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Abstract
Graph Neural Networks (GNN) are inherently
limited in their expressive power. Recent seminal
works (Xu et al., 2019; Morris et al., 2019b) intro-
duced the Weisfeiler-Lehman (WL) hierarchy as a
measure of expressive power. Although this hier-
archy has propelled significant advances in GNN
analysis and architecture developments, it suffers
from several significant limitations. These include
a complex definition that lacks direct guidance for
model improvement and a WL hierarchy that is
too coarse to study current GNNs. This paper
introduces an alternative expressive power hier-
archy based on the ability of GNNs to calculate
equivariant polynomials of a certain degree. As a
first step, we provide a full characterization of all
equivariant graph polynomials by introducing a
concrete basis, significantly generalizing previous
results. Each basis element corresponds to a spe-
cific multi-graph, and its computation over some
graph data input corresponds to a tensor contrac-
tion problem. Second, we propose algorithmic
tools for evaluating the expressiveness of GNNs
using tensor contraction sequences, and calculate
the expressive power of popular GNNs. Finally,
we enhance the expressivity of common GNN
architectures by adding polynomial features or ad-
ditional operations / aggregations inspired by our
theory. These enhanced GNNs demonstrate state-
of-the-art results in experiments across multiple
graph learning benchmarks.

1. Introduction
In recent years, graph neural networks (GNNs) have become
one of the most popular and extensively studied classes of
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4 PH(X)j2j2 =∑n
j1,j3,j4=1 Xj1j4Xj1j3Xj1j2Xj3j2 =

einsum(12, 13, 14, 32 → 22,X,X,X,X)j2j2
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4 PH(X)j1j2 =∑n
j3,j4=1 Xj1,j2Xj1,j3Xj1,j4Xj3,j2 =

einsum(12, 13, 14, 32 → 12,X,X,X,X)j1j2

Figure 1. Example of two basis elements of equivariant graph poly-
nomials: node-valued (top), and edge-valued (bottom). Basis
elements PH can be described by tensor contraction networks H
(left), corresponding to a matching einsum expression.

machine learning models for processing graph-structured
data. However, one of the most significant limitations of
these architectures is their limited expressive power. In re-
cent years, the Weisfeiler-Lehman (WL) hierarchy has been
used to measure the expressive power of GNNs (Morris
et al., 2019b; Xu et al., 2019; Morris et al., 2021). The
introduction of the WL hierarchy marked an extremely sig-
nificant step in the graph learning field, as researchers were
able to evaluate and compare the expressive power of their
architectures, and used higher-order WL tests to motivate
the development of new, more powerful architectures.

The WL hierarchy, however, is not an optimal choice for
either purpose. First, its definition is rather complex and
not intuitive, particularly for k ≥ 3. One implication is
that it is often difficult to analyze WL expressiveness of a
particular architecture class. As a result, many models lack
a theoretical understanding of their expressive power. A
second implication is that WL does not provide practical
guidance in the search for more expressive architecture.
Lastly, as was noted in recent works (Morris et al., 2022;
2019a), the WL test appears to be too coarse to be used to
evaluate the expressive power of current graph models. As
an example, many architectures (e.g., (Frasca et al., 2022))
are strictly more powerful than 2-WL and bounded by 3-WL,
and there is no clear way to compare them.

The goal of this paper is to offer an alternative expressive
power hierarchy, which we call polynomial expressiveness
that mitigates the limitations of the WL hierarchy. Our pro-
posed hierarchy relies on the concept of graph polynomials,
which are, for graphs with n nodes, polynomial functions
P : Rn2 → Rn2

that are also permutation equivariant —
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that is, well defined on graph data. The polynomial expres-
siveness hierarchy is based on a natural and simple idea —
the ability of GNNs to compute or approximate equivariant
graph polynomials up to a certain degree.

This paper provides a number of theoretical and algorithmic
contributions aimed at defining the polynomial hierarchy,
providing tools to analyze the polynomial expressive power
of GNNs, and demonstrating how this analysis can suggest
practical improvements in existing models that give state-
of-the-art performance in GNN benchmarks.

First, while some polynomial functions were used in GNNs
in the past (Maron et al., 2019; Chen et al., 2019b; Azizian
& Lelarge, 2021), a complete characterization of the space
of polynomials is lacking. In this paper, we provide the
first characterization of graph polynomials with arbitrary
degrees. In particular, we propose a basis for this vector
space of polynomials, where each basis polynomial PH of
degree d corresponds to a specific multi-graph H with d
edges. This characterization provides a significant general-
ization of known results, such as the basis of constant and
linear equivariant functions on graphs (Maron et al., 2018).
Furthermore, this graphical representation H can be viewed
as a type of a tensor network, which provides a concrete
way to compute those polynomials by performing a series
of tensor (node) contractions. This is illustrated in Figure 1.

As a second contribution, we propose tools for measuring
polynomial expressiveness of graph models and placing
them in the hierarchy. This is accomplished by analyzing
tensor networks using standard contraction operators, simi-
lar to those found in Einstein summation (einsum) algo-
rithms. Using these, we analyze two popular graph models:
Message Passing Neural Networks (MPNNs) and Provably
Powerful Graph Networks (PPGNs). This is done by first
studying the polynomial expressive power of prototypical
versions of these algorithms, which we define.

Our third contribution demonstrates how to improve MPNN
and PPGN by using the polynomial hierarchy. Specifically,
we identify polynomial basis elements that are not com-
putable by existing graph architectures and add those poly-
nomial basis elements to the model as feature layers. Also,
we add two simple operations to the PPGN architecture (ma-
trix transpose and diagonal / off-diagonal MLPs) to achieve
the power of a Prototypical edge-based graph model. After
precomputing the polynomial features, we achieve strictly
better than 3-WL expressive power while only requiring
O(n2) memory — to the best of our knowledge this is the
first equivariant model to achieve this. We demonstrate that
these additions result in state-of-the-art performance across
a wide variety of datasets.

2. Equivariant Graph Polynomials

We represent a graph with n nodes as a matrix X ∈ Rn2

,
where edge values are stored at off-diagonal entries, Xij ,
i ̸= j, i, j ∈ [n] = {1, 2, . . . , n}, and node values are stored
at diagonal entries Xii, i ∈ [n].

An equivariant graph polynomial is a matrix polynomial
map P : Rn2 → Rn2

that is also equivariant to node permu-
tations. More precisely, P is a polynomial map if each of
its entries, P (X)ij , i, j ∈ [n], is a polynomial in the inputs
Xrs, r, s ∈ [n]. P is equivariant if it satisfies

P (g · X) = g · P (X), (1)

for all permutations g ∈ Sn, where Sn denotes the permu-
tation group on [n], and g acts on a matrix Y as usual by

(g · Y)ij = Yg−1(i),g−1(j). (2)

2.1. PH : Basis for equivariant graph polynomials

We next provide a full characterization of equivariant graph
polynomials by enumerating a particular basis, denoted PH .
In later sections we use this basis to analyze expressive
properties of graph models and improve expressiveness of
existing GNNs.

The basis elements PH of degree d equivariant graph polyno-
mials are enumerated from non-isomorphic directed multi-
graphs, H = (V,E, (a, b)), where V = [m] is the node
set; E = {(r1, s1), . . . , (rd, sd)}, ri, si ∈ [m], the edge
set, where parallel edges and self-loops are allowed; and
a, b ∈ V is a pair of not necessarily distinct nodes represent-
ing the output dimension. The pair (a, b) will be marked in
our graphical notation as a red edge.

Defining the basis PH will be facilitated by the use of
Einstein summation operator defined next. Note that the
multi-graph H can be represented as the following string
that encodes both its list of edges and the single red edge:
H ∼= ′r1s1, . . . , rdsd → ab′. The einsum operator is:

einsum(H,X1, . . . ,Xd)ia,ib =

einsum(r1s1, . . . , rdsd → ab,X1, . . . ,Xd)ia,ib =∑
j1,...jm∈[n]
ja=ia,jb=ib

X1
jr1 ,js1

· · ·Xdjrd ,jsd

Figure 2 shows how matrix multiplication can be defined us-
ing a corresponding multigraph H and Einstein summation.
Such multigraphs span the basis of equivariant polynomials:
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einsum(H,X,Y)j1j2 =

einsum(13, 32 → 12,X,Y) =∑n
j3=1 Xj1j3Yj3j2 = (XY)j1j2

Figure 2. Example of matrix multiplication, XY. Computation
defined by a multigraph H and Einstein summation.

Theorem 2.1 (Graph equivariant basis). A basis for all
equivariant graph polynomials P : Rn2 → Rn2

of degree ≤
d is enumerated by directed multigraphsH = (V,E, (a, b)),
where |V | ≤ min {n, 2 + 2d}, |E| ≤ d, and V \{a, b} does
not contain isolated nodes. The polynomial basis elements
corresponding to H are

PH(X) = einsum(H,

d times︷ ︸︸ ︷
X, . . . ,X). (3)

An explicit formula for PH can be achieved by plugging in
the definition of einsum and equation 3:

PH(X)ia,ib =
∑

j1,...jm∈[n]
ja=ia,jb=ib

∏
(r,s)∈E

Xjr,js . (4)

Figure 1 depicts an example of graph equivariant basis el-
ements PH corresponding to two particular multigraphs
H . Note that a repeated pair (a, a) in H leads to a node-
valued equivariant polynomial, while a distinct pair (a, b),
a ̸= b leads to an edge-valued equivariant polynomial. Fur-
thermore, we make the convention that if E is empty then∏

(r,s)∈E Xir,is = 1. The number of such polynomials in-
creases exponentially with the degree of the polynomial; the
first few counts of degree d equivariant graph polynomials
are 2 (d = 0), 15 (d = 1), 117 (d = 2), 877 (d = 3), 6719
(d = 4), . . . Further details and proofs of these sequences
are provided in Appendix I. The full proof of Theorem 2.1
is provided in Appendix B.

Proof idea for Theorem 2.1. Since the set of monomials
form a basis of all (not necessarily invariant) polynomials
P : Rn2 → Rn2

, we can project them onto the space of
equivariant polynomials via the symmetrization (Reynolds)
operator to form a basis for the equivariant polynomials.
This projection operation will group the monomials into
orbits that form the equivariant basis.

To find these orbits, the basic idea is to consider the mono-
mials in the input variables {Xi,j : i, j ∈ [n]} and an
additional variable {δi,j : i, j ∈ [n]} to denote the possible
output entries of the equivariant map. Any given monomial
M(X, δa,b) takes the form

M(X, δa,b)i,j = δa,bi,j

n∏
r,s=1

XAr,s
r,s , (5)

where A ∈ Nn2

0 , N0 = {0, 1, . . .} is the matrix of powers,
and δa,bi,j = 1 if a = i, b = j, and δa,bi,j = 0 otherwise.
A natural way to encode these monomials is with labeled
multi-graphs H = (V,E, (a, b)), where V = [n], E is
defined by the adjacency matrix A, and (a, b) is a special
(red) edge. We therefore denote M =MH .

These monomials can be projected onto equivariant polyno-
mials via the Reynolds operator that takes the form,

QH(X) =
∑
g∈Sn

g ·MH(g−1 · X, δg(a),g(b))

=
∑
g∈Sn

Mg·H(X, δa,b),
(6)

where the action of g ∈ Sn on the multi-graph H is de-
fined (rather naturally) as node relabeling of H using the
permutation g.

From the above, we note: (i) QH sums all monomi-
als with multi-graphs in the orbit of H , namely [H] =
{g ·H|g ∈ Sn}. This shows that, in contrast to MH , QH is
represented by an unlabeled multi-graph H and enumer-
ated by non-isomorphic multi-graphs H . (ii) Since the
symmetrization is a projection operator, any equivariant
polynomial is spanned by QH . (iii) Since each QH is a
sum of MH belonging to a different orbit, and since orbits
are disjoint, the set {QH} for non-isomorphic H is linearly
independent. These three points establish that {QH} for
non-isomorphic multi-graphs H is a basis of equivariant
graph polynomials.

Noting that QH(X)ij includes only terms for which
δg(a),g(b) = δi,j , the explicit form below can be derived:

QH(X)ia,ib =
∑

j1 ̸=...̸=jm∈[n]
ja=ia,jb=ib

∏
(r,s)∈E

Xjr,js . (7)

QH is similar to PH in equation 4, except we only sum over
non-repeated indices. The proof in Appendix B shows that
PH is also a basis for such equivariant polynomials.

Figure 4. Simple H
corresponding to
simple graph data.

Simple graphs. It is often the case
that the input data X is restricted to
some subdomain of Rn2

, e.g., sym-
metric 0/1 matrices with diagonal en-
tries set to zero correspond to simple
graph data. In such cases, polynomi-
als PH that correspond to different
multi-graphs H can coincide, resulting in a smaller basis.
For simple graph data X, existence of self loops in H would
result in PH(X) = 0, parallel edges in H can be replaced
with single edges without changing the value of PH(X),
and since the direction of black edges in H do not change
the value of PH(X) we can consider only undirected multi-
graphs H . That is, for simple graph data it is enough to
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Figure 3. Basis of equivariant constant (left of bold line) and linear
(right of bold line) graph polynomials.

consider simple graphs H (ignoring the red edge). Figure 4
shows two examples of H for simple graph data.

Example: linear basis. Employing Theorem 2.1 for the
d = 0, 1 case reproduces the graph equivariant constant and
linear functions from Maron et al. (2018). Figure 3 depicts
the graphical enumeration of the 2 constant and 15 linear
basis elements.

Computing PH(X) with tensor contractions. A useful
observation for the graph model analysis performed later is
that computing PH(X) is equivalent to a tensor contraction
guided by H . Similarly to einsum, computing PH(X) can
be done iteratively in multiple ways by finding a sequence
of contraction paths for H where we start with each edge
of H endowed with X and our end goal is to have a single
black edge aligned with the red edge. Figure 5 provides an
example of computing a 4th degree polynomial,

PH(X)j1,j2 =

n∑
j3,j4=1

Xj1j4Xj1j3Xj3j2Xj1j2 .

The computation of the polynomial is decomposed to a se-
quence of operations, portrayed in the figure. Each step
is labeled by the tensor contraction operation and the cor-
responding explicit computation. Nodes colored in gray
correspond to contracted nodes whose indices are summed
in the einsum. The output of each contraction step is rep-
resented by a new black edge (labeled as Y,Z and R in our
example).

2.2. Generalizations and discussion

Invariant graph polynomials. This approach also gives a
basis for the invariant polynomials P : Rn2 → R. In this
case, we let H be a directed multigraph without a red edge,
and define PH(X) =

∑
j1,...,jm∈[n]

∏
r,s∈E(H) Xjr,js .

Computing PH then corresponds to contracting H to the
trivial graph (with no nodes or edges). Our equivariant basis
is a generalization of previous work, which used invariant
polynomials analogous to PH or the alternative basis QH

to study properties of graphs (Thiéry, 2000; Lovász, 2012;
Komiske et al., 2018).

Subgraph counting. The previous work on invariant poly-
nomials mentioned above as well as our proof of Theo-
rem 2.1 suggest QH (see equation 7) as another basis of
equivariant graph polynomials. In Appendix G, we show
that when applied to binary input X ∈ {0, 1}n×n, QH
performs subgraph counting; essentially, QH(X)ia,ib is pro-
portional to the number of subgraphs of X isomorphic to
H such that ia is mapped to a and ib is mapped to b. This
QH basis is interpretable, but does not lend itself to efficient
vectorized computation or the tensor contraction perspective
that the PH basis has.

Equivariant polynomials for attributed graphs. Our basis
for equivariant graph polynomials can be extended to cover
the more general case of attributed graphs (i.e., graphs with
Rf features attached to nodes and/or edges), P : Rn2×f →
Rn2

. A similar basis to PH can be used in this case, as
described in Appendix F. Figure 6 visualizes this extension.

1

2

3

PH(X)j2j2 =∑n
j1,j3=1 Xj2j11Xj1j30Xj1j32 =

einsum(21, 13, 13 → 22,X[:, :, 1],X[:, :, 0],X[:, :, 2])j2j2

1

2

3

PH(X)j2j1 =∑n
j3=1 X

2
j2j30Xj2j11 =

einsum(23, 23, 21 → 21,X[:, :, 0],X[:, :, 0],X[:, :, 1])j2j1

Figure 6. Basis elements of equivariant polynomials from
Rn2×3 → Rn2

. The output edge is indicated by a dotted red
edge and the feature dimension is indexed by three colors for index
zero (orange), index one (green), and index two (blue).

3. Expressive Power of Graph Models
In this section we evaluate the expressive power of equivari-
ant graph models from the new, yet natural hierarchy aris-
ing from equivariant graph polynomials. By graph model,
F = {F}, we mean any collection of equivariant functions
F : Rn2 → Rnk

, where k = 1 corresponds to a family
of node-valued functions, F (X) ∈ Rn, and k = 2 to node
and edge-valued functions, F (X) ∈ Rn2

. For expositional
simplicity we focus on graph data X representing simple
graphs, but note that the general graph data case can be
analysed using similar methods. We will use two notions
of polynomial expressiveness: exact and approximate. The
exact case is used for analyzing Prototypical graph models,
whereas the approximate case is used for analyzing practical
graph models.

Definition 3.1. A graph model F is d node/edge polynomial
exact if it can compute all the degree d polynomial basis
elements PH(X) for every simple graph X.
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X

X

X

X

14
Yj1j1 =

∑
j4

Xj1j4

−−−−−−−−−−−−−−−−−−−−−−−−−→
3

1

2

X X

Y

X

23

1

Zj1j2 =
∑
j3

Xj1j3Xj3j2

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
2

1

Z
X

Y

2

1

Rj1j2 = Yj1j1Zj1j2Xj1j2

−−−−−−−−−−−−−−−−−−−−−−−−−→
2

1

R

Figure 5. Computation of PH(X) with a sequence of tensor contractions: The polynomial PH(X) (left-most) is computed when a single
black edge parallel to the red edge is left (right-most); above each arrow is the tensor contraction applied (contracted nodes are in gray).

C1 C2 C3 C4 C1 C2 C3 C4 C5 C6 C7

Figure 7. Prototypical node-based (left) and edge-based (right)
graph models’ contraction banks. Gray nodes indicate nodes that
are contracted. Explicit formula of each element can be found in
Appendix D.

Definition 3.2. A graph model F is d node/edge polyno-
mial expressive if for arbitrary ϵ > 0 and degree d polyno-
mial basis element PH(X) there exists an F ∈ F such that
maxX simple |F (X)− P (X)| < ϵ.

As a primary application of the equivariant graph basis PH ,
we develop tools here for analyzing the polynomial expres-
sive power of graph models F . We define Prototypical
graph models which provide a structure to analyze or im-
prove existing popular GNNs such as MPNN (Gilmer et al.,
2017) and PPGN (Maron et al., 2019).

3.1. Prototypical graph models

We consider graph computation models, FB, that are fi-
nite sequences of tensor contractions taken from a bank of
primitive contractions B.

FB =
{
Ci1Ci2 · · ·Ciℓ |Cij ∈ B

}
, (8)

where the bank B = {C1, . . . , Ck} consists of
multi-graphs Ci = (Vi, Ei, (ai, bi)), each repre-
senting a different primitive tensor contraction.

Figure 8. A bank B
of a model FB that
can compute the ex-
ample in Figure 5.

A model FB can compute
a polynomial PH(X) =
einsum(H,X, . . . ,X) if it can
contract H to the red edge by apply-
ing a finite sequence of contractions
from its bank. If there exists such
a sequence then PH is deemed
computable by FB, otherwise it is
not computable by FB. For example,
the model with the bank presented in Figure 8 can compute
PH in Figure 5; removing any element from this model,
will make PH(X) non-computable. We recap:

Definition 3.3. The polynomial PH is computable by F iff
there exists a sequence of tensor contractions from F that
computes PH(X) = einsum(H,X, . . . ,X).

We henceforth focus on two Prototypical models: the node-
based model Fn and edge-based model Fe. Their respective
contraction banks are depicted in Figure 7, each motivated
by the desire to achieve polynomial exactness (see Defini-
tion 3.1) and contract multi-graphs H where a member of
the bank can always be used to contract nodes with up to N
neighbors. Taking N = 1 results in the node-based bank in
Figure 7 (left), and N = 2 in the edge-based bank in Figure
7 (right). These choices are not unique — other contraction
banks can satisfy these requirements.

Lemma 3.4. Fn (for simple graphs) and Fe (for general
graphs) can always contract a node in H iff its number of
neighbors is at-most 1 and 2, respectively.

A few comments are in order. Node-based contractions
can only add self-edges during the contraction process (i.e.,
new node-valued data) thus requiring only O(n) additional
memory to perform computation. Further note that since
we assume simple graph data, H is also a simple graph,
and no directed edges (i.e., non-symmetric intermediate
tensors) are created during contraction. Contraction banks
with undirected graphs suffice in this setting. We later show
that the node-based model acts analogously to message-
passing. The edge-based model targets exactness over both
node and edge valued polynomial. It generates new edges
that can be directed even if X is simple, and thus includes
directed contractions in its bank. The edge-based model
will later be connected to the graph models PPGN (Maron
et al., 2019) and Ring-GNN (Chen et al., 2019b). We later
show that the node-based model is 1-WL expressive and the
edge-based model is 3-WL expressive.

Deciding computability of PH(X) with FB. A key com-
ponent in analyzing the expressive power of a Prototypical
model is determining which polynomials PH(X) can be
computed with F , given H and X encoding simple graph
data. A naive algorithm traversing all possible enumerations
of nodes in H and their contractions would lead to a com-
binatorial explosion that is too costly — especially since
this procedure needs to be repeated for a large number of
polynomials. Here, we show that at least for contraction
banks Fn and Fe, Algorithm 1 is a linear time (in |V |, |E|),
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Algorithm 1 Decide if PH is computable by Fn or Fe.
Input: contraction bank F ∈ {Fn,Fe}, multi-graph H
set d = 1 for F = Fn, or d = 2 for F = Fe.
set doneContracting = false
while not doneContracting do

if exists a node in V \ {a, b} with ≤ d neighbors then
contract the node using F

else
doneContracting = true

end if
end while
if V \ {a, b} is empty then

return computable
else

return non-computable
end if

greedy algorithm for deciding computability of a given poly-
nomial. Algorithm 1 finds a sequence of contractions using
the greedy step until no more nodes are left to contract.
That is, it terminates when all nodes, aside from a, b, have
more than 1 or 2 neighbors for Fn or Fe, respectively. If
it terminates with just {a, b} as vertices it deems PH com-
putable and otherwise it deems PH non-computable. To
show correctness of this algorithm we prove:

Theorem 3.5. Let H be some multi-graph and FB ∈
{Fn,Fe}. Further, let H ′ be the multi-graph resulting after
contracting a single node in H using one or more opera-
tions from B to H . Then, H is FB-computable iff H ′ is
FB-computable.

To verify the correctness of this procedure, note that the
algorithm has to terminate after at most |V |− | {a, b} | node
contractions. Now consider two cases: if the algorithm
terminates successfully, it must have found a sequence of
tensor contractions to compute PH(X). If it terminates
unsuccessfully, the theorem implies its last network H ′ is
computable iff the input network H is computable. Now
since there is no further node contraction possible to do in
H ′ using operations from B it is not computable by defini-
tion, making H not computable.

Figure 9. The smallest
non-computable H
for: Fn (left: node-
valued), and Fe (middle:
node-valued; right:
edge-valued).

Polynomial exactness. To
compute the d polynomial ex-
actness (see Definition 3.1) for
the node-based and edge-based
Prototypical graph models we
enumerate all non-isomorphic
simple graphs H with up to
d edges and one red edge
and run Algorithm 1 on each
H . This reveals that the node-
based model Fn is 2-node-polynomial-exact, while the

edge-based model Fe is 5-node-polynomial-exact and 4-
edge-polynomial-exact. See Figure 9 for the lowest degree
polynomials, represented by H with the smallest number of
edges, that are non-computable for Fn and Fe.

k-WL expressive power. For simple graphs, there is a
natural connection between our Prototypical graph models
and the k-WL graph isomorphism tests. This stems from
a result of Dvořák (2010); Dell et al. (2018), which states
that two graphs X(1) and X(2) are k-FWL equivalent if and
only if hom(H,X(1)) = hom(H,X(2)) for all H of tree-
width at most k. Recall that hom(H,X) is the number of
homomorphisms from H to X (where H has no red edges),
which we show is equivalent to the output of PH(X) for the
invariant polynomial PH in Appendix G. By showing that
the Prototypical node-based graph model can contract any
H of tree-width 1 (and no others), and that the Prototypical
edge-based graph model can contract any H of tree-width
at most 2 (and no others), we thus have the following result.
Proposition 3.6. The Prototypical node-based model can
distinguish a pair of simple graphs if and only if 1-WL can.
The Prototypical edge-based model can distinguish a pair
of simple graphs if and only if 3-WL / 2-FWL can.

This proposition indicates that Fn and Fe can contract an
invariant polynomial, represented by a graph H , if and only
if the tree-width of H is 1 and 2, respectively. Therefore
computability of invariant PH can be decided by checking
the tree width of H . We leave generalizing this approach to
equivariant PH to future work.

3.2. GNNs and their expressive power

In this section we turn our attention to commonly used
graph neural networks (GNNs), and provide lower bounds
on their polynomial expressive power as in Definition 3.2.
The Message Passing Neural Network (MPNN) we consider
consists of layers of the form

Y(k+1) = m
[
XY(k),11TY(k),Y(k)

]
, (9)

where the intermediate tensor variables are Y ∈ Rn×d,
1 ∈ Rn is the vector of all ones, Y(0) = 1, brackets indicate
concatenation in the feature dimension, and m means a mul-
tilayer perceptron (MLP) applied to the feature dimension.

As an application of the Prototypical edge-based model,
we propose and implement a new model architecture
(PPGN++) that is at least as expressive as the full versions of
PPGN/Ring-GNN (Maron et al., 2019; Chen et al., 2019b)
(which incorporate all 15 linear basis elements), but is more
efficient — PPGN++ uses a smaller number of “primitive”
operations than the full PPGN/Ring-GNN, and does not
need parameters for each linear basis element:

Z(k+1) = m̄3

[
m̄1

[
Z(k),Z(k)T

]
⊛ m̄2(Z

(k)),Z(k)
]
, (10)
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where Z ∈ Rn2×d are intermediate tensor variables, Z(0) =
X, ⊛ performs matrix multiplication of matching features,
and m̄i, for i ∈ [3], is a pair of MLPs: one applied to all
diagonal and off-diagonal features of Z separately.

We lower bound the polynomial expressiveness of MPNN
and PPGN++ in the next theorem:

Theorem 3.7. PPGN++ is at-least 4 edge polynomial ex-
pressive and 5 node polynomial expressive. MPNN is at-
least 2 node polynomial expressive.

Proof idea. We prove the theorem in two steps. First, show-
ing that an MPNN or PPGN++ layer can approximate any
primitive contraction C ∈ B from the bank of the Prototypi-
cal node based Fn or edge based Fe models, respectively.
Second, we use a lemma from Lim et al. (2022) stating that
layer-wise universality leads to overall universality. The
complete proof is in Appendix D.

Comparison of PPGN++ and PPGN. Proposition 3.6
and the proof of Theorem 3.7 indicate that PPGN++ is
3-WL/2-FWL expressive for simple graphs, similarly to
PPGN (Maron et al., 2019). However, the following propo-
sition shows that there is a significant expressiveness gap
between PPGN and PPGN++ in approximating equivariant
polynomials.

Proposition 3.8. PPGN is at most 0 edge polynomial ex-
pressive.

Proof idea. We claim that PPGN is at most 0 edge polyno-
mial expressive by proving that there exist a linear polyno-
mial (the transpose operator) that cannot be approximated
by PPGN. The proof shows that for an input tensor of the
form

Z =

[
a a
b b

]
, a, b ∈ R,

a PPGN model cannot approximate the transpose operator
PH(Z) = ZT since it preserves the row structure. The
complete proof is in Appendix E.

3.3. Increasing the expressive power of GNNs

Theorem 3.7 proves a lower bound on the polynomial ex-
pressiveness of two popular GNN models — a natural ques-
tion is how to increase the expressiveness beyond the lower
bound. Polynomial expressiveness provides a simple path
forward to add network operations or input features that
complement these architectures with polynomials that are
otherwise uncomputable. In our study, we add input features
to enhance expressiveness.

Suppose we have a d′ polynomial expressive GNN model
(with a corresponding d′ exact Prototypical graph model
FB) that we want to extend it to be d > d′ polynomial ex-
pressive. For every ℓ ∈ N, d′ + 1 ≤ ℓ ≤ d, we can compute
all FB non-computable ℓ-degree basis elements of PH using

Algorithm 1, considering all non-isomorphic, simple and
connected H . Indeed any H with two disconnected compo-
nents corresponds to a multiplication of two lower degree
polynomials approximable by the GNN itself (or using lower
degree polynomial features). Any non-computable polyno-
mials discovered in this process are added as node/edge
input features to the architecture, effectively increasing the
polynomial expressiveness of the model to d.

Table 1. Numbers of non-computable polynomials (left) out of all
relevant polynomials (right) for the Prototypical models.

d = 3 d = 4 d = 5 d = 6 d = 7
Fn 2/8 6/18 23/49 85/144 308/446
Fe 0/18 0/53 1/174 11/604 72/2193

In Table 1 we list, for each Prototypical model and degree d,
the number of polynomials that are found non-computable
by the Prototypical models (left), out of the total number of
relevant polynomials PH (right). For the node based model
we count only node-valued polynomials, while for the edge
based model we count both node and edge-valued polynomi-
als. Note that the number of non-computable polynomials
is substantially smaller than the total number, especially
in Fe. Since polynomials are calculated at the data pre-
processing step, there is an upfront computational cost for
this procedure that must be accounted for. Finding the op-
timal contraction path that minimizes runtime complexity
for a general matrix polynomial is an NP-hard problem
(Biamonte et al., 2015) with a naive upper bound in run-
time complexity of O(nd). An empirical evaluation of the
preprocessing time is in Appendix A; in our experiments,
preprocessing time is small compared to training time.

4. Related Work
Relation to Homomorphisms and Subgraph Counts. Past
work has studied invariant polynomials on graphs (Thiéry,
2000; Lovász, 2012; Komiske et al., 2018). Viewed as
functions on binary inputs, the basis consists of functions
that count homomorphisms or injective homomorphisms of
H into an input graph X. Homomorphisms are related to the
PH basis, and injective homomorphisms are related to QH
(see Appendix G). Also, equivariant homomorphism counts
that relate to our PH or QH has been studied (Mančinska
& Roberson, 2020; Grohe et al., 2021; Maehara & NT,
2019; Bouritsas et al., 2022; Barceló et al., 2021; Welke
et al., 2022). However, these works do not exhibit a basis
of equivariant polynomials. Also, our tensor contraction
interpretation and analysis does not appear in past work.

Expressivity Measures for Graph Models. The k-WL
hierarchy has been widely used for studying graph machine
learning (Morris et al., 2021), starting with the works of Mor-
ris et al. (2019b) and Xu et al. (2019), which show an equiv-
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alence between message passing neural networks and 1-WL.
Tensor methods resembling k-WL such as k-IGN (Maron
et al., 2018) and PPGN-like methods (Maron et al., 2019;
Azizian & Lelarge, 2021) achieve k-WL power (Azizian &
Lelarge, 2021; Geerts & Reutter, 2022), but scale in mem-
ory as nk or nk−1 for n-node graphs. Morris et al. (2019a;
2022) define new k-WL variants with locality and sparsity
biases, which gives a finer hierarchy and offers a trade-off
between efficiency and expressiveness.

Various works measure the expressivity of graph neural net-
works by the types of subgraphs that they can count (Chen
et al., 2020; Tahmasebi et al., 2020; Arvind et al., 2020). On
simple graphs, subgraph counting of H is equivalent to eval-
uating an invariant polynomial QH . Additional works have
studied the ability of graph models to compute numerous
other graph properties. For instance, graph machine learning
models have been studied in the context of approximating
combinatorial algorithms (Sato et al., 2019), solving bicon-
nectivity problems (Zhang et al., 2023), computing spectral
invariants (Lim et al., 2022), distinguishing rooted graphs
at the node level (Chen et al., 2021), and computing various
other graph properties (Garg et al., 2020). As opposed to our
framework, these expressivity measures generally do not
induce a hierarchy of increasing expressivity, and they often
do not directly suggest improvements for graph models

A matrix query language (MATLANG) (Brijder et al.,
2019; Geerts, 2021) and a more general tensor language
(TL) (Geerts & Reutter, 2022) have been used to study ex-
pressive power of GNNs (Balcilar et al., 2021; Geerts &
Reutter, 2022). These languages define operations and ways
to compose them for processing graphs in a permutation
equivariant or invariant way. Our edge-based Prototypical
model result gives a new perspective on a result of Geerts
(2021), which shows that MATLANG can distinguish any
two graphs that 2-FWL / 3-WL can. Indeed, our edge-based
graph model includes the five linear algebra operations that
form the 3-WL expressive MATLANG. While the opera-
tions of MATLANG were included in a somewhat ad-hoc
manner (“motivated by operations supported in linear al-
gebra package” (Geerts, 2021)), our framework shows that
these are the at-most quadratic equivariant polynomials that
are required to contract all tree-width 2 graphs.

Other Expressive GNNs. Various approaches have been
used to develop expressive graph neural networks. One
approach adds node or edge features, oftentimes positional
or structural encodings, to base graph models (Sato et al.,
2021; Abboud et al., 2021; Bouritsas et al., 2022; Lim et al.,
2022; Zhang et al., 2023; Li et al., 2020; Loukas, 2020).
Subgraph GNNs treat an input graph as a collection of
subgraphs (Bevilacqua et al., 2022; Frasca et al., 2022; Qian
et al., 2022; Cotta et al., 2021; Zhao et al., 2021; You et al.,
2021; Zhang & Li, 2021). Some models utilize modified

message passing and higher-order convolutions (Bodnar
et al., 2021a;b; Thiede et al., 2021; de Haan et al., 2020).
One can also take a base model and perform group averaging
or frame averaging to make it have the desired equivariances
while preserving expressive power (Murphy et al., 2019;
Puny et al., 2022).

5. Experiments
In this section we demonstrate the impact of increasing
the polynomial expressive power of GNNs. We test two
families of models. PPGN++ (d) uses the architecture
in equation 10, derived using our edge based Prototypi-
cal model, and achieves d polynomial expressive power
by pre-computing polynomial features found in Subsection
3.3; missing (d) notation means using just PPGN++ with-
out pre-computed features. GatedGCN (d) uses the base
MPNN architecture of (Bresson & Laurent, 2017) with the
d-expressive polynomials pre-computed. We experiment
with 4 datasets: a graph isomorphism dataset SR (Bod-
nar et al., 2021b), which measures the ability of GNNs to
distinguish strongly regular graphs; and 3 real-world molec-
ular property prediction datasets including ZINC, ZINC-full
(Dwivedi et al., 2020) and Alchemy (Chen et al., 2019a).

5.1. Graph Isomorphism Expressiveness

Distinguishing non-isomorphic graphs from families of
strongly regular graphs is a challenging task (Bodnar et al.,
2021a;b). The SR dataset (Bouritsas et al., 2022) is com-
posed of 9 strongly regular families. This dataset is chal-
lenging since any pair of graphs in the SR dataset cannot be
distinguished by the 3-WL algorithm. This experiment is
done without any training (same procedure as in (Bodnar
et al., 2021b)) and the evaluation is done by randomly ini-
tialized models. For every family in the dataset, we iterate
over all pairs of graphs and report the fraction that the model
determines are isomorphic. Two graphs are considered iso-
morphic if the L2 distance between their embeddings is
smaller than a certain threshold (ϵ = 0.01). This procedure
was repeated for 5 different random seeds and the averaged
fraction rate was reported in Figure 10. This figure por-
trays the expressiveness boost gained by using high degree
polynomial features. While the base models, GatedGCN
and PPGN (and PPGN++), cannot distinguish any pair of
graphs (as theoretically expected), adding higher degree
polynomial features significantly improves the ability of the
model to distinguish non-isomorphic graphs in this dataset.
Optimal results of 0% failure rate are obtained for PPGN++
(d) with d ≥ 6 (i.e., adding at-least degree 6 polynomial
features). For the GatedGCN model, although we do not
reach the 0% failure rate, adding the right polynomial fea-
tures makes GatedGCN outperform 3-WL based models in
distinguishing non-isomorphic graphs in this dataset.
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Table 2. Results on Alchemy (Chen et al., 2019a) and ZINC-full
(Dwivedi et al., 2020) datasets. Lower is better, best models are
marked in bold.

Model ZINC-Full Alchemy
Test MAE Test MAE

GIN (Xu et al., 2019) .088± .002 .180± .006
δ-2-GNN (Morris et al., 2019a) .042± .003 .118± .001
SpeqNet (Morris et al., 2022) - .115± .001
PF-GNN (Dupty et al., 2022) - .111± .010
HIMP (Fey et al., 2020) .036± .002 -
SignNet (Lim et al., 2022) .024± .003 .113± .002
CIN (Bodnar et al., 2021a) .022± .002 -
PPGN (Maron et al., 2019) .022± .003 .113± .001
PPGN++ .022± .001 .111± .002
PPGN++ (5) .020± .001 .110± .001
PPGN++ (6) .020± .001 .109± .001
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Figure 10. Failure rate (log scale) for distinguishing SR graphs,
the lower the better.

5.2. Real-World Datasets

The efficacy of increasing polynomial expressive power on
real-world data (molecular graphs datasets) was evaluated
on 3 graph regression tasks: ZINC, ZINC-full and Alchemy.
Training. We followed the training protocol mentioned
in (Dwivedi et al., 2020) for ZINC and ZINC-full and the
protocol from (Lim et al., 2022) for Alchemy. All of our
trained models obey a 500K parameter budget. Further de-
tails regarding the training procedure and model parameters
can be found in Appendix A.
Baselines. The baseline results for the ZINC 12K exper-
iment were obtained from (Zhao et al., 2022), except for
PPGN and GatedGCN, which we calculated. For ZINC-full
and Alchemy we used the results from (Lim et al., 2022).
Results. The mean absolute error (MAE) over the test set
is reported in Table 3 for ZINC 12K and Table 2 for ZINC-
full and alchemy. In both tables, PPGN++ (6) achieves
SOTA results across all 3 datasets. In addition, for both test
model families there is a clear correlation between higher
d (polynomial expressiveness) and test error. Furthermore,
PPGN++ (5) and PPGN++ (6), which produce the top re-
sults in all 3 experiments, are the only 2 models (including

all baselines) which are provably strictly more powerful
than 3-WL. Our results add evidence to the guiding hy-
pothesis that increases in expressivity facilitate improved
downstream performance.

Table 3. Results on ZINC 12K (Dwivedi et al., 2020) dataset.
Lower is better, best model is marked in bold.

Model Test MAE
GCN (Kipf & Welling, 2016) .321± .009
GIN (Xu et al., 2019) .163± .003
PNA (Corso et al., 2020) .140± .006
GSN (Bouritsas et al., 2022) .115± .012
PF-GNN (Dupty et al., 2022) .122± .010
GIN-AK (Zhao et al., 2021) .080± .001
CIN (Bodnar et al., 2021a) .079± .006
SetGNN (Zhao et al., 2022) .075± .003
GatedGCN (Bresson & Laurent, 2017) .265± .015
GatedGCN (4) .150± .005
GatedGCN (5) .138± .003
GatedGCN (6) .106± .003
PPGN (Maron et al., 2019) .079± .005
PPGN++ .076± .003
PPGN++ (5) .072± .005
PPGN++ (6) .071± .001

6. Conclusions
We propose a novel framework for evaluating the expressive
power of GNNs by evaluating their ability to approximate
equivariant graph polynomials. Our first step was introduc-
ing a basis for those polynomials of any degree. We then
utilized Prototypical graph models to determine the com-
putability of these polynomials with practical GNNs. This
led to a method for increasing the expressivity of GNNs
through the use of precomputed polynomial features, result-
ing in a significant improvement in empirical performance.

Future research could focus on several promising directions.
One direction can reduce the number of features passed
into GNNs by working with a generating set of polynomials
rather than the complete basis. Additionally, incorporating
features on nodes and edges, as outlined in Section 2.2 and
Appendix F, could further improve performance. Another
exciting avenue for exploration can incorporate otherwise
uncomputable polynomials as computational primitives into
GNN layers, rather than as features, to increase expressive-
ness. Finally, it would be beneficial to study Prototypical
graph models to identify families with optimal properties
related to expressiveness, memory/computation complexity,
and the size of the contraction bank.
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A. Implementation Details
A.1. Datasets

SR. The SR dataset (Bouritsas et al., 2022) is composed of 9 families of Strongly Regular graphs. Each family has a
4 dimensional representation: n the number of nodes in the graph, d the degree of each node, λ the number of mutual
neighbors of adjacent nodes and µ the number of mutual neighbors of non-adjacent nodes. Table 4 shows the size of each
Strongly Regular family from the dataset.

Table 4. Sizes of Strongly Regular Families (Bouritsas et al., 2022)

Familty (16,6,2,2) (25,12,5,6) (26,10,3,4) (28,12,6,4) (29,14,6,7) (35,16,6,8) (35,18,9,9) (36,14,4,6) (40,12,2,4)
Number of Graphs 2 15 10 4 41 3854 227 180 28

ZINC. The ZINC dataset is a molecular graph dataset composed of ∼ 250K molecules. The regression criterion is a
molecular property known as the constrained solubility. Each molecule has both node features and edge features. Node
features represent the type of heavy atoms (4 types) and edge features the type of bonds between them (28). The average
number of nodes in a graph is 23.15 and the number of edges is 49.8. There are two versions of the dataset used for learning:
ZINC 12K which has train/val/test split of 10000/1000/1000 and ZINC-full with a 2200011/24445/5000 split. Both data
splits can be obtained from (Fey & Lenssen, 2019)

Alchemy. Alchemy is also a molecular graph dataset composoed of 12000 graphs (10000/1000/1000 split taken from
(Lim et al., 2022)). The average number of nodes is 10.1 and the number of edges is 20.9. The Regression target in this
dataset is a 12-dimensional vector composed of a collection molecular properties : dipole moment, polarizability, HOMO,
LUMO, gap, R2, zero point energy, internal energy, internal energy at 298.15K, enthalpy at 298.15K , free energy at
298.15K and heat capacity at 298.15K. Each graph has node features (6-dimensional atom type indicator) and edge features
(4-dimensional bond type indicator).

A.2. Training Protocol

ZINC. For the ZINC and ZINC-full experiments we followed the training protocol from (Dwivedi et al., 2020). The
protocol includes parameter budget (500K), predefined 4 random seeds and a learning rate decay scheme that reduces
the rate based on the validation error (factor 0.5 and patience factor of 10 epochs). Initial learning rate was set to 0.002
and training stopped when reached 10−5. Batch size was set to 128. Test error at last epoch was reported. When using
polynomial features, we removed the polynomials that had no response over the dataset. Namely, let f : Rn2 → Rn2

be
an equivariant polynomial and X = {X} be a graph dataset. f does not have a response over X if ∀X ∈ X , f(X) = 0.
Similarly to (Barceló et al., 2021) we normalized the additional features to have a unit norm. For PPGN++ we used 1/1 of
the edge based 5-degree polynomials and 8/11 of the 6-degree polynomials. For GatedGCN we used 2/2 of the node based
3-degree polynomials, 6/6 of the 4-degree polynomials, 23/23 of the 5-degree polynomials and 83/85 of the 6-degree
polynomials. models were trained using the LAMB optimizer (You et al., 2019) on a single Nvidia V-100 GPU. The models
were trained using the PyTorch framework (Paszke et al., 2019).

Alchemy. We followed the training protocol from (Lim et al., 2022). The protocol includes averaging results on 5 random
seeds and learning rate decay scheme that reduces the rate based on the validation error (factor 0.5 and patience factor of 20
epochs). Initial learning rate was set to 10−3 and training stopped when reached 10−5. Batch size was set to 128. Test error
at last epoch was reported. When using polynomial features, we removed the polynomials that had no response over the
dataset and normalized them in the same way as in the ZINC experiment. For PPGN++ we used 1/1 of the edge based
5-degree polynomials and 8/11 of the 6-degree polynomials. models were trained using the LAMB optimizer (You et al.,
2019) on a single Nvidia V-100 GPU. The models were trained using the PyTorch framework (Paszke et al., 2019).

A.3. Architectures

GatedGCN. We used the model as it defined in (Bresson & Laurent, 2017) and implemented in (Lim et al., 2022). For the
ZINC 12K experiment we to used a 16-layer model (same baseline as used in (Lim et al., 2022)) with feature dimension of
size 77 for the baseline model and 75 for the models with polynomial features. For the SR dataset we used a 4-layer network
with hidden dimension size of 150. The polynomial features were added to the initial input node features via concatenation.
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PPGN++. The PPGN++ architecture is based on the PPGN architecture (Maron et al., 2019). The original PPGN layer is
defined by the following equation:

Z(k+1) = m3

[
m1(Z

(k))⊛ m2(Z
(k)),Z(k)

]
For Z ∈ Rn2×d. While this layer definition cannot approximate all C ∈ B from Fe, it is possible to naively incorporate
all the linear and constant basis (Maron et al., 2018) to obtain full approximation power. As mentioned in Section 3.2 we
suggest to add this expressiveness to the layer in a more compact manner:

Z(k+1) = m̄3

[
m̄1

[
Z(k),Z(k)T

]
⊛ m̄2(Z

(k)),Z(k)
]

where
m̄i =

(
m̄diag
i , m̄off-diag

i

)
,

defines a separate MLP for diagonal elements and off-diagonal elements. In practice, we implement this separation by
adding an identity matrix as additional feature before applying an MLP on the tensor’s features.

For the ZINC 12K experiment we used a 8-layer network with hidden dimension size of 95. For ZINC-full and Alchemy we
used a 6-layer network with hidden dimension size of 110. We ran parameter search over the number of layers L ∈ {4, 6, 8}
and hidden dimension size h ∈ {95, 110, 130} while maintaining the 500K parameter budget. For the SR experiment we
used a 4-layer network with hidden dimension of size 75. The polynomial features were added to the initial input features
via concatenation.

A.4. Timing

Table 5 shows a runtime comparison between the preprocessing require to compute polynomial features and training a
PPGN++ (6) model on the ZINC 12K dataset. The time it takes to compute polynomials of degree 7 is non-negligible and
most likely that for higher degrees (or in cases of larger graphs) the runtime will be longer and intractable from some degree.
However, for SOTA results which we report in Section 5 we only use up to 6 degree polynomial features and the added time
used for computing those features is equivalent to only 3 training epochs. Moreover, comparing the running time of other
methods puts in perspective the computational time required for computing polynomial features. SetGNN (Zhao et al., 2022)
reports that the epoch running of their best ZINC model (0.075 compared to 0.071 of PPGN++ (6)) is around 25 seconds. In
addition GraphGPS (Rampášek et al., 2023), a state of the art Graph Transformer (test error of 0.07 on the ZINC dataset),
takes ∼ 11.7 hours to train.

Table 5. Runtime comparison on ZINC 12K: preprocessing vs. training.

Time (Seconds)
finding all Fe non-computable polynomials up to degree 7. 5
compute all 5 degree polynomial features for the entire ZINC 12K dataset. 10
compute all 6 degree polynomial features for the entire ZINC 12K dataset. 23
compute all 7 degree polynomial features for the entire ZINC 12K dataset. 310
Average runtime of training PPGN++ (6) on ZINC 12K 4110 (15.5 per epoch)

B. Proof of Theorem 2.1.
General definitions and setup. We denote an input graph data points represented by X ∈ Rn2

. We denote by the vector
space of all polynomials P : Rn2 → Rn2

by P = Rn2 ⊗ R[X], where ⊗ is the tensor product and R[X] denotes the module
of polynomials with indeterminate X11, . . . ,Xnn. The space of polynomials P is spanned by the monomial basis

M(X) = δa,b ⊗
n∏

r,s=1

XAr,s
r,s (11)

where A ∈ Nn2

0 , N0 = {0, 1, . . .}, and δa,b ∈ Rn2

is a matrix satisfying

δa,bi,j =

{
1 if a = i,b=j
0 o/w
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That is δa,b, a, b ∈ [n] is a basis for Rn2

.

The degree of a polynomial is the maximal degree of its monomials defined by

degM(X) =
n∑

r,s=1

Ar,s (12)

We denote by Pd the space of all polynomials of degree at most d.

Enumerating monomials with multi-graphs H . Next, we define H = (V,E, (a, b)) to be a multi-graph with node set
V = [n], and edge multiset defined by the matrix A, that is (r, s) appears k ∈ N0 times in E iff Ar,s = k. Lastly (a, b) is
the red edge. We can therefore identify monomials with multi-graphs H , i.e.,

MH =M, (13)

where M is defined in equation 11.

Action of permutations Sn on polynomials. We consider the group of permutations Sn that consists of bijections
g : [n] → [n]. The action of Sn on a matrix X is defined in the standard way in equation 2, i.e.,

(g · X)i,j = Xg−1(i),g−1(j) (14)

where the inverse is used to make this a left action. We define PSn to be the space of permutation equivariant polynomials,
namely P ∈ P that satisfy

g · P (X) = P (g · X)

for all g ∈ Sn and X ∈ Rn2

. A standard method of projecting a polynomial in P onto the equivariant polynomials PSn is
via the symmetrization (Reynolds) operators:

P̄ (X) =
∑
g∈Sn

g · P (g−1 · X) (15)

Let us verify that indeed P̄ ∈ PSn :

P̄ (h · X) =
∑
g∈Sn

g · P (g−1 · (h · X))

=
∑
g∈Sn

g · P ((h−1g)−1 · X)

=
∑
g∈Sn

hg · P (g−1 · X)

= h · P̄ (X)
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Symmetrization of monomials. The key part of the proof is computing the symmetrization of the monomial basis MH

via the symmetrization operator:

QH(X)i,j =
∑
g∈Sn

[
g ·MH(g−1 · X)

]
i,j

=
∑
g∈Sn

[
MH(g−1 · X)

]
g−1(i),g−1(j)

=
∑
g∈Sn

[
δa,b ⊗

n∏
r,s=1

(g−1 · X)Ar,s
r,s

]
g−1(i),g−1(j)

=
∑
g∈Sn

[
δa,b ⊗

n∏
r,s=1

X
Ar,s

g(r),g(s)

]
g−1(i),g−1(j)

=
∑
g∈Sn

[
δa,b ⊗

n∏
r,s=1

X
Ag−1(r),g−1(s)
r,s

]
g−1(i),g−1(j)

=
∑
g∈Sn

δa,bg−1(i),g−1(j)

n∏
r,s=1

X
Ag−1(r),g−1(s)
r,s

=
∑
g∈Sn

δ
g(a),g(b)
i,j

n∏
r,s=1

X
Ag−1(r),g−1(s)
r,s

where in the second and fourth equality we used the action definition (equation 23), in the fifth equality we re-enumerated
(r, s) ∈ [n]× [n] with (r′, s′) = (g(r), g(s)), and the last equality uses the fact that a = g−1(i) and b = g−1(j) iff g(a) = i
and g(b) = j.

Now let us define the action of Sn on the multi-graph H , also in a natural manner: g ·H is the multi-graph that results from
relabeling each node i ∈ [n] in H as g(i) ∈ [n]. The multi-graph g ·H is isomorphic to H and (r, s) ∈ E with multiplicity
ℓ iff (g(r), g(s)) ∈ g · E with multiplicity ℓ. If we let A be the adjacency matrix of H then g · A (defined via equation 23)
is the adjacency of g ·H , i.e., (g · A)i,j = Ag−1(i),g−1(j). Furthermore, the red edge in g ·H is (g(a), g(b)). With these
definitions, the above equation takes the form

QH(X) =
∑
g∈Sn

Mg·H(X) (16)

Equation 16 is the key to the proof. It shows thatQH is a sum over all monomials corresponding to the orbit ofH under node
relabeling g, therefore, any two isomorphic multi-graphs H ∼= H ′ would correspond to the same equivariant polynomials
QH = QH′ . Differently put, in contrast to MH that are enumerated by labeled multi-graphs H , QH are enumerated by
non-isomorphic multi-graphs H . Note that if H has isolated nodes (i.e., not touching any edge), these can be discarded
without changing QH , so for degree d polynomials we really just need to consider graphs with d edges and a single red edge
with no isolated nodes, so the maximal number of nodes is at most min {2d+ 2, n}.

We next show that {QH}, corresponding to all non-isomorphic H with up to d edges, is a basis for Pd. First, we
claim it spans Pd. Indeed, since every polynomial P ∈ Pd can be written as a linear combination of monomials MH ,
P =

∑
k ckMHk

(X). Now,

P (X) = P̄ (X) =
∑
k

ckM̄Hk
(X) =

∑
k

ckQHk
(X)

where in the first equality we used the fact that the symmetrization operator fixes P , i.e., P̄ = P , and in the second equality
the fact that the symmetrization operator is linear. Next, we claim that {QH} for non-isomorphic H is an independent set.
This is true since each QH is a sum over the orbit of H , {g ·H|g ∈ Sn}, and the orbits are disjoint sets. Therefore, since
the set of all monomials, MH , is independent, also {QH} is independent.
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Formula for QH . We found that QH is a basis for the equivariant graph polynomials Pd. Let us write down an explicit
formula for it next. The (ia, ib) entry of QH(X) takes the form

QH(X)ia,ib =
∑
g∈Sn

δ
g(a),g(b)
ia,ib

n∏
r,s=1

X
Ar,s

g(r)g(s)

=
∑
g∈Sn

δ
g(a),g(b)
ia,ib

∏
(r,s)∈E

Xg(r)g(s)

=
∑

j1 ̸=···≠jm∈[n]
ja=ia,jb=ib

∏
(r,s)∈E

Xjr,js (17)

where in the third equality we denote j1 = g(1), j2 = g(2), . . . , jm = g(m), and j1 ̸= · · · ̸= jm ∈ [n] stands for all
assignments of different indices j1, . . . , jm ∈ [n].

Note that QH is proved a basis but is still different from PH in equation 4 in that it does not sum over repeated indices. The
fact that allowing repeated indices is still a basis is proved next. This seemingly small change of basis is crucial for our
tensor network connection and analysis in the paper.

PH is a basis. We now prove that PH defined in equation 4 is a basis. For convenience we repeat it below:

PH(X)ia,ib =
∑

j1,...,jm∈[n]
ja=ia,jb=ia

∏
(r,s)∈E

Xjr,js (18)

Denote by Hm the set of all multigraphs H = (V,E, (a, b)) with |V | ≤ m. Since the cardinality of {PH}H∈Hm
is at most

that of {QH}H∈Hm
it is enough to show that {PH}H∈Hm

spans the same space as {QH}H∈Hm
.

The proof follows an induction on m. For the base m = 1 consider all multigraphs H = (V,E, (a, a)), where V = {a}. In
this case both equation 17 and equation 18 have vacant sums and

PH(X)ia,ia =
∏

(r,s)∈E

Xir,is = QH(X)ia,ia ,

where for all (r, s) ∈ E we have r, s ∈ {a}.

Now, for m ≥ 2, assume

span {PH}H∈Hm−1
= span {QH}H∈Hm−1

and consider an arbitrary H ∈ Hm \ Hm−1.

If m = 2, and a ̸= b, then H = (V,E, (a, b)), and V = {a, b}. In this case again both equation 17 and equation 18 have
vacant sums and

PH(X)ia,ib =
∏

(r,s)∈E

Xir,is = QH(X)ia,ib ,

where for all (r, s) ∈ E we have r, s ∈ {a, b}.

In all other cases, consider the space of tuples [n]m = {(j1, . . . , jm)|ji ∈ [n], i ∈ [m]}, and the action of Sn on this
collection via g · (j1, . . . , jm) = (g(j1), . . . , g(jm)). The orbits, denoted o1, . . . , oB correspond to equality patterns of
indices, and B = Bell(m), the Bell number of m. By convention we define o1 to be the orbit

o1 = [(1, 2, . . . ,m)]

where we use the orbit notation [(j1, . . . , jm)] = {(g(j1), . . . , g(jm))|g ∈ Sn}. Now, we decompose the index set
{(j1, . . . , jm) ∈ [n]m|ja = ia, jb = ib} to disjoint index sets by intersecting it with oℓ, ℓ ∈ [B]. Note that some of these
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index sets may be empty; we let cℓ = 1 in case this index set is not empty, and cℓ = 0 otherwise.

PH(X)ia,ib =

B∑
ℓ=1

∑
(j1,...,jm)∈[n]m∩oℓ

ja=ia,jb=ib

∏
(r,s)∈E

Xjr,js

=
∑

j1 ̸=...̸=jm
ja=ia,jb=ib

∏
(r,s)∈E

Xjr,js +
B∑
ℓ=2

∑
(j1,...,jm)∈[n]m∩oℓ

ja=ia,jb=ib

∏
(r,s)∈E

Xjr,js

= QH(X)ia,ib +
B∑
ℓ=2

∑
(j1,...,jm)∈[n]m∩oℓ

ja=ia,jb=ib

∏
(r,s)∈E

Xjr,js

For ℓ ≥ 2 consider the polynomial ∑
(j1,...,jm)∈[n]m∩oℓ

ja=ia,jb=ib

∏
(r,s)∈E

Xjr,js

In case cℓ = 1, this polynomial corresponds to QHℓ
(X)ia,ib , where we denote by Hℓ = (Vℓ, Eℓ, (a, b)) the multigraph that

results from unifying nodes in H that correspond to equal indices in oℓ. We therefore have

PH(X)ia,ib = QH(X)ia,ib +
B∑
ℓ=2

cℓQHℓ
(X)ia,ib

Since for all ℓ ≥ 2 there is at-least one pair of equal indices in ok, |Vℓ| ≤ m − 1. We can therefore use the induction
assumption and express these polynomials using polynomials in {PH}H∈Hm−1

. This shows that QH can be spanned by
{PH}H∈Hm

. Since H ∈ Hm \ Hm−1 was arbitrary this shows that all QH ∈ Hm \ Hm−1 can be spanned by elements in
{PH}H∈Hm

. Now using the induction assumption again and the fact that Hm−1 ⊂ Hm we get that

span {Qh}H∈Hm
⊂ span {Ph}H∈Hm

as required.

C. Proof of Theorem 3.5
Theorem 3.5. Let H be some multi-graph and FB ∈ {Fn,Fe}. Further, let H ′ be the multi-graph resulting after contracting
a single node in H using one or more operations from B to H . Then, H is F-computable iff H ′ is F-computable.

Proof. We will use Lemma 3.4 and two auxiliary lemmas:

Lemma C.1. All the tensor contractions used in Fn and Fe only affect the 1-ring neighborhood of the contracted node.

Lemma C.2. Assumption (I) for Hk and H ′
k imply that the k-th node can be contracted from H ′

k.

For conciseness we will use F = FB to denote a graph model. If H ′ is F computable then there exists a sequence of
contractions Ci1 , Ci2 , ..., Cik ∈ F that contracts H ′ to the red edge. Then C,Ci1 , Ci2 , ..., Cik is a sequence contracting H
to the red edge. Therefore H is computable with F .

The other direction is more challenging. We assume H is computable with F and need to prove H ′ is computable with F .
H = (V = [m], E, (a, b)) has some sequence of tensor contraction contracting all vertices in H until only a and b are left
(a and b could be the same node). Without losing generality a ≤ b, and we assume the order of the node contraction from H
is 1, 2, . . . , a− 1. We will say that nodes i, j ∈ [m] are neighbors (in H) if they share an edge.

A key property we use is proved in Lemma 3.4 that shows that using contractions from B, we can always contract a node if
it has at-most 1 and 2 neighbors for Fn and Fe, respectively.

We have that H ′ = (V ′, E′, (a, b)) resulted from H by contracting a single node using contractions in F . Therefore
|V ′| = m− 1, and we let c be the contracted node. Since c is contracted then necessarily c ̸= a, b. Therefore c belongs to
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the H contraction series, and in our notation that means c < a. Now we will use the series 1, 2, . . . , c̄, . . . , a − 1 (a bar
indicates a missing index) as a node contraction series for H ′. What we need to prove is that this is indeed a series of node
contractions that can be implemented with tensor contractions from B.

To show that we will prove by induction the following claim. We will compare the two node contraction sequences:

H : 1, 2, . . . , c− 1, c, c+ 1, . . . , a− 1

H ′ : 1, 2, . . . , c− 1, ∅, c+ 1, . . . , a− 1

where ∅ means no node contraction done. We enumerate these steps using k = 1, . . . , a. We denote by Hk and H ′
k the

corresponding graphs before performing the k-th contraction. So H1 = H , and H ′
1 = H ′. We claim the following holds at

the k-th step:

(I) Any pair of nodes i, j where at-least one node is not c or a neighbor of c satisfy: i, j are neighbors in HK iff they are
neighbors in H ′

k

Where we define the 1-ring of a node c to be the set of nodes that includes: c and all the nodes that share an edge with c.
Before proving this by induction we note that if the induction hypothesis holds at the k-th step then the k-th node can be
contracted from H ′ using operations from B, see Lemma C.2.

Base case, k = 1: For k = 1 we compare the original H and H ′. Consider two nodes i, j not in the 1-ring of c in H .
Lemma C.1 asserts that contraction of a node only affect its immediate neighbors. Therefore any edge/no edge between i
and j will be identical in H and H ′.

Induction step: We assume by the induction assumption that the Hk−1, H
′
k−1 satisfy (I) and prove it for Hk, H

′
k.

Consider the node k − 1 that was contracted at the k − 1 stage. Let {d, e} be its neighbor set in Hk−1 (could be empty,
with a single node, or at-most two nodes). There are three cases: (i) k − 1 = c, (ii) k − 1 is a neighbor of c in Hk−1 (i.e.,
k − 1 ∈ {d, e}), and (iii) k − 1 is not in the 1-ring of c in Hk−1 (i.e., k − 1 /∈ {c, e, d}).

In case (i), its contraction will only affect its 1-ring in Hk−1 (see Lemma C.1), and in H ′
k−1 no contraction will happen.

Therefore assumption (I) can be carried to Hk and H ′
k.

In case (ii), k − 1 is a neighbor of c in Hk−1. Since the contraction of k − 1 only affects its 1-ring in Hk−1 (according to
Lemma C.1) and the 1-ring of k− 1 in Hk−1 is included, aside of k− 1, in the 1-ring of c at Hk. Therefore the neighboring
relations in Hk and H ′

k outside the 1-ring of c in Hk do not change. The induction assumption (I) on Hk−1 and H ′
k−1 now

implies the assumption holds for Hk and H ′
k .

In case (iii), k − 1 is not in the 1-ring of c in Hk−1. Then Lemma C.1 implies that the 1-ring of c in Hk will not change and
the neighborhood changes in the 1-ring of k − 1 will be identical to Hk and H ′

k due to induction assumption (I).

Lemma 3.4. Fn (for simple graphs) and Fe (for general graphs) can always contract a node in H iff its number of neighbors
is at-most 1 and 2, respectively.

Proof. We start with Fn: We will use contraction notations from the contraction banks presented in Figure 7, left. For
simple graphs H is simple (see Section 2.1), and therefore does not have parallel edges. Applications of contractions
from the bank of Fn cannot introduce parallel edges and therefore any two neighbors in the graph will share a single edge.
Furthermore, using C2 we can always reduce the number of self-loops generated during the tensor computation path to 1.
Lastly, any node, with or without a single self-loop, and with at-most 1 neighbor is connected to it with at-most a single
edge, and therefore C3 or C4 will be able to contract it.

For Fe: We will use contraction notations from the contraction bank in Figure 7, right. First note that any number of
self-loops and parallel edges can be reduced to 1 using C2 and C6, respectively. Now if a node with a single self-loop has no
neighbors in H then is can be contracted with C1. Now in the case a node i has 1 or 2 neighbors in H we can cancel its
self-loop (if it has one) as follows. Let j denote one of its neighbors. Then we first apply C5 between i (top) and j (bottom),
then we apply C6 if necessary to make the existing edge between i, j directing towards j, and lastly apply C6 to have a
single edge between i and j.
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Lets recap: we have now a node i, without self-loops, with a single edge going to its 1 or 2 neighbors. We can change the
direction of these edges by applying C6, if required. Now, we can use C3 or C7 to contract node i.

In the other direction if the number of neighbors is greater than 1 for Fn and 2 for Fe then inspection of the respective
contraction banks shows that edges cannot be completely removed between nodes without contraction and no contraction
operators for nodes with valence 2 and 3 exists for Fn and Fe, respectively.

Lemma C.1. All the tensor contractions used in Fn and Fe only affect the 1-ring neighborhood of the contracted node.

Proof. Inspection of the tensor contraction banks of Fn and Fe (see Figure 7, contracted nodes are in gray) shows that any
contraction of a node can introduce new edges in its 1-ring but does not affect neighboring relation outside the 1-ring.

Lemma C.2. Assumption (I) for Hk and H ′
k imply that the k-th node can be contracted from H ′

k.

Proof. Indeed, there are 3 options for the k-th node: (i) k = c, (ii) k is a neighbor of c in Hk, and (iii) k is not in the 1-ring
of c in Hk.

Since k can be contracted from Hk by definition, Lemma 3.4 imply that we only need to show that k has at-most the same
number of neighbors in H ′

k in order to prove the lemma. We show that next.

In case (i): since k = c no contraction is to take place in H ′
k. In case (ii): hypothesis (I) imply that the number of neighbors

of k in H ′
k is at most that in Hk. In case (iii): Hypothesis (I) implies that k has the same neighbors in Hk and H ′

k.

D. Proof of Theorem 3.7
To prove Theorem 3.7 it is enough to show that MPNN and PPGN++ can approximate any polynomial computable by the
matching Prototypical models, namely node based Fn and edge based Fe. We show that in the following theorem:

Theorem D.1. For any compact input domain, PPGN++ and MPNN can arbitrarily approximate any polynomial computable
by the Prototypical graph models Fe and Fn, respectively.

Proof. The proof of this theorem has two parts. First, we will show that for ϵ > 0, a single layer of PPGN++ and MPNN
can approximate any contraction operation C ∈ B of the corresponding graph model. The second part will show that a
composition of those layers can approximate any finite sequence f ∈ FB, i.e any polynomial computable by FB.

Part I. Let Ω ⊂ Rn×d be an arbitrary compact set and Yi ∈ Rn be the ith column of Y ∈ Ω. Consider C ∈ Bn, the tensor
contraction bank of Fn. We will show that a single layer of MPNN (eq 9) can approximate C. To do so we will write the
operations explicitly and verify that a MPNN layer can approximate them:

• C1 → Y
(k+1)
j = 11TY

(k)
i .

• C2 → Y
(k+1)
l = Y

(k)
i ⊙ Y

(k)
j where ⊙ is element-wise product.

• C3 → Y
(k+1)
j = X1.

• C4 → Y
(k+1)
j = XY

(k)
i .

In order for MPNN approximate the mentioned functions we need to argue that m can approximate several functions. We
assume that simple functions, such as constant functions and feature retrieving, can be computed exactly for m. To justify
approximation of element-wise product we use the universal approximation theorem (Hornik, 1991):

Theorem D.2. The set of one hidden layer MLPs with a continuous σ, i.e, M(σ) = span
{
σ(wTx+ b)|w ∈ Rn, b ∈ R

}
is

dense in C(Rn) in the topology of uniform convergence over compact sets if and only if σ is not a polynomial.

In the next case we set Ω ⊂ Rn2×d be an arbitrary compact set (Zi ∈ Rn2

for Z ∈ Ω). We repeat the same process for
PPGN++ (eq 10) and C ∈ B of Fe:
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Figure 11. The number of graph invariant and equivariant polynomials scales exponentially with the degree of the polynomial. Here, we
count the number of polynomials in the asymptotic limit of graphs of n → ∞ nodes. Graphs with a fixed number of nodes will have
fewer invariant polynomials. See Appendix I for further details on the generating functions and explicit counts.

• C1 → Z
(k+1)
j = 11T (diag(Z(k)

i )11T ).

• C2 → Z
(k+1)
l = diag(Z(k)

i · Z(k)
j ).

• C3 → Z
(k+1)
j = diag(11TZ(k)

i ).

• C4 → Z
(k+1)
j = diag(Z(k)

i )11T .

• C5 → Z
(k+1)
l = Z

(k)
i · Z(k)

j .

• C6 → Z
(k+1)
j = Z

(k)T
i .

• C7 → Z
(k+1)
l = Z

(k)
i Z

(k)
j .

Here the only addition is the diag function, which given a matrix returns a diagonal matrix with the matrix diagonal. This
could computed using m̄i since it computes different functions for the diagonal and off-diagonal elements.

Part II. This part of the proof will show that any sequence f ∈ Fe (or ∈ Fn), namely a polynomial computable by this
graph model, can be approximated by a composition of PPGN++ (or MPNN) layers. To prove that we can use Lemma 6
from (Lim et al., 2022) that states the following:

Lemma D.3 (Layer-wise universality implies universality). Let Z ⊆ Rd0 be a compact domain, let F1, · · · ,FL be a
families of continuous functinos where Fi consists of functions from Rdi−1 → Rdi for some d1, · · · , dL. Let F be a family
of functions

{
fL ◦ · · · ◦ f1 : Z → RdL , fi ∈ Fi

}
that are compositions of functions fi ∈ Fi.

For each i, let Φi, be a family of continuous functions that universally approximates Fi. Then the family of compositions
{ϕL ◦ · · · ◦ ϕ1 : ϕi ∈ Φi} universally approximates F .

Based on the first part proof, using this lemma while pluging in B as Fi for every i and the corresponding GNN layer as Φi
(also for every i) shows that PPGN++ and MPNN are universal approximators for Fe and Fn, respectively.

E. Proof of Proposition 3.8

Let f : Rn2×d → Rn2×d′ be a PPGN block, defined by the following equation (as portrayed in (Maron et al., 2019)):

Z(k+1) = m̄3

[
m̄1(Z

(k))⊛ m̄2(Z
(k)),Z(k)

]
. (19)
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Also, let

Z =

[
a a
b b

]
a, b ∈ R

to be an input tensor. A PPGN network (composition of PPGN blocks) cannot approximate the transpose operator
PH(Z) = ZT due to the fact that the PPGN block maintains the row structure of Z, i.e

f(Z)i =

[
x x
y y

]
x, y ∈ R,

when f(Z)i ∈ Rn2

(for i ∈ [d′]) denotes the ith slice of f(Z) along the last dimension. This holds since each PPGN block is
composed of Siamese element-wise operations and matrix multiplications which preserve this structure. a simple induction
can generalize this claim for a composition of blocks while the extension for larger size graphs is also trivial.

F. Equivariant Polynomials of Attributed Graphs

Repeating the derivations in Appendix B for the case of equivariant polynomials of attributed graphs, P : Rn2×f → Rn2

,
suggests that we should enumerate each QH and PH with a multi-graph H = (V,E, (a, b)), where there are also f types of
edges types (e.g., colors); we denote by (r, s; k) ∈ E an edge (r, s) with type k ∈ [f ]. This gives the formulas

QH(X)ia,ib =
∑

j1 ̸=...̸=jm∈[n]
ja=ia,jb=ib

∏
(r,s;k)∈E

Xjr,js,k (20)

PH(X)ia,ib =
∑

j1,...jm∈[n]
ja=ia,jb=ib

∏
(r,s;k)∈E

Xjr,js,k (21)

where the degree of PH , QH is the total number of edges of all types, counting multiplicities. The basis {QH} (and
consequently {PH}) for equivariant polynomials in this case is achieved by considering all non-isomorphic H (comparing
both edge types and multiplicity) with total number of edges up to f .

Equivariant maps Rn2×f → Rn2

are isomorphically equivalent to the module (R[Rn2×f ]× Rn2

)Sn , where R[Rn2×f ] is
the polynomial ring on the vector space Rn2×f . Similarly to the proof in Appendix B, via the Reynolds operator applied to
monomials in variables Xijk, we obtain orbits which as before, correspond to unique subgraphs. For a given monomial, if
the variable Xijk is contained in that monomial, then we add an edge between i to j and color that edge according to the
index k. The k-index remains invariant under the group operation and is not permuted by the group action.

To continue the graphical notation, we label this basis by labeling its orbits according to the monomials that appear. We pick
a given monomial in the orbit and then for each variable in that monomial, we add an edge with the appropriate color. As
before, the equivariant output dimension is colored red, but we make such an edge dotted to more clearly differentiate it
with other edges.

In this expanded graphical notation, we provide two examples below:

The proof that the above forms a basis follows directly from the proof in Appendix B. We follow the basic steps below.

We denote by the vector space of all polynomials P : Rn2×f → Rn2

by P = Rn2×f ⊗R[X], where ⊗ is the tensor product
and R[X] denotes the module of polynomials with indeterminate X11, . . . ,Xnn. The space of polynomials P is now spanned
by the expanded monomial basis

M(X) = δa,b ⊗
n∏

r,s=1

f∏
k=1

X
Ar,s,k

r,s,k (22)

where A ∈ Nn
2×f

0 , N0 = {0, 1, . . .}, and δa,b ∈ Rn2

is a matrix satisfying

δa,bi,j =

{
1 if a = i, b = j

0 o/w
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Permuations now only act on the first two indices, i.e.,

(g · X)i,j,k = Xg−1(i),g−1(j),k. (23)

Given the last index is invariant to permutations, symmetrization of monomials continues as before where we add the feature
dimension:

QH(X)i,j =
∑
g∈Sn

[
g ·MH(g−1 · X)

]
i,j

=
∑
g∈Sn

δ
g(a),g(b)
i,j

n∏
r,s=1

f∏
k=1

X
Ag−1(r),g−1(s),k

r,s,k .

QH is a sum over all monomials corresponding to the orbit of H under node relabeling g. This forms an equivalence class
over orbits of H (i.e., two graphs H and H ′ are in the same class if they can be obtained from one another via permutations).
Since every polynomial is a sum over monomials, symmetrization over these monomials implies each symmetrization
falls into one of these orbits. Therefore, similar to the proof as before, the multigraphs H compose the set of equivariant
polynomials.

F.1. Equivariant set polynomials

As a note, we show here via an example how to form set polynomials from the structure described before. In correspondence
with the equivariant polynomials on sets (Rn×d → Rn), Segol & Lipman (2019) proved any polynomial in this setting takes
the following form:

Theorem F.1 (Theorem 2 of (Segol & Lipman, 2019), paraphrased). Any equivariant map on sets Rn×d → Rn can be
generated by polynomials of the form

P (X) =
∑

|α|≤n

bαqα,j(s1, . . . , st), (24)

where bα = [xα
1 , . . . ,x

α
n ]

⊤, sj(X) =
∑n
i=1 x

αj

i are the power sum symmetric polynomials indexed by j ∈
[(
n+d
d

)]
possible such polynomials up to degree d, and qα,j(s1, . . . , st) is a polynomial in its power sum polynomial inputs.

In our graphical language, set polynomials correspond to graphs with only multi-edges that are self loops. To recover the
above theorem in our graphical notation, we consider each element in the sum above. We identify a given bα with the self
loops on the equivariant edge with the dotted line. The polynomial qα,j is identified with the polynomial on the rest of the
nodes, e.g. let us consider the below graph.

(25)

As before, for colors indexed by index zero (orange), index one (green), and index two (blue), the above corresponds to the
polynomial

P (X) =


X1,2

X2,2

...
Xn,2

 ·

 n∑
i,j=1

Xi,0Xj,1

 . (26)

By inspection, one can see that the above is of the form as stated in (Segol & Lipman, 2019), i.e. choose qα,j =

(
∑n
i=1 x

[1,0,0]
i )(

∑n
i=1 x

[0,1,0]
i ) only for α = [0, 0, 1] and qα,j = 0 otherwise.

G. Relationship between Equivariant Polynomials, Homomorphisms, and Subgraph Counting
There is a close correspondence between homomorphism counts, subgraph counts, and the evaluation of our polynomials
on binary graphs X, meaning directed graphs with self-loops but no multiedges, i.e. those graphs with adjacency in
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{0, 1}n×n. For binary graphs H and X, a homomorphism is a function φ : V (H) → V (X) such that if (r, s) ∈ E(H),
then (φ(r), φ(s)) ∈ E(X). An isomorphism is a bijective homomorphism whose inverse is also a homomorphism. We
let hom(H,X) denote the number of homomorphisms from H to X. We let inj(H,X) denote the number of injective
homomorphisms from H to X. The injective homomorphism number is closely related to subgraph counts. If we let
count(H,X) denote the number of subgraphs isomorphic to H , and let Aut(H) denote the automorphism group of H
(i.e. the set of isomorphisms from H to H), then inj(H,X) = |Aut(H)| · count(H,X). The |Aut(H)| term is due to
overcounting when H has symmetries.

G.1. Invariant Polynomials and Standard Homomorphisms

PH and standard homomorphisms. Let H and X be binary graphs. Then it can be seen that the homomorphism count
hom(H,X) can be written as (Lovász, 2012):

hom(H,X) =
∑

φ:V (H)→V (X)

∏
(r,s)∈E(H)

Xφ(r),φ(s), (27)

where the sum ranges over all functions from V (H) to V (X). Choose an ordering 1, . . . ,m of the nodes of V (H) and
1, . . . , n of the nodes of X; writing φ(l) = jl, we see that hom(H,X) is exactly equivalent to our (invariant) polynomial
basis element PH :

PH(X) = hom(H,X) =
∑

j1,...,jm∈[n]

∏
(r,s)∈E(H)

Xjr,js . (28)

If H has multiple edges, then let H̃ be the graph H with any multiple edges reduced to a single edge. If X is still a binary
graph, it is easy to see that PH(X) = PH̃(X), so in this case PH(X) = hom(H̃,X).

QH and injective homomorphisms / subgraph counts. Once again, let H and X be binary graphs. The injective
homomorphism number can be written in a similar form to the homomorphism count (Lovász, 2012):

inj(H,X) =
∑

φ:V (H)→V (X)
φ injective

∏
(r,s)∈E(H)

Xφ(r),φ(s). (29)

In this case, the sum ranges over all injective functions φ : V (H) → V (X). As in the non-injective case, we write jl = φ(l)
for each l = 1, . . . ,m. By injectivity j1 ̸= . . . ̸= jm. Thus, we have a corrspondence between inj(H,X) and our invariant
basis polynomial QH :

QH(X) = inj(H,X) =
∑

j1 ̸=...̸=jm∈[n]

∏
(r,s)∈E(H)

Xφ(r),φ(s) = |Aut(H)| · count(H,X). (30)

G.2. Equivariant Polynomials and Homomorphism Tensors

Here, we consider our equivariant polynomials basis elements PH , QH : Rn2 → Rn2

. On binary graphs, this will also
correspond to counts of homomorphisms, except now we have to restrict the homomorphisms to preserve the red edge in an
equivariant way. Let (a, b) be the red edge of H , and consider any two nodes (possibly the same) ia, ib of X. Then we may
define a tensor of homomorphism counts Hom(H,X) ∈ Rn2

, where Hom(H,X)ia,ib is the number of homomorphisms
φ : V (H) → V (X) such that φ(a) = ia and φ(b) = ib. We define a tensor Inj(H,X) of injective homomorphism counts
similarly.

Following the arguments for the invariant case, it is easy to see that

PH(X)ia,ib = Hom(H,X)ia,ib (31)
QH(X)ia,ib = Inj(H,X)ia,ib . (32)

Thus, this gives an interpretation of PH(X)ia,ib and QH(X)ia,ib , when H and X are binary graphs. We expand on this
interpretation for QH in the next section.
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QH(X)i,i =
∑
j ̸=k∈[n]\{i} Xi,jX
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QH(X)3,3 = 4
QH(X)i,i = 0, i ̸= 3

Figure 12. Relationship between QH and subgraph counts. The directed multigraph H (top left) has its multiedges turned to single edges
to form H̃ (top right). The size of the automorphism group Aut(H̃) is 2, as we may swap the bottom left and bottom right node while
preserving the graph structure. QH(X)3,3 = 4 because node 3 participates in 2 subgraphs isomorphic to H̃ , and this subgraph count is
scaled by |Aut(H̃)| = 2 to get QH(X)3,3.

G.3. QH as Subgraph Counts

The basis QH can be interpreted as subgraph counts when the input is a simple binary graph X ∈ {0, 1}n2

. For any directed
multigraph H with red edge (a, b), let H̃ denote the same graph H but where any multiple black edges are collapsed to just
one black edge; the difference between H and H̃ is that if H has more than one black edge from node i to j, then H̃ only
has one edge. Then we have that

QH(X)ia,ib = |Aut(H̃)| · count(H̃,X, (ia, ib)), (33)

where count(H̃,X, (ia, ib)) is the number of subgraphs of X that are isomorphic to H̃ , after adding a red edge (ia, ib)
to X and labelling edge (a, b) in H̃ as red. |Aut(H̃)| is the size of the automorphism group of H̃ , which contains the
automorphisms φ : V (H) → V (H) that have φ(a) = a and φ(b) = b.

Now, suppose H has a red self loop (a, a), and let i be any node in X. We have that QH(X)ia,ia is equal to |Aut(H̃)|
multiplied by the number of subgraphs of X that are isomorphic to H̃ , where the isomorphism maps ia in X to a (the node
with the self loop in H). Intuitively, this is proportional to the number of subgraphs isomorphic to H̃ that ia participates in
as the designated red-self-loop node. See Figure 12 for an illustration.

Derivation. Here, we derive the relationship between QH(X) and subgraph counts. First, we write out some definitions
more precisely. Let Aut(H̃) denote the automorphism group of H̃ . This is the set of permutations σ : V (H̃) → V (H̃)
such that σ(a) = a, σ(b) = b, and (r, s) ∈ E(H̃) if and only if (σ(r), σ(s)) ∈ E(H̃). Further, let count(H̃,X, (ia, ib))
denote the number of subgraphs of X isomorphic to H̃ , where the isomorphism maps a to ia and b to ib. In other words,
it is the number of choices (V ′, E′) such that V ′ ⊆ V (X) and E′ ⊆ E(X) ∩ (V ′ × V ′) where there exists a bijection
φ : V (H̃) → V ′ such that φ(a) = ia, φ(b) = ib, and (r, s) ∈ E(H̃) if and only if (φ(r), φ(s)) ∈ E′. We call any such
map φ a subgraph isomorphism, and we may also view it as an injective function V (H̃) → V (X).

We will use the fact that for any subgraph isomorphism φ and any automorphism σ ∈ Aut(H̃), the map φ ◦ σ : V (H̃) →
V (X) is also a subgraph isomorphism. Let (V ′, E′) be the subgraph that φmaps to. To see that φ is a subgraph isomorphism,
first note that φ ◦ σ is injective, φ ◦ σ(a) = φ(a) = ia, and φ ◦ σ(b) = φ(b) = ib. To see the edge preserving property, note
that (r, s) ∈ E(H̃) if and only if (σ(r), σ(s)) ∈ E(H̃) since σ ∈ Aut(H̃). Moreover, (σ(r), σ(s)) ∈ E(H̃) if and only if
(φ(σ(r)), φ(σ(s))) ∈ E′ since φ is a subgraph isomorphism. Thus, φ ◦ σ is a subgraph isomorphism.

We now derive the formula for QH(X) in terms of subgraph counts:

Proposition G.1. If X ∈ {0, 1}n2

, then

QH(X)ia,ib = |Aut(H̃)| · count(H̃,X, (ia, ib)) (34)

Proof. Note that we can write
QH(X)ia,ib =

∑
j1 ̸=···≠jm
ja=ia,jb=ib

∏
(r,s)∈E(H̃)

Xjr,js , (35)
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where we replace the product over E(H) with the product over E(H̃), due to the assumption that X is binary. Further, note
that the summand

∏
(r,s)∈E Xjr,js is either 0 or 1 for each setting of (j1, . . . , jm). We show that the number of nonzero

terms of the sum in QH(X)ia,ib is equal to |Aut(H̃)| · count(H̃,X, (ia, ib)).

Let (j1, . . . , jm) correspond to a nonzero term in the sum. Define φ : V (H) → V (X) by φ(i) = ji. Note that φ is injective
since j1 ̸= . . . ̸= jm. Moreover, φ(a) = ja = ia and φ(b) = jb = ib. Now, define

Vφ = {φ(i) : i ∈ V (H)}, Eφ = {(φ(r), φ(s)) : (r, s) ∈ E(H̃)}. (36)

This is the vertex set and edge set of a subgraph in X, because
∏

(r,s)∈E(H̃) Xjr,js = 1 implies that (φ(r), φ(s)) ∈ E(X)

for all (r, s) ∈ E(H̃). Thus, φ corresponds to an isomorphism between H̃ and a subgraph of X.

Suppose (j1, . . . , jm) ̸= (j̃1, . . . , j̃m) are both indices corresponding to nonzero summands, with corresponding subgraph
isomorphisms φ and φ̃. Note that φ ̸= φ̃, so each nonzero summand corresponds to a unique subgraph isomorphism φ.
Hence, it suffices to show that the number of subgraph isomorphisms is |Aut(H̃)| · count(H̃,X, (ia, ib)).

For each l ∈ {1, . . . , count(H̃,X, (ia, ib))}, let Gl = (Vl, El) be a subgraph of X that is isomorphic to H̃ . Then choose a
subgraph isomorphism φl : V (H) → V (X) associated to Gl. For this φl, as in our argument above we know that φl ◦ σ :
V (H) → V (X) is a subgraph isomorphism for every σ ∈ Aut(H̃). Thus, there are at least |Aut(H̃)| · count(H̃,X, (ia, ib))
subgraph isomorphisms φl ◦ σ.

To show that there are at most |Aut(H̃)| · count(H̃,X, (ia, ib)) subgraph isomorphisms, assume for sake of contradiction
that ψ : V (H) → V (X) is a subgraph isomorphism that is not of the form φl ◦ σ above. Denote the vertex set and
edge set of the associated subgraph as Vψ and Eψ, respectively. If (Vψ, Eψ) ̸= (Vl, El) for each l, then we have
the existence of count(H̃,X, (ia, ib)) + 1 subgraphs in X isomorphic to H̃ , which contradicts the definition of count.
Thus, (Vψ, Eψ) = (Vl, El) for some l. As φl and ψ are both bijective from V (H̃) → Vψ, there is a unique bijection
σ : V (H̃) → V (H̃) such that φl = ψ ◦ σ.

We will show that σ ∈ Aut(H̃), which contradicts our definition of ψ. Note that σ(a) = a and σ(b) = b, because φl(a) =
ψ(a) = ia and φl(b) = ψ(b) = ib. Now, suppose (r, s) ∈ E(H̃). Since (ψ ◦ σ(r), ψ ◦ σ(s)) = (φ(r), φ(s)) ∈ Eφl

= Eψ ,
we know that (σ(r), σ(s)) ∈ E(H̃) as ψ is a subgraph isomorphism. On the other hand, if (σ(r), σ(s)) ∈ E(H̃), then
(φl(r), φl(s)) = (ψ ◦ σ(r), ψ ◦ σ(s)) ∈ Eψ since ψ is a subgraph isomorphism, so that (r, s) ∈ E(H̃) because φl is a
subgraph isomorphism. Thus, σ ∈ Aut(H̃), and we are done.

H. k-WL Equivalence

C1 C2 C3 C4 C1 C2 C3 C4 C5 C6 C7

Figure 13. For convenience, we redraw our Prototypical graph models here. We show these the node-based model (left) is equivalent to
1-WL on simple graphs, and the edge-based model (right) is equivalent to 2-FWL / 3-WL on simple graphs.

In this section, we demonstrate that our studied Prototypical graph models achieve 1-WL and 3-WL/2-FWL expressive
power, thus showing that our framework can be used to design and analyze k-WL style models. The key connection comes
from a result of Dvořák (2010); Dell et al. (2018), which states that k-FWL indistinguishability is equivalent to hom(H,X)
indistinguishability for all H of tree-width at most k.

Lemma H.1 (Dvořák (2010); Dell et al. (2018)). Two simple graphs X(1) and X(2) are k-FWL distinguishable if and only if
there is a graph H of tree-width at most k such that hom(H,X(1)) ̸= hom(H,X(2))
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Recall from Appendix G that hom(H,X) is equal to the evaluation of the invariant polynomial PH(X) when X ∈ {0, 1}n×n.
Thus, an Prototypical graph model can compute hom(H,X) if it can contract H into the trivial graph (that has zero nodes
and zero edges) using contractions from its bank.

Proposition H.2. The Prototypical node-based graph model can distinguish any two simple graphs if and only if 1-WL can.

Proof. ( ⇐= ) Suppose 1-WL can distinguish two simple graphs X(1) and X(2). Then there is a graph H of tree-width 1
such that hom(H,X(1)) ̸= hom(H,X(2)). We will show that the node-based Prototypical model can contract H to the
trivial graph. As H has tree-width 1, it is a forest or a tree. We can assume it is a tree as we can contract each tree connected
component one by one if it is a forest. We will show that the node-based model can contract any tree T with or without
self-loops.

Suppose T consists of one node. If T has no self-loops, it is the constant polynomial, which is a trivial case. Otherwise, the
node has at least one self-loop, and C1 and C2 can of course contract it the trivial graph.

Now, suppose T consists of m ≥ 2 nodes. Then there is a leaf (a node that has degree 1 when we ignore self-loops). If this
leaf does not have a self-loop, we can contract it to remove this node using C3. Otherwise, we can use C2 to remove any
multiple self-loops (if needed), and then use C4 to remove the node once we are left with one self-loop. This gives a tree T ′

with at least one self-loop of m− 1 nodes, so T ′ can be contracted by induction.

( =⇒ ) Suppose 1-WL cannot distinguish the two simple graphs X(1) and X(2), so hom(H,X(1)) = hom(H,X(2)) for all
H of tree-width 1. We show that the node-based contraction bank cannot contract any hom(H,X) for H of tree-width
greater than 1.

Suppose H has tree-width greater than 1, so it cannot be a forest or a tree. Hence, H must have a cycle. However, the
node-based model cannot contract any graph that has a cycle; this is because if it could, then the first node of the cycle that
is contracted would have had at least two different neighbors, but such a node cannot be contracted by C1, C2, C3 or C4.
Hence, the node-based graph model cannot distinguish X(1) and X(2).

Proposition H.3. The Prototypical edge-based graph model can distinguish any two simple graphs if and only if 2-FWL /
3-WL can.

Proof. ( ⇐= ) Suppose 2-FWL can distinguish the two simple graphs X(1) and X(2), so there is a graph H of tree-width
2 such that hom(H,X(1)) ̸= hom(H,X(2)). We will show that the edge-based model can contract H . We can assume H
is connected because otherwise we can separately contract each connected component. Moreover, we can assume that H
has no self-loops or multiple edges. This is because if a node has a self-loop and it has no neighbors, then C2 and C1 can
remove the node, and if it has neighbors then C4 can contract the self-loop and add an edge to a neighbor, thus forming a
multiple edge. For multiple edges, C6 can align the direction of the edges between if necessary, and then C5 can remove the
multiple edges.

Since H has tree-width 2, we know it is a partial 2-tree. Thus, there is an ordering of the m vertices of H , say v1, . . . , vm,
such that when deleting each vertex and all incident edges in turn, we only ever delete vertices of degree at most 2. We show
that our edge-based Prototypical model can contract edges in this order by induction. For i ∈ [m], suppose we have deleted
nodes v1, . . . , vi−1 (in the base case i = 1 we have not deleted any nodes), we are deleting vi, the current graph has no
multiple edges, and the any self-loops in the current graph belong to nodes with no neighbors

• If node vi has degree zero, then it can be contracted to a trivial graph by C1 and C2.

• If node vi has degree one, then we use C3 to contract it, thus adding a self-loop to its neighbor. If its neighbor then has
degree 0, then we do not need to remove self-loops for our induction. Otherwise, if its neighbor has nonzero degree,
then we use C4, C6 (if necessary), and C5 to remove the self-loop of the neighbor, and remove any multiple edges.

• If node vi has degree two, then we use C6 if necessary, then use C7 to contract vi, and use C6 and C5 to remove any
multiple edges formed.

After any of these operations, we have deleted the node vi, and maintained the assumptions of our induction. In particular,
note that the degree of a node (ignoring self-loops) never increases, so we indeed only ever contract nodes of degree at most
2. Thus, the Prototypical edge model is capable of contracting H to a trivial graph.
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( =⇒ ) Consider a pair of graphs that are not distinguishable by 3-WL. Let k > 3 be the smallest integer such that k-WL
distinguishes this pair. This pair of graphs differs in the number of homomorphisms for a subgraph that has at least tree-width
k − 1 ≥ 3 (Grohe et al., 2021) (e.g. see figure 2 of (Bouritsas et al., 2022) for explicit example). Series of eliminations of
nodes of a subgraph form a tree decomposition of the subgraph via its chordal completion as described below. Subgraphs of
tree-width ≥ 3 have at least one bag of 4 or more nodes in their tree decomposition. Since the Prototypical edge-based
graph model can only contract with bags of size 3 or fewer, such a homomorphism count cannot be performed using the
contractions.

To show that any set of contractions forms a valid tree decomposition of the graph, consider the chordal completion of the
graph formed by the eliminations. This chordal completion consists of the original graph with all edges added between
nodes that were part of a contraction which eliminated any other node. E.g., if nodes in {a, b, c} were part of a contraction
eliminating node a, then all edges between the nodes in {a, b, c} are added to its chordal completion. Note that this chordal
completion follows naturally in any contraction as once a node is eliminated in a contraction, an edge must be made between
its remaining neighbors to store the output of the contraction.

Any chordal completion of a subgraph has the property that via the same elimination order of its construction, no more
edges are added. I.e., the subgraph constructed by each eliminated node and its neighbors forms a clique. This elimination
ordering forms a tree decomposition with bags consisting of the cliques in the elimination ordering. Thus, the tree-width of
a graph is upper bounded by the size of the maximal clique in its chordal completion minus one (Diestel, 2005). Since the
Prototypical edge based model can only contract up to 3 nodes at once, cliques of size at most 3 can be constructed in the
chordal completion and the tree-width of such a tree decomposition is at most 2.

Another way to approach this result is through the relationship between graphs of tree-width 2 and series-parallel graphs.
Any biconnected graph H of tree-width 2 is a series-parallel graph (more generally, a graph has tree-width 2 if and only if
all biconnected components are series-parallel) (Bodlaender, 1998). Suppose H is series-parallel. Then it is known that it
can be contracted to a single edge by two operations (Duffin, 1965):

(op1) Delete a node of exactly degree 2, and connecting its two neighbors.

(op2) If there are two edges between the same two nodes, delete one of the edges.

The edge-based Prototypical model can implement these two operations, so it can contract H into a single edge. The first
operation (op1) is C7 (matrix multiplication), possibly with a C6 (matrix transpose) beforehand to align the directions of
the edges. The second operation (op2) is C5 (replace two parallel edges with one edge), again possibly with a C6 (matrix
transpose) beforehand to align the directions of the edges. After contraction to a single edge, the remaining operations
C1, C2, C3 can be used to contract H to the trivial graph.

If H is not biconnected, then we can use the block-cut tree of H to get the biconnected components. Then we can contract
each biconnected component that is a leaf of the block-cut-tree (as it is a series parallel graph) in a way such that we add a
self-loop to the cut vertex it is connected to. After pruning cut vertices appropriately, we can continue this process until
reaching the trivial graph.

I. Counting of Invariant Polynomials of Symmetric Group
Various methods exist to count the number of invariant polynomials of the Symmetric group (in our case, also isomorphic to
multigraphs) of a given form (Harary & Palmer, 2014; Pólya, 1937; Molien, 1897; Thiéry, 2000; Bedratyuk, 2015). Here,
we follow a standard strategy to count the number of invariant polynomials by summing over partitions corresponding to
cycle indices of the permutation group. Given Sn as the symmetric group on n elements, let S(k)

n be the symmetric group
acting on the representation X ∈ (Rn)⊗k. Let Pn denote the set of integer partitions of n where each partition m ∈ Pn is a
length n vector whose j-th element is the number of elements of size j in the given partition. For example, for the partition
of 4 into (1, 1, 2), the corresponding value of m = [2, 1, 0, 0]. Let si for i ∈ N be arbitrary variables for now (their meaning
will become clear later). We define the cycle index Z(S(k)

n )[si] of S(k)
n as a power series in variables si for i ∈ N as

Z(S(k)
n )[si] =

∑
m∈Pn

1∏n
t=1 t

mtmt!

k∏
i=1

n∏
ji=1

s
∏k

t=1 mjt jt/ lcm(j1,...,jk)

lcm(j1,...,jk)
, (37)
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where lcm(·) is the least common multiple of the arguments.

As an example, we have

Z(S
(2)
3 )[si] =

1

6
s91 +

1

2
s1s

4
2 +

1

3
s33. (38)

For the equivariant case, we need a weighted cycle index which we denote as ZW (S
(k)
n × S

(d)
n )[si] which can be calculated

as

ZW (S(k)
n × S(d)

n )[si] =
∑

m∈Pn

md
1∏n

t=1 t
mtmt!

k∏
i=1

n∏
ji=1

s
∏k

t=1 mjt jt/ lcm(j1,...,jk)

lcm(j1,...,jk)
, (39)

From here, we can generate the Molien series which counts the number of invariant/equivariant polynomials on S(k)
n .

Theorem I.1. The Molien series M
S

(k)
n

(x) for invariant polynomials on S(k)
n is generated by

invariant: M
S

(k)
n

(x) = Z(S(k)
n )[si = 1 + xi + x2i + · · · ], (40)

and more generally, the Molien series for the polynomials which are equivariant to S(d)
n outputs and S(k)

n inputs is generated
by:

equivariant: M
S

(k)
n ×S(d)

n
(x) = ZW (S(k)

n × S(d)
n )[si = 1 + xi + x2i + · · · ]. (41)

Proof. We enumerate the Molien series of order k invariant polynomials RGk in the invariant ring of polynomials RG using
Molien’s formula (Derksen & Kemper, 2015; Molien, 1897). A similar proof can be obtained via the Pólya enumeration
theorem (Tucker, 1994; Pólya, 1937).

Given a representation ρ : G→ GL (V ), Molien’s formula states that

MG(x) =
∑
k

dim(RGk )x
k = |G|−1

∑
g∈G

1

det (I − xρ(g))
. (42)

First, let us consider the invariant setting for S(k)
n – the symmetric group with representation acting on the vector space

X ∈ (Rn)⊗k. Eigenvalues of a permutation matrix depend only on the cycle index of the permutation. Therefore, we
decompose the sum of group elements in the symmetric group by their cycle indices

M
S

(k)
n

(x) =
∑

m∈Pn

1∏n
t=1 t

mtmt!

1

det
(
I − xρ(g

(k)
m )

) , (43)

where ρ(gm(k)) is any permutation with cycle index mt for the representation on S(k)
n . For S(1)

n , the representation of the
permutation group is the standard representation corresponding to permutations of indices of the vector space. For cycle
index m, the representation ρ(gm(1)) has mj eigenvalues equal to the j different powers of the j-th root of unity. Denoting
si = 1 + xi + x2i + · · · , this then results in the following:

1

det
(
I − xρ(g

(1)
m )

) =

n∏
ji=1

s
mji
ji

. (44)

ρ(gm(k)) acts as a k-fold tensor product of the representation ρ(gm(1)), i.e. ρ(gm(k)) = [ρ(gm(1))](⊗k). Therefore, to
generalize the above formula to higher order k, we enumerate the possible eigenvalues of the tensor product of ρ(gm(1) .
Since the eigenvalues of a tensor product of operators are simply the product of the eigenvalues of the elements of the tensor
product, we can perform this enumeration over products of the operators.

As we noted before, for cycle index m, the representation ρ(gm(1)) has mj eigenvalues equal to the j different powers of
the j-th root of unity. Given the product of two elements of this cycle index, we now consider the product of eigenvalues
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equal to the different powers of the j-th and k-th roots of unity. This results in all the eigenvalues which are products of the
lcm(j, k)-roots of unity where lcm(·) denotes the least common multiple. Given mj and mk cycles of j-th and k-th order
respectively, powers of the lcm(j, k)-roots of unity will appear a total of mjmk/ lcm(j, k) number of times. Generalizing
this to products of more than two eigenvalues, we arrive at

1

det
(
I − xρ(g

(k)
m )

) =

k∏
i=1

n∏
ji=1

s
∏k

t=1 mjt jt/ lcm(j1,...,jk)

lcm(j1,...,jk)
. (45)

Plugging the above into Equation (43), we obtain the desired result.

For the equivariant setting, we use the equivariant form of Molien’s formula. For maps from a vector space V to another vector
space W , we consider a representation ρ : G→ GL (V ) acting on the input space and a representation σ : G→ GL (W )
acting on the output space. Here, Molien’s formula takes the form (Derksen & Kemper, 2015; Antoneli et al., 2008)

MG(x) =
∑
k

dim(RGk )x
k = |G|−1

∑
g∈G

Tr(σ(g)−1)

det (I − xρ(g))
. (46)

The above can be shown by noting that the module of equivariant polynomials corresponds to (R[V ]⊗W )G where R[V ] is
the ring of polynomials on the vector space V . The representation of S(d)

n corresponds to the d-fold tensor product of the
standard representation of the symmetric group. For a cycle index m this representation has one nonzero entries on the
diagonal for each cycle of size 1. Therefore, there are md

1 total nonzero entries each equal to one. Plugging this in, we
arrive at the final solution.

As an example, returning to Equation (38), we have for invariant polynomials on S(2)
3 :

M
S

(2)
3

(x) =
1

6

[
(1 + x+ x2 + · · · )9 + 3(1 + x+ x2 + · · · )(1 + x2 + x4 + · · · )4

+ 2(1 + x3 + x6 + · · · )3
]

= 1 + 2x+ 10x2 + · · ·

(47)

Theorem I.1 quantifies the Molien series for polynomials on n nodes. To obtain the asymptotic limit M
S

(2)
∞

(x) for invariant
polynomials on graphs of arbitrary size, we note thatM

S
(2)
n

(x) andM
S

(2)
∞

(x) agree in powers xc up to c = ⌊n/2⌋. Therefore,
to generate the asymptotic series up to power n, it suffices to calculate the corresponding Molien series for M

S
(2)
2n

(x). A
similar logic can be applied for equivariant polynomials which also have a “red” edge as well as described in the main text.

Corollary I.2. The number of invariant polynomials quantified in the Molien series M
S

(2)
∞

(x) for the asymptotic limit of
n→ ∞ nodes agrees with M

S
(2)
n

(x) for n up to the first ⌊n/2⌋ degrees. Similarly, the number of equivariant polynomials
quantified in the Molien series M

S
(2)
∞

(x) for the asymptotic limit of n→ ∞ nodes agrees with M
S

(2)
n

(x) for n up to the first
⌊n/2⌋ − 1 degrees.

Counts of invariant polynomials. The Molien series of the number of invariant polynomials on graphs, i.e., Rn2 → R
for sufficiently large n, begins with

1, 2, 11, 52, 296, 1724, 11060, 74527, 533046, 3999187,

31412182, 257150093, 2188063401, 19299062896,

176059781439, 1657961491087, . . .

(48)

Counts of equivariant polynomials. The Molien series of the number of equivariant polynomials on graphs, i.e.,
Rn2 → Rn2

for sufficiently large n, begins with

2, 15, 117, 877, 6719, 52505, 422824, 3508753, 30036833,

265100322, 2410638644, 22563597944, 217175819474,

2147355853088, 21790101729085, 226707665717377, . . .

(49)
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For the setting of the standard representation of the symmetric group on nodes (S(1)
n in our notation), the above recovers the

generating series for partitions for which there exist efficiently calculable recurrences via the pentagonal number theorem
(Hardy et al., 1979). We do not know of a similarly more direct way to compute the Molien series above in the general case.
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