirement,

which (as we will demonstrate) results in reduced model
performance and overly wide (and thus less informative)
predictive intervals relative to our proposed methods.

2.6. JAW: Jackknife+ Under Standard Covariate Shift

Prinster et al.| (2022) propose the jackknife+ weighted with
likelihood ratio weights for SCS, or JAW (JAW-SCS for
clarity), which relaxes the jackknife+’s assumption of data
exchangeability to allow for SCS while achieving the same
finite-sample coverage guarantee (2). However, JAW-SCS
does not allow for train-test dependencies and thus loses
its guarantee under FCS. Prinster et al.| (2022)) also propose
a computationally fast JAW approximation (JAWA) that
uses higher-order influence functions to estimate JAW’s
leave-one-out models and thus avoid retraining, but with an
asymptotic guarantee that requires regularity conditions. In
our current work, we extend JAW-SCS to FCS and moreover
propose computational relaxations to JAW under either SCS
or FCS that maintain finite-sample coverage guarantees
without any regularity assumptions.

3. JAW-FCS: Jackknife+ Weighted for FCS

Our first proposed method for efficient distribution-free pre-
dictive inference under FCS generalizes both the jackknife+
(Barber et al., [2021)) and JAW-SCS (Prinster et al., [2022)
methods to FCS. Let training data 7., = {Z, ..., Z, } and
a test point Z,, 1 be generated from FCS (3)), and denote
w(x; D) = d]SX;D (z)/dPx (z) as the likelihood ratio func-
tion for the data that depends on D for D C Z;.,,. Then, for
eachj € {1,...,n+1},let Z_; = Z;.,\ Z; denote the train-
ing data with point j removed (where Z_ (1) = Z1.), and
define the normalized weight function

Wpy1,5(x) = (6)
w(w; Z_5)w(Xy; Z_;)

Z?’:l [w(a:; Z_jn)w(Xjr; Z—j/)} +w(x; Z1.0)? .

Given X, 41 as an argument, Wy,4+1,;(Xp+1) can be thought
of as a weight applied to the training point X; that is care-
fully normalized with respect to the other training data and
the test point X, ; (see Appendix [A.2]for further details).
To condense notation slightly, for j = n 4+ 1 we will also
write Wy 41,n41(%) as W(,41)2 (). We then define the pre-
dictive interval for JAW-FCS, as follows:

OIS (@) = 0

[Qa ( Z Wr41,j (LU)(Sﬁﬂ_ (x)—REOO + 12)(n+1)2 (:c)d,oo) ,
j=1

Qi-a ( > Wnt1,5(%)07_;(2)+RECO + W(nt1)> (96)5oo>} :
j=1
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where J,, denotes a point mass at v and ()g(-) denotes the
level 8 empirical quantile function. The following theorem
presents the finite-sample coverage guarantee for the JAW-
FCS interval , which relaxes the assumption in [Prinster
et al.| (2022) from standard to feedback covariate shift.

Theorem 3.1. Suppose data are generated under feedback
covariate shift @) and assume Px.p is absolutely continu-
ous with respect to Px for all possible values of D. Then,
Sor any miscoverage level, « € (0,1), the JAW-FCS predic-
tive interval in (7)) satisfies

P{Y41 € CIWTES(X, 1)} > 1 - 20 (8)

We defer the proof to Appendix but here note two
key differences from the JAW-SCS proof in |Prinster et al.
(2022)): Firstly, weights are selected to maintain “pseudo-
exchangeability”, rather than weighted exchangeability, in
a weighted comparison matrix; secondly, in our first proof
step we establish a bound on an expectation term whose
analog in |Prinster et al.| (2022) is deterministic.

4. Further Computational Relaxations
4.1. Relaxation of JAW with K Leave-One-Out Models

While the calculation of the JAW-FCS prediction interval
(7) is in general computationally efficient relative to full
CP-FCS from [Fannjiang et al.| (2022)) (see Table [I)), the
retraining requirements of JAW-FCS can be relaxed even
further to enable rerunning the model-training algorithm A
only K < n times. As our first proposed computational
relaxation, we demonstrate that using only X' < n of the
leave-one-out models required by the JAW-FCS method still
achieves the same coverage guarantee, though often at the
cost of wider or more variable predictive intervals. We call
this computational relaxation JAW-KLOO. The K training
points used for JAW-KLOO’s leave-one-out retraining can
be selected in a range of ways, either deterministically or
randomly. For simplicity, we mainly focus on JAW-KLOO
deterministically selecting the K points with largest weights,
though in the Appendix [A.3] we discuss adjustments for
random sampling and in Section[5.3]we compare empirical
performance of deterministic versus random sampling in
terms of interval width and coverage variance.

Let Sioo C {1, ...,n} denote a subset of the training data
where |Spoo| = K. Then, we define the JAW-KLOO
normalized weights similarly as for JAW-FCS, except only
using leave-one-out models for points 7 : 7 € Sy oo:

Wn (@) = ®

w(@; Z-j)w(Xj5 Z-;)

Ej’eSLoo [w(x;Z_

]/)U}(X]/’ Z_J/):I + ’LU(l'7 Zl;n)Q ’

where to condense notation slightly we also write
“7([221)2 (z) to denote @ff_ﬁmﬂ(x). Then, we define the
JAW-KLOO prediction interval as follows

Cra H00(a) =

[Qa( Z wff&,j(x)é
JE€So
Quoa( D BEO @05 oyrmro0 + B (@)00) .
J€SLoo
The JAW-KLOO model then satisfies the same coverage
guarantee as the full JAW-FCS model, which we state for-
mally in the following theorem (proof in Appendix |A.3)).
Theorem 4.1. Suppose data are generated under feedback
covariate shift (B) and assume Px.p is absolutely continu-
ous with respect to Px for all possible values of D. Then,
Sor any miscoverage level, o € (0, 1), the JAW-KLOO pre-
dictive interval in (10) satisfies

P{Yn+1 S

(10)

A-i(@)-REOO T w(lﬁw(m—*)’

GTJLA:YXV-KLOO(X +1)} >1-—2a. (11

4.2. K-fold Weighted Cross-Valdation+

We now propose an alternative computational relaxation of
JAW-FCS that relies on a weighted K-fold cross validation
resampling procedure with K leave- z-out models (in con-
trast to JAW-KLOO that uses K leave-one-out models). In
particular, this second computational relaxation generalizes
the K -fold cross validation+ (CV+) method of [Barber et al.
(2021) to allow for feedback or standard covariate shift—we
call this method K'-fold WCV+FCS or WCV+ for short.

Prior to defining the WCV + predictive interval, we first need
to generalize the normalized weights defined in (6) using
likelihood ratio functions w(z; D) = dPx.p(z)/dPx (x)
that depend on all the training data aside from a specific
fold (rather than depending on leave-one-out subsets Z_;
as in (6)). For k(j) € {1, ..., K} denoting the index of the
cross validation fold Sk(j) C Zi., that point j belongs to,
let Z_s, ;, = Z1:n\Sk(j)- Then, we define

Wyt () = (12)
w(z; Z*Sk(j) )w(Xj; Z*Sk(j))
Sy [w(m; Z s, ) w(Xjs Zos, )] + w(@; Zrp)?

for training data j € {1,...,n}. We can now define the
K-fold WCV+ predictive interval as follows:

OnRi(a) =
(S ottt
Q1- a(an+1 j

(13)

M Sk(i)(w) RZY +’U)(n+1)2( )57 )

~C
0g_ Suey (@+REY + w(n‘il)z(m)dm)},
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where the @57} ;(x) are defined in (I2), and where
Wik yy2 () = B jy1 (). We now present the coverage
guarantee for WCV+, which is weaker than the JAW-FCS
guarantee by a term that approximately represents the ex-
pected normalized weight of a cross-validation fold minus
one point, but with a more technical formulation that we
defer with the WCV+ coverage proof to Appendix [A.4]

Theorem 4.2. Suppose data are generated under feedback
covariate shift @) and assume Px.p is absolutely continu-
ous with respect to Px for all possible values of D. Then,
Sor any miscoverage level, a € (0,1), the K-fold WCV+

predictive interval in (13) satisfies
P{V,41 € CFYTS(Xpi)} >
1—2a— E{ Z wgV(XnH)} (14)

JESk i)\

Remark 4.3. JAW-KLOO and WCV+ also extend to SCS as
a special case, which to our best knowledge is also a novel
contribution—that is, the first computational relaxations of
JAW-SCS (Prinster et al.,[2022) without requiring a holdout
dataset and maintaining finite-sample guarantees.

5. Experiments

To demonstrate the practical performance of our JAW-FCS
method and its computational relaxations in a real-world
FCS scenario, we first focus on the protein design prob-
lem (Figure[I), where a common goal is to design a novel
protein sequence with high functional fitness (Yang et al.,
2019 Sinai & Kelsic, [2020; Wu et al.|[2021)), such as strong
fluorescence. We next consider an active learning task to
evaluate how our methods perform when the FCS likelihood-
ratio weights need to be estimated, and we lastly evaluate
our two computational relaxations in the SCS setting.

5.1. Protein Design Experiments under FCS

Datasets In protein engineering, the labels for designed
sequences are usually unknown, so we follow [Fannjiang
et al| (2022) by using the workaround offered by combi-
natorially complete protein datasets. In particular, we use
data from |Poelwijk et al.[|(2019) where each sequence was
measured for both a “red” and a “blue” wavelength fluo-
rescence, thus resulting in two combinatorially complete
datasets corresponding to the two distinct fitness functions.

Creation of Feedback Covariate Shift In line with [Fan-
njiang et al.| (2022) and other biomolecular engineering
papers (Biswas et al., 2021} [Zhu et al., [2021)), we sample
design or “test point” protein sequences from a distribu-
tion over fluorescent protein sequences (Poelwijk et al.|
2019) with log-likelihood proportional to the regression
model’s prediction. That is, we sample design sequences

from ISX;ZM (Xpt1) x exp(A - 1(X,41)), where the hy-
perparameter A > 0 is the “inverse temperature”. Thus,
larger A values correspond to larger shift magnitudes of
FCS. Artificial measurement noise was also added to the
sampling procedure as in|Fannjiang et al.|(2022)) to simulate
a real experimental scenario where repeat measurements of
the same sequence can result in different observations.

Oracle Weights Are Often Known in the Design Prob-
lem The one-shot design problem is a special case of FCS
where the distribution of the inputs is usually known or
can be reliably simulated, which substantially reduces or
removes altogether the challenge of likelihood-ratio weight
estimation (Fannjiang et al., |2022). The intuition is that
the training data are selected by a known procedure defined
by a domain expert (e.g., random substitutions to a known
wild-type sequence as in|Brookes et al.|(2019)); Biswas et al.
(2021); Bryant et al.| (2021))), and the (shifted) test distribu-
tion is a designed distribution shift, intentionally selected so
that “test” protein sequences that are expected to have high
fitness. In particular, the biomolecular engineering literature
commonly uses optimization procedures (such as training
a generative model) where the test (design) distribution is
explicitly known (Brookes et al.,[2022} [Fannjiang & List{
garten, |2020; |[Popova et al.l 2018; [Kang & Chol 2018 Russ
et al., [2020; |Wu et al., [2020; [Hawkins-Hooker et al., 2021}
Shin et al.| [2021)) or that produce an implicit test distribution
that can be easily simulated, and thus estimated (Killoran
et al.l 2017;|Gomez-Bombarelli et al., 2018 |[Linder et al.,
2020; |Sinat et al.| 2020; Bashir et al.| 2021 Bryant et al.
2021)), relative to naive density estimation with unknown
shifts. For our protein design experiments we thus evaluate
our methods and relevant baselines using oracle weights.

Protein design experimental details We used the scikit-
learn package (Pedregosa et all |2011) MLPRegressor
method (with L-BFGS solver and logistic activation func-
tion) for the neural network zi and the package’s Random-
ForestRegressor method (with 20 trees and the absolute error
criterion) for the random forest ji. The baselines are jack-
knife+ (orange squares), weighted split conformal (green
triangles), and traditional split conformal (pink diamonds);
the predicted fitness values for JAW-FCS and jackknife+ are
identical, as are those for weighted and traditional split CP.
All values are for 20 repeated experiments, which each have
a distinct random seed, 192-sample training set, and set of
200 test points (for 4000 total test points per plotted value).

5.1.1. PROTEIN DESIGN RESULTS FOR JAW-FCS

A predictive inference method is reliable if its confidence
intervals achieve coverage at the target level 1 — a. Be-
yond this necessary criterion, however, for protein design
a predictive inference method is most useful if it moreover
enables a protein engineer to identify promising candidate
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Figure 2: Mean predictive interval coverage, median interval width, and mean predicted fitness (i.e., mean predicted fluorescence for test
point “designed” protein sequence) for our proposed JAW-FCS method (blue circles) and its baselines, across four datasets and predictor
conditions: (a) red fluorescence with neural network i, (b) red fluorescence with random forest /i, (¢) blue fluorescence with neural
network 7z, (d) blue fluorescence with random forest fi. For coverage, at or above the target level (black dotted line at 1 — v = 0.9) is best;
for median interval width, smaller is better (more informative) so long as target coverage is achieved; for predicted fitness, higher is better.
Black error bars for coverage and predicted fitness represent standard error, and gray error bars for median interval width represent upper
and lower quartiles. JAW-FCS maintains coverage at the target level regardless of shift magnitudes A, with higher mean predicted fitness
and smaller, more informative prediction intervals than weighted split conformal, the only baseline that also maintains target coverage.
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Figure 3: Mean coverage and median interval width for computational relaxations of JAW-FCS—that is, WCV+ (red Xs) and JAW-KLOO
(violet plus shape) methods—relative to baselines across a range of computational budgets for training K distinct predictors. The
other baseline that depends on K is standard CV+ (brown triangles); meanwhile, the proposed JAW-FCS (blue line) and weighted split
conformal (green line) methods are also included as baselines, though with dashed lines indicating that their computational budgets
are fixed independently of K (see Table[T). For coverage, at or above the target level (black dotted line at 1 — o = 0.9) is best, while
for median interval width, smaller is better (more informative) only for methods that achieve coverage at or above target level. Shift
magnitude of FCS is fixed at A = 2. Black error bars for coverage represent standard error and gray bars for median interval width
represent upper and lower quartiles. Both WCV+ and JAW-KLOO maintain coverage above the target level of 1 — a = 0.9 for all tested
computational budget values K; WCV+ interval widths are comparable to JAW-FCS, while JAW-KLOO are overly wide for smaller K.
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sequences that are predicted, with minimal uncertainty (min-
imal interval width), to have maximum fitness. Accordingly,
we consider a predictive inference method to have ideal
statistical performance if it maintains coverage at or above
the user-specified target level 1 — q, if its interval widths
are as small and thus as informative as possible, and if the
predicted fitness of its designed sequences are as high as

possible. In Figure 2] we thus plot these three performance
criteria (coverage, interval width, and predicted fitness) for
JAW-FCS and several baselines across a grid of shift magni-
tudes A € {0, 1,2, 3}, for both the red and blue fluorescence
datasets with both a neural net and random forest predictor.

For all dataset x predictor conditions in Figure 2} JAW-FCS
and weighted split conformal prediction maintain coverage
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at the target level of 1 — a = 0.9 regardless of data shift
magnitude A, whereas the traditional, exchangeable-data
versions of each of the two methods (jackknife+ and split
conformal) lose coverage. However, for all dataset x pre-
dictor conditions, the JAW-FCS prediction intervals are gen-
erally smaller and thus more informative than the weighted
split intervals, and designed sequences from the JAW-FCS’s
11 predictor have higher mean predicted fitness than those
of the weighted split method. The superior predicted fitness
and interval width values for JAW-FCS relative to weighted
split CP largely reflect the former’s greater statistical ef-
ficiency. That is, by avoiding sample splitting, JAW-FCS
maintains a i predictor that is trained on more data and
therefore more “competent” than that of weighted split, and
JAW-FCS is also able to efficiently use all of its labeled data
for the construction of more precise predictive intervals.

5.1.2. RESULTS FOR PROTEIN DESIGN WITH JAW-FCS
COMPUTATIONAL RELAXATIONS

We now turn to evaluate WCV+ and JAW-KLOO, our
two proposed computational relaxations of JAW-FCS, rel-
ative to JAW-FCS, standard CV+, and weighted split CP.
In Figure 3] we compare these methods’ coverage and in-
terval width values across a grid of computational budgets
K € {4,8,16,24,32,48,96,192} denoting the number of
retrained predictors, across the same dataset x predictor
conditions. We omit the predicted fitness values, which
would be largely overlapping for non-holdout-set methods.
We observe that both WCV+ and JAW-KLOO maintain
coverage at or above the target 1 — a = 0.9 level for all
evaluated computational budgets, whereas standard CV+
loses coverage. Notably, the prediction interval widths for
WCV+ are largely comparable to those of the full JAW-FCS
method for all evaluated computational budgets K, but for
smaller values of K, JAW-KLOO has overly conservative
prediction intervals. Values for JAW-KLOO are not plotted
for K < 24, where the method’s intervals can often become
uninformative for small /K. These results favor WCV+ as a
practical computational relaxation of JAW-FCS that empiri-
cally appears to avoid degraded coverage or interval widths
even for fairly small computational budgets K. Meanwhile,
in cases with severe miscoverage penalties, JAW-KLOO
could potentially be used as a conservative computational
relaxation to JAW-FCS that achieves the same guarantee.

5.2. Experiments with Estimated FCS Weights

Active Learning Exploration with Probabilistic Bounds
While in Section the input distributions (and thus the
FCS weights) are known for the protein design task, in
other settings of FCS the weights may need to be estimated.
For instance, take high-stakes or resource-constrained ex-
ploration in active learning, where predictive intervals for
query (test) points can help (probabilistically) bound risks
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Figure 4: Mean coverage (left), median interval width (middle),
and validation-set mean squared error (right), for active learning
predictive inference experiments on the airfoil dataset (Dua &
Graff] [2017). Coverage and MSE error bars are standard error,
width error bars are interquartile range. Values are for 30 exper-
imental replicates each with 8 active learning query iterations,
where 16 points were queried in each iteration. Weighted split
interval widths are not shown when small sample size in early
iterations results in median widths being uninformative (infinite
length). The results show that our proposed methods (JAW-FCS,
JAW-KLOO, WCV+) can achieve target coverage (1 — o = 0.9)
even with estimated rather than oracle weights while maintaining
smaller (more informative) interval widths and lower MSE.

or costs associated with the “annotation” procedure (e.g.,
invasive medical diagnostic procedures or expensive lab ex-
periments). In each active learning iteration, the training
data are updated with newly labeled “query” points based
on a systematic querying strategy, which will usually re-
sult in the training distribution in the early stage differing
drastically from the distribution at a later iteration. Mean-
while, the distribution of the query (test) points can also
change as the model becomes more “informed”. However,
with common active learning setups such as pool-based ac-
tive learning with uncertainty sampling, the query or test
distribution shift is a direct function of an attribute of the
model predictions (e.g., least con