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Abstract
Collaborative causal inference (CCI) aims to im-
prove the estimation of the causal effect of treat-
ment variables by utilizing data aggregated from
multiple self-interested parties. Since their source
data are valuable proprietary assets that can be
costly or tedious to obtain, every party has to be
incentivized to be willing to contribute to the col-
laboration, such as with a guaranteed fair and suf-
ficiently valuable reward (than performing causal
inference on its own). This paper presents a re-
ward scheme designed using the unique statistical
properties that are required by causal inference
to guarantee certain desirable incentive criteria
(e.g., fairness, benefit) for the parties based on
their contributions. To achieve this, we propose a
data valuation function to value parties’ data for
CCI based on the distributional closeness of its
resulting treatment effect estimate to that utiliz-
ing the aggregated data from all parties. Then,
we show how to value the parties’ rewards fairly
based on a modified variant of the Shapley value
arising from our proposed data valuation for CCI.
Finally, the Shapley fair rewards to the parties are
realized in the form of improved, stochastically
perturbed treatment effect estimates. We empiri-
cally demonstrate the effectiveness of our reward
scheme using simulated and real-world datasets.

1. Introduction
Causal inference estimates the causal effect of treatment
variables for some target population(s) and is widely
adopted across various fields. In healthcare, hospitals per-
form causal inference of the efficacy of drugs (Glass et al.,
2013; Hernán et al., 2002; Wendling et al., 2018). In agri-
culture, causal inference is used to determine the achievable
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growth from applying a particular nutrient (Rubin, 1990;
2005). Various causal inference methods have been de-
signed for interventional data (from experimental trials) and
observational data (from historical records). However, the
collected data may be of low quality: Data sparsity and
non-representativeness for the population of interest are the
major obstacles to accurately estimating the treatment effect
(e.g., efficacy of drugs). For example, patients prefer to visit
the hospitals nearby, which results in each hospital having
few and demographically biased records that give rise to
data sparsity and non-representativeness, respectively. If the
hospitals perform causal inference individually, then they
are likely to get inaccurate treatment effect estimates and
potentially fail to prescribe the most efficacious medications
(Masic et al., 2008).

Collaborative causal inference (CCI) uses the aggregation
of shared data from participating parties (e.g., company,
organization, or individual) to overcome the issues of data
sparsity and non-representativeness. Consequently, they
obtain more accurate and statistically significant treatment
effect estimates. Such estimates for medical treatments help
doctors improve their prescriptions, while those for nutrients
help farmers determine appropriate amounts of nutrients and
the associated costs to improve their overall profits from
crop yields. By using the data from all parties, simple ag-
gregation or multi-source causal inference (Bareinboim &
Pearl, 2016; Dersimonian & Laird, 1986; Guo et al., 2021;
Xiong et al., 2021) competitively yield the most accurate
and statistically significant estimate (i.e., the most valuable
estimate whose exact value is to be defined later) which is
accessible to every party. However, such classes of meth-
ods rely on the willingness of all parties to share their data,
which is not always the case. In practice, parties are often
self-interested (Chalkiadakis et al., 2011; Sim et al., 2020;
2021; Smith, 2018; Tay et al., 2022; Thibaut, 1960) and
unwilling to share their valuable and proprietary source data
in the collaboration because the process of data collection is
costly. So, some parties may consider it unfair if the others
with less valuable data can benefit equally from the same
most valuable estimate as themselves. Without active partic-
ipation, the amount of data available for causal inference is
insufficient to be effective for existing solutions. This mo-
tivates the need to promote collaboration with guaranteed
benefit and fairness (Adams, 1963; Konow, 2000; Tabibnia
& Lieberman, 2007) for self-interested parties; Appendix A
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addresses potential ethical concerns related to fairness.

To establish a fair collaborative framework for causal infer-
ence, an important ingredient is a quantitative measure of
the value of data called the data valuation function v that
can be used to compare the usefulness/utility of different
datasets towards estimating the treatment effect of the target
population. For instance, when two parties with datasets A
and B collaborate, such a measure quantifies their value of
data in the form of v(A), v(B), and v(A ∪B). Several ex-
isting data valuation functions (Ghorbani & Zou, 2019; Sim
et al., 2020; 2022; Wu et al., 2022; Xu et al., 2021b) tend
to be highly correlated with validation accuracy. However,
they cannot be applied to CCI as ground truth is not avail-
able and statistical significance is an emphasis. Performing
data valuation in CCI has two unique challenges: Firstly,
since the accuracy of the treatment effect and the confidence
interval are both important statistical properties of causal
inference, we need to formalize the notion of quality of a
dataset w.r.t. these properties. Secondly, a proper surrogate
to the ground truth is required because the ground truth
treatment effect is the quantity to be derived but usually
unknown in practice. 1⃝ How then can the value of data be
measured in CCI?

A reward is often used to incentivize each party to collab-
orate and we adopt a quantitative proxy of it called the
reward value. Given a data valuation function for CCI, the
reward values need to satisfy certain desirable incentive
criteria to encourage participation, which include (a) numer-
ical validity: actual rewards can be realized from the reward
values, (b) benefit: parties are guaranteed to perform causal
inference at least as well as when without collaboration,
otherwise they will not participate due to receiving worse
estimates, (c) fairness: parties contributing more valuable
datasets should receive more valuable rewards to avoid the
free-rider problem (Sim et al., 2020; Tay et al., 2022), and
(d) efficiency and group welfare: reward values should be
maximized as much as possible such that at least some party
can be rewarded with an estimate with the best achievable
quality. 2⃝ How can a fair reward scheme be designed to
satisfy the above incentive criteria in CCI?

The reward values determined by the reward scheme will
then be used to realize the actual rewards to the parties, each
of which corresponds to a treatment effect estimate with
a confidence interval. Such an estimate may be of a low
fidelity and hence inaccurately indicate that a truly effec-
tive treatment effect is not, which is undesirable and can be
avoided by imposing explicit constraints. Moreover, since
the treatment effect estimates are simple, some parties with
less valuable datasets may be able to exploit knowledge of
the reward scheme to be unfairly rewarded with more valu-
able estimates, which can be prevented by using strategies
like random perturbation. It is thus challenging to simulta-

neously preserve the fidelity of the estimate and prevent the
reward scheme from being exploited during reward realiza-
tion. 3⃝ In practice, how can the rewards to the parties be
realized in CCI?

This paper presents a novel game-theoretic reward scheme
to incentivize the collaboration of multiple self-interested
parties for causal inference by fairly rewarding them with
more valuable treatment effect estimates. In particular, for
1⃝, we use the estimate obtained by utilizing data aggre-

gated from all collaborating parties as the surrogate to the
“ground truth”. Then, we propose to value each dataset by
the distributional divergence between its resulting treatment
effect estimate vs. the ground truth surrogate. For 2⃝, we
propose a set of desirable incentive criteria based on the
divergence-based data valuation, and prove that a variant of
the Shapley value (Shapley, 1953) satisfies all criteria and
determines the reward value fairly for each party. For 3⃝,
we realize the reward to each party with a new treatment
effect estimate and the corresponding confidence interval
according to its fair reward value. Specifically, we propose
a stochastic reward realization strategy with rejection sam-
pling that perturbs the ground truth estimate according to
the reward value and additional desirable criteria such as
fidelity and information obscurity for causal inference. Our
reward scheme is applicable to a broad range of causal infer-
ence estimators including observational estimators (Imbens
& Rubin, 2015; Robins et al., 1994) and randomized control
trial (RCT). Our contributions of the work in this paper are
summarized as follows:

• We propose to value a party’s data using the negative re-
verse Kullback–Leibler (KL) divergence between the dis-
tribution of its resulting treatment effect estimate vs. that
utilizing the data from all parties (Sec. 4).

• We propose a novel reward scheme using a modified ρ-
Shapley fair reward value which satisfies desirable incen-
tive criteria like numerical validity, efficiency, individual
rationality, fairness, and group welfare (Sec. 5).

• We propose to realize the reward as a treatment effect
estimate using rejection sampling such that the estimate
preserves fidelity and obscures the ground truth (Sec. 5.3).

• We empirically demonstrate using simulated and real-
world datasets that our CCI framework can fairly reward
parties with more valuable treatment effect estimates
(Sec. 6).

2. Preliminaries
For simplicity, we illustrate our framework based on
Neyman-Rubin potential outcome model (Imbens & Ru-
bin, 2015) for single binary treatment. Let X ∈ Rd denote
the covariates and Y ∈ R denote the observed outcome. Let
W ∈ {0, 1} denote the treatment variable. For each subject,
k in population P , k is in the treatment group if Wk = 1
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and in control if Wk = 0. Let M := M0 +M1 be the total
number of samples, where M1,M0 are sample sizes for the
treatment and the control. Denote Yk(1) as the potential
outcome for sample k being under treatment, and Yk(0) for
the case under control.

We are primarily interested in the average treatment ef-
fect (ATE) τ for the target population P , which is de-
fined as the expected difference in potential outcomes:
τ := E[Yk(1)− Yk(0)]. With experimental data from RCT
under standard assumptions (Appendix B), the sample esti-
mate of ATE is the difference in average sample outcome
between the treatment and the control: τ̂ := Ê[Y |W =

1]− Ê[Y |W = 0]. If only observational data are available,
with additional identifiability assumptions (Appendix B),
we can perform observational causal inference using po-
tential outcome regression (POR) (Imbens & Rubin, 2015):
τ̂ := (1/M)

∑
k[Ŷk(1)−Ŷk(0)] where Ŷk(1) and Ŷk(0) are

estimated potential outcomes. Other alternative approaches
include inverse propensity weighting (Rosenbaum & Rubin,
1983) and augmented inverse propensity weighting (Robins
et al., 1994). Furthermore, the standard error σ̂ of the sam-
ple estimate is important to quantify statistical significance
and confidence interval. Analytical expressions (Appendix
C) or bootstrapping can be used to obtain σ̂ depending on
the estimators.

3. Collaborative Causal Inference
We consider n self-interested parties N := {1, . . . , n}. We
assume that the parties are non-malicious and they may ac-
quire data from local and potentially biased populations,
but these data collectively form the common target popula-
tion of interest. This assumption can also be interpreted
as: individual datasets may have limited representative-
ness, but when combined, they provide a more compre-
hensive view of the target population. A subset C ⊆ N
is a coalition formed by several parties, and N is often re-
ferred to as the grand coalition. For all possible coalitions
C ⊆ N , let DC := {X(C), Y (C),W (C)} denote the dataset
where X(C), Y (C), and W (C) are covariates, the outcome,
and the treatment variable in the data of coalition C, re-
spectively. Let τ̂C and σ̂C denote the sample estimate of
ATE and the standard error of the estimate obtained from
DC respectively. To simplify notation, the sub/superscript
C is replaced by party index i when C = {i}. Thus,
DC =

⋃
i∈C Di. Let D =

⋃
i∈N Di. Let v : 2N → R

be the valuation function for coalitions and let vC = v(C)
be the value of the dataset DC obtained from all parties in
C. The reward value for each party i ∈ N is denoted as ri.
Thereafter, a reward Ri with value ri will be realized for
each party i. Specifically, Ri := {τr,i, σr,i} consists of both
the treatment effect estimate and its standard error. The goal
is to design valuation function v, determine the reward value
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Figure 1: Illustration on reverse KL divergence (∆τ :=
τ̂C − τ̂N ,∆σ := σ̂C − σ̂N , σ̂N = 1) .

r, and produce the realization of reward R to encourage the
collaboration of parties for causal inference. We assume a
trusted coordinator who can access the data from all parties
and produce the reward according to the framework.

4. Data Valuation for Causal Inference
Parties are often interested in obtaining both an accurate
sample ATE estimate τ̂ and its standard error σ̂. Hence,
the data valuation function for the causal inference dataset
should take both τ̂ and σ̂ produced by the dataset into con-
sideration. In practice, the ground truth treatment effect is
an unknown quantity and needs to be inferred. If we assume
that all contributed data are non-malicious and come from
the same general population, the best available estimate is
the sample ATE computed using all data in the grand coali-
tion N due to the asymptotic consistency of the estimators.
Thus, we treat the grand coalition estimate τ̂N as the surro-
gate for the ground truth population ATE τ , similarly for its
standard error σ̂N . We justify the validity of the surrogate
in Appendix I.6.

For each dataset, τ̂ itself is a point estimate, but in the form
of sample mean. With sufficient sample size m (≥ 30), τ̂ ap-
proximately follows the normal distribution p ∼ N (τ, σ2)
by the central limit theorem. Since both τ and σ are un-
known true population-level statistics, we approximate p
using sample estimates through q := N (τ̂ , σ̂2). This distri-
bution can be useful for scenarios when different levels of
confidence interval are required.

The parties value the accuracy of both τ̂ and σ̂. The sample
ATE τ̂ is the fundamental goal of causal inference. The
sample standard error σ̂ serves the purpose of quantifying
statistical significance for τ̂ . A high σ̂ indicates low confi-
dence of τ̂ and that the result is less reliable. Consequently,
the valuation function v should assign higher values to the
more accurate ATE and standard error estimates.

We adopt the negative reverse Kullback-Leibler (KL) diver-
gence between the normal distribution qC := N (τ̂C , σ̂

2
C)

obtained by dataset DC of coalition C vs. the distribution
pN := N (τ̂N , σ̂2

N ) by DN of the grand coalition N as the
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valuation function for coalition C:
v(C) := −KL(qC ||pN )

= log σ̂C − log σ̂N − σ̂2
C + (τ̂C − τ̂N )2

2σ̂2
N

+
1

2
.

(1)

The smaller the distributional divergence from the grand
coalition estimate (τ̂N , σ̂N ), the more valuable the dataset
of a coalition. The reverse KL considers the accuracy of
both the ATE estimate and its standard error. Moreover,
reverse KL is convex as shown in Fig. 1a. When σ̂C is fixed,
the reverse KL is minimized when τ̂C = τ̂N . Similarly
for a fixed τ̂C , the minimum is achieved when σ̂C = σ̂N .
This allows us to get a closed-form upper bound whenever
one is known, which is particularly useful when we sample
rewards in Sec. 5.3. Reverse KL also has a nice property
that describes the asymmetry between overconfidence and
underconfidence. Suppose that τ̂C = τ̂N : When σ̂C > σ̂N

(underconfident), the reverse KL grows sub-quadratically
w.r.t. σ̂C . When σ̂C < σ̂N (overconfident), it grows sub-
linearly w.r.t. σ̂−1

C . This asymmetric behavior is desirable
because practically it is the underconfidence that prevents
parties from using the estimates. Moreover, the value of
reverse KL is more stable as in Fig. 1b. We highlight that
the direction of KL divergence matters in our case. The
forward KL(pN ||qC), in contrast, behaves undesirably due
to its zero-avoiding property (Bishop, 2006) which punishes
insufficient coverage of qC on the target distribution pN .
This yields overwhelmingly large divergence when qC is
overconfident at super-quadratic rate w.r.t. σ̂−1

C , as shown
in Fig. 1b. The divergence also goes close to 0 with larger
σ̂C , which is undesirable because overly large σ̂C indicates
low confidence and should be thus less valuable.

5. Reward Scheme
This section formally discusses the reward scheme with de-
sirable incentive criteria to ensure a fair and more valuable
outcome for each party and encourage their participation.
To be compatible with the data valuation function, we use
a scalar reward value as a quantitative proxy for the ac-
tual reward before its distribution to each party and design
the scheme to satisfy the desirable incentive criteria. We
first discuss the incentive criteria considering the distinct
statistical properties of the causal estimates.

5.1. CCI Incentive Criteria

Let v∅ := mini∈N vi for the empty coalition C = ∅.

(R1) CCI Lower Bound. The reward value is lower
bounded by the worst standalone estimate of a party: ∀i ∈
N ri ≥ v∅ .

(R2) CCI Feasibility. No estimate can be more valuable
than that derived from the grand coalition N with 0 diver-
gence: ∀i ∈ N ri ≤ 0 .

(R3) CCI Efficiency. At least one party should be rewarded
an estimate with the best achievable quality, i.e., the grand
coalition estimate (τ̂N , σ̂N ): ∃i ∈ N ri = 0 .

R1 and R2 together constitute the numerical validity of
the reward values. We choose to lower bound the negative
divergence with v∅ because otherwise, the reward can be
arbitrarily bad, and the reward value computation (Sec. 5.2)
requires a minimum value. Note that v∅ is only a lower
bound for all reward values and it does not imply party i
with the lowest standalone value (vi = minj∈N vj) will
receive the lowest reward value. The feasibility in R2 is
naturally satisfied due to the non-positivity of negative KL
divergence. R3 ensures the efficiency of reward distribution
and avoids a wastage of resources, which is also necessary
for optimal group welfare (R6) to be defined later.

The work of Sim et al. (2020) has adopted an axiomatic
approach for the reward scheme based on cooperative game
theory (CGT) and proposed several desirable incentive crite-
ria according to the characteristics of ML models. We adapt
some of the criteria to suit causal inference:

(R4) Individual Rationality. Higher valued reward is guar-
anteed: ∀i ∈ N ri ≥ vi .

(R5) Fairness. Fairness consists of four components:

• (F1) Uselessness. The party i should receive a valueless
reward if its data does not improve the treatment effect
estimation of any other coalitions.

• (F2) Symmetry. If two parties yield the same improve-
ment for all other coalitions, then they should receive
equally valuable estimates as rewards.

• (F3) Strict Desirability. If the data from party i strictly
improves the estimate for at least one coalition more than
that of party j, but the reverse is not true, then party i
should receive a more valuable reward than party j.

• (F4) Monotonicity. For a party i, if its dataset Di strictly
improves the estimate for at least one coalition more
compared to that of its other dataset D′

i, but the reverse
is not true, then sharing Di should give party i more
valuable reward than sharing D′

i.

(R6) Group Welfare. The group welfare U :=
∑

i ri
should be maximized as much as possible.

R4 is fundamental to the cooperative framework because
it can encourage participation by ensuring the parties can
obtain more valuable estimates than without participation.
R5 is an important criterion to ensure the parties are “fairly”
rewarded in CCI. In particular, F1 defines the notion of
useless datasets, F2 defines the equality in reward for identi-
cally contributing datasets, F3 requires the reward values to
be proportional to the contribution of the datasets, and F4
encourages parties to share more valuable information by
guaranteeing more valuable estimates in return.
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5.2. Modified Shapley Fair Reward Value

Previously in Sec. 4, we have only discussed how to com-
pute the standalone value of a dataset. The in-collaboration
value of data may vary considerably depending on the com-
position of the parties. Some data may be more valuable
when they are unique in the coalition compared to the sce-
nario when other parties already have similar data. Thus,
building on the standalone data valuation function v, we
consider the marginal contribution mi(T ) of a dataset i to a
coalition T , which is formally defined as

mi(T ) := v(T ∪ {i})− v(T ) . (2)

Recall that v is the data valuation function (a.k.a. charac-
teristic function in CGT). Moreover, in R5, F1-F4 also em-
phasize the importance of marginal contribution to other
parties when comparing party i against another party j. This
motivates the design of the in-collaboration reward value
function to be based on marginal contributions because only
using the standalone value potentially ignores the interac-
tion among parties in the collaboration and can violate other
desirable properties in R5. For example, when using POR
for observational causal inference, a dataset may produce an
ATE estimate that is far away from the ground truth because
it lacks samples in the treatment group, but the whole dataset
is representative to the target population. Then, including
this dataset can reduce the absolute error significantly for
the ATE estimates of other coalitions, making the dataset
extremely valuable to the coalition even though it does not
provide a very accurate ATE estimate on its own. Similarly,
a dataset with extremely accurate ATE may not be able to
reduce the error for other datasets if this dataset has noisy
measurements. Therefore, we use the Shapley value (Shap-
ley, 1953) to carefully account for such interaction among
the parties in the collaboration to determine the reward value
and to satisfy R5.
Definition 1 (Shapley Value (SV) (Shapley, 1953)). Given
the marginal contribution function mi(·) in (2), the SV for
a dataset i in grand coalition N is defined as

ϕi := (1/n!)
∑

T⊆N\{i} |T |! (n− |T | − 1)!mi(T ) . (3)

The Shapley value ϕi is the expected marginal contribution
from i to the coalitions T ⊆ N\{i} and satisfies the desir-
able criteria for our collaborative context, especially fairness
(R5).
Proposition 1 (Shapley Fairness). If ri = αϕi for all i ∈
N,α > 0, then fairness (R5) is satisfied.

This is modified from Definitions 1 in (Sim et al., 2020).
Shapley value also satisfies hard efficiency (Chalkiadakis
et al., 2011) in cooperative games constrained by

∑
i ri =

vN . The equality constraint is valid when dividing a finite
pool of goods such as monetary compensation and confer-
ence votes, but it is not necessary under the CCI context

since rewarding a party with the estimate does not “consume”
vN , and hence we have more flexibility. Directly using the
Shapley value unnecessarily reduces the group welfare (R6).
Therefore, the more relaxed weak efficiency (R3) criterion is
followed. To improve group welfare while satisfying other
desirable criteria, we propose to determine the reward value
of parties in CCI based on a modified version of Shapley
value:
Definition 2 (Modified ρ-Shapley fair reward value).

ri := max{vi − v∅, (−v∅)(ϕi/ϕ
∗)ρ}+ v∅ (4)

where ρ ∈ (0, 1] is the crucial scaling factor and ϕ∗ :=
maxi∈N ϕi is the maximum Shapley value of a party in the
coalition. The offset by v∅ is necessary to ensure positivity
within the max operator because vi ≤ 0. This reward is
similar in concept to those in the setting of collaborative ML
(Sim et al., 2020; Tay et al., 2022).

If ρ → 0, then ri → 0 for all i ∈ N and all parties receive
the same optimal estimate. This solution achieves maximum
group welfare and satisfies individual rationality (R4), but
it violates the fairness defined by F3 in R5, discouraging
self-interested parties with more valuable data to participate
because they can lose their advantages compared to parties
with even useless or worthless data. Supposing ρ = 1
and only the right-side value (−v∅)(ϕi/ϕ

∗)ρ is used for the
max-operator, we recover a Shapley value ϕi linearly scaled
by a factor of −v∅/ϕ

∗. This satisfies R5 but potentially
violates R4 for parties with low Shapley value but high
standalone value, i.e., vi−v∅ > (−v∅)(ϕi/ϕ

∗)ρ. Moreover,
supposing ϕi > 0 for all i ∈ N , ϕi/ϕ

∗ ∈ [0, 1]. Thus, ρ
is inversely proportional to ri. By increasing ρ from 0 to
1, the gap of reward value between parties with different
contributions is gradually enlarged for better fairness,1 but
at the cost of reduced group welfare. We show the trade-off
caused by ρ in Appendix I.2. When ρ > 1, it starts to punish
parties with non-maximal Shapley value ({i : ϕi < ϕ∗})
while not satisfying any of the criteria R1 to R6. Thus, we
constrain ρ ≤ 1. By introducing the max over vi − v∅,
we are guaranteed to satisfy R4 but may violate F3 in R5.
Under mild assumptions, we can adjust ρ according to the
datasets to satisfy all incentive criteria:
Proposition 2 (Main result). Suppose that the data val-
uation function v is monotonic at the coalition level, i.e.,
v(T ∪ {i}) − v(T ) ≥ 0 for all i ∈ N,T ⊆ N . Then,
the Shapley value ϕi is non-negative. Furthermore, the
modified ρ-Shapley fair reward scheme (Definition 2) sat-
isfies R1 to R4. It also satisfies CCI Fairness (R5) if
ρ ≤ mini∈N log(1− vi/v∅)/ log(ϕi/ϕ

∗) .

The proof is in Appendix F. However, we should take note

1Informally, “better fairness” means that the rewards to parties
with higher contributions receive are (considerably) higher than
those to parties with lower contributions.
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that the monotonic assumption on valuation function v made
by Proposition 2 might not hold (for less 1 < % of the cases,
shown in Appendix I.5 on realistic datasets when some par-
titions consist of mostly non-representative data points and
produce too inaccurate estimates). The violation of mono-
tonicity can cause the marginal contribution to another party
to be negative and potentially results in negative Shapley
value ϕ, which triggers the max-operator to reach the value
vi − v∅ since it is non-negative. As a result, all parties with
non-positive Shapley values all have the reward ri = vi
regardless of the ranking of their Shapley values, which
causes a violation of Shapley fairness. Subsequently, R5 is
no longer guaranteed. Fortunately, in our empirical inves-
tigation, we find this situation is rare, and usually only the
party with the lowest standalone value sometimes has a neg-
ative Shapley value, which does not violate F3 because of
the consistency in ranking between the reward value and the
Shapley value. We regard the monotonicity assumption as a
theoretical limitation. To overcome this in implementation,
we threshold negative Shapley values to 0 and reward the
corresponding party minimally with vi.

The group welfare U :=
∑

i ri is inversely proportional
to ρ ∈ (0, 1] and is maximized as ρ → 0 while sat-
isfying the other criteria. However, the reward gap be-
tween parties will also become negligible, which decreases
fairness (R5) and causes parties with large and valuable
datasets unwilling to participate. On the other hand, when
ρ → mini∈N log(1 − vi/v∅)/ log(ϕi/ϕ

∗), all CGT crite-
ria defined in R1-R5 are satisfied while also encouraging
the participation of parties with more valuable data, at the
cost of lower group welfare, when compared to a smaller
ρ → 0. It is up to the coordinator and the participating
parties to set the value according to the particular prob-
lem since different use cases require different levels of
precision and normalization on the ATE estimation. For
example, increasing the recovery rate by 0.1 is not com-
parable to increasing the farm yield by 0.1kg. Practically,
parties can decide a minimally acceptable threshold ρ′ ac-
cording to the problem. Thereafter, we can let the final
ρ := min{ρ′,mini∈N :ϕi>0 log(1 − vi/v∅)/ log(ϕi/ϕ

∗)}.
By introducing ρ′, group welfare can be further maximized
if ρ can be further decreased after satisfying the inequality
in Proposition 2. This parameter allows a more explicit
trade-off between fairness and group welfare. As an ex-
ception to the rule, parties with negative Shapley values
are ignored when determining ρ because it is impossible to
always satisfy R5 for them, and their reward values are set
to the standalone value vi.

5.3. Reward Realization

To translate the reward value r into an actual reward R =
{τr, σr} as a meaningful incentive in practice, we propose
additional criteria when rewarding ATE estimates other than

it being consistent with R1 to R6 defined for r previously.

Definition 3 ((R7) CCI Fidelity). The rewarded ATE esti-
mate should not provide wrong information about the basic
question on whether the treatment is effective. The signs
of the estimate τr and the grand coalition ATE estimate τ̂N
must agree: sign(τ̂N ) = sign(τr).

By this criterion, we can perturb the grand-coalition ATE
estimate and its standard error (τ̂N , σ̂N ) according to the
value of the dataset of a party as the realization of reward,
but up to a degree that the fidelity (sign) is preserved. Other-
wise, unfortunate consequences such as clinics mistakenly
prescribing ineffective drugs can occur.

Definition 4 ((R8) CCI Information Obscurity). The re-
ward R should be sufficiently obscured such that no party
i can infer more valuable ATE estimates from Ri and their
own data Di.

To promote collaboration, our proposed CCI framework re-
lies on fairness, and the reward scheme must be transparent
to all parties. However, knowing the scheme should not
enable any party i to infer better estimates closer to the
true ATE estimate τ̂N using the dataset Di and the reward
Ri, which overturns the consistency between reward value
and the actual reward, defeating the purpose of fair reward
scheme. At first, any deterministic reward realization strat-
egy will more likely disclose the grand coalition estimate
τ̂N . For example, if the strategy always moves the estimate
of every party closer to τ̂N without changing its side (i.e.,
τr ≤ τ̂N only or τr ≥ τ̂N only), parties who think their
data are less valuable can slightly shift τr,i further from
their own reward τ̂i to obtain new ATE estimates closer to
τ̂N with higher value. Moreover, if we always reward the
grand coalition ATE estimate τ̂N as τr and only perturb
the standard error σr according to the reward value r, it is
almost equivalent to rewarding parties with equally valuable
estimates, because parties can just blindly trust the estimate
from the grand coalition. Knowing the significance level by
σr is no longer as useful.

5.3.1. STOCHASTIC REWARD SAMPLING

We propose to inject noise when realizing the reward to ob-
scure the ground truth surrogate. We first randomly sample
τr,i from a distribution qi centered on τ̂N whose variance is
inversely proportional to ri and bounded by κ2 whose value
is related to σ̂N :

τr,i ∼ N
(
τ̂N , κ2(r∗ − ri)/(r

∗ − v∅)
)

where r∗ := maxi ri and κ is set to 2σ̂N . We use rejec-
tion sampling whenever fidelity (R7) is violated. Then we
solve for σr,i by equating the value of the reward Ri com-
puted by negative reverse KL divergence defined in (1) to
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ri. Formally,

ri = log σr,i − log σ̂N −
σ2
r,i + (τr,i − τ̂N )2

2σ̂2
N

+
1

2
. (5)

The only unknown in the equation is σr,i, with respect to
which the expression on the right-hand side (RHS) is con-
cave. The RHS is upper bounded by the Euclidean distance
−(τr,i − τ̂N )2/(2σ̂2

N ) and drawing overly perturbed sam-
ples may cause (5) to have no feasible solution. There-
fore, a second rejection sampling is used to make sure
τr,i ∈ [τ̂N−σ̂N

√
−2ri, τ̂N+σ̂N

√
−2ri] for feasibility (Ap-

pendix G.1). Provided with τr,i, we can efficiently solve (5)
using root-finding algorithms, prioritizing the solution with
a larger variance (underconfidence). In this way, we have
guaranteed correspondence between the reward value and
the value of the rewarded estimate. For a more contributing
party with a higher reward value, it benefits not only from a
more valuable reward estimate but also from a lower degree
of perturbation when sampling τr,i.

Using random sampling, our reward realization strategy ad-
dresses both R7 and R8 by preserving the fidelity and obscur-
ing τ̂N , σ̂N . Nonetheless, we still observe some limitations,
because the absolute error of τr,i is inversely proportional to
the error of σr,i under fixed reward value. Overly large σr,i

may still indicate more accurate τr,i. Fortunately, that is not
absolutely true since parties with low-value data will also
get wider confidence intervals even with less accurate τr,i.
By increasing κ during the sampling of τr,i, we decrease
the cumulative probability of getting more accurate τr,i for
party i to reduce the chance of getting overly large values
for σr,i that may disclose τ̂N .

6. Experiments
We perform simulated CCI on three datasets based on real-
life data distribution to demonstrate the fairness and gain
in group welfare for our algorithm. Our implementation
can be found at https://github.com/qiaoruiyt/
CollabCausalInference.

6.1. Datasets

TCGA (Weinstein et al., 2013) is a modified large-scale
dataset collected from a public cancer genomics program
named The Cancer Genome Atlas (TCGA), on the effec-
tiveness of different treatments in curing cancer. Similar
to (Schwab et al., 2018), we focus on the effect of binary
treatment (either chemotherapy or surgery) on the binary
outcome (recovery) with continuously valued RNA gene
expressions as covariates. There are 9659 observed patients
while 4130 of them are treated. For the demonstration pur-
pose, we randomly choose 50 covariates out of the 20531-
dimensional RNA features. In particular, TCGA dataset
has the closest resemblance to healthcare datasets, which

are rarely publicly available due to proprietorship. We use
TCGA to simulate a real-life instance of CCI where private
hospitals collaboratively improve their cancer treatment ef-
fect estimates by sharing the data.

JOBS (Lalonde, 1984) consists of experimental samples
originating from National Supported Work Demonstration
(NSW), a US-based job training program to help disadvan-
taged individuals. The dataset has 8 covariates such as
education, demography, and previous earnings. The out-
come is a continuous variable about earnings 2 years after
the training. We follow the split by (Louizos et al., 2017;
Shalit et al., 2017) with 297 samples in treatment and 425
in control. Performing CCI on JOBS can be interpreted as
few employment training organizations are interested in the
treatment effect of a common strategy used in their program.

IHDP (Hill, 2011) is a simulated dataset based on a real ran-
domized experiment named Infant Health and Development
Program (IHDP), which aims to evaluate the treatment effect
of high-quality child care provided by specialists on prema-
ture infants. There are 25 covariates (e.g., family condition)
and 1 continuous outcome on the cognitive test scores. The
original experimental dataset is converted to observational
samples by leaving out a nonrandom portion of the group to
create bias, resulting in new treatment group (139 samples)
and control group (608 samples). We use IHDP to simulate
CCI among childcare companies to improve their product
through better treatment effect estimation.

6.2. Setups and Results

6.2.1. SIMULATED CCI

For each of the three causal inference datasets, we ran-
domly create 5 disjoint equal-sized partitions indexed by
j = 1, . . . , 5 to simulate an instance of CCI with 5 parties.
Causal inference can be performed on each partition or a
coalition of partitions for data valuation. We perform all
experiments using POR with linear models for simplicity.
Our framework is also applicable to other estimators and
models (Appendices I.3 and I.4).

We demonstrate the intermediate and final results of running
the simulated collaborative causal inference framework on
the three datasets partitioned in a disjoint manner in Fig. 2.
The reward value always upper bounds the standalone value,
satisfying individual rationality (R4) and demonstrating that
participating in the collaboration improves the existing esti-
mation for any party. Even though the three plotted values
are correlated, still notably, the ranking of reward value is
determined by Shapley value instead of standalone value,
because the contribution on improving the estimates of other
parties is more important to the collaboration. For example,
party 4 is rewarded more than party 5 in Fig. 2c despite
having a lower standalone valuation (also party 2 vs. party
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Figure 2: Simulating CCI framework on three datasets with
disjoint partitioning.

1 and 3 in Fig. 2a), indicating that the proposed modified
ρ-Shapley fair reward provides better fairness. Moreover,
TCGA with 9659 data points is at a much larger scale com-
pared to IHDP and TCGA (both are less than 1000). Our
experiments demonstrate that CCI is beneficial to parties
regardless of the sample size. Parties 4, 5 in Fig. 2a, parties
1, 5 in Fig. 2b, and parties 1, 2, 3 in Fig. 2c receive consid-
erable improvements due to sufficient contribution to the
collaboration with non-negative Shapley values.

We also visualize the actual sampled reward of the three
simulated CCI experiments in Fig. 3, where most of the par-
ties will receive estimates that are quite close to the ground
truth, but they may appear on either side of the ground truth
with certain distances according to our stochastic reward
sampling strategy.

6.2.2. AVERAGE IMPROVEMENT

Table 1 shows that our CCI framework achieves significant
improvement over the non-collaborative case by column
“Gain”, which is defined as the average difference between
the value of the estimate obtained by participating in the
collaboration vs. the standalone value for the parties, i.e.,
(1/n)

∑
i(ri − vi). We observe that the minimum gain

is positive, showing that our scheme is always beneficial.
Moreover, we show that the fairness guaranteed by our
framework only requires a limited trade-off in group welfare
(R6) compared to the naive case where all parties share the
same best estimate in column “Cost”, which is defined as
the difference in value between the grand coalition estimate
vN vs. the reward estimate, i.e., (1/n)

∑
i(r

∗ − ri).
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Figure 3: Reward estimates for simulated CCI on three
datasets with disjoint partitioning. The dashed black line is
the ground truth (surrogate). Other colored lines represent
the sampled reward ATE estimates for the five parties. The
shaded area represents the normal distribution parameter-
ized by the ATE and its standard error.

Dataset Gain (min) Cost (min)
TCGA 73.3 (2.6) 14.4 (0.2)
JOBS 81.5 (4.5) 13.0 (0.4)
IHDP 164.9 (4.5) 52.6 (0.9)

Table 1: Average improvement/cost (and their min) in group
welfare. The results are obtained from 1000 independent
runs of 5 parties.

7. Sensitivity Analysis
We perform local sensitivity analysis for the data valuation
function with respect to the estimate of the ground truth
surrogate. For illustration purposes, we slightly abuse the
notation on the data valuation function v(C) by including
the ground truth surrogate τ̂N as part of the functional input
since now it is being varied. Then we compute the partial
derivative for local sensitivity analysis:

∂v(C, τ̂N )

∂τ̂N
=

τ̂C − τ̂N
σ̂2
N

=
∆C

σ̂2
N

Suppose that the standard error σ̂N is fixed, the sensitivity
of the data valuation function is locally determined by the
accuracy of the estimate ∆C produced by the coalition C.
The more inaccurate the estimate is, the more sensitive it is
to the changes in the ground truth surrogate.
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Figure 4: Sensitivity analysis by perturbing the value of the
ground truth surrogate. Without loss of generality, we only
plot the change in valuation for the first party.

For the Shapley value of party i, the partial derivative is:

∂ϕi

∂τ̂N
=

1

n!

∑
T⊆N\{i}

|T |! (n− |T | − 1)!
τ̂T∪{i} − τ̂T

σ̂2
N

.

This is in fact a constant with respect to τ̂N . Thus, any
change of the ground truth surrogate τ̂N will have a linear
effect on the Shapley value for each coalition (including
each party). With respect to the coalitions, the sensitivity
gets larger for a party’s data if including it causes a larger
magnitude for the weighted net change in the ATE estimate.

We empirically study the sensitivity of the quantities pro-
posed in our work with respect to the value of the ground
truth surrogate. We perturb τ̂N uniformly in the range
[−20%,+20%] and plot the corresponding values in Fig. 4.
Empirically, our approach is quite sensitive with respect to
the accuracy of the ground truth surrogate, which is intuitive
since the ground truth surrogate is important in our method.
However, we note that the grand coalition estimate is the
best estimate we can obtain in practice, without making and
exploiting additional assumptions, which can be improved
further by including more parties in the collaboration.

8. Related Work
To leverage the effectiveness of big data, various approaches
are being proposed to take advantage of the data from mul-
tiple sources or parties. For instance, for machine learn-
ing, there are approaches that consider federated learning
(Kairouz et al., 2021), collaborative machine learning (Sim
et al., 2020; Xu et al., 2021a; Nguyen et al., 2022; Lin et al.,
2023), unsupervised learning (Tay et al., 2022), paramet-
ric learning (Agussurja et al., 2022), (personalized) model
fusion (Lam et al., 2021; Hoang et al., 2021), active learn-
ing (Xu et al., 2023) or reinforcement learning (Fan et al.,
2021). As many of works require assigning scalar values
to the datasets of the parties, the so-called data valuation
functions (Sim et al., 2022) are often leveraged, such as
(Ghorbani & Zou, 2019; Xu et al., 2021b; Wu et al., 2022).
These data valuation works exploit certain structures in ML

(e.g., the accuracy on a validation dataset (Ghorbani & Zou,
2019)). In contrast, our work differs from them in exploiting
the unique statistical perspective of causal inference.

Similarly in causal inference, federated causal inference
(Vo et al., 2021; Xiong et al., 2021) and causal data fusion
(Bareinboim & Pearl, 2016; Li et al., 2020) are also active
research areas. However, these works all implicitly assume
that all parties are altruistic and willing to contribute their
valuable data regardless of the cost-effectiveness. Our work
generalizes to the case with self-interested parties and in-
centivizes the parties to collaborate, thus helping to meet
the assumption made in those cited works.

9. Conclusion and Future Work
We propose a novel collaborative causal inference frame-
work that incentivizes the collaboration of self-interested
parties for causal inference by fairly rewarding them with
more valuable treatment effect estimates. The framework
consists of (a) a causal inference data valuation function
using the negative reverse KL divergence towards the tar-
get estimate, (b) a reward scheme based on ρ-Shapley fair
reward value to satisfy desirable incentive criteria, and (c)
a stochastic reward realization strategy based on rejection
sampling. We empirically demonstrate the effectiveness of
the framework.

We aim to encourage practical collaboration in causal in-
ference by addressing the fairness aspect via the Shapley
value and it is interesting to explore whether the Shapley
fairness can still be satisfied when the number of parties
is large (Zhou et al., 2023). Our work focuses on the case
where parties share a common population of interest and
pursue homogeneous ATE estimates, but there are scenarios
where conditional ATE for heterogeneous populations is
also important. Such extension requires non-trivial effort on
data valuation and incentive mechanism design, which we
leave for future work. Another assumption is that the parties
are honest and non-malicious, which may not be guaran-
teed in practice, as some parties can be untruthful and and
try to exploit the transparent framework to achieve selfish
outcomes or even cause harm to other parties. Strategyproof-
ness (Chalkiadakis et al., 2011) in CGT is an interesting
future research direction for encouraging truthfulness.
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A. Ethics statement
We would like to highlight that our goal is to encourage collaboration and benefit society rather than limiting knowledge
discovery. In the ideal world, it is good to share complete causal knowledge among every party (e.g., scientific research).
However, our work focuses on the realistic scenario where self-interested parties who care about fairness are common
across industries (e.g., private hospitals, pharmaceutical firms, agricultural farms), but the collaboration is missing/rare
prior to incentivization. Without fairness, these parties are not willing to collaborate, thus further limiting the discovery of
knowledge and their welfare. Our fairness-based framework removes one important roadblock to collaboration. Comparing
the ideal case of equally sharing the causal knowledge vs. the practical case of proportional but fair sharing, which view is
correct? Our opinion is that they both have their own use cases. In our case, proportional knowledge sharing is actually
more ethical than complete knowledge sharing.

B. Assumptions
B.1. Causal Inference

We make the following assumptions for the identifiability of ATE under Neyman-Rubin potential outcome framework.

1. Stable Unit Treatment Value Assumption (SUTVA) (Imbens & Rubin, 2015): The treatment for one unit does not
change the effect of treatment for other units, i.e., ∀j, k ∈ P such that j ̸= k, Yj ⊥⊥ Wk.

2. Consistency: The potential outcome agrees with the observed outcome in the dataset, i.e., ∀j ∈ P, Yj = Yj(0)(1−
Wj) + Yj(1)Wj .

3. Unconfoundedness (Rosenbaum & Rubin, 1983): The potential outcomes are independent of the treatment given the
covariates, i.e., ∀j ∈ P, (Yj(0), Yj(1)) ⊥⊥ Wj |Xj .

4. IID: All units j ∈ P are independently and identically distributed (IID) samples from the general population of interest.

B.2. Collaborative Causal Inference

In addition, for the theoretical properties of the collaborative scheme, we assume that the parties are self-interested but
non-malicious. Self-interestedness means that parties are not altruistically sharing their data. Being non-malicious is a
different concept such that parties are not performing harmful actions (e.g., deliberately providing wrongly labeled data) to
degrade the estimates of other parties.

We argue that the assumption of being self-interested and non-malicious is valid in practice. Firstly, in our motivating
example, hospitals are self-interested entities that are mostly self-funded and profit-seeking, but they still share the principle
of helping the community, and any malicious act that causes inaccurate ATE estimate is not aligned with their objective.
Thus, the non-malicious assumption is valid. Secondly, a similar assumption is either explicitly or implicitly adopted in a
variety of works in multi-source causal inference (Bareinboim & Pearl, 2016; 2012; Yang & Ding, 2020) and collaborative
machine learning (Sim et al., 2020; Tay et al., 2022). To our knowledge, very little work in the causal inference setting
explicitly discusses malicious data sources whilst not knowing the true causal effect. Furthermore, to rigorously relax this
assumption would require a suitable and well-motivated definition of malicious parties which presents a challenging future
research direction.

C. Standard Error Estimation
For RCT, σ̂ = (σ̂Y |W=1/M1 + σ̂Y |W=0/M0)

1/2, where σ̂Y |W is the standard error of the mean for the treatment (W = 1)
or the control (W = 0).

For POR, σ̂ = ((σ̂Y (1) + σ̂Y (0))/M)1/2, where σ̂Y (1) is the standard error of the mean for the potential outcome of the
treatment and σ̂Y (0) is for that of the control.

For other estimators which may not have analytical expressions for standard error, bootstrapping can be used.
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D. Additional Data Valuation Functions and Why Not Choose Them
D.1. Discrepancy

One natural choice of the data valuation function v is the negative discrepancy between the estimated ATE from the subset S
and from the grand coalition N :

vd(S) = −d(τS , τN ) (6)

where d is an arbitrary metric distance such as squared difference d = (τS − τN )2 or absolute difference d = |τS − τN |.

Why not? This measure does not consider the uncertainty - standard error. In practice, the standard error is a required
justification to show that the estimate is statistically significant.

D.2. Inverse Variance Weighting

Meta-analysis (Borenstein et al., 2009; Dersimonian & Laird, 1986) is a statistical technique proposed to perform systematic
review (Delgado-Rodrı́guez & Sillero-Arenas, 2018), which aggregates the treatment effect estimates from multiple
independent studies. For example, different researchers may have performed randomized control trial to test the treatment
effect for different demographics across the globe. A team of systematic reviewers may use meta analysis to draw conclusions
for the entire human population or discover hidden heterogeneity that may indicate fundamental inconsistency within the
problem and potential future research direction.

The statistical result of meta analysis is usually in the form of a weighted average of the treatment effect from existing
studies based on the inverse variance weighting (IVW). If we assume a simple (fixed effect) model, the weights of the study,
which can be used as a valuation metric for the dataset S in our case, is computed simply as follows:

vivw,f = Wi =
1

σ2
S

. (7)

Why not? Note that IVW does not explicitly account for any divergence from a ground truth estimation. It assumes no data
samples are bad as long as it reduces the variance which ties to the statistical significance. This does not account for the
reality such that if working independently, parties have to use their own estimation without knowing the “ground truth” and
bare the consequence of having a discrepancy. A data valuation function has to consider the discrepancy from the “ground
truth”.

D.3. Information Gain

Many causal inference estimators rely on ML techniques. A validation-free information-theoretic approach is proposed in
collaborative ML (Sim et al., 2020) for ML models. The greater the reduction in uncertainty of the model parameters θ, the
more valuable the data is. A proper measure of uncertainty is information gain (IG) I(θ;D) and the corresponding valuation
function is defined as:

ve(S) = I(θ;DS) = H(θ)−H(θ|DS), (8)

where H is the entropy function. If we only take the ML component of causal inference into account, then by using the
Bayesian version of the regressor and classifier (e.g., Gaussian process), the IG for a causal inference dataset D can be
efficiently computed analytically in closed form:

I(θ;D) =
1

2
log(I+Kσ−2), (9)

where σ2 is the variance for the target of prediction and K is a |D| × |D| gram matrix defined over kernel function k(x, x′)
for the covariates. We have K = X⊤X when the kernel function is linear, i.e., k(x, x′) = x⊤x′.

This valuation function possesses many desirable properties (e.g., monotonicity, submodularity) motivated by cooperative
game theory, which are crucial to the proof of the propositions in collaborative ML (Sim et al., 2020). In fact, many ATE
estimators contain ML as a sub-problem of causal inference. Specifically, potential outcome regression (POR) is based
on regression, inverse propensity weighting (IPW) is based on binary classification, and augmented IPW (AIPW) can be
viewed as a combination of regression and classification.
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Why not? Unfortunately, the uncertainty of ML model used by the subsystem has a relatively low correlation with the
final ATE accuracy in causal inference because it’s fundamentally a density estimation problem, which is different from
prediction. Moreover, not all ML models have efficiently computable Bayesian counterparts, for example, neural networks.

D.4. Volume

Alternatively to IG, volume and robust volume (Xu et al., 2021b) are proposed as a simpler validation-free data valuation
function. The approach is based on the gram matrix similar to that of IG (i.e., X⊤X), but has the advantage of having
model-agnostic property, fewer hyperparameters, and computational efficiency. It has been formally proven that a larger
volume corresponds to a lower mean square error (MSE) in predictive performance.

Why not? Volume is only guaranteed to work with low-dimensional datasets. In practice, volume is dependent on the scale
of variables and suffers from extremely large values if no normalization is applied. Furthermore, the predictive MSE is not
necessarily correlated with the ATE accuracy.

E. Full Axioms for Collaborative Causal Inference
(R1) CCI Lower Bound. The reward value is lower bounded by the worst standalone estimate of a party: ∀i ∈ N ri ≥
v∅ = mini∈N vi .

(R2) CCI Feasibility. No estimate can be more valuable than that derived from the grand coalition N with 0 divergence:
∀i ∈ N ri ≤ 0 .

(R3) CCI Weak Efficiency. At least one party is rewarded an estimate with the best achievable quality, i.e., the grand
coalition estimate: ∃i ∈ N ri = 0 .

(R4) Individual Rationality. Each party i should receive an estimate with value that is at least as good as the standalone
estimate produced by itself: ∀i ∈ N ri ≥ vi .

(R5) Fairness. CCI Fairness includes the following four components:

• (F1) Uselessness. The party i should receive valueless reward if its data does not improve the estimation of any other
coalition: ∀i ∈ N (∀C ⊆ N\{i} vC∪{i} ≤ vC) ⇒ ri = v∅ .

• (F2) Symmetry. If including the data of party i yields the same improvement as that of another party j in the quality
of an estimator using the aggregated data of any coalition, then they should receive equally valuable estimator rewards:
∀i, j ∈ N s.t. i ̸= j (∀C ⊆ N\{i, j} vC∪{i} = vC∪{j}) ⇒ ri = rj .

• (F3) Strict Desirability. If the data from party i improves the estimator for at least one coalition more comparing to that
of party j, but the reverse is not true, then party i should receive a more valuable reward than party j: ∀i, j ∈ N s.t. i ̸=
j (∀B ⊆ N\{i, j} vB∪{i} > vB∪{j}) ∧ (∀C ⊆ N\{i, j} vC∪{i} ≥ vC∪{j}) ⇒ ri > rj .

• (F4) Monotonicity. Consider the case where only party i improves its dataset from Di to D′
i (e.g., having lower noise

or better samples) and results in an updated set of values v′ in coalition. Let ri and r′i denote the reward for party i
under the respective situation. If at least one coalition strictly benefits more from D′

i than Di (with more accurate or
confident estimate), ceteris paribus, then i should receive more reward than before. ∀i ∈ N (∀B ⊆ N\{i} v′B∪{i} >

vB∪{i}) ∧ (∀C ⊆ N\{i} v′C∪{i} ≥ vC∪{i}) ∧ (∀A ⊆ N\{i} v′A = vA) ∧ (v′N ≥ ri) ⇒ r′i > ri .

(R6) Group Welfare. The group welfare U :=
∑

i ri should be maximized while satisfying R1 to R5.

(R7) CCI Fidelity. The rewarded ATE estimate should not provide wrong information about the basic question on whether
the treatment is effective. The following relationship must hold between the gold ATE estimate τ̂N and the reward estimate
τr: sign(τ̂N ) = sign(τr).

By this criterion, we can perturb the grand-coalition ATE estimate and its standard error (τ̂N , σ̂N ) according to the value
of the dataset of a party as the realization of reward, but up to a degree that the fidelity (sign) is preserved. Otherwise,
unfortunate consequences such as clinics mistakenly prescribing ineffective drugs can occur.

(R8) CCI Information Obscurity. The reward R should be sufficiently obscured such that no party i can infer more
valuable ATE estimates from Ri and their own data Di.
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E.1. General versions of R7 and R8

We define fidelity for the case of non-binary but discrete treatment.

(R7.1) CCI Fidelity for Ranking Preservation. The rewarded ATE estimate should not provide wrong information about
the basic question of which treatment is more effective, meaning that the ranking of the treatment effects is preserved when
the estimates are distributed to the parties. Let W be the set of treatments and τ(w) be a function that returns the treatment
effect estimate of w ∈ W . The following relationship must hold between the ground truth surrogate ATE estimate τ̂N and
any reward estimate τr:

∀w,w′ ∈ W s.t. w ̸= w′ τ̂N (w) ≥ τ̂N (w′) ⇒ τr(w) ≥ τr(w
′) .

(R7.2) Fidelity. The reward R should meet a minimum performance bar by preserving the most essential information of the
inference problem.

(R8.1) Information Obscurity. The reward R should be sufficiently obscured such that no party i can infer more valuable
estimates from Ri and their own data Di.

F. Proof of Propositions
We restate Proposition 2:

Proposition. Assume that the data valuation function v is monotonic at the dataset level, i.e., adding more data never hurts.
The modified ρ-Shapley fair reward scheme described in Definition 2 satisfies R1 to R4. Moreover, it satisfies CCI Fairness
(R5) if ρ ≤ mini∈N log(1− vi/v∅)/ log(ϕi/ϕ

∗).

Proof. The proof resembles the case of CGM (Tay et al., 2022), which is also based on collaborative ML (Sim et al., 2020).
Recall the definition of modified ρ-Shapley fair reward:

ri = max

{
vi − v∅, (−v∅)

(
ϕi

ϕ∗

)ρ}
+ v∅

(R1) CCI Lower Bound. ∀i ∈ N ri ≥ (vi − v∅) + v∅ ≥ vi ≥ v∅ .
(R2) CCI Feasibility. At first, if ri = vi for all i ∈ N , vi ≤ 0 since τ̂N is the ground truth. Otherwise, if ri =
(1− (ϕi/ϕ

∗)ρ)v∅, then (ϕi/ϕ
∗)ρ ≤ 1 since ρ ∈ (0, 1] and ϕi ≥ 0 for all i ∈ N . Therefore, ri equals to v∅ multiplied by a

coefficient in [0, 1]. As v∅ ≤ 0, ri ≤ 0 .
(R3) CCI Weak Efficiency. Since vi ≤ 0, for j = argmaxj ϕj , rj = max{vj − v∅, (ϕ

∗/ϕ∗)ρ × (−v∅)} + v∅ =
max{vj − v∅, 0− v∅}+ v∅ = 0 .
(R4) CCI Individual Rationality. ri ≥ vi − v∅ + v∅ = vi.
(R5) Since ϕi/ϕ

∗ ∈ [0, 1] and log(ϕi/ϕ
∗) < 0, setting ρ to that particular value is equivalent of saying vi − v∅ ≤

(−v∅)(ϕi/ϕ
∗)ρ for all i ∈ N . Thus, ri = (1− (ϕi/ϕ

∗)ρ)v∅ ≥ vi, the situation exactly matches the required condition for
fairness in Theorem 1 of collaborative ML (Sim et al., 2020).

G. Derivations
G.1. Solution Bound Derivation for Sec. 5.3.1

Recall the equation to be solved:

ri = − log σ̂N + log σr,i −
σ2
r,i + (τr,i − τ̂N )2

2σ̂2
N

+
1

2
. (10)

We use v′i to denote the right-hand side of the equation and it is a concave function with respect to σr,i. Its first-order
derivative:

∂v′i
∂σr,i

=
1

σr,i
− σr,i

σ̂2
N

. (11)

Setting it to 0 gives σr,i = σ̂N . Thus, the maximum of v′i is achieved when σr,i = σ̂N and v′i,max = −(τr,i − τ̂N )2/(2σ̂2
N ).

In order to make sure that valid solution of σr,i exists when sampling τr,i, we just need to have ri ≤ maxσr,i v
′
i and satisfy

the following inequality:
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ri ≤ − (τr,i − τ̂N )2

2σ̂2
N

⇒ 2riσ̂
2
N ≤ −(τr,i − τ̂N )2

⇒ |τr,i − τ̂N | ≤ σ̂N

√
−2ri .

Thus, τr,i ∈ [τ̂N − σ̂N

√
−2ri, τ̂N + σ̂N

√
−2ri] .

G.2. Gradient Derivation for Sensitivity Analysis

We compute the partial derivative for the data valuation function v(C) with respect to the ground truth surrogate τ̂N :

∂v(C, τ̂N )

∂τ̂N
=

∂[−KL(qC ||pN )]

∂τ̂N

=
∂
[
log σ̂C − log σ̂N − [σ̂2

C + (τ̂C − τ̂N )2]/(2σ̂2
N ) + 1/2

]
∂τ̂N

=
τ̂C − τ̂N

σ̂2
N

=
∆C

σ̂2
N

.

For the Shapley value of party i, the partial derivative is:

∂ϕi

∂τ̂N
=

∂(1/n!)
∑

T⊆N\{i} |T |! (n− |T | − 1)!mi(T )

∂τ̂N

= (1/n!)
∑

T⊆N\{i}

|T |! (n− |T | − 1)!
∂[v(T ∪ {i}, τ̂N )− v(T, τ̂N )]

∂τ̂N

= (1/n!)
∑

T⊆N\{i}

|T |! (n− |T | − 1)!
τ̂T∪{i} − τ̂N − (τ̂T − τ̂N )

σ̂2
N

= (1/n!)
∑

T⊆N\{i}

|T |! (n− |T | − 1)!
τ̂T∪{i} − τ̂T

σ̂2
N

.

(12)

H. Discussion
H.1. Comparison with Existing Collaborative Frameworks

The proposed framework is similar to the seminal work in collaborative ML (Sim et al., 2020) and CGM (Tay et al., 2022).
We highlight the distinctive contributions of our work in comparison with the previous two.

First, we consider the problem of causal inference whose essential goal is to produce an accurate estimate with confidence
interval. Despite the fact that the treatment effect estimate utilizes machine learning model to facilitate its computation, the
predictive performance differs fundamentally from and may not have correlation with the accuracy of the estimate. Thus,
we have proposed a novel data valuation function for causal inference datasets based on negative KL divergence, which
considers both the accuracy and uncertainty of the estimate with closed-form expression. This specially designed data
valuation function is based on treating the estimate as a form of distribution, then value the dataset by the distributional
divergence between the estimate obtained by the dataset vs. that of the grand coalition (ground truth). This distinguishes our
work from collaborative ML (Sim et al., 2020) and CGM (Tay et al., 2022) which both focuses on machine learning.

Second, we propose modified incentive criteria to incorporate the new data valuation function. Moreover, we propose
modified ρ-Shapley fair reward value as the core reward scheme for CCI, such that all desirable incentive criteria of
collaboration can be satisfied. In particular, our reward scheme differs from the previous works by considering the unique
problem of causal inference and tackling the data valuation function without non-negativity assumption. Moreover, we do
not use the stability criterion from R7 in collaborative ML (Sim et al., 2020; Tay et al., 2022). Stability ensures parties
cannot strictly benefit more by forming another coalition (e.g., in a 5-party collaboration, 4 parties can strictly gain more by
abandoning the other one party). However, deviating from the grand coalition and forming another coalition is a strategy

16



Collaborative Causal Inference with Fair Incentives

that requires the result from the grand coalition. Since it is very difficult for parties to try and compare different composition
of coalitions and choose their partners, we argue that this criterion is not necessary.

Third, we propose additional two criteria for the reward in consideration of the unique properties of the cooperative game in
causal inference to guarantee the usefulness and fairness, which has not been investigated in prior collaborative ML (Sim
et al., 2020; Tay et al., 2022). In particular, the treatment effect estimate represents a form of knowledge (e.g., whether
the treatment is effective) and is usually in the form of a scalar. Without randomness, parties may be able to exploit the
reward scheme and their rewarded treatment effect estimates to infer more valuable estimates (as in Sec. 5.3. This is
undesirable because these parties can get more valuable rewards than what they deserve according to their contribution to
the collaboration. Introducing randomness is one way to prevent exploitation, but the estimate should not be perturbed to
the extent that parties have to bear with the excessively wrong knowledge. For instance, the treatment is effective but the
perturbed estimate shows ineffective. We design practical and efficient stochastic reward sampling strategies according to
the two criteria. These problems were not considered in collaborative ML (Sim et al., 2020; Tay et al., 2022), because ML
models are less intuitive and “safer”. Therefore, parties cannot easily infer better ML models even when our reward scheme
is transparent.

H.2. Extension to Heterogeneous ATE

We hope that our work can initiate a novel research direction that motivates collaboration for causal inference in a fair way.
Therefore, we begin our research with a more approachable setting. We acknowledge that some parties may want conditional
ATE (CATE) to their own demographic distribution in practice. However, how to perform multi-source causal inference
using heterogeneous datasets is still an active research area (Bareinboim & Pearl, 2016; 2012; Guo et al., 2021; Yang & Ding,
2020). These solutions for heterogeneous datasets often require additional assumptions (e.g., knowing more complex causal
diagrams (Bareinboim & Pearl, 2016)) and non-trivial procedures to obtain the estimate for the target population (Yang
& Ding, 2020). Adopting them can complicate the setting and miss out on the collaborative component which we target,
and also would require much more extensive research and discussion. Nonetheless, our work is extendable to the case of
CATE where different parties require different ATE estimates for their own interested distributions, as long as collaboration
can improve such estimates. In particular, adaptations are required on the definition of valuable data and the amount of
contribution for this collaboration. Subsequently, the reward scheme needs to be modified accordingly since different parties
may want different ATEs. We are keen to contribute and explore these options as future work.

I. Experiments
I.1. Hardware

All experiments are run on Intel Xeon Gold 6226R CPU only. Typically, 8-cores are used for more efficient parallel
computing.

I.2. Impact of ρ

We show the effect of hyperparameter ρ on group welfare and fairness on JOBS and IHDP with the same 5 random partitions.
We plot the average group welfare and the maximum difference between reward values in Fig. 5. Increasing ρ monotonically
enlarges the gap between the reward value of the datasets for better fairness at the cost of reducing the (average) group
welfare.

I.3. Using Other Causal Inference Estimators

In Fig. 6, we show that our framework also works for other causal inference estimators such as inverse propensity weighting
(IPW) and doubly robust augmented IPW (AIPW), since bootstrapping can be used to estimate the standard error. All parties
enjoy strict improvements in terms of the value of the estimate, and fairness is guaranteed since reward value is proportional
to Shapley value.

I.4. Using Other Regressors for Causal Inference

In this section, we empirically demonstrate that our framework can work seamlessly when other regressors are applied for
potential outcome regression. Due to this flexibility, our framework can handle both continuous and categorical inputs.
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Figure 5: The effect of hyperparameter ρ

(a) TCGA-IPW (b) JOBS-IPW (c) IHDP-IPW

(d) TCGA-AIPW (e) JOBS-AIPW (f) IHDP-AIPW

Figure 6: Simulating CCI framework on three datasets with disjoint partitioning using IPW or AIPW estimator.
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(a) TCGA-linear
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(d) TCGA-xgboost

1 2 3 4 5
Party Index

−150

−125

−100

−75

−50

−25

0

25

50

Va
lu

at
io

n

standalone value
reward value
shapley value

(e) JOBS-xgboost
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(f) IHDP-xgboost

Figure 7: Simulating CCI framework on three datasets with disjoint partitioning using linear and xgboost regressors.

The results are shown in Figure 7 and the valuations resemble each other quite well with slight variations when different
regression models are applied, which is expected because different models will have different biases and ”prefer” different
datasets.

I.5. Monotonicity

We empirically test the probability of violating monotonicity assumption TCGA, JOBS, IHDP datasets. The statistics are
obtained from running 1000 experiments with 5 equal-sized partitions. As shown in Table 2, the probability of getting
non-positive marginal contribution (MC) is less than 30%, and the probability of getting non-positive Shapley value is even
lower at less than 1%. Since the Shapley is positive more than 99% of the time, the reward value is almost always strictly
higher than the standalone value of the dataset. Thus, all parties are likely to be rewarded with more valuable treatment
effect estimates than not participating, which is a strong incentive with fairness guaranteed.

Dataset Prob Positive Shapley (%) Prob Positive MC (%)
TCGA 99.36 73.28
JOBS 99.86 73.08
IHDP 99.54 81.26

Table 2: Empirical probability of violating monotonicity assumption.

I.6. Analysis for Surrogate of Ground Truth ATE

I.6.1. SURROGATE IS MORE ACCURATE THAN THE INDIVIDUAL ESTIMATE OF EACH PARTY.

As discussed in Sec. 4, we use the estimate (τ̂ , σ̂) of the grand coalition N as the surrogate to the unavailable ground
truth. We first empirically demonstrate that the surrogate obtained by collaboration is much more superior compared to the
estimate obtained by each party working individually. We use IHDP and JOBS datasets since they have actual ground truth
available. The comparison is done between the grand coalition estimate τ̂N vs. the individual ATE estimate of each party
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τ̂i. We report the absolute error (ABSE) of the estimate along with the standard error (SE) across 1000 runs. As shown in
Table 3, the error of the grand coalition estimate is much smaller than the average error of the individual estimates.

Dataset ABSE of τ̂N (SE) ABSE of τ̂i (SE)
IHDP 0.05 (0) 1.62 (0.76)
JOBS 82.5 (0) 811.23 (8.61)

Table 3: Empirical result on comparing the most accurate estimate obtained by collaboration vs. no collaboration. We report
the absolute error (ABSE) of the estimate along with the standard error (SE) across 1000 runs.

I.6.2. SURROGATE PERFORMS WELL FOR DATA VALUATION AND REWARD SCHEME.

We present further empirical analysis on how accurate the surrogate is and how that affects our data valuation and reward
computation. In this experiment, we first compute the true data value v′(C) with respect to the ground truth ATE τ , assuming
it is available:

v′(C) = −KL(qC ||p) = log σ̂C − log σ − [σ̂2
C + (τ̂C − τ)2]/(2σ) + 1/2 (13)

where we define σ = 0.1 with a small value since the ground truth ATE has no variance. This is necessary because if we
discard σ, we can no longer consider the uncertainty as part of the data valuation process and the proposed reverse KL
divergence no longer works. The corresponding reward value will be denoted as r′. Then, we compare two sets of values:

1. The ranking of the standalone value of the parties under v(C) (1) vs. under v′(C); and

2. The ranking of the reward of the parties under r (5) vs. under r′.

We choose to compare the rankings because the absolute value of those quantities may differ a lot in value, and what matters
more is which party has more valuable data in comparison to other parties. To compare the rankings, we use Kendall rank
correlation coefficient κ ∈ [−1, 1] to measure the similarity between two ordered indices of parties. We denote the Kendall
correlation between the standalone values as κv and denote that between the reward values as κr. We report our result across
1000 runs with standard error (SE). As shown in Table 4, the correlation between the rankings is pretty high, indicating that
an imperfect ground truth surrogate can still capture the correct value of the datasets most of the time.

Dataset κv (SE) κr (SE)
IHDP 0.78 (0.01) 0.70 (0.01)
JOBS 0.74 (0.01) 0.55 (0.01)

Table 4: Comparison between our v(C) and v′(C) w.r.t. ground truth ATE.

I.7. Effect of Malicious Party

We conduct an additional empirical study by converting one of the 5 simulated parties into a malicious party with large
noise on IHDP dataset. In particular, we add Gaussian noise with mean 0 and variance 5. We compute the average welfare
loss as the difference in value between the original reward value and the value of the return under malicious attack for all
parties and self loss as that for the malicious party. Note that we consider the value of the return, which is the divergence
between the returned estimate (sampled under the malicious setting) and the ground truth surrogate (non-malicious setting),
since a malicious attack causes deviation in the surrogate too. We run the simulation 1000 times and report the error bars.
As shown in Table 5, having a malicious party exhibits significant damage to the actual value of the return with respect to
the ground truth surrogate, but that party cannot gain from the collaboration either.

I.8. Rewards for Edge Cases

Consider the edge case where the ground truth ATE τ = ϵ → 0 and is non-significant. As shown in Figure 8, with extremely
high probability, the perturbed estimates will consistently overestimate the ATE by having larger values depending on the
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Dataset Average Welfare Loss (SE) Self Loss (SE)
IHDP 30.92 (5.61) 23.56 (17.26)

Table 5: Effect of Having one Malicious Party
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Figure 8: Reward estimates for the edge case with ground truth ATE τ → 0 (τ > 0) on synthetic dataset. The dashed black
line is the ground truth (surrogate). Other lines represent the means of ATE estimates.

reward level. This behavior is still expected because the collaboration suggests that the treatment has negligible effect.
Some parties will obtain the knowledge that ATE is negligible, and even parties with less valuable data will enjoy less
overestimation compared to not joining the collaboration.
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