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Abstract
Population-based search has recently emerged as
a possible alternative to Reinforcement Learn-
ing (RL) for black-box neural architecture search
(NAS). It performs well in practice even though
it is not theoretically well understood. In particu-
lar, whereas traditional population-based search
methods such as evolutionary algorithms (EAs)
draw much power from crossover operations, it
is difficult to take advantage of them in NAS.
The main obstacle is believed to be the permu-
tation problem: The mapping between genotype
and phenotype in traditional graph representations
is many-to-one, leading to a disruptive effect of
standard crossover. This paper presents the first
theoretical analysis of the behaviors of mutation,
crossover and RL in black-box NAS, and proposes
a new crossover operator based on the shortest edit
path (SEP) in graph space. The SEP crossover
is shown theoretically to overcome the permuta-
tion problem, and as a result, have a better ex-
pected improvement compared to mutation, stan-
dard crossover and RL. Further, it empirically out-
perform these other methods on state-of-the-art
NAS benchmarks. The SEP crossover therefore
allows taking full advantage of population-based
search in NAS, and the underlying theory can
serve as a foundation for deeper understanding of
black-box NAS methods in general.

1. Introduction
Neural architecture search (NAS), a technique for automat-
ically designing architectures for neural networks, outper-
forms human-designed models in many tasks (Zoph et al.,
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2018; Chen et al., 2018; Miikkulainen et al., 2021). One
major branch of NAS approaches are the black-box NAS
methods, which require only zeroth-order information about
the objectives. While reinforcement learning (RL) con-
tributed to the early success of black-box NAS methods
(Zoph & Le, 2017), population-based search has emerged
recently as a popular and empirically more powerful alter-
native (Real et al., 2017; 2019; Ying et al., 2019), achieving
SOTA performance in various benchmarks and real-world
domains (Real et al., 2017; Elsken et al., 2019; Real et al.,
2019; So et al., 2021; Gao et al., 2022). Population-based
NAS is usually based on evolutionary algorithms (EAs) (Liu
et al., 2021), which mimic natural evolution by maintaining
a population of solutions and evolving them through muta-
tion and crossover. Mutation provides for local search (i.e.
refinement), while crossover implements a directed global
search, and thus constitutes the engine behind evolution-
ary discovery. However, most recent evolutionary NAS
methods are limited to mutation only (Real et al., 2017;
Fernando et al., 2017; Liu et al., 2018; Elsken et al., 2019;
Real et al., 2019; So et al., 2021; Co-Reyes et al., 2021; Gao
et al., 2022), which has also been used extensively in simple
hill-climbing/local search methods (White et al., 2021a;b).

The main obstacle in applying crossover to NAS is the
permutation problem (Radcliffe, 1992; 1993), also known
as the competing conventions problem (Montana & Davis,
1989; Schaffer et al., 1992). This problem is due to iso-
morphisms in graph space, i.e., functionally identical archi-
tectures are mapped to different encodings/representations,
making crossover operations disruptive. A number of pos-
sible solutions to this problem have been proposed in the
neuroevolution community (Thierens, 1996; Stanley & Mi-
ikkulainen, 2002; Dragoni et al., 2014; Mahmood et al.,
2007; Wang et al., 2018; Uriot & Izzo, 2020). However, they
either only work on fixed or constrained network topologies,
or are limited to one particular algorithm or search space;
none of them generalize to arbitrary graphs or architectures
such as those that might arise from NAS. Moreover, prior
work has focused only on empirical verification without a
theoretical analysis of potential solutions. Theoretical un-
derstanding of search efficiency of mutation, crossover, and
RL is still lacking in black-box NAS.

1



Shortest Edit Path Crossover

To meet the above challenges, this paper first proposes a new
crossover operator based on shortest edit path (SEP) in the
original graph space. The SEP crossover does not impose
any constraints on other algorithmic components or appli-
cation scope, thereby forming a simple and generalizable
solution to the permutation problem. Second, a theory is
derived for analyzing mutation, standard crossover, RL, and
the proposed SEP crossover in the NAS domain. The SEP
crossover is shown to have the best expected improvement in
terms of graph edit distance (GED) between the found archi-
tecture and the global optimum. Third, empirical results on
SOTA NAS benchmarks further verify the theoretical analy-
sis, demonstrating that the SEP approach is effective. It thus
allows taking full advantage of population-based search, and
serves as a theoretical foundation for further research on
methods for NAS and similar problems. All source codes
for reproducing the experimental results are provided at:
(https://github.com/cognizant-ai-labs/sepx-paper).

2. Related Work
NAS NAS approaches can generally be categorized into
two groups: one-shot methods and black-box methods
(Mehta et al., 2022). In one-shot approaches (Liu et al.,
2019; Dong & Yang, 2019; Chen et al., 2021), a supernet
is trained to represent the entire search space. The overall
training cost is reduced significantly; however, these ap-
proaches can only be run on small cell-based search spaces
with a complete graph (Mehta et al., 2022; Zela et al., 2020)
and the search objectives must be differentiable. In contrast,
although computationally more expensive, black-box meth-
ods have no restrictions on the search space or objectives,
making them a more general solution to NAS. Thus, this
paper will focus on black-box NAS.

Black-box NAS Black-box NAS methods, also called
zeroth-order methods, iteratively generate architectures for
evaluation, and then use the outcome to update the search
strategy. There are four main types of search strategies in
black-box NAS approaches: random search (Li & Talwalkar,
2020; Yu et al., 2020), RL (Zoph & Le, 2017; Zoph et al.,
2018), evolutionary search (Real et al., 2017; 2019), and
local search (White et al., 2021a;b). Local search, whether
used alone or together with neural predictors (e.g., Bayesian
models), is based on operations that are essentially the same
as mutation (although different terminology may be used)
(White et al., 2021a;b). They can therefore be seen as equiv-
alent to mutation-only evolutionary search with a population
size of one. The one search strategy that is significantly dif-
ferent from evolutionary methods is RL, and will thus be
included in the theoretical analysis in this paper. The the-
ory developed in this paper thus covers most of the search
strategies in Black-box NAS.

RL-based black-box NAS RL-based methods work by it-

eratively sampling architectures using a RL agent, then col-
lecting the prediction accuracies as the reward for updating
the policy. Zoph & Le (2017) successfully generated well-
performing convolutional networks and recurrent cells using
a specially designed recurrent neural network as the agent.
Zoph et al. (2018) further showed that the approach finds
architectures that transfer well between different datasets.
In a recent empirical study (Ying et al., 2019), a simple RL
agent based on multinomial probability distributions was
found to perform significantly better on NAS-bench-101
than previous RL-based NAS methods. This RL controller
is analyzed in this paper as well.

Evolutionary Black-box NAS Evolutionary NAS methods
work by improving a population of architectures over time
(Liu et al., 2021). To generate new offspring architectures,
two operators can be used: a random edge/node mutation ap-
plied to an existing architecture, and crossover to recombine
two existing architectures. Architectures that do not perform
well are removed periodically from the population, and the
best-performing architecture returned in the end. While
crossover is a powerful operator, most existing methods rely
on mutation only because of the permutation problem. It is
this problem that this work aims to solve, in order to take
full advantage of the evolutionary approch in NAS.

The permutation problem and existing solutions The
permutation problem has been discussed in the Neuroevolu-
tion community for many years. One simple but common
solution is simply to get rid of crossover completely dur-
ing evolution (Angeline et al., 1994; Yao & Liu, 1998).
Indeed, almost all newly developed evolutionary NAS meth-
ods avoid using a crossover operator (Real et al., 2017;
Fernando et al., 2017; Liu et al., 2018; Elsken et al., 2019;
Real et al., 2019; So et al., 2021; Co-Reyes et al., 2021;
Gao et al., 2022). For instance, Real et al. (2017) reported
that crossover operators were included in their initial experi-
ments, but no performance improvement was observed, and
therefore only mutation was deployed in their final Amoe-
baNet algorithm.

A number of principled solutions have been proposed to
overcome the permutation problem as well. Many of them
require that the network topologies are fixed. For instance,
Thierens (1996) proposed a non-redundant encoding for
matching neurons during crossover, Uriot & Izzo (2020) de-
veloped a safe crossover through a neural alignment mecha-
nism, and Gangwani & Peng (2018) used genetic distillation
to improve crossover. Further, Dragoni et al. (2014) pro-
posed a generalization where the population can include
different topologies, but only parents with a similar topol-
ogy can be crossed over.

Other solutions have been developed for special cases, mak-
ing them non-applicable to arbitrary architectures. For in-
stance, the unit-alignment method (Sun et al., 2020) utilizes
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a special encoding that is only for CNN-based architectures.
A graph matching recombination operator (Mahmood et al.,
2007) only applies to parents with very different qualities. It
mimics the behaviors of mutating the weaker parent towards
the stronger parent, so the offspring does not differ from
parents greatly. A modular inheritable crossover (He et al.,
2021) is developed for a specific cell-based structure, and
the default order of the nodes is preserved when performing
crossover, without any node matching or reordering. As a
result, the permutation problem still remains. The historical
markings in NEAT-based algorithms (Stanley & Miikku-
lainen, 2002; Miikkulainen et al., 2019) are intended to be
used together with other mechanisms in NEAT, and cannot
be directly applied to any given architectures.

In contrast to these existing solutions, the proposed SEP
crossover does not have any constraints on the encoding or
other algorithmic components, and can be directly applied
to any arbitrary architectures.

3. The Shortest Edit Path Crossover
In this section, the permutation problem is first described
and a solution to it proposed in the form of Shortest Edit
Path Crossover.

Given two neural architectures as parents, a crossover oper-
ator generates an offspring architecture by recombining the
two parents. The crossover design consists of the encoding
(i.e. genotype) and the recombination strategy, with the goal
of properly integrating the information in both parents. The
permutation problem arises when the same architecture (i.e.
phenotype) can have multiple distinct genotypes. As a re-
sult, crossover on these genotypes has a disruptive effect on
the information encoded in the parents, leading to damaged
offspring (Stanley & Miikkulainen, 2002).

In order to propose a solution, let us first define a repre-
sentation of the neural network architecture and a distance
metric between two architectures. A neural architecture is
a computation graph that can always be represented by an
attributed directed graph, defined as:
Definition 3.1 (Directed graph). A directed graph G con-
sists of a set of vertices V = {vi|i = 1, 2, . . . , n}, where n
is the number of vertices and each vi denotes a vertex (node),
and a set of directed edges E = {ei,j |i, j ∈ 1, 2, . . . , n},
where ei,j denotes a directed edge from vi to vj . The order
of a directed graph G equals the number of its vertices, rep-
resented by |G|. For an attributed directed graph, a function
γv assigns an attribute (e.g., an integer) to each vertex, and
a funtion γe assigns an attribute to each edge.

In the context of NAS, each vertex with an attribute denotes
an operation in a neural architecture, and the directed edges
denote data flows. The similarity between two architectures
can then be measured by the graph edit distance (GED)

between their corresponding graphs, defined as:
Definition 3.2 (Graph edit distance). A graph edit operation
is defined as a function δ : G → G′ that applies an elemen-
tary graph edit to transform G to G′. In standard neural ar-
chitecture search, the set of elementary graph edits typically
includes vertex deletion/insertion, edge deletion/insertion,
and vertex attribute substitution. An edit path is defined
as a sequence of graph edit operations δ = δ1, δ2, . . . , δd,
where d is the length of the edit path. Application of δ
to a graph is equivalent to applying each edit sequentially:
δ(G) = δd ◦ . . . ◦ δ2 ◦ δ1(G). Graph edit distance between
two graphs G1 and G2 is then defined as GED(G1,G2) =

minδ∈∆(G1,G2)

∑d
i=1 c(δi), where ∆(G1,G2) denotes the

set of all edit paths that transform G1 to an isomorphism of
G2 (including G2 itself), δ = δ1, δ2, . . . , δd, and c(δi) is the
cost of edit δi. In this work, all types of edit operations are
defined to have the same cost of 1. As a result, the edit path
that minimizes the total edit cost, δ

∗
G1,G2 , equals the shortest

edit path between G1 and G2. Thus, GED(G1,G2) = d∗G1,G2 ,
where d∗G1,G2 is the length of this shortest edit path. Note
that δ

∗
G1,G2 may not be unique, and thus there may exist

multiple shortest edit paths that have the same length.

The proposed SEP crossover is then defined as
Definition 3.3 (Shortest edit path (SEP) crossover). Given
two attributed directed graphs G1 and G2, suppose δ

∗
G1,G2 =

δ∗1 , δ
∗
2 , . . . , δ

∗
d∗G1,G2

. SEP crossover generates an offspring
graph Gnew by

Gnew =δ∗
πr(d

d∗G1,G2
2 e)

◦ δ∗
πr(d

d∗G1,G2
2 e−1)

◦ δ∗
πr(d

d∗G1,G2
2 e−2)

◦ . . . ◦ δ∗πr(2) ◦ δ
∗
πr(1)(G1),

where πr is a random permutation of the d∗G1,G2 indices:
πr : 1, 2, . . . , d∗G1,G2 → π(1), π(2), . . . , π(d∗G1,G2), and
d·e denotes the ceiling function. In other words, the SEP
crossover shuffles the edits randomly in the SEP between
parents, then selects half of them randomly, and applies
them to one of the parents to obtain the offspring.

This operator is motivated by a common observation in the
literature (e.g. Ying et al., 2019; White et al., 2021a; Mehta
et al., 2022) that the differences in predictive performance
between two architectures are positively correlated with
their GEDs. This observation suggests that the edits in the
SEP encode fundamental differences between two architec-
tures that matter to predictive performance. An offspring
that lies in the middle of this SEP can explore the search
regions where the parents have fundamental discrepancies.
At the same time, the offspring can automatically preserve
those common substructures between parents, avoiding un-
necessary disruptive behaviors, and thus avoiding the per-
mutation problem. A visual demo showing how the SEP
crossover resolves the permutation problem is provided in
Appendix A.3.
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4. Theoretical Analysis
In this section, the SEP crossover, standard crossover, muta-
tion, and RL approaches to NAS will be analyzed theoreti-
cally, showing that the SEP crossover has an advantage in
improving the expected quality of generated graphs. The
fundamental concepts are defined first in Section 4.1, lead-
ing to new interpretations of graph edit distance, crossover
and mutation based on attributed adjacency matrices. Feasi-
bility assumptions are then declared, and theorems derived
for expected improvement for SEP, standard crossover, and
mutation. Section 4.2 focuses on RL: It interprets RL in
terms of the same fundamental concepts, defines two ex-
treme cases whose combinations span the possible states
of the RL process, and derives theorems for expected im-
provement for both. Section 4.3 then brings these theorems
together, showing that the SEP crossover results in more
improvement than the other methods in common NAS se-
tups. Section 4.4 further verifies the robustness of the SEP
crossover under inaccurate GED calculations. All proofs
and lemmas are included in Appendix A.1. For clarify, a full
list of mathematical symbols is provided in Appendix A.2.

4.1. Expected Improvement with Crossover and
Mutation

First, let us define the basic concepts:
Definition 4.1 (Attributed adjacency matrix). An attributed
adjacency matrix (AA-matrix)AG is a representation of an
attributed directed graph. It is a n×n matrix, where n is the
number of vertices in G. The entry in ith row and jth column
is represented by AGi,j . A

G
i,j = 0 if there is no edge from vi

to vj , and AGi,j = γe(ei,j) if there exists an edge from vi

to vj , for i, j ∈ 1, 2, . . . , n and i 6= j. AGi,i = γv(vi), for
i ∈ 1, 2, . . . , n.
Definition 4.2 (Permutation matrix). Given a permutation
π of n elements: π : 1, 2, . . . , n→ π(1), π(2), . . . , π(n), a
permutation matrix Pπ can be constructed by permuting the
columns or rows of an n× n identity matrix In according
to π. In this work, a column permutation of In is performed
to obtain Pπ, The entry in ith row and jth column is rep-
resented by Pπi,j , and Pπi,j = 1 if j = π(i), and Pπi,j =
0 otherwise.

Definition 4.3 (Null vertex). A null vertex has no connec-
tions to other existing vertices in a graph. It is assigned with
a special ”null” attribute, which means that it does not have
any impact on the original graph. Null vertices are added
to an existing graph only for convenience of theoretical
analysis, and they do not affect the calculation of GEDs.

Based on the above definitions, GED, crossover and muta-
tion can be interpreted from the AA-matrix perspective:
Definition 4.4 (AA-matrix-based interpretation of GED).
Two graphs G1 and G2 can both be extended to have the same

order n = max(|G1|, |G2|) by adding null vertices. The
extended G1 and G2 are denoted as Ĝ1 and Ĝ2. Calculating
the GED between G1 and G2 can then be defined as

GED(G1,G2) = min
π∈Sn

d(AĜ1 ,PπAĜ2P
>
π ),

where d(A,B) =
∑m
i=1

∑n
j=1 1Ai,j 6=Bi,j , m × n is the

order of both A and B, 1condition is 1 if the condition
is true, 0 otherwise (i.e., d(A,B) counts the number of
different entries between two matrices with same shape), Sn
denotes the set of all permutations of {1, 2, 3, . . . , n}. The
permutation that minimizes d(AĜ1 ,PπAĜ2P

>
π ) is denoted

as π∗Ĝ1,Ĝ2 , and the permuted AA-matrix of Ĝ2 is denoted as

AĜ2→Ĝ1 = Pπ∗
Ĝ1,Ĝ2

AĜ2P
>
π∗
Ĝ1,Ĝ2

.

Remark 4.5. In the context of standard neural architecture
search, assume γe(·) always assigns 1 to any existing edge,
and γv(·) assigns 0 to ”null” vertex and positive integers
for other types of vertex attributes (each type of attribute
has its own unique integer). Then the differences between
AĜ1 andAĜ2→Ĝ1 correspond to the shortest edit path that
transforms G1 to G2 in the following way: δ := (1) add a
vertex with attributeAĜ2→Ĝ1i,i , ifAĜ1i,i = 0 and AĜ2→Ĝ1i,i > 0;

(2) delete vertex vi from G1, if AĜ1i,i > 0 and AĜ2→Ĝ1i,i = 0;

(3) change attribute of vertex vi to AĜ2→Ĝ1i,i , if AĜ1i,i > 0 and

AĜ2→Ĝ1i,i > 0; (4) add an edge from vi to vj , if AĜ1i,j = 0

and AĜ2→Ĝ1i,j = 1, i 6= j; (5) delete the edge from vi to vj ,

if AĜ1i,j = 1 and AĜ2→Ĝ1i,j = 0, i 6= j. Note that when adding
an edge, the origin vi and/or destination vj may be newly
added vertices.
Definition 4.6 (AA-matrix-based interpretation of
crossover). Assume two graphs G1 and G2 are extended to
have the same order by adding null vertices, resulting Ĝ1

and Ĝ2. A crossover between G1 and G2 is defined as the
process of generating an offspring graph Gnew by recombin-
ing AĜ1 and AĜ2 : AĜnew = r(AĜ1 ,PπAĜ2P

>
π ), where

function r(A,B) returns a matrix that inherits each entry
fromA orB with probability 0.5. That is, ifC = r(A,B),
then p(Ci,j = Ai,j) = p(Ci,j = Bi,j) = 0.5 for any valid
i, j. Pπ is a permutation matrix based on permutation π,
which is decided by the specific crossover operator utilized.
For the SEP crossover, π = π∗Ĝ1,Ĝ2

, which minimizes the
GED between G1 and G2. For the standard crossover, since
the vertices may be in any order in the original AA-matrix
representation and there is no particular vertex/edge
matching mechanisms during crossover, a purely random
permutation πrand is used to represent this randomness.
The result, AĜnew , is the AA-matrix of the generated new
graph with null vertices. By removing all null vertices from
Ĝnew, the offspring graph Gnew is obtained.
Definition 4.7 (AA-matrix-based interpretation of muta-
tion). Given a graph G1, a mutation operation is defined as
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the process of generating an offspring graph Gnew by mutat-
ing G1. In standard NAS, allowed mutations to G1 include
vertex deletion/insertion, edge deletion/insertion, and vertex
attribute substitution. In the AA-matrix representation, a
mutation operation is then defined as AĜnew

= m(AĜ1),
where function m(A) alters each element of A with an
equal probability pm. and pm is usually selected so that
on average one element is altered during each mutation
operation. The Ĝ1 is the extended graph of G1 with null ver-
tices, so that node additions can be performed in AĜ1 (by
changing a null vertex to a vertex with a valid attribute). An
element AĜ1i,j can be altered in order to randomly resample

an allowed value that is different from the originalAĜ1i,j . The
result,AĜnew

, is the AA-matrix of the generated new graph
with null vertices. By removing all null vertices from Ĝnew,
the mutated offspring graph Gnew is obtained.

Next, in order to define a performance metric for compar-
ing different crossover and mutation operators, a realistic
assumption needs to be made about the search space:

Locality in NAS search spaces means that close architec-
tures (in terms of GED) tend to have similar performance.
Random-walk autocorrelation (RWA; Weinberger, 1990) is
a commonly used metric to measure such locality. Strong
autocorrelation of prediction accuracies of architectures dur-
ing a random walk, in which each move is a graph edit
operation, has been consistently observed in many existing
NAS benchmarks or studies (Ying et al., 2019; White et al.,
2021a; Mehta et al., 2022). This observation leads to the
following assumption:

Assumption 4.8 (Positive correlation between GED and fit-
ness/reward difference). If GED(Gi,Gj) < GED(Gi,Gk),
then E(|f(Gi)−f(Gj)|) < E(|f(Gi)−f(Gk)|), where f(G)
returns the fitness/reward of G, i.e., the prediction accuracy.

Suppose Gopt is the global optimal graph (i.e. the target
of the evolutionary search), G1 and G2 are the two par-
ents to undergo crossover or mutation, and Gnew is the
generated offspring. For convenience of theoretical analy-
sis, Gopt, G1, and G2 are extended to have the same order
n = max(|Gopt|, |G1|, |G2|) by adding null vertices. The
extended Gopt is denoted as Ĝopt, and Ĝ1, Ĝ2 and Ĝnew have
the same meaning as in Definitions 4.6 and 4.7.

Given assumption 4.8, a direct measurement of the
progress of the entire search is GED(Gopt,Gnew), and
the ultimate goal is to minimize it so that a good
solution can be generated. GED(Gopt,Gnew) =
d∗Gopt,Gnew

= d(AĜopt,
,AĜnew→Ĝopt,

) can be decom-
posed to dv(AĜopt

,AĜnew→Ĝopt
)+de(AĜopt

,AĜnew→Ĝopt),
where dv(A,B) =

∑
i 1Ai,i 6=Bi,i counts only the number

of different diagonal entries, i.e., the differences in vertex at-
tributes, and de(A,B) =

∑
i

∑
j 6=i 1Ai,j 6=Bi,j counts the

number of different non-diagonal entries, i.e., the differ-
ences in edges/connections, thereby measuring the topologi-
cal similarity.

In order to derive a performance metric, let’s consider two
factors. First, dv(·) only covers n elements, whereas de(·)
covers n · (n − 1) elements. We have n · (n − 1) � n
when n increases, so de(·) is a dominant factor in deciding
GED(Gopt,Gnew). Second, modeling of vertex attributes
varies a lot across different NAS spaces, e.g., they have dif-
ferent numbers of usable attributes and different constraints
on vertex attribute assignments. In contrast, γe(·) = 1 can
simply be used for all valid edges in most NAS spaces, lead-
ing to generality of any theoretical conclusions. These two
factors suggest that de(AĜopt ,AĜnew→Ĝopt) is a representa-
tive quantitative metric when comparing different crossover
and mutation operators theoretically. For simplicity, we will
use d∗e,G1,G2 to denote de(AG1 ,AG2→G1).

Accordingly, the main performance metric for crossover and
mutation can now be defined as follows:

Definition 4.9 (Expected improvement of crossover and
mutation). This work focuses on the expected im-
provement in terms of topological similarity to the
global optimal graph. More specifically, expected
improvement refers to E(max(de(AĜopt ,AĜ1→Ĝopt) −
de(AĜopt ,AĜnew→Ĝopt), 0)), which compares offspring
graph Gnew with one parent graph G1 in terms of the ex-
pected edge/connection differences to Gopt. The max(·, 0)
part takes into account the selection pressure in standard
EAs; that is, only the offspring that is better than its parent
can survive and become the next parent.

As the penultimate step, three lemmas are derived in Ap-
pendix A.1 to assist the proofs regarding expected improve-
ment. According to Lemmas A.1 and A.2, any π′ can be
chosen to analyze the behaviors of SEP crossover, stan-
dard crossover, and mutation, without affecting the result
of de(AĜopt ,AĜnew→Ĝopt). Lemma A.3 further derives the
lower bound for common parts in Gopt, G1 and G2. Now,
choose π′ = π1 = π∗Ĝopt,Ĝ1

and π2 = π∗Ĝ′1,Ĝ2
so that there

are at least ns = max(n2 − d∗Ĝopt,Ĝ1
− d∗Ĝ1,Ĝ2

, 0) com-
mon entries amongAĜopt ,AĜ1→Ĝopt andAĜ2→Ĝ′1 , where
AĜ1→Ĝopt = AĜ′1

. Regarding the remaining entries, the
following assumption is made:

Assumption 4.10 (Uniform distribution of differences).
The entries that are different between AĜ′1 and AĜ2→Ĝ′1
are assumed to be uniformly distributed on the positions
other than those ns common entries.

With these lemmas and assumption, the expected improve-
ment of SEP crossover, standard crossover and mutation can
be derived:
Theorem 4.11 (Expected improvement of SEP crossover).
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Following Assumption 4.10, let nse = max(n · (n −
1) − d∗

e,Ĝopt,Ĝ1
− d∗

e,Ĝ1,Ĝ2
, 0). and suppose AĜnew =

r(AĜ′1
,Pπ∗

Ĝ′1,Ĝ2
AĜ2P

>
π∗
Ĝ′1,Ĝ2

). Then we have

E(max(de(AĜopt
,AĜ1→Ĝopt

)− de(AĜopt
,AĜnew→Ĝopt), 0))

≥ E(max(
d∗
e,Ĝopt,Ĝ1

· d∗
e,Ĝ1,Ĝ2

n · (n− 1)− nse
− B(d∗e,Ĝ1,Ĝ2 , 0.5), 0))

= LBEISEPX,

where B(d∗
e,Ĝ1,Ĝ2

, 0.5) denotes the number of successful tri-
als after sampling from a binomial distribution with d∗

e,Ĝ1,Ĝ2
trials and success probability of 0.5, and LBEISEPX de-
notes the lower bound of expected improvement of the SEP
crossover.
Theorem 4.12 (Expected improvement of standard
crossover). Suppose AĜnew

= r(AĜ′1
,Pπrand

AĜ2P
>
πrand

).
Then we have

E(max(de(AĜopt
,AĜ1→Ĝopt

)− de(AĜopt
,AĜnew→Ĝopt), 0))

≥ E(max(d∗e,Ĝopt,Ĝ1 − B(
n1
1 · n0

2 + n0
1 · n1

2

n · (n− 1)
, 0.5)−

(d∗
e,Ĝopt,Ĝ1

+ n1
1 − n1

opt) · n1
2 + (d∗

e,Ĝopt,Ĝ1
+ n0

1 − n0
opt) · n0

2

2n · (n− 1)

, 0)) = LBEISTDX,

where n1
opt, n

1
1 and n1

2 denote the number of ones inAĜopt ,
AĜ1 and AĜ2 (excluding diagonal entries), respectively,
n0

opt, n
0
1 and n0

2 denote the number of zeros inAĜopt ,AĜ1
and AĜ2 (excluding diagonal entries), respectively, and
LBEISTDX denotes the lower bound of expected improve-
ment of the standard crossover.
Theorem 4.13 (Expected improvement of mutation). Sup-
poseAĜnew

= m(AĜ′1
). Then we have

E(max(de(AĜopt
,AĜ1→Ĝopt

)− de(AĜopt
,AĜnew→Ĝopt), 0))

≥ E(max(d∗e,Ĝopt,Ĝ1 − B(n · (n− 1)− d∗e,Ĝopt,Ĝ1 , pm)

− B(d∗e,Ĝopt,Ĝ1 , 1− pm), 0)) = LBEIMUTA,

where pm is the mutation rate usually chosen to be pm =
1

n·(n−1) , and LBEIMUTA denotes the lower bound of ex-
pected improvement of mutation.

4.2. Expected Improvement with RL

First, let us interpret the RL approach using concepts estab-
lished in Section 4.1. The setup follows the implementation
of Ying et al. (2019), which provides good performance in
NAS-bench-101 dataset.

Definition 4.14 (AA-matrix-based interpretation of RL).
RL invokes an agent that generates architectures following
a probability distribution Qθ defined in AA-matrix space.
For Aθ ∼ Qθ, each entry Aθi,j is sampled from a separate

categorical distribution defined by Qθi,j . The θ = {zki,j |k ∈
0, 1, · · · , kmax

i,j , for i, j ∈ 1, 2, · · · , n} is the parameter set
that contains the logits for defining the categorical distri-

butions through softmax functions p(Aθi,j = k) = e
zki,j

Σke
zk
i,j

,

for k ∈ 0, 1, · · · , kmax
i,j , and i, j ∈ 1, 2, · · · , n. The learn-

ing process of θ follows the standard REINFORCE rule
(Williams, 1992). The resulting scaled policy gradient is cal-
culated as EAθ∼Qθ

(Σi,j5θ log p(Aθi,j) · (R−b)), where R
is the reward for the currently sampled architecture (usually
the validation accuracy) and b is a baseline to reduce the
variance of gradient estimate.

The expected improvement of a policy update can then be
defined. It is based on Lemma A.4 in Appendix A.1 that
definesQ∗θ as the optimal permutation ofQθ and establishes
an upper bound of expected GED to optimal.

Definition 4.15 (Expected improvement of a policy update).
Suppose the RL policy parameters are updated from θt to
θt+1, where t indicates the current time step. The expected
improvement is defined as Σi,jp(A

θt∗
i,j 6= A

Gopt
i,j |A∗θt ∼

Q∗θt) − Σi,jp(A
θt+1∗
i,j 6= A

Gopt
i,j |A∗θt+1

∼ Q∗θt+1
) for i, j ∈

1, 2, · · · , n and i 6= j. That is, it is the change in the up-
per bound of expected GED to optimal after policy update,
considering only the edge/connection differences (similar
to that of crossover and mutation).

Next, expected improvement can be derived in two extreme
cases:

Definition 4.16 (Unbiased RL agent and oracle RL agent).
Given a pre-defined value for Σi,jp(A

θ∗
i,j 6= A

Gopt
i,j |A∗θ ∼

Q∗θ) (i, j ∈ 1, 2, · · · , n and i 6= j), an unbiased agent is one
that has the same p(Aθ∗i,j 6= A

Gopt
i,j |A∗θ ∼ Q∗θ) value for any

i, j ∈ 1, 2, · · · , n and i 6= j, and an oracle agent is one that
has the maximum number of non-diagonal entries in A∗θ
satisfying p(Aθ∗i,j 6= A

Gopt
i,j |A∗θ ∼ Q∗θ) = 0, while all the

remaining non-diagonal entries have the same and positive
value for p(Aθ∗i,j = A

Gopt
i,j |A∗θ ∼ Q∗θ).

In practical NAS experiments, the RL agent is usually ini-
tially unbiased, and converges towards the oracle agent dur-
ing learning. Therefore, it is possible to interpolate between
these two cases to span the entire RL search process. Next,
expected improvement in RL is derived for the two cases:

Theorem 4.17 (Expected improvement of unbiased agent
and oracle agent). Suppose Σi,jp(A

θ∗
i,j 6= A

Gopt
i,j |A∗θ ∼

Q∗θ) = b∗e,θ, and further suppose R− b = α · (Σi,jp(Aθ∗i,j 6=
A
Gopt
i,j |A∗θ ∼ Q∗θ) − d∗e,Gopt,Gθt ) for i, j ∈ 1, 2, · · · , n and

i 6= j, where α is a positive scaling factor and Gθt is a
graph sampled at time step t to obtain the empirical approx-
imation of the policy gradient. With all zki,j initialized to
0, the expected improvement after one policy update with
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learning rate η is no less than

LBEIRLU = b∗e,θ − (nw ·
1

1 + ( 1
pw
− 1) · e−2αη(b∗

e,θ
−nw)(1−pw)

+ (n(n− 1)− nw) ·
1

1 + ( 1
pw
− 1) · e2αη(b

∗
e,θ
−nw)·pw

)

for unbiased agent, where pw =
b∗e,θ

n(n−1) , nw = B(n(n −

1),
b∗e,θ

n(n−1) ), and no less than

LBEIRLO = b∗e,θ − (nw ·
1

1 + ( 1
pw
− 1) · e−2αη(b∗

e,θ
−nw)(1−pw)

+ (bb∗e,θc+ 1− nw) ·
1

1 + ( 1
pw
− 1) · e2αη(b

∗
e,θ
−nw)·pw

)

for oracle agent, where pw =
b∗e,θ

bb∗e,θc+1 , nw = B(bb∗e,θc +

1,
b∗e,θ

bb∗e,θc+1 ), and b·c is the floor function.

4.3. Comparisons based on Theory

As Theorems 4.11–4.13 and 4.17 indicate, expected im-
provement with the different methods depends on several
factors, making problem-agnostic comparisons in closed
form infeasible. It is, however, possible to compare these
theoretical constructs numerically in specific representative
settings, such as the various NAS benchmark domains.

To this end, LBEISEPX, LBEIMUTA, LBEISTDX,
LBEIRLU and LBEIRLO were compared in NAS-bench-
101 benchmark (Ying et al., 2019). A numerical compar-
ison requires instantiating the methods with specific pa-
rameter values. The standard NAS-bench-101 setup was
used for n = 7, n1

opt = 9, n1
1 = 9, and n1

2 = 9, and for
d∗
e,Ĝopt,Ĝ1

and d∗
e,Ĝ1,Ĝ2

different combinations within a rea-
sonable range were evaluated (the validity of these ranges
will be verified in Section 5.1). The expected improvement
in each case was then estimated through a Monte Carlo
simulation with 106 trials. For RL, b∗e,θ ≡ d∗

e,Ĝopt,Ĝ1
, and

α · η = 0.1 was used because this value provides the best
tradeoff between unbiased and oracle agents (Figure A.4).

Figure 1 shows the main results: LBEISEPX is larger than
LBEIMUTA, LBEIRLU, and LBEIRLO in almost all cases.
In contrast, Figure A.3 and Figure A.6 in Appendix A.5
show that the standard crossover leads to worse LBEI com-
pared to mutation and RL. This numerical analysis thus
illustrates the theoretical advantage of SEP crossover com-
pared to mutation, standard crossover, and RL. More com-
parisons, as well as another benchmark (NAS-bench-NLP;
Klyuchnikov et al., 2022), are included in Appendix A.5,
reinforcing these conclusions.

4.4. Effect of Errors during GED Calculation

Finding the shortest edit path between two graphs requires
calculating the GED between them, which is a NP-hard

problem if an exact optimal solution is desired. Several fast
approximation methods exist for GED calculation (Riesen,
2016; Serratosa, 2015). They can be run in polynomial time,
at the cost of slightly reduced accuracy of the returned GED.
To verify that SEP crossover is robust against such a loss
of accuracy, a theoretical analysis was conducted. First,
a corollary was derived to quantify the resulting expected
improvement of SEP crossover with errors in the GED calcu-
lation. Second, a numerical analysis based on this corollary
was run under three different levels of error.

Following Theorem 4.11, an error in calculating GED be-
tween two architectures Ĝ1 and Ĝ2 can be expressed as

dε
e,Ĝ1,Ĝ2

= d∗
e,Ĝ1,Ĝ2

· (1 + ε),

where ε > 0 is the error ratio and dε
e,Ĝ1,Ĝ2

is the expectation
of GED calculation result. Assuming the resulting GED
is either bdε

e,Ĝ1,Ĝ2
c or bdε

e,Ĝ1,Ĝ2
c+ 1 following a Bernoulli

distribution, the following corollary can be obtained:

Corollary 4.18 (Effect of GED errors on LBEISEPX). With
error ratio ε in calculating d∗

e,Ĝ1,Ĝ2
, LBEISEPX becomes

LBEI
ε
SEPX = (d

ε
e,Ĝ1,Ĝ2

− bdε
e,Ĝ1,Ĝ2

c)

· E(max(
d∗
e,Ĝopt,Ĝ1

· (bdε
e,Ĝ1,Ĝ2

c+ 1)

n · (n− 1)− bnεsec
− B(bdε

e,Ĝ1,Ĝ2
c+ 1, 0.5), 0))

+ (bdε
e,Ĝ1,Ĝ2

c+ 1− dε
e,Ĝ1,Ĝ2

)

· E(max(
d∗
e,Ĝopt,Ĝ1

· bdε
e,Ĝ1,Ĝ2

c

n · (n− 1)− dnεsee
− B(bdε

e,Ĝ1,Ĝ2
c, 0.5), 0)),

where nεse = max(n · (n− 1)− d∗
e,Ĝopt,Ĝ1

− dε
e,Ĝ1,Ĝ2

, 0).

As in Section 4.3, Monte Carlo simulations with 106 trials
each were performed to estimate the values of LBEIεSEPX

under different error ratios ε. Figure A.7 in Appendix A.6
compares LBEIεSEPX with the LBEI values for other meth-
ods under error ratios ε = 0.1, 0.2, and 0.3.

The conclusion is that the SEP crossover has a theoretical
advantage in expected improvement compared to mutation,
standard crossover, and RL even with a very high error
ratio of 30% in the GED calculations. Thus, approximation
methods can be used for GED if the computational cost of
the SEP crossover needs to be reduced.

5. Empirical Verification
This section first verifies that the parameter values used in
the numerical analysis indeed apply to real-world problems.
It then demonstrates that the SEP crossover is effective in
real NAS problems under both noise-free and noisy environ-
ments. Experiment setup is provided in Appendix A.4.

5.1. Applicability of the Theory

Figures 1 (and Figure A.2 in Appendix A.5) demonstrate the
theoretical advantage of SEP crossover numerically. How-
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Figure 1. Comparison of expected improvement between SEP crossover, mutation, and RL in NAS-bench-101. (Left) Differences
between LBEISEPX and LBEIMUTA under different d∗

e,Ĝ1,Ĝ2
(y-axis) and d∗

e,Ĝopt,Ĝ1
(x-axis) combinations. (Middle) Differences

between LBEISEPX and LBEIRLU. (Right) Differences between LBEISEPX and LBEIRLO. LBEISEPX is larger (i.e. more red) than
LBEIMUTA, LBEIRLU, and LBEIRLO almost everywhere. Thus, the SEP crossover has a theoretical advantage over mutation and RL.

ever, it is important to verify that the parameter values used
in the Monte Carlo simulation indeed lie within the favor-
able regions in real NAS problems. In particular, the values
used for d∗

e,Ĝopt,Ĝ1
, d∗

e,Ĝ1,Ĝ2
, n1

1, and n1
2 are critical to the

expected improvement and need to be verified in standard
benchmarks and with a standard NAS algorithm.

A NAS benchmark is said to be queryable if it directly
returns the predictive performance of any architecture in the
search space. While NAS-bench-101 has the most flexible
graph search space among all queryable NAS benchmarks,
NAS-bench-NLP (which is not queryable) has the largest
search space among all existing NAS benchmarks (Mehta
et al., 2022). They were both thus used to evaluate the
parameter ranges. In order to evaluate the SEP crossover
with a standard NAS algorithm, it was incorporated into the
state-of-the-art Regularized Evolution method (RE; Real
et al., 2019). RE employs only a mutation operator; SEP
crossover was integrated into it by alternating crossover with
mutation. To measure the parameter ranges, RE was run on
both benchmarks, and the relative frequency distributions
of the above parameters recorded (see Appendix A.7).

The results indeed show that the parameters lie within the
range of the numerical analysis in Section 4.3. Moreover,
they are within the subrange where the SEP crossover has
a theoretical advantage (Figure 1). The results thus verify
that the theory applies to NAS in real-world problems.

5.2. Performance in Noise-free Environments

The evaluation step in NAS, i.e. the training and testing of
an architecture, can be very noisy (White et al., 2021a). To
evaluate the search efficiency of the SEP crossover without
the confounding effects of such noise, a noise-free eval-
uation function was first employed as the GED between
the candidate architecture and the target architecture. The
global optimum was selected as the target in NAS-bench-
101, while the GRU (Cho et al., 2014) and LSTM (Hochre-
iter & Schmidhuber, 1997) models were used as targets

in NAS-bench-NLP. Because the NAS-bench-NLP is not
queryable, the global optimum is unknown. However, GRU
and LSTM are two known top-performing models in this
search space, and can therefore be used as a proxy for the
global optimum. Since the RL method discussed in this
work is only applicable to NAS-bench-101 space, it is not
included in experiments on other benchmarks.

Plots (a) and (b) in Figure 2 compare the performance
of random search, the original RE with mutation only, a
modified RE augmented with standard crossover, RL (Ying
et al., 2019), and a modified RE augmented with the SEP
crossover. The SEP crossover performs significantly better
than the other methods, demonstrating its value in practical
NAS in noise-free environments. The experiments using
LSTM as the target on NAS-bench-NLP is shown in Fig-
ure A.10 in Appendix A.8, and a similar advantage of the
SEP crossover can be observed. Note that the standard
crossover also performs better than mutation; the population
is not very diverse in these experiments and thus most parent
graphs are already well aligned for crossover.

5.3. Performance in Noisy Environments

In the third experiment, the robustness of the SEP crossover
was evaluated by applying it to NAS problems with noisy
evaluations. Noise arises from two sources: (1) the direct
fitness/reward, e.g., the validation accuracy, used for search
strategy is noisy; (2) The mapping between the final objec-
tive, e.g., the test accuracy, and direct fitness/reward is noisy.
The validation accuracy in NAS-bench-101, which consists
of random sampling of three real-world training trials was
used as the direct fitness/reward. The average test accuracy
in NAS-bench-101 was used as the final objectives.

Plots (c) and (d) of Figure 2 again compare the performance
of random search, RE with mutation-only, RE augmented
with standard crossover, RL (Ying et al., 2019), and RE
augmented with the SEP crossover. The SEP crossover con-
sistently outperforms other variants in this setup as well.
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(a) (b) (c) (d)

Figure 2. Convergence in noise-free ((a) and (b)) and noisy environments ((c) and (d)). (a) GED to global optimum in NAS-bench-
101. (b) GED to GRU in NAS-bench-NLP. (c) Average testing accuracy in NAS-bench-101. (d) Percentage of runs that reach the global
optimal architecture in NAS-bench-101. In all experiments, the SEP crossover performs consistently better than the other methods in
both noise-free and noisy environments. The SEP crossover also reaches the global optimum significantly more efficiently than the other
methods in NAS-bench-101. Together the experiments show that SEP consistently improves evolutionary NAS in practice.

Its performance is superior to the others in reaching the
global optimal architecture (in terms of direct fitness/reward)
in NAS-bench-101. Appendix A.9 and A.10 show more
comparisons to two Bayesian optimization (BO) methods,
namely BOHB (Falkner et al., 2018) and SMAC (Hutter
et al., 2011), and crossover based on path encoding (White
et al., 2021b). The SEP crossover significantly outperforms
all these approaches. The empirical results thus demon-
strate that the proposed SEP crossover is robust and effec-
tive in realistic noisy environments as well. Note that the
standard crossover performs worse than mutation on NAS-
bench-101 in both test accuracy and validation accuracy (see
Figure A.10 in Appendix A.8). The population converges
slower in these noisy environments, and the parent graphs
are not as well aligned. Supplementary experiments using
the surrogate predictions on NAS-bench-301 (Zela et al.,
2022) are included in Figure A.10 of Appendix A.8; the
SEP crossover shows consistently better search ability.

6. Discussion and Future Work
To the best of our knowledge, this paper presents the first
theoretical analysis on evolutionary NAS. In addition to the
SEP crossover operator itself, the definitions, assumptions,
lemmas and theorems can form a foundation for future the-
ory development. The work thus deepens our understanding
of the behaviors of EAs and provides useful insights toward
developing better evolutionary NAS methods.

Although the advantage of the SEP crossover over muta-
tion is demonstrated both theoretically and empirically, it
does not mean that mutation should be avoided. To make
any crossover operators work, diversity in the population is
important. Mutation is critical in introducing new architec-
tures into the population, thereby increasing and maintain-
ing diversity. Search that takes advantage of both a proper
crossover and mutation, such as RE augmented with SEP, is
likely to be the most effective.

The theoretical results show that the standard crossover is
not as good as mutation in terms of expected improvement.

This conclusion is consistent with observations in prior lit-
erature: Applying crossover without resolving the permu-
tation problem may simply make search less efficient. On
the other hand, the advantage of the SEP crossover demon-
strates that crossover can indeed help evolutionary search in
NAS problems if the permutation problem can be avoided.

The computational cost of the SEP crossover depends on
the calculation of GED between two parent graphs. Ap-
pendix A.11 reports the computation time for exact GED
calculation in the NAS experiments. This cost is still negli-
gible compared to the training and evaluation of an architec-
ture, which may take several GPU hours or even days. GED
calculation is therefore not the computation bottleneck for
existing NAS problems. Moreover, analysis in Section 4.4
suggests that the SEP crossover is robust to inaccurate GED
calculation, and that if needed, approximate methods can be
used to further reduce its computational costs.

Future directions include: (1) Developing a generative
model that can output the offspring architecture for SEP
crossover given two parents directly without a GED calcula-
tion; (2) applying the SEP crossover to more evolutionary
NAS approaches and large-scale real-world NAS problems;
and (3) applying the SEP crossover to other types of graph
search/optimization problems, thus evaluating it as a general
solution to optimization problems that involve graph search.

7. Conclusion
The SEP crossover is proposed as a solution the permutation
problem in evolutionary NAS. Its advantage over standard
crossover, mutation and RL was first shown theoretically,
with a focus on the expected improvement of GED to global
optimal. Empirical studies were then performed to verify
the applicability of the theoretical results, and demonstrate
the superior performance of the SEP crossover in both noise-
free and noisy environments. The SEP crossover therefore
allows taking full advantage of evolution in NAS, and po-
tentially other similar design problems as well.

9



Shortest Edit Path Crossover

References
Abu-Aisheh, Z., Raveaux, R., Ramel, J.-Y., and Martineau,

P. An exact graph edit distance algorithm for solving
pattern recognition problems. In Proceedings of the In-
ternational Conference on Pattern Recognition Appli-
cations and Methods - Volume 1, ICPRAM 2015, pp.
271278, Setubal, PRT, 2015. SCITEPRESS - Science and
Technology Publications, Lda. ISBN 9789897580765.
doi: 10.5220/0005209202710278. URL https://
doi.org/10.5220/0005209202710278.

Angeline, P., Saunders, G., and Pollack, J. An evolutionary
algorithm that constructs recurrent neural networks. IEEE
Transactions on Neural Networks, 5(1):54–65, 1994. doi:
10.1109/72.265960.

Chen, L.-C., Collins, M. D., Zhu, Y., Papandreou, G., Zoph,
B., Schroff, F., Adam, H., and Shlens, J. Searching
for efficient multi-scale architectures for dense image
prediction. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems,
NIPS’18, pp. 87138724, Red Hook, NY, USA, 2018.
Curran Associates Inc.

Chen, X., Wang, R., Cheng, M., Tang, X., and Hsieh, C.-
J. Dr{nas}: Dirichlet neural architecture search. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=9FWas6YbmB3.
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A. Appendix
A.1. Lemmas and Theorems with Proof Details

Lemma A.1 (Invariance of SEP and standard crossover to parent permutation). For any permutation π′, suppose graph
Ĝ′1 has the corresponding AA-matrixAĜ′1 = Pπ′AĜ1P

>
π′ ,AĜ′new = r(AĜ′1

,PπaAĜ2P
>
πa),AĜnew = r(AĜ1 ,PπbAĜ2P

>
πb

),

and G′new, Gnew are the graphs after removing all null vertices from Ĝ′new and Ĝnew, respectively. If πa = π∗Ĝ′1,Ĝ2
, πb =

π∗Ĝ1,Ĝ2
, or πa = πrand, πb = πrand (πa and πb are sampled independently), then GED(Gopt,G′new) = GED(Gopt,Gnew),

dv(AĜopt
,AĜ′new→Ĝopt

) = dv(AĜopt
,AĜnew→Ĝopt

), and de(AĜopt ,AĜ′new→Ĝopt) = de(AĜopt ,AĜnew→Ĝopt).

Proof. Since a permutation of nodes (without changing their attributes and connections) simply generates an isomor-
phism of the original graph, Ĝ′1 is an isomorphism of Ĝ1. Calculations of the graph edit distance between two graphs
are invariant to isomorphisms of either graph, so we have AĜ2→Ĝ′1 = Pπ′AĜ2→Ĝ1P

>
π′ ⇒ Pπ∗

Ĝ′1,Ĝ2
AĜ2P

>
π∗
Ĝ′1,Ĝ2

=

Pπ′Pπ∗
Ĝ1,Ĝ2

AĜ2P
>
π∗
Ĝ1,Ĝ2

P>π′ ⇒ Pπ∗
Ĝ′1,Ĝ2

= Pπ′Pπ∗
Ĝ1,Ĝ2

. Because r(A,B) is an element-wise operation that randomly

chooses each entry either from A or B, we have r(PAP>,PBP>) = P r(A,B)P> for any P . Given πa = π∗Ĝ′1,Ĝ2
,

πb = π∗Ĝ1,Ĝ2
, we have AĜ′new

= r(AĜ′1
,Pπ∗

Ĝ′1,Ĝ2
AĜ2P

>
π∗
Ĝ′1,Ĝ2

) = r(Pπ′AĜ1P
>
π′ ,Pπ′Pπ∗Ĝ1,Ĝ2

AĜ2P
>
π∗
Ĝ1,Ĝ2

P>π′ ) =

Pπ′r(AĜ1 ,Pπ
∗
Ĝ1,Ĝ2

AĜ2P
>
π∗
Ĝ1,Ĝ2

)P>π′ = Pπ′AĜnew
P>π′ , which shows G′new is an isomorphism of Gnew. There-

fore, calculating GED(Gopt,G′new) is equivalent to calculating GED(Gopt,Gnew), and dv(AĜopt ,AĜ′new→Ĝopt
) =

dv(AĜopt
,AĜnew→Ĝopt

), de(AĜopt
,AĜ′new→Ĝopt

) = de(AĜopt ,AĜnew→Ĝopt).

For the situation where πa = πrand, πb = πrand (πa and πb are sampled independently), since any permutation of a
randomly generated sequence is equivalent to directly generating a random sequence, we have Pπ′Pπrand

= Pπrand
for any

π′. We can then derive the same conclusion as we did with Pπ′Pπ∗
Ĝ1,Ĝ2

= Pπ∗
Ĝ′1,Ĝ2

.

Lemma A.2 (Invariance of mutation to parent permutation). For any permutation π′, suppose graph Ĝ′1 has the
corresponding AA-matrix AĜ′1 = Pπ′AĜ1P

>
π′ , AĜ′new = m(AĜ′1

), AĜnew = m(AĜ1), and G′new, Gnew are the

graphs after removing all null vertices from Ĝ′new and Ĝnew, respectively, then GED(Gopt,G′new) = GED(Gopt,Gnew),
dv(AĜopt

,AĜ′new→Ĝopt
) = dv(AĜopt

,AĜnew→Ĝopt
), and de(AĜopt ,AĜ′new→Ĝopt) = de(AĜopt ,AĜnew→Ĝopt).

Proof. Since m(A) is an element-wise operation, we have m(PAP>) = Pm(A)P> for any P . We then have
AĜ′new

= m(AĜ′1
) = m(Pπ′AĜ1P

>
π′ ) = Pπ′m(AĜ1)P>π′ = Pπ′AĜnewP

>
π′ , so G′new is an isomorphism of Gnew.

Therefore, we have GED(Gopt,G′new) = GED(Gopt,Gnew), dv(AĜopt ,AĜ′new→Ĝopt) = dv(AĜopt ,AĜnew→Ĝopt), and
de(AĜopt

,AĜ′new→Ĝopt
) = de(AĜopt

,AĜnew→Ĝopt
).

Lemma A.3 (Lower bound for common parts in Gopt, G1 and G2). Suppose GED(Gopt,G1) = dv(AĜopt ,AĜ1→Ĝopt) +

de(AĜopt
,AĜ1→Ĝopt

) = d∗
v,Ĝopt,Ĝ1

+ d∗
e,Ĝopt,Ĝ1

= d∗Ĝopt,Ĝ1
, GED(G1,G2) = dv(AĜ1 ,AĜ2→Ĝ1) + de(AĜ1 ,AĜ2→Ĝ1) =

d∗
v,Ĝ1,Ĝ2

+ d∗
e,Ĝ1,Ĝ2

= d∗Ĝ1,Ĝ2
, there exist π1 and π2 so that s(AĜopt ,Pπ1AĜ1P

>
π1
,Pπ2AĜ2P

>
π2

) >=

max(n2 − d∗Ĝopt,Ĝ1
− d∗Ĝ1,Ĝ2

, 0), sv(AĜopt
,Pπ1AĜ1P

>
π1
,Pπ2AĜ2P

>
π2

) >= max(n − d∗
v,Ĝopt,Ĝ1

− d∗
v,Ĝ1,Ĝ2

, 0),

se(AĜopt
,Pπ1

AĜ1P
>
π1
,Pπ2

AĜ2P
>
π2

) >= max(n · (n − 1) − d∗
e,Ĝopt,Ĝ1

− d∗
e,Ĝ1,Ĝ2

, 0), where s(A,B,C) =∑
i

∑
j 1Ai,j=Bi,j=Ci,j , sv(A,B,C) =

∑
i 1Ai,i=Bi,i=Ci,i , se(A,B,C) =

∑
i

∑
j 6=i 1Ai,j=Bi,j=Ci,j .

Proof. Let’s choose π1 = π∗Ĝopt,Ĝ1
and π2 = π∗Ĝ′1,Ĝ2

, where Ĝ′1 has the corresponding AA-matrix AĜ′1
=

Pπ1
AĜ1P

>
π1

, then we will have d(AĜopt
,Pπ1

AĜ1P
>
π1

) = d∗Ĝopt,Ĝ1
and d(Pπ1

AĜ1P
>
π1
,Pπ2

AĜ2P
>
π2

) = d∗Ĝ′1,Ĝ2
=

d∗Ĝ1,Ĝ2
. In the worst case that the d∗Ĝopt,Ĝ1

entries and d∗Ĝ1,Ĝ2
entries have the least overlaps in positions, the

number of same entries in AĜopt
, Pπ1

AĜ1P
>
π1

and Pπ2
AĜ2P

>
π2

will be no less than n2 − d∗Ĝopt,Ĝ1
− d∗Ĝ1,Ĝ2

(if it is not negative). As a result, we have s(AĜopt ,Pπ1
AĜ1P

>
π1
,Pπ2AĜ2P

>
π2

) >= max(n2 − d∗Ĝopt,Ĝ1
−

d∗Ĝ1,Ĝ2
, 0). When we decompose s(AĜopt

,Pπ1AĜ1P
>
π1
,Pπ2AĜ2P

>
π2

) into sv(AĜopt ,Pπ1AĜ1P
>
π1
,Pπ2AĜ2P

>
π2

) and
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se(AĜopt
,Pπ1

AĜ1P
>
π1
,Pπ2

AĜ2P
>
π2

), we can easily obtain sv(AĜopt ,Pπ1
AĜ1P

>
π1
,Pπ2

AĜ2P
>
π2

) >= max(n −
d∗
v,Ĝopt,Ĝ1

− d∗
v,Ĝ1,Ĝ2

, 0) and se(AĜopt
,Pπ1

AĜ1P
>
π1
,Pπ2

AĜ2P
>
π2

) >= max(n · (n− 1)− d∗
e,Ĝopt,Ĝ1

− d∗
e,Ĝ1,Ĝ2

, 0).

Lemma A.4 (Upper bound of expected GED to optimal). Given an RL agent as defined in Definition 4.14, its expected
GED to optimal is defined as EAθ∼Qθ

(GED(Gopt,Gθ)), where Gθ is the corresponding graph of Aθ. Suppose Gopt

is within the sample space of the RL agent, and Qθ is permuted to be Q∗θ = Pπ∗Gopt,θ
QθP

>
π∗Gopt,θ

such that for any

permutation π′, Σi,jp(A
θ∗
i,j 6= A

Gopt

i,j |A∗θ ∼ Q∗θ) ≤ Σi,jp(A
θ′
i,j 6= A

Gopt
i,j |A′θ ∼ Q′θ), where Q′θ = Pπ′QθP

>
π′ , we have

EAθ∼Qθ
(GED(Gopt,Gθ)) ≤ Σi,jp(A

θ∗
i,j 6= A

Gopt

i,j |A∗θ ∼ Q∗θ), for i, j ∈ 1, 2, · · · , n.

Proof. Q∗θ is one of the permutations of Qθ that minimizes the expected number of different entries between A∗θ ∼
Q∗θ and AGopt

, i.e., Σi,jp(A
θ∗
i,j 6= A

Gopt

i,j |A∗θ ∼ Q∗θ) = EA∗θ∼Q
∗
θ
d(A∗θ,AGopt). Since for every sampled A∗θ , we have

GED(Gopt,G∗θ ) ≤ d(A∗θ,AGopt
), which leads to EA∗θ∼Q

∗
θ
(GED(Gopt,G∗θ )) ≤ EA∗θ∼Q

∗
θ
d(A∗θ,AGopt). Because Q∗θ

is a permutation of Qθ, we have EAθ∼Qθ
(GED(Gopt,Gθ)) = EA∗θ∼Q

∗
θ
(GED(Gopt,G∗θ )) ≤ EA∗θ∼Q

∗
θ
d(A∗θ,AGopt) =

Σi,jp(A
θ∗
i,j 6= A

Gopt

i,j |A∗θ ∼ Q∗θ), for i, j ∈ 1, 2, · · · , n.

Theorem 4.11 (Expected improvement of SEP crossover). Following Assumption 4.10, let nse = max(n · (n − 1) −
d∗
e,Ĝopt,Ĝ1

− d∗
e,Ĝ1,Ĝ2

, 0). and supposeAĜnew
= r(AĜ′1

,Pπ∗
Ĝ′1,Ĝ2

AĜ2P
>
π∗
Ĝ′1,Ĝ2

). Then we have

E(max(de(AĜopt
,AĜ1→Ĝopt)− de(AĜopt ,AĜnew→Ĝopt), 0))

≥ E(max(
d∗
e,Ĝopt,Ĝ1

· d∗
e,Ĝ1,Ĝ2

n · (n− 1)− nse
− B(d∗

e,Ĝ1,Ĝ2
, 0.5), 0)) = LBEISEPX,

where B(d∗
e,Ĝ1,Ĝ2

, 0.5) denotes a binomial distribution with d∗
e,Ĝ1,Ĝ2

trials and success probability of 0.5, and LBEISEPX

denotes the lower bound of expected improvement of the SEP crossover.

Proof. Following Assumption 4.10, since nse elements are shared byAĜ′1 and Pπ∗
Ĝ′1,Ĝ2

AĜ2P
>
π∗
Ĝ′1,Ĝ2

, the d∗
e,Ĝ1,Ĝ2

different

elements among them are uniformly distributed within the remaining n · (n− 1)− nse entries. As a result, the chance for

any one of these n · (n− 1)− nse entries to have the same values in both parents equals 1−
d∗
e,Ĝ1,Ĝ2

n·(n−1)−nse , then the number

of entries in AĜ′1 that is originally different from AĜopt and stay intact after crossover is (1 −
d∗
e,Ĝ1,Ĝ2

n·(n−1)−nse ) · d∗
e,Ĝopt,Ĝ1

.

Since all the non-diagonal elements inAĜ′1 and Pπ∗
Ĝ′1,Ĝ2

AĜ2P
>
π∗
Ĝ′1,Ĝ2

are either 0 or 1 (indicating whether there is an edge

between two nodes), the number of remaining entries that one of the parents is correct while the other is incorrect equals

d∗
e,Ĝ1,Ĝ2

. Therefore, de(AĜopt
,AĜnew

) = (1 −
d∗
e,Ĝ1,Ĝ2

n·(n−1)−nse ) · d∗
e,Ĝopt,Ĝ1

+ B(d∗
e,Ĝ1,Ĝ2

, 0.5). Considering the fact that

de(AĜopt
,AĜnew→Ĝopt

) ≤ de(AĜopt
,AĜnew

), we have

E(max(de(AĜopt
,AĜ1→Ĝopt

)− de(AĜopt
,AĜnew→Ĝopt), 0)) ≥ E(max(de(AĜopt ,AĜ1→Ĝopt)− de(AĜopt ,AĜnew), 0))

= E(max(d∗
e,Ĝopt,Ĝ1

− ((1−
d∗
e,Ĝ1,Ĝ2

n · (n− 1)− nse
) · d∗

e,Ĝopt,Ĝ1
+ B(d∗

e,Ĝ1,Ĝ2
, 0.5))

= E(max(
d∗
e,Ĝopt,Ĝ1

· d∗
e,Ĝ1,Ĝ2

n · (n− 1)− nse
− B(d∗

e,Ĝ1,Ĝ2
, 0.5), 0)).

Theorem 4.12 (Expected improvement of standard crossover). Suppose AĜnew = r(AĜ′1
,Pπrand

AĜ2P
>
πrand

). Then we
have

E(max(de(AĜopt
,AĜ1→Ĝopt

)− de(AĜopt
,AĜnew→Ĝopt), 0))

≥ E(max(d∗
e,Ĝopt,Ĝ1

−
(d∗
e,Ĝopt,Ĝ1

+ n1
1 − n1

opt) · n1
2 + (d∗

e,Ĝopt,Ĝ1
+ n0

1 − n0
opt) · n0

2

2n · (n− 1)
− B(

n1
1 · n0

2 + n0
1 · n1

2

n · (n− 1)
, 0.5), 0))

= LBEISTDX,

14
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where n1
opt, n

1
1 and n1

2 denote the number of ones inAĜopt ,AĜ1 andAĜ2 (excluding diagonal entries), respectively, n0
opt,

n0
1 and n0

2 denote the number of zeros inAĜopt
,AĜ1 andAĜ2 (excluding diagonal entries), respectively, and LBEISTDX

denotes the lower bound of expected improvement of the standard crossover.

Proof. The resulting corresponding graph of Pπrand
AĜ2P

>
πrand

is equivalent to an isomorphism that randomly shuffles the
order of vertices of Ĝ2, therefore any non-diagonal entries in AĜ2 , which represents the connection status between two
vertices, has the same chance to be moved to any non-diagonal positions inPπrand

AĜ2P
>
πrand

after the vertices shuffling. The

number of different non-diagonal entries betweenAĜ′1 and Pπrand
AĜ2P

>
πrand

then equals to n1
1 ·

n0
2

n·(n−1) + n0
1 ·

n1
2

n·(n−1) =

n1
1·n

0
2+n0

1·n
1
2

n·(n−1) . The number of non-diagonal entries that are same inAĜ′1 and Pπrand
AĜ2P

>
πrand

but are different fromAĜopt

equals n1
w ·

n1
2

n·(n−1) + n0
w ·

n0
2

n·(n−1) , where n1
w and n0

w denotes the number of 1s and 0s in the non-diagonal entries where
AĜ′1

and AĜopt
are different (we treat these entries as ”wrong” entries, so we use the subscript ”w”), respectively. To

calculate n1
w, we need to consider two cases: (1) if n1

1 ≥ n1
opt, then n1

w consists of two parts, namely n1
1 − n1

opt, which

represents the number of extra 1s inAĜ′1 thatAĜopt can never match, and
d∗
e,Ĝopt,Ĝ1

−(n1
1−n

1
opt)

2 , which is derived from the
fact that in the remaining entries where AĜ′1 and AĜopt have the same number of 1s, one misplace (compared to AĜopt)
of 1 in AĜ′1 also leads to one misplace of 0 in AĜ′1 (otherwise the number of 1s will be unequal in AĜ′1 and AĜopt), so
exactly half of these d∗

e,Ĝopt,Ĝ1
− (n1

1 − n1
opt) mismatched entries will be 1 inAĜ′1 . After summing these two parts up, we

obtain n1
1 − n1

opt +
d∗
e,Ĝopt,Ĝ1

−(n1
1−n

1
opt)

2 =
d∗
e,Ĝopt,Ĝ1

−(n1
opt−n

1
1)

2 . (2) if n1
1 < n1

opt, we only need to consider the entries that
excluding those extra 1s in AĜopt

that cannot be matched by AĜ′1 , that is, half of the remaining d∗
e,Ĝopt,Ĝ1

− (n1
opt − n1

1)

mismatched entries. We then have n1
w =

d∗
e,Ĝopt,Ĝ1

−(n1
opt−n

1
1)

2 , which also equals to the result of the first case. Similarly, we

can get n0
w =

d∗
e,Ĝopt,Ĝ1

−(n0
opt−n

0
1)

2 .

Given the above intermediate results, we can obtain de(AĜopt ,AĜnew) = n1
w ·

n1
2

n·(n−1) +n0
w ·

n0
2

n·(n−1) +B(
n1
1·n

0
2+n0

1·n
1
2

n·(n−1) , 0.5) =
(d∗
e,Ĝopt,Ĝ1

+n1
1−n

1
opt)·n

1
2+(d∗

e,Ĝopt,Ĝ1
+n0

1−n
0
opt)·n

0
2

2n·(n−1) +B(
n1
1·n

0
2+n0

1·n
1
2

n·(n−1) , 0.5). Since de(AĜopt ,AĜnew→Ĝopt) ≤ de(AĜopt ,AĜnew),
we have

E(max(de(AĜopt
,AĜ1→Ĝopt

)− de(AĜopt
,AĜnew→Ĝopt), 0)) ≥ E(max(de(AĜopt ,AĜ1→Ĝopt)− de(AĜopt ,AĜnew), 0))

= E(max(d∗
e,Ĝopt,Ĝ1

−
(d∗
e,Ĝopt,Ĝ1

+ n1
1 − n1

opt) · n1
2 + (d∗

e,Ĝopt,Ĝ1
+ n0

1 − n0
opt) · n0

2

2n · (n− 1)
− B(

n1
1 · n0

2 + n0
1 · n1

2

n · (n− 1)
, 0.5), 0)).

Theorem 4.13 (Expected improvement of mutation). SupposeAĜnew = m(AĜ′1
). Then we have

E(max(de(AĜopt
,AĜ1→Ĝopt

)− de(AĜopt ,AĜnew→Ĝopt), 0))

≥ E(max(d∗
e,Ĝopt,Ĝ1

− B(n · (n− 1)− d∗
e,Ĝopt,Ĝ1

, pm)− B(d∗
e,Ĝopt,Ĝ1

, 1− pm), 0)) = LBEIMUTA,

where pm is the mutation rate usually chosen to be pm = 1
n·(n−1) , and LBEIMUTA denotes the lower bound of expected

improvement of mutation.

Proof. Since AĜ′1 = Pπ∗
Ĝopt,Ĝ1

AĜ1P
>
π∗
Ĝopt,Ĝ1

, there are d∗
e,Ĝopt,Ĝ1

non-diagonal elements in AĜ′1 that are different from

AĜopt
. Because all the non-diagonal elements in AĜ′1 are either 0 or 1, and m(AĜ′1

) has pm probability to flip each
non-diagonal element ofAĜ′1 , we have de(AĜopt

,AĜnew) = B(n · (n− 1)− d∗
e,Ĝopt,Ĝ1

, pm) +B(d∗
e,Ĝopt,Ĝ1

, 1− pm). Since

de(AĜopt
,AĜnew→Ĝopt

) ≤ de(AĜopt
,AĜnew

), we have

E(max(de(AĜopt
,AĜ1→Ĝopt

)− de(AĜopt
,AĜnew→Ĝopt), 0)) ≥ E(max(de(AĜopt ,AĜ1→Ĝopt)− de(AĜopt ,AĜnew), 0))

= E(max(d∗
e,Ĝopt,Ĝ1

− B(n · (n− 1)− d∗
e,Ĝopt,Ĝ1

, pm)− B(d∗
e,Ĝopt,Ĝ1

, 1− pm), 0)).
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Theorem 4.17 (Expected improvement of unbiased agent and oracle agent). Suppose Σi,jp(A
θ∗
i,j 6= A

Gopt
i,j |A∗θ ∼ Q∗θ) = b∗e,θ

and assume R − b = α · (Σi,jp(Aθ∗i,j 6= A
Gopt

i,j |A∗θ ∼ Q∗θ) − d∗e,Gopt,Gθt ) for i, j ∈ 1, 2, · · · , n and i 6= j, where α is a
positive scaling factor and Gθt is a graph sampled at time step t for obtaining the empirical approximation of policy gradient.
With all zki,j initialized to 0, the expected improvement after one policy update with learning rate η is no less than

LBEIRLU = b∗e,θ − (nw ·
1

1 + ( 1
pw
− 1) · e−2αη(b∗e,θ−nw)(1−pw)

+ (n(n− 1)− nw) · 1

1 + ( 1
pw
− 1) · e2αη(b∗e,θ−nw)·pw

)

for unbiased agent, where pw =
b∗e,θ

n(n−1) , nw = B(n(n− 1),
b∗e,θ

n(n−1) ), and no less than

LBEIRLO = b∗e,θ − (nw ·
1

1 + ( 1
pw
− 1) · e−2αη(b∗e,θ−nw)(1−pw)

+ (b∗e,θ + 1− nw) · 1

1 + ( 1
pw
− 1) · e2αη(b∗e,θ−nw)·pw

)

for oracle agent, where pw =
b∗e,θ
b∗e,θ+1 , nw = B(b∗e,θ + 1,

b∗e,θ
b∗e,θ+1 ).

Proof. Under the REINFORCE rule, the policy gradient based on one sample is Σi,j 5θ log p(Aθi,j) · (R − b) for i, j ∈
1, 2, · · · , n, and the constraint i 6= j can be added to only consider edges/connections. Since only two values 0 and 1 are
allowed for each entry that denotes an edge connection, they can be mapped to “correct” and “wrong” by comparing entries
betweenA∗θ andAGopt

: “correct” means Aθ∗i,j = A
Gopt
i,j and “wrong” means Aθ∗i,j 6= A

Gopt
i,j . For an entry inA∗θ ∼ Q∗θ , let pc

be the probability for it to be correct and pw the probability for it to be wrong, and let zc and zw be the logits for generating
pc and pw, respectively. Then

∂ log pc
∂zc

=
∂

∂zc
log(

ezc

ezc + ezw
) =

∂

∂zc
(zc − log(ezc + ezw))

=1− 1

ezc + ezw
· ( ∂

∂zc
(ezc + ezw)) = 1− ezc

ezc + ezw
= 1− pc.

Similarly, ∂ log pc
∂zw

= −pw, ∂ log pw
∂zw

= 1− pw and ∂ log pw
∂zc

= −pc. For the entries that sample correctly, the policy gradient
for updating zc and zw is ∂ log pc

∂zc
· α(b∗e,θ − d∗e,Gopt,Gθt

) = (1− pc) · α(b∗e,θ − d∗e,Gopt,Gθt ) and −pw · α(b∗e,θ − d∗e,Gopt,Gθt ),

respectively. For the entries that sample wrong, the policy gradient for updating zc and zw is ∂ log pw
∂zc

·α(b∗e,θ−d∗e,Gopt,Gθt ) =

−pc · α(b∗e,θ − d∗e,Gopt,Gθt
) and (1− pw) · α(b∗e,θ − d∗e,Gopt,Gθt ), respectively. Since pc = 1− pw, the policy gradients are

always opposite but the same magnitude for zc and zw. Because all the zki,j are initialized to 0, thus zc = −zw for each

entry. Given pw = ezw

ezc+ezw and zc = −zw, then ezc =
√

1−pw
pw

and ezw =
√

pw
1−pw . Therefore, for the entries that sample

correctly, pc is updated as

p′c =
ezc · e(1−pc)·α(b∗e,θ−d

∗
e,Gopt,Gθt

)·η

ezc · e(1−pc)·α(b∗e,θ−d
∗
e,Gopt,Gθt

)·η
+ ezw · e−pw·α(b∗e,θ−d

∗
e,Gopt,Gθt

)·η .

For the entries that sample wrong, pw is updated as

p′w =
ezw · e(1−pw)·α(b∗e,θ−d

∗
e,Gopt,Gθt

)·η

ezw · e(1−pw)·α(b∗e,θ−d
∗
e,Gopt,Gθt

)·η
+ ezc · e−pc·α(b∗e,θ−d

∗
e,Gopt,Gθt

)·η .

For the unbiased agent, in order to have Σi,jp(A
θ∗
i,j 6= A

Gopt
i,j |A∗θ ∼ Q∗θ) = b∗e,θ, every entry should have the same

pw =
b∗e,θ

n(n−1) . The number of different non-diagonal entries betweenA∗θ andAGopt is then nw = d∗e,Gopt,Gθt
= B(n(n−

1),
b∗e,θ

n(n−1) ). Since there are nw entries sampled wrong and n(n−1)−nw sampled correctly, the expected number of different
non-diagonal entries betweenA∗θ ∼ Q∗θ andAGopt after updating every pc and pw becomes nw ·p′w+(n(n−1)−nw)·(1−p′c).
Considering the possibility of further permuting the updated entries inQ∗θt to obtainQ∗θt+1

, and supposing thatQ∗θt = Q∗θ ,
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then nw ·p′w+(n(n−1)−nw) ·(1−p′c) ≥ Σi,jp(A
θt+1∗
i,j 6= A

Gopt
i,j |A∗θt+1

∼ Q∗θt+1
). As a result, the expected improvement

is

Σi,jp(A
θt∗
i,j 6= A

Gopt

i,j |A
∗
θt ∼ Q

∗
θt)− Σi,jp(A

θt+1∗
i,j 6= A

Gopt
i,j |A

∗
θt+1
∼ Q∗θt+1

)

≥ b∗e,θ − (nw · p′w + (n(n− 1)− nw) · (1− p′c))

= b∗e,θ − (nw ·
1

1 + ( 1
pw
− 1) · e−2αη(b∗e,θ−nw)(1−pw)

+ (n(n− 1)− nw) · 1

1 + ( 1
pw
− 1) · e2αη(b∗e,θ−nw)·pw

),

where pw =
b∗e,θ

n(n−1) , nw = B(n(n− 1),
b∗e,θ

n(n−1) ).

For the oracle agent, if b∗e,θ is an integer and there are exactly n(n− 1)− b∗e,θ entries that have pc = 1.0, the remaining b∗e,θ
entries can only have pc = 0, due to the pre-condition that Σi,jp(A

θ∗
i,j 6= A

Gopt
i,j |A∗θ ∼ Q∗θ) = b∗e,θ. This setup results in a

stuck agent that can no longer explore and update itself, and it does not satisfy Definition 4.16. Therefore, the maximum
number of entries with pc = 1.0 can only be n(n− 1)− b∗e,θ − 1 when b∗e,θ is an integer, and n(n− 1)− db∗e,θe otherwise.
Since n(n− 1)−db∗e,θe = n(n− 1)−bb∗e,θc− 1 always holds true and n(n− 1)− b∗e,θ− 1 = n(n− 1)−bb∗e,θc− 1 is true
when b∗e,θ is an integer, n(n− 1)−bb∗e,θc− 1 can always be used to describe the maximum number of entries with pc = 1.0.

The remaining bb∗e,θc+1 entries would have pw =
b∗e,θ

bb∗e,θc+1 , within which nw entries are sampled wrong, and bb∗e,θc+1−nw

entries are sampled correctly, with nw = B(bb∗e,θc+ 1,
b∗e,θ

bb∗e,θc+1 ). The expected number of different non-diagonal entries

betweenA∗θ ∼ Q∗θ andAGopt after updating every pc and pw thus becomes nw · p′w + (bb∗e,θc+ 1− nw) · (1− p′c). Similar
to the analysis of the unbiased agent, we have

Σi,jp(A
θt∗
i,j 6= A

Gopt

i,j |A
∗
θt ∼ Q

∗
θt)− Σi,jp(A

θt+1∗
i,j 6= A

Gopt
i,j |A

∗
θt+1
∼ Q∗θt+1

)

≥ b∗e,θ − (nw ·
1

1 + ( 1
pw
− 1) · e−2αη(b∗e,θ−nw)(1−pw)

+ (bb∗e,θc+ 1− nw) · 1

1 + ( 1
pw
− 1) · e2αη(b∗e,θ−nw)·pw

)

for the oracle agent, where pw =
b∗e,θ

bb∗e,θc+1 , nw = B(bb∗e,θc+ 1,
b∗e,θ

bb∗e,θc+1 ).

Corollary 4.18 (Effect of GED errors on LBEISEPX). With error ratio ε in calculating d∗
e,Ĝ1,Ĝ2

, LBEISEPX becomes

LBEIεSEPX = (dε
e,Ĝ1,Ĝ2

− bdε
e,Ĝ1,Ĝ2

c) · E(max(
d∗
e,Ĝopt,Ĝ1

· (bdε
e,Ĝ1,Ĝ2

c+ 1)

n · (n− 1)− bnεsec
− B(bdε

e,Ĝ1,Ĝ2
c+ 1, 0.5), 0))

+ (bdε
e,Ĝ1,Ĝ2

c+ 1− dε
e,Ĝ1,Ĝ2

) · E(max(
d∗
e,Ĝopt,Ĝ1

· bdε
e,Ĝ1,Ĝ2

c

n · (n− 1)− dnεsee
− B(bdε

e,Ĝ1,Ĝ2
c, 0.5), 0)),

where nεse = max(n · (n− 1)− d∗
e,Ĝopt,Ĝ1

− dε
e,Ĝ1,Ĝ2

, 0).

Proof. Given the assumption that the resulting GED can only be either bdε
e,Ĝ1,Ĝ2

c or bdε
e,Ĝ1,Ĝ2

c+ 1 following a Bernoulli
distribution, and the expectation is dε

e,Ĝ1,Ĝ2
= d∗

e,Ĝ1,Ĝ2
· (1 + ε), the probabilities for getting the two results can be derived

as p(bdε
e,Ĝ1,Ĝ2

c) = bdε
e,Ĝ1,Ĝ2

c+ 1− dε
e,Ĝ1,Ĝ2

and p(bdε
e,Ĝ1,Ĝ2

c+ 1) = dε
e,Ĝ1,Ĝ2

− bdε
e,Ĝ1,Ĝ2

c. In case of getting bdε
e,Ĝ1,Ĝ2

c
as the GED calculation result, LBEISEPX becomes

LBEISEPX|bdεe,Ĝ1,Ĝ2c = E(max(
d∗
e,Ĝopt,Ĝ1

· bdε
e,Ĝ1,Ĝ2

c

n · (n− 1)− dnεsee
− B(bdε

e,Ĝ1,Ĝ2
c, 0.5), 0)),

where dnεsee = max(n · (n− 1)− d∗
e,Ĝopt,Ĝ1

− bdε
e,Ĝ1,Ĝ2

c, 0). Similarly,

LBEISEPX|(bdεe,Ĝ1,Ĝ2c+ 1) = E(max(
d∗
e,Ĝopt,Ĝ1

· (bdε
e,Ĝ1,Ĝ2

c+ 1)

n · (n− 1)− bnεsec
− B(bdε

e,Ĝ1,Ĝ2
c+ 1, 0.5), 0)),
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if bdε
e,Ĝ1,Ĝ2

c+ 1 is not an integer. If bdε
e,Ĝ1,Ĝ2

c+ 1 is an integer, then p(bdε
e,Ĝ1,Ĝ2

c+ 1) = dε
e,Ĝ1,Ĝ2

− bdε
e,Ĝ1,Ĝ2

c = 0, so
this case does not need to be considered. By combining the two cases,

LBEIεSEPX = p(bdε
e,Ĝ1,Ĝ2

c) ∗ LBEISEPX|bdεe,Ĝ1,Ĝ2c+ p(bdε
e,Ĝ1,Ĝ2

c+ 1) · LBEISEPX|(bdεe,Ĝ1,Ĝ2c+ 1)

= (dε
e,Ĝ1,Ĝ2

− bdε
e,Ĝ1,Ĝ2

c) · E(max(
d∗
e,Ĝopt,Ĝ1

· (bdε
e,Ĝ1,Ĝ2

c+ 1)

n · (n− 1)− bnεsec
− B(bdε

e,Ĝ1,Ĝ2
c+ 1, 0.5), 0))

+ (bdε
e,Ĝ1,Ĝ2

c+ 1− dε
e,Ĝ1,Ĝ2

) · E(max(
d∗
e,Ĝopt,Ĝ1

· bdε
e,Ĝ1,Ĝ2

c

n · (n− 1)− dnεsee
− B(bdε

e,Ĝ1,Ĝ2
c, 0.5), 0)).

A.2. List of Mathematical Symbols

This section provides a list of all mathematical symbols used in this paper.

V A set of vertices

vi Vertex(node) with index i

E A set of directed edges

ei,j A directed edge from vertex i to vertex j

G A directed graph

|G| The order of a directed graph G, which equals the number of its
vertices

γv A function that assigns an attribute (e.g., an integer) to each
vertex of a directed graph

γe A function that assigns an attribute (e.g., an integer) to each edge
of a directed graph

δ : G → G′ A function that applies an elementary graph edit to transform G
to G′

δ = δ1, δ2, . . . , δd A sequence of graph edit operations, and d is the length of the
resulting edit path

GED(G1,G2) The graph edit distance (GED) between G1 and G2

∆(G1,G2) The set of all edit paths that transform G1 to an isomorphism of
G2 (including G2 itself)

c(δi) The cost of edit δi (in this work, all types of edit operations are
defined to have the same cost of 1)

δ
∗
G1,G2 The edit path that minimizes the total edit cost to transform G1

to an isomorphism of G2 (including G2 itself)

d∗G1,G2 The length of the shortest edit path that transforms G1 to an
isomorphism of G2 (including G2 itself)

π A permutation of multiple elements/indices

d·e The ceiling function

b·c The floor function

AG The attributed adjacency matrix (AA-matrix) for graph G

AGi,j The entry in ith row and jth column of matrixAG
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In Identity matrix with n rows and n columns

Pπ A permutation matrix based on permutation π

Pπi,j The entry in ith row and jth column of matrix Pπ

d(A,B) A function that returns the number of different entries between
two matrices (A andB here) with same shape

Ĝ The extended graph of G after adding null vertices

Sn The set of all permutations of {1, 2, 3, . . . , n}

1condition A function that returns 1 if the condition is true, 0 otherwise

π∗Ĝ1,Ĝ2
The permutation that minimizes d(AĜ1 ,PπAĜ2P

>
π )

AĜ2→Ĝ1 The permuted AA-matrix of Ĝ2 using permutation matrix
Pπ∗
Ĝ1,Ĝ2

r(A,B) A function that returns a matrix inheriting each entry fromA or
B with probability 0.5 (that is, if C = r(A,B), then p(Ci,j =
Ai,j) = p(Ci,j = Bi,j) = 0.5 for any valid i, j)

m(A) A function that alters each element ofA with an equal probabil-
ity

pm Mutation probability

f(G) The fitness/reward of G

Gopt The global optimal graph

max(·, ·, . . . , ·) A function that returns the maximum value among all inputs

dv(A,B) A function that returns the number of different diagonal entries
between two matrices (A andB here) with same shape

de(A,B) A function that returns the number of different non-diagonal
entries between two matrices (A andB here) with same shape

d∗e,G1,G2 A simplified symbol to denote de(AG1 ,AG2→G1)

ns Number of common entries among multiple matrices

nse Number of common non-diagonal entries among multiple matri-
ces

B(n, p) The number of successful trials after sampling from a binomial
distribution with n trials and success probability of p

LBEISEPX The lower bound of expected improvement of the SEP crossover

LBEISTDX The lower bound of expected improvement of the standard
crossover

LBEIMUTA The lower bound of expected improvement of mutation

LBEIRLU The lower bound of expected improvement of the unbiased agent

LBEIRLO The lower bound of expected improvement of the oracle agent

n1
opt, n

1
1 and n1

2 The number of ones inAĜopt ,AĜ1 andAĜ2 , excluding diagonal
entries

n0
opt, n

0
1 and n0

2 The number of zeros inAĜopt ,AĜ1 andAĜ2 , excluding diagonal
entries
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Qθ A matrix in which each entry Qθi,j defines a separate categorical
distribution

θ The parameter set that contains the logits for defining the cate-
gorical distributions inQθ

zki,j The logits used to defining a categorical distribution through
softmax functions, where k denotes the class label

R The reward for the currently sampled architecture in a RL run

b A baseline reward to reduce the variance of gradient estimate

Q∗θ The optimal permutation of Qθ as defined in Lemma A.4 in
Appendix A.1

t The current time step

θt Policy parameter at time step t

α A positive scaling factor

η Learning rate

ε Error ratio

dεe,G1,G2 The resulting d∗e,G1,G2 with error ratio ε in GED calculation

LBEIεSEPX The resulting LBEISEPX with error ratio ε in GED calculation

nεse The resulting nse with error ratio ε in GED calculation

A.3. Example for Demonstrating the Permutation Problem and the SEP Crossover Solution

Figure A.1 provides a visual example of the permutation problem and how the SEP crossover solves it.

A.4. Experimental Setup Details

For experiments in Section 5.1, all the RE-based variants used a population size of 100 and tournament selection with size
10. For NAS-bench-101, GED to the global optimal architecture was used as the fitness, and 50 independent runs were
performed, each with a maximum number of evaluations of 103. The allowed mutation operations were the same as in the
original NAS-bench-101 example code (https://github.com/google-research/nasbench). For RL, the same implementation
as in https://github.com/automl/nas benchmarks was used. For experiments in Section 5.3, the learning rate was 0.5, as
recommended by Ying et al. (2019).

For NAS-bench-NLP, GED to the GRU architecture was used as fitness, and 50 independent runs were performed, each with
a maximum number of evaluations of 103. The mutation operation was the same as in https://github.com/automl/NASLib.
In both benchmarks, for each crossover operation, the offspring was evaluated only if it was a valid architecture in the
benchmark space and different from both parents. The maximum number of trials was 50, i.e. the current crossover was
skipped after reaching this limit.

For experiments on NAS-bench-101 in Section 5.2, the experimental setups was the same as in Section 5.1 except the
maximum number of evaluations was 2× 103.

For experiments in Section 5.3, the setup for the NAS-bench-101 experiments was the same as in Section 5.1, except
validation accuracy was used as the fitness during evolution and test accuracy as the final performance of each architecture.
The maximum number of evaluations was 104. In the experiments on NAS-bench-301, all the RE-based variants had a
population size of 100 and tournament size of 10, and 30 independent runs were performed, each with a maximum number
of evaluations of 2× 103. The mutation operation followed the standard strategy in https://github.com/automl/NASLib.

For experiments regarding BO methods (Appendix A.9), the same setup as in https://github.com/automl/nas benchmarks is
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Figure A.1. The permutation problem and the SEP crossover solution. The two parent architectures share vertices A and B. Although
these two vertices appear in a different order, together they implement the same function, and this function should not be disrupted during
crossover. However, standard crossover cannot identify the subgraph isomorphism, and it loses this substructure. In contrast, the shortest
edit path calculation recognizes the isomorphism, and as a result, the SEP crossover preserves this substructure. Thus, the SEP crossover
only explores the parts that are functionally inconsistent between the two parents.

used.

For experiments regarding path encoding (Appendix A.10), the default setup without cutoff as in
https://github.com/naszilla/naszilla is used.

A.5. Additional Figures for Section 4.3

This section includes the rest of the comparisons between the SEP crossover, standard crossover, mutation, and the two RL
variants. Note that the color scales differ between figures to make the conclusions more clear.

Figure A.2 compares LBEISEPX vs. LBEIMUTA and LBEISTDX vs. LBEIMUTA for different combinations of d∗
e,Ĝopt,Ĝ1

and d∗
e,Ĝ1,Ĝ2

in NAS-bench-NLP (Klyuchnikov et al., 2022). The standard setup was used: n = 12, n1
opt = 14, n1

1 = 11,

and n1
2 = 11. Although the standard crossover is slightly worse than mutation in most cases, the SEP crossover has a

considerable theoretical advantage.

Figure A.3 compares LBEISTDX vs. LBEIMUTA under different d∗
e,Ĝ1,Ĝ2

and d∗
e,Ĝopt,Ĝ1

combinations. LBEISTDX is
smaller than LBEIMUTA in most cases.

Figure A.4 shows LBEIRLU, LBEIRLO and LBEIRLU vs. LBEIRLO under different α · η values. A α · η value of 0.1
provides the best tradeoff between unbiased agent and oracle agent.

Figure A.5 compares LBEIRLU vs. LBEIMUTA and LBEIRLO vs. LBEIMUTA under different α · η values. Whereas
unbiased agent is generally worse than mutation, the oracle agent is better in some cases and worse in others.

Figure A.6 compares LBEISTDX vs. LBEIRLU and LBEISTDX vs. LBEIRLO under different d∗
e,Ĝ1,Ĝ2

and d∗
e,Ĝopt,Ĝ1

combinations. The standard crossover is slightly worse than both RL agents in most cases.
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0.810.710.600.490.390.310.230.160.110.060.040.01-0.00-0.01-0.01-0.01-0.01-0.01-0.01-0.000.00

0.930.820.690.570.480.380.280.220.150.090.060.030.01-0.01-0.01-0.01-0.01-0.01-0.01-0.000.00

1.050.910.770.670.570.450.350.280.200.130.090.040.020.00-0.01-0.01-0.01-0.01-0.01-0.000.00

1.151.000.890.780.650.530.440.340.240.180.120.070.040.010.00-0.01-0.01-0.01-0.01-0.000.00

1.251.131.010.870.730.640.530.410.310.240.160.100.060.030.01-0.00-0.01-0.01-0.01-0.000.00

1.371.241.100.960.850.740.610.480.400.300.200.150.090.050.020.00-0.00-0.01-0.01-0.000.00

1.461.321.201.090.960.830.690.590.480.370.270.200.120.080.040.01-0.00-0.00-0.00-0.000.00

1.541.431.311.191.050.920.810.690.560.440.350.260.160.110.060.030.00-0.00-0.00-0.000.00

1.631.511.391.261.151.040.910.780.640.540.430.320.230.160.080.050.010.00-0.00-0.000.00

1.671.561.461.361.251.131.000.860.760.640.520.390.300.210.120.070.030.01-0.00-0.000.00

1.721.631.531.431.311.191.090.980.860.730.580.490.380.260.180.110.050.020.00-0.000.00

1.731.641.551.471.381.281.181.060.930.800.700.590.460.330.250.150.080.040.01-0.000.00

1.731.661.591.501.421.321.221.111.020.910.800.670.520.430.320.200.120.060.020.000.00

1.671.621.551.481.421.351.271.181.080.980.860.740.640.530.390.260.180.080.040.000.00

1.611.561.511.451.391.331.261.181.091.010.930.830.730.600.450.360.250.120.060.010.00

1.461.431.401.361.331.281.231.171.111.040.960.860.760.660.570.450.320.190.110.020.00

1.311.281.261.231.201.161.121.081.020.980.930.880.810.730.630.510.360.280.160.050.00

1.091.081.071.051.031.010.990.970.940.900.860.820.760.690.610.550.470.370.220.090.00

0.800.790.790.790.780.780.770.760.750.740.720.700.670.650.610.560.490.390.240.160.00

0.410.410.410.420.420.420.420.420.420.420.420.420.420.420.410.400.390.370.330.250.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

Difference between SEP crossover and mutation in Expected Improvement, n=12, n1
opt=14, n1

1=11, n1
2=11
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0.340.220.120.060.02-0.01-0.02-0.03-0.03-0.03-0.03-0.03-0.02-0.02-0.02-0.01-0.01-0.01-0.01-0.000.00

0.340.220.120.060.02-0.01-0.02-0.03-0.03-0.03-0.03-0.03-0.02-0.02-0.02-0.01-0.01-0.01-0.01-0.000.00

0.340.220.130.060.02-0.01-0.02-0.03-0.03-0.03-0.03-0.03-0.02-0.02-0.02-0.01-0.01-0.01-0.01-0.000.00

0.340.210.120.060.02-0.01-0.02-0.03-0.03-0.03-0.03-0.03-0.02-0.02-0.02-0.01-0.01-0.01-0.01-0.000.00

0.340.220.120.060.02-0.01-0.02-0.03-0.03-0.03-0.03-0.03-0.02-0.02-0.02-0.01-0.01-0.01-0.01-0.000.00
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0.340.220.120.060.02-0.01-0.02-0.03-0.03-0.03-0.03-0.03-0.02-0.02-0.02-0.01-0.01-0.01-0.01-0.000.00

0.340.220.130.060.02-0.01-0.02-0.03-0.03-0.03-0.03-0.03-0.02-0.02-0.02-0.01-0.01-0.01-0.01-0.000.00

0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00

Difference between standard crossover and mutation in Expected Improvement, n=12, n1
opt=14, n1

1=11, n1
2=11
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Figure A.2. Comparison of expected improvement in NAS-bench-NLP. (Left) Differences between LBEISEPX and LBEIMUTA

under different d∗
e,Ĝ1,Ĝ2

(y-axis) and d∗
e,Ĝopt,Ĝ1

(x-axis) combinations. LBEISEPX is larger than LBEIMUTA in most situations. (Right)
Differences between LBEISTDX and LBEIMUTA under different d∗

e,Ĝ1,Ĝ2
(y-axis) and d∗

e,Ĝopt,Ĝ1
(x-axis) combinations. LBEISTDX is

slightly smaller than LBEIMUTA in most situations. These two observations lead to the same conclusion for NAS-bench-NLP as for
NAS-bench-101 in Figure 1: Although the standard crossover has a slightly worse expected improvement than mutation under most
circumstances, the SEP crossover has a considerable theoretical advantage.
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0.000.000.000.000.000.000.000.000.000.000.00

Difference between standard crossover and mutation in Expected Improvement, n=7, n1
opt=9, n1
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2=9
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Figure A.3. Comparison of expected improvement between standard crossover and mutation in NAS-bench-101. Differences
between LBEISTDX and LBEIMUTA under different d∗

e,Ĝ1,Ĝ2
(y-axis) and d∗

e,Ĝopt,Ĝ1
(x-axis) combinations. LBEISTDX is smaller than

LBEIMUTA in most cases.
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Figure A.4. Expected improvement of RL (Left) LBEIRLU under different α ·η values. (middle) LBEIRLO under different α ·η values.
(right) LBEIRLO − LBEIRLU under different α · η values. A α · η value of 0.1 provides the best tradeoff between unbiased agent and
oracle agent.
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Figure A.5. Comparison of expected improvement between RL and mutation (Left) LBEIRLU − LBEIMUTA under different α · η
values. (right) LBEIRLO − LBEIMUTA under different α · η values. Whereas unbiased agent is generally worse than mutation, the
oracle agent is better in some cases and worse in others.
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Figure A.6. Comparison of expected improvement between standard crossover and RL (Left) LBEISTDX − LBEIRLU under dif-
ferent d∗

e,Ĝ1,Ĝ2
(y-axis) and d∗

e,Ĝopt,Ĝ1
(x-axis) combinations. (right) LBEISTDX − LBEIRLO under different d∗

e,Ĝ1,Ĝ2
(y-axis) and

d∗
e,Ĝopt,Ĝ1

(x-axis) combinations. A α · η value of 0.1 is used for RL. The standard crossover is slightly worse than both RL agents in
most cases.

A.6. Additional Figures for Section 4.4

As in Section 4.3, Monte Carlo simulations with 106 trials each were performed to estimate the values of LBEIεSEPX under
different error ratios ε. Figure A.7 compares LBEIεSEPX with LBEIMUTA, LBEIRLU and LBEIRLO under error ratios ε =
0.1, 0.2, and 0.3. Because Figure A.3 and A.6 already show that LBEISTDX is worse than LBEIMUTA, LBEIRLU and
LBEIRLO in most cases, LBEISTDX is not included in these comparisons.

The conclusion is that the SEP crossover has a theoretical advantage in expected improvement compared to mutation,
standard crossover, and RL even with a very high error ratio of 30% in the GED calculations. Thus, if the computational
cost of the SEP crossover needs to be reduced, approximation methods can be used to calculate GED.

A.7. Additional Figures for Section 5.1

Figures A.8 and A.9 show relative frequencies of different parent combinations in NAS-bench-101 and NAS-bench-NLP,
respectively. Note that the high relative frequencies of d∗

e,Ĝopt,Ĝ1
= 0 and d∗

e,Ĝ1,Ĝ2
= 0 are due to the convergence of the

search algorithm, i.e. no further improvement can be made from them. The high-frequency areas match the assumptions of
the theory, and thus the theoretical conclusions apply to real-world NAS.

A.8. Additional Results for Section 5.3

Figure A.10 shows that SEP crossover converges consistently faster than the other methods in all three benchmarks, i.e.
NAS-bench-101, NAS-bench-NLP, and NAS-bench-301.

Note that since NAS-bench-NLP is not queryable, it is not possible to measure the prediction accuracy of each architecture
in this benchmark the same way as that architecture is trained; the computational cost would be prohibitive given the scale of
the experiments (i.e. multiple evaluations of multiple algorithms trained many times in each evaluation). Instead, the GED
to GRU/LSTM is used as a noise-free fitness/reward for evaluating the performance of different methods in this complex
search space.

Note also that NAS-bench-301 was not used in GED-related experiments because there are two separate graphs for each
architecture (the normal cell and the reduction cell); currently the theory does not apply to pairs of graphs. Such an extension
is left for future work.

A.9. Comparison with Bayesian optimization

Figure A.11 compares the SEP crossover with two Bayesian optimization (BO) methods, namely BOHB (Falkner et al.,
2018) and SMAC (Hutter et al., 2011). The parameter setup of BOHB and SMAC follows the guidelines in Ying et al.
(2019). The SEP crossover consistently outperforms both BOHB and SMAC in NAS-bench-101.
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(a) Error ratio ε = 0.1
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(b) Error ratio ε = 0.2
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(c) Error ratio ε = 0.3

Figure A.7. Comparison of expected improvement between SEP crossover, mutation, and RL in NAS-bench-101 at various level
of GED calculation error. (Left) Differences between LBEIεSEPX and LBEIMUTA under different d∗

e,Ĝ1,Ĝ2
(y-axis) and d∗

e,Ĝopt,Ĝ1
(x-

axis) combinations. (Middle) Differences between LBEIεSEPX and LBEIRLU. (Right) Differences between LBEIεSEPX and LBEIRLO.
LBEIεSEPX is larger (i.e. more red) than LBEIMUTA, LBEIRLU, and LBEIRLO in almost all cases. Thus, the SEP crossover has a
theoretical advantage over mutation and RL even at a very high level of error in the GED calculations. Therefore, if needed, approximation
methods can be used to reduce the computational cost of the SEP crossover.

A.10. Comparison with path encoding

Figure A.12 compares the SEP crossover with a crossover operator based on path encoding (White et al., 2021b). During a
path encoding crossover, the offspring inherits the path with 100% probability if this path is in both parents, and with 50% if
it is only in one of them. The SEP crossover significantly outperforms the path encoding crossover in NAS-bench-101.

A.11. Computational time of GED calculation

The GED calculations in the experiments are based on the NetworkX library (Hagberg et al., 2008), which implements an
exact GED calculation method (Abu-Aisheh et al., 2015) with reasonable computational efficiency. In the experiments,
the calculation time of GED was found to depend not only on the size of the two graphs, but also on the distance between
them: If the two graphs are similar, the GED is calculated faster. As a characterization of the computational cost of GED
calculations during SEP crossover, their average computation times under different parent distances and sizes are shown in
Table A.2. These cases cover more than 99.9% of the cases encountered in the experiments (according to Figure A.8 and
A.9). All the GED computations ran on a single Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz. According to Table A.2,
the GED calculation time is almost negligible in NAS-bench-101 search space, and acceptable even in the largest NAS
benchmark, i.e. NAS-bench-NLP.
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Figure A.8. Relative frequencies of different parent combinations in NAS-bench-101 experiments. (Left) Relative frequencies of
different d∗

e,Ĝ1,Ĝ2
(y-axis) and d∗

e,Ĝopt,Ĝ1
(x-axis) combinations. All events happen in the regions where the SEP crossover has a

theoretical advantage in terms of expected improvement (as seen in Figure 1). (Right) Relative frequencies of different n1
1 and n1

2

combinations. The event n1
1 = 9 and n1

2 = 9 happens most frequently during the experiments, and this setup is indeed used in the
theoretical analysis. Thus, the theoretical analysis applies to situations that arise in NAS-bench-101.
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Figure A.9. Relative frequency of different parent combinations in NAS-bench-NLP experiments. (Left) Relative frequencies of
different d∗

e,Ĝ1,Ĝ2
(y-axis) and d∗

e,Ĝopt,Ĝ1
(x-axis) combinations. All the events happen in the regions where the SEP crossover has a

theoretical advantage in terms of expected improvement (as seen in Figure A.2). (Right) Relative frequencies of different n1
1 and n1

2

combinations. Most events happen around the n1
1 = 11 and n1

2 = 11 combination, which is the setup used in the theoretical analysis.
Together Figures A.8 and A.9 show that the theoretical analysis applies to the actual experimental settings.
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Figure A.10. Performance of the search methods in three different NAS benchmarks. (a) Convergence in NAS-bench-101. The plot
shows the validation accuracy used as the direct fitness/reward for search strategies. The SEP crossover performs significantly better
than the other approaches. (b) Convergence in NAS-bench-NLP. This benchmark is a noise-free environment, and the plot shows the
convergence of GED to LSTM. Again, the SEP crossover performs better than the other methods. (c) Convergence in NAS-bench-301.
The plot shows the surrogate-returned noise-free test accuracy. The noisy version of accuracy predicted by the surrogate model was used
as the direct fitness/reward, and the noise-free accuracy (shown) as the final objective. The SEP crossover has consistently better search
ability in this benchmark as well.
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Figure A.11. Average test accuracy in NAS-bench-101. The SEP crossover performs consistently better than the two Bayesian optimia-
tion (BO) methods BOHB and SMAC.
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Figure A.12. Average test accuracy in NAS-bench-101. The SEP crossover performs significantly better than the path encoding
crossover.

Table A.2. Computation Time of GED Calculation

NAS-Bench-101 (7 nodes)
GED between parents 1 2 3 4 5 6 7
computation time (s) 0.009 0.012 0.019 0.029 0.041 0.060 0.084

NAS-Bench-NLP (12 nodes)
GED between parents 1 3 5 7 9 11 13
computation time (s) 0.015 0.046 0.281 1.156 3.190 10.374 21.957
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