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Abstract
The discovery of formulas involving mathemat-
ical constants such as π and e had a great im-
pact on various fields of science and mathematics.
However, such discoveries have remained scarce,
relying on the intuition of mathematicians such as
Ramanujan and Gauss. Recent efforts to automate
such discoveries, such as the Ramanujan Machine
project, relied solely on exhaustive search and re-
main limited by the space of options that can be
covered. Here we propose a fundamentally dif-
ferent method to search for conjectures on math-
ematical constants: through analysis of integer
sequences. We introduce the Enumerated Signed-
continued-fraction Massey Approve (ESMA) al-
gorithm, which builds on the Berlekamp-Massey
algorithm to identify patterns in integer sequences
that represent mathematical constants. ESMA
has found various known formulas and new con-
jectures for e, e2, tan(1), and ratios of values of
Bessel functions, many of which provide faster
numerical convergence than their corresponding
simple continued fractions forms. We also charac-
terize the space of constants that ESMA can catch
and quantify its algorithmic advantage in certain
scenarios. Altogether, this work continues the
development toward algorithm-augmented mathe-
matical intuition, to help accelerate mathematical
research.

1. Introduction
Fundamental mathematical constants like e, π and φ are
ubiquitous in almost all fields of science and mathemat-
ics (Finch, 2003). The discovery of new formulas involv-
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ing mathematical constants often inspired mathematical re-
search that revealed intrinsic properties of said constants
and occasionally had a great impact in seemingly unrelated
fields (Andrews, 1979). In Ramanujan’s ‘Lost Notebook’,
formulas about q-series and on mock modular forms were
found to have applications in physics such as calculating
black hole entropy (Harvey, 2019). Furthermore, in number
theory, a polynomial continued fraction (CF) formula of
ζ(3) was utilized by Apery to prove it’s irrationality (Apéry,
1979). However, despite their great impact, the discovery of
new formulas has been a scarce occasion, relying mostly on
the intuition of great mathematicians such as Ramanujan.

In the Ramanujan Machine Project (Raayoni et al., 2021),
an automated approach for conjecture discovery involving
fundamental constants was presented. This automation was
approached as a search problem: different functions of given
fundamental constants (e.g.,(1 + e)/(1− e)) are calculated
to some limited precision and stored in hash tables, which
are later numerically compared with decimal values of a
generated family of polynomial CFs (a CF in which the
partial numerator and denominator sequences are integer-
coefficient polynomials (Laughlin & Wyshinski, 2005)).
Each match is further validated by a high decimal preci-
sion calculation. This algorithm obtained significant results,
discovering many previously unknown formulas and conjec-
tures for e, π, π2, and ζ(3), along with discovering the most
efficient representation of the Catalan constant G (Raayoni
et al., 2021). However, the algorithm was limited in its
capacities since it still relied on an exhaustive search, expen-
sive in computational resources and limited in the space of
options that it can cover.

Here we propose a fundamentally different approach. We
convert each target constant into a set of integer sequences
which we search for patterns utilizing the Berlekamp-
Massey algorithm (Berlekamp, 1966; Massey, 1969). Such
a pattern, if exists, may provide a formula for the target
constant. We thus name the overall algorithm Enumerated
Signed-CF Massey Approve (ESMA).

Our approach is inspired by ideas of compression, entropy,
and information theory (Shannon, 1948). Decimal repre-
sentations of irrational constants such as e may seem (in-
correctly) to contain an infinite amount of data with no
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discernable pattern, e.g., infinite entropy. Meaning, trans-
mitting e may seem to require a transmission of an infi-
nite sequence of random digits to fully describe the con-
stant. However, since there exists a formula to calculate
e to infinite accuracy, its decimal representation actually
contains zero entropy. This fact can be seen in e’s simple
CF expansion (Olds, 1970), which shows a clear pattern
(. . .1, 2k, 1, 1, 2k + 2, 1, 1, 2k + 4, . . . ):

e− 2 =
1

1 + 1
2+ 1

1+ 1
1+ 1

4+ 1
1+...

. (1)

The vision behind our algorithm is to efficiently identify
such patterns. We expand each target constant to a set of
different CFs (with ±1 in the numerators) with the hope that
at least one of them will reveal a pattern. Such patterns can
be seen as compressions of the seemingly infinite decimal
representation of a constant to a zero-entropy formula.

The ESMA algorithm aims to advance mathematical dis-
covery by automatically generating conjectures. Automatic
conjecture generation has led to impressive discoveries in
the past. For example, in Fajtlowicz’s work on Graffiti,
novel conjectures in graph and matrix theory were discov-
ered (Fajtlowicz, 1988) and in the recent DeepMind work
on Advancing mathematics by guiding human intuition with
AI, new conjectures in knot theory were presented (Davies
et al., 2021). Similarly, our application is to generate re-
search directions for the math community in the form of
conjectures, with the hope they provide valuable insights.

We demonstrate the potential of this algorithm with equa-
tions involving Signed Interlaced continued fractions
(SICFs) in which the partial denominator is a sequence
made of β different sub-sequences (interlaced sequence),
and the partial numerator is some periodic sequence of ±1:

a0 +K∞
1

bj
aj

= a0 +
b1

a1 +
b2

a2+
b3

a3+...

(2)

where aj ∈ Z , bj ∈ {1,−1} ∀j ∈ N, are the partial
denominators and numerators of the CF, respectively. In
these SICF’s, the partial numerators bj = ±1 determine the
denominators aj , via the Euclidean division algorithm, in
which we look for patterns.

The ESMA algorithm was able to produce various known
mathematical formulas, e.g.,

tan (1) = 1 +
1

1 + 1
1+ 1

3+ 1
1+ 1

5+...

,

bj = 1, aj =

{
1 j = 2k + 1

1 + 2k j = 2k + 2

(3)

Along with a plethora of novel conjectures, some of which
converge faster than their simple CFs e.g.,

2 + 2e

−1 + 3e
= 2− 1

1 + 1
24+ 1

3− 1
2+...

,

bj =



−1 j = 6k + 1
1 j = 6k + 2
1 j = 6k + 3
−1 j = 6k + 4
1 j = 6k + 5
1 j = 6k + 6

, aj =



2 j = 6k
1 + 4k j = 6k + 1
24 + 64k j = 6k + 2
3 + 4k j = 6k + 3

2 j = 6k + 4
13 + 16k j = 6k + 5

, ∀j, k ∈ N.

(4)

J1(1)
J3(1)

= 23− 1

1 + 1
1+ 1

39− 1
2+...

,

bj =

 −1 j = 3k + 1
1 j = 3k + 2
1 j = 3k + 3

, aj =

 23 + 16k j = 3k
1 + k j = 3k + 1
1 j = 3k + 2

, ∀j, k ∈ N.

Where Jy (x) are the Bessel functions of the first kind of
order y with argument x (see Appendix A).

Conjectures found are verified to a precision of 1000 dec-
imal places. Therefore, obtaining a false conjecture that
is merely a mathematical coincidence is highly unlikely.
Specifically, every conjecture is found and verified in two
steps: (1) Using the Berlekamp-Massey algorithm, a pattern
is found in the aj extracted directly from the constant. We
usually test 50 elements of the sequence, though more can
be tested to find longer patterns. (2) If a pattern was found,
further validation is acquired by using it to calculate addi-
tional elements of the aj sequence. We then compare the
decimal representation of the CF and the constants’, usually
to the next 1000 digits (though more digits can be verified
with ease). Consequently, the probability for a false pos-
itive is roughly 10−1000. Additionally, ESMA has found
various known formulas, contributing to our confidence in
the algorithm. We therefore believe that our conjectures are
mathematical formulas awaiting formal proof. Importantly,
this estimate of likelihood of course does not substitute the
need for formal proof.

Apart from the algorithm, the analysis and manipulation
of CFs in our work relies on several novel results that are
presented below. We present a connection between simple
CFs with interlaced polynomial sequences and the SICF
structure found in our results. Furthermore, we present the
Folding Transform, which reveals a connection between
polynomial CFs and CFs made of interlaced polynomial
sequences or more generally polynomial matrices. These
connections provide insight on the space of constants for
which we can expect the ESMA algorithm to find formulas.

We summarize our contributions in this paper:

1. We present a novel use of the Berlekamp-Massey algo-
rithm as an efficient method for pattern recognition (see
Section 2.1).
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2. We introduce a complementary approach to the exist-
ing exhaustive search methods (Raayoni et al., 2021) for
automation of mathematical discovery. ESMA improves
the efficiency of enumeration over the space of possible
CFs and rational functions, increasing overall efficiency of
conjectures discovery (see Section 3).

3. The ESMA algorithm proved successful in discover-
ing various conjectures on constants that converge signif-
icantly faster than their simple CF expansions. For exam-
ple, the algorithm discovered conjectures on J1(1)/J3(1),
J5(1)/J3(1), and the Golden Ratio φ, which converge faster
than their simple CF forms. A conjecture found on φ con-
verges approximately 6 times faster than its simple CF (see
Appendix A see Figure 6). In Appendix A, we plot the
convergence of a sample of faster converging conjectures
alongside their known formulas, presenting the significant
increase in the convergence rate.

2. Preliminaries
2.1. The Berlekamp-Massey algorithm in ESMA

We present a new application of the Berlekamp-Massey al-
gorithm (Berlekamp, 1966; Massey, 1969) in pattern recog-
nition. Given an integer sequence, the Berlekamp-Massey
algorithm finds the minimal linear recurrence with integer
coefficients that can produce given the sequence, returning
the coefficients of the recurrence relation (Massey, 1969).

Figure 1. Linear-Feedback Shift Register containing L-cells, where
aj−k is the value held in the kth cell, and ck is the coefficient with
which we multiply the value before linear feedback.

The Berlekamp-Massey algorithm is based on Berlekamp’s
decoding algorithm (Massey, 1969; Reeds & Sloane, 1985),
generalized by James L. Massey to solve the task of find-
ing the shortest Linear-Feedback Shift Register (LFSR)
that outputs a given sequence over a finite field (Reeds
& Sloane, 1985; Klein, 2013). In such registers, the in-
put at every clock is a fixed linear function of the regis-
ter’s current state, creating a linear recursion with coeffi-
cients referred to as connection coefficients (Massey, 1969)
(see Figure 1). Thus, finding the shortest integer coef-
ficient recurrence relation of a sequence is analogous to

finding the shortest linear-feedback shift register that can
output the sequence. A linear-feedback shift register of
length L with the initial contents of the L cells given by
a0, a1, . . . aL−1 (initial conditions) and connection coeffi-
cients given by {ci ∈ GL(p) | i ∈ {1, 2, . . . , L}}, for some
prime number p, produces the following output sequence
over GL(p) (Massey, 1969):(

aj +

L∑
i=1

ciaj−i

)
mod p = 0 ∀j∈{L,L+1,...,n−1} (5)

Given a sequence a0, . . . , an, the Berlekamp-Massey al-
gorithm finds and returns the connection coefficients ci of
the minimal linear-feedback shift register for which (5) is
satisfied.

The length of the resulting recursion, which is the number of
cells, further reveals to us the significance of the pattern de-
tected. Given an input sequence of length n, if the resultant
recurrence is of length L ≥ n/2, then it is a trivial solu-
tion. In this case, we can simply take the initial conditions
of the LFSR to be the first elements of the sequence and
calculate the connection coefficients so they create the next
n/2 elements. We therefore add a verification step by using
the length of the register found by the algorithm to identify
whether the pattern found in the sequence is significant and
unique, requiring a recurrence length L < n/2. Even then,
there is still a probability for a false positive that scales as
∼ (1/p)n−2L, and therefore we apply a second verification
stage.

In ESMA, we apply the Berlekamp-Massey algorithm on aj
sequences extracted from the expansion of CFs as shown in
the next sections. We use a large finite field GL (p) so that
the connection parameters are found explicitly (rather than
modulo the finite field). Specifically, the presented results
were found with p = 199. One can use an even smaller
value of p to make the algorithm run faster, at the price of
post-processing for extracting the explicit connection pa-
rameters from their values in the finite field. For conjecture
verification, we use the extracted recurrence relation to gen-
erate the sequence over Z to any desired length (not limiting
the generated numbers to GL(p)). Altogether, ESMA en-
ables us to identify any pattern that can be described as an
integer coefficient recurrence relation.

2.2. Sign Interlaced Continued Fractions

In the most general sense, Signed Interlaced continued frac-
tions (SICFs) are CFs in which the partial denominator is
an interlaced sequence, and the partial numerator is some
periodic sequence of ±1, bj ∈ {−1, 1}, whose period, β,
denotes the number of sub-sequences that are interlaced.
For example, the following conjecture found by the ESMA
algorithm on Bessel functions of the first kind, Jy(x) (of
order y at point x ), is an SICF with aj made of interlaced
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linear sequences:

J0(1)
2J1(1)

= 1− 1

8− 1
3− 1

16−...

, (6)

bj = −1, aj =

{
1 + 2k j = 2k

8 + 16k j = 2k + 1
∀j, k ∈ N

Where the aj sequence can described by an integer coef-
ficient recurrence relation: aj − 2aj−2 + aj−4 = 0, a0 =
1, a1 = 8, a2 = 3, a3 = 16 In all the results so far, we
obtain an aj made of positive interlaced linear sequences
(aj > 0 ∀j ∈ N). Therefore, for the rest of the paper
when referring to SICF, we refer specifically to those with
positive polynomial sequences in the partial denominator,
satisfying aj > 0 ∀j ∈ N. To enable discovery of con-
jectures in the form of an SICF, we introduce a method to
extract a sample of the aj sequence for CFs with a signed
partial numerator, bj = ±1.

2.3. Extraction of Signed Interlaced Continued
Fractions and the Euclidean algorithm

We generalize the conventional method of calculating the
CF of a constant (Hardy & Wright, 1980; Chrystal, 1964;
Wall, 1948; Lang, 1995) to enable sign variation in the
partial numerator. This procedure enables us to expand
every constant to a SICF with any sequence of ± signs
in the partial numerators, allowing for a larger space of
candidate formulas to be analyzed.

Simple CFs are unique, every irrational number has a single
simple CF which it is equal to, and every rational num-
ber has 2 simple CF expansions (Hardy & Wright, 1980).
Calculating the simple CF of some constant α is simply
an application of a non-terminating Euclidean Algorithm
with α and 1 (Hardy & Wright, 1980), where the respective
quotients form the aj sequence and bj = 1 ∀j ∈ N. When
enabling sign variation in the Euclidean algorithm we enable
more options in each iteration of the algorithm by allowing
for negative remainders. Thus, sign variation often enables
the algorithm to terminate in less iterations, meaning a more
efficient CF representation is found. Take a simple example
of finding the gcd(14, 9) and the resultant CF formed:

CF Without sign variation With sign variation CF

14
9 = 1 +

1

1 +
1

1 +
1

4

14 = 9×1 + 5
9 = 5×1 + 4
5 = 4×1 + 1
1 = 1×1 + 0

14 = 9×2− 4
9 = -4×− 2 + 1
-4 = -1×4 + 0

14
9 = 2−

1

2 +
1

4

Figure 2. An illustration of a more efficient CF with a signed partial
numerator

We see that enabling signed variation results in a more ef-
ficient calculation, 3 iterations rather than 4, resulting in a

more efficient CF expansion of the number. More generally,
sign variation (bj = ±1 ∀j ∈ N) allows for the extraction
of additional CF representations for a single constant, pro-
viding us with a larger search space for conjectures, some
of which may have more favorable properties.

For example, consider the conjecture found on Bessel func-
tions of the first kind, 2/(J5(1)/J3(1) + 1) (see Table 3).
The new and unproven conjecture converges to J5(1)/J3(1)
at a rate of 4.3008 digits per term (averaged over 100 terms),
whilst the simple CF expansion for J5(1)/J3(1) converges at
a rate of 1.9046 digits per term (see Figure 6 in Appendix A).
Meaning a more efficient and faster converging expansion
of the constant was found.

In many cases, the SICF that results from ESMA is simpler
than the simple CF of the same constant. Take for example
(2+2e)/(−1+3e) seen in equation 4, whose simple CF has
an interlaced sequence of period 8 whereas its SICF is of
period 6. In a similar manner, the conjecture on J5(1)/J3(1)
referred to above is of period 2 while its simple CF expan-
sion is of period 16. Therefore, the SICF provides us with a
larger search space where we can potentially detect simpler
patterns. We additionally find an algorithmic advantage
in utilizing SICF as more conjectures for the same search
space are found. For the same search space of coefficients,
coefficients between −3 and 3 and polynomial degree of 1 ,
there was an increase of 357% in the number of conjectures
found on e when searching with SICFs rather than only sim-
ple CFs. Thus presenting the algorithmic advantage gained
by signed CF extraction.

Figure 3. Extracting a signed CF from a decimal value

To extract a signed CF, we accommodate for having some
bj = −1 and we extract the integer part of the CF using ceil
operator rather than the floor operator used for bj = 1 as in
the Euclidean Algorithm (see Figure 3 for an example). We
utilize each given signed bj sequence to extract a sample
of the aj integer sequence directly from the decimal repre-
sentation of a constant. Consequently, we obtain an integer
sequence for which we can attempt to recognize a pattern
using the Berlekamp-Massey algorithm.
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3. The Extract Signed-CF Massey-Approve
(ESMA) Algorithm

We present a novel algorithm (Figure 4) that extracts a
Signed Interlaced Continued Fraction (SICF) of a given
constant c in the following form:

fm,L(c)

gm,L(c)
= a0 +K∞

1

bj
aj

= a0 +
b1

a1 +
b2

a2+
b3

a3+···

. (7)

Where fm,L and gm,L are integer polynomials whose de-
grees are at most m with coefficients over a range of integer
values [−L,L]. In this case, a0 +K∞

1 bj/aj is some SICF
with partial numerator bj ∈ {1,−1} of maximal period βb

and partial denominator aj ∈ Z.

Figure 4. A graphical depiction of the stages of the ESMA algo-
rithm, with the "clouds" presenting an example run for a single
constant value and bj pair

We begin by enumerating over all possible non-trivial ra-
tional functions fm,L(x)/gm,L(x) (see Figure 4 for an ex-
ample). For each rational function, we substitute the math-
ematical constant c (evaluated to 1000 decimal places in
the examples shown in this work). We then enumerate over
all periodic bj sequences with periods between 1 and βb

formed of ±1. For each bj sequence and constant value pair,
an aj sequence is extracted up to a finite depth N , using
the extraction algorithm introduced earlier. The sequence
is passed to the Berlekamp-Massey algorithm in attempt to
recognize a significant recurrence pattern, i.e., a minimal
length linear feedback-shift register. If the resulting reg-
ister length is shorter than half the length of the extracted
sequence (see Section 2.1), it is considered significant and
saved for verification. The resulting pair of aj , bj sequences
represent a SICF.

We verify the result by utilizing the obtained recursion pa-
rameters to calculate aj to a greater depth and then evaluate
the SICF to compare it with the constant. The SICF is ef-
ficiently calculated by utilizing the recursive formula for

numerators pj and denominators qj (Olds, 1963):

pj = ajpj−1 + bjpj−2, qj = ajqj−1 + bjqj−2 (8)
p−1 = 1, p0 = a0, q−1 = 0, q0 = 1.

yielding pj/qj as a rational approximation of the constant
given by the first j elements of the partial numerator and
denominator sequences of the SICF. Each case for which the
numerical values are identical for up to 1000 decimal places
is considered a new conjecture. For the full implementation,
refer to our github through www.ramanujanmachine.
com.

The computational complexity of the algorithm depends on
the space over which we enumerate. The space of rational
functions fm,L(x)/gm,L(x) is O

(
(2L+ 1)2(m+1)

)
. For

convenience, our system supports saving symbolic enumer-
ations locally so we can substitute different constants into
the symbolic expressions. The rational function enumera-
tions are also simplified to reduce redundancies, ensuring no
trivial cases are stored (e.g.,rational numbers, where poly-
nomials cancel out). Later additions to the algorithm enable
users to construct custom made function generators eas-
ily, not limiting the search to rational polynomial functions
fm,L(c)/gm,L(c) but rather to any family of parametric
functions over a discrete parameter space.

The bj sequence enumeration takes O
(
2βb
)
, where βb is

the maximal period. In our most common searches, βb

ranges between 1 and 5 , and thus we enumerated 21 +
22 + 23 + 24 + 25 combinations of ±1 sequences. For
each bj sequence and constant value pair, we extract the aj
sequence to a depth N (the results presented in this work
are found using N = 50). The complexity of this extraction
is negligible relative to the application of the Berlekamp-
Massey algorithm, whose complexity is O

(
N2
)

(Reeds &
Sloane, 1985; Gustavson, 1976). In case that a result was
found, we verify it to 1000 decimal places by evaluating the
resulting SICF and comparing with the original constant.

Given the above considerations, the time complexity of the
algorithm is given by O

(
(2L+ 1)2(m+1)2βbN2

)
. While

this may seem computationally expensive, this approach
provides two significant advantages over exhaustive search
methods such as the first Ramanujan Machine algorithm
(meet-in-the-middle regular formulas) in (Raayoni et al.,
2021): (1) The enumeration over possible polynomial CFs
and the expansion of each one, which are the most expen-
sive operations, are replaced by enumerating over the signed
sequences O

(
2βbN2

)
. (2) Even the enumeration over the

rational functions is more efficient than in (Raayoni et al.,
2021), since infinite many cases of rational functions are cap-
tured by a single run of the Berlekamp-Massey algorithm,
inside the initial conditions in the register. For example,
both the expressions x, 1/x, 1/x+k, x+k, and many other
Mobius transforms of x, are covered by the same instance
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of running the Berlekamp-Massey algorithm, as initial se-
quence elements which do not follow the found pattern can
be simply absorbed to the initial conditions of the recurrence
relation. This applies to any value of x including the rational
functions of x, presenting a more efficient enumeration.

However, despite its efficiency, the disadvantage of ESMA
relative to that in (Raayoni et al., 2021) lies in the space of
CFs that can be discovered. This space is analyzed in the
following sections.

4. The Space of Constants Captured by the
ESMA Algorithm

4.1. Example Results

The proposed ESMA algorithm has discovered many previ-
ously unknown conjectures, some having faster converging
expansions for various constants (see Figure 6) relative to
their known simple CFs. In Figure 5, we see a sample of con-
jectures and known formulas found by ESMA, all of which
converge at a super-exponential rate (error decreasing as
≈ en/n ! for CF depth n (Raayoni et al., 2021)). This rate
of convergence is visualized in Figure 5, where the (slower)
exponential convergence of the Golden Ratio’s simple CF is
plotted for reference. Similar fast rates of convergence are
seen in most conjectures found by ESMA (see Appendix
A). To better understand our results, and the reason for
their super-exponential convergence rate, we analyze the
representable set of the SICF structure over which ESMA
searches. Such an analysis enables us to better characterize
the ESMA algorithm.

Figure 5. Convergence rates of the SICF conjectures. The figure
presents the approximation error, the log of the absolute difference
between the SICFs approximation at a given CF depth and the
fundamental constant (log10(error) vs SICF depth).

4.2. Equivalent Representations of Constants

As described in the previous section, ESMA searches for
CF expansions, a0 + K∞

1 bj/aj , where the partial numer-

ator bj is periodic with ±1 entries and the partial denom-
inators aj satisfy some recurrence relation. While a lin-
ear recurrence determines the sequence completely given
"enough" initial conditions, we can sometimes decompose it
into several sub-sequences and apply the recurrence to each
one of them separately. For example, the linear recurrence
aj − 2aj−2 + aj−4 = 0 mentioned in Section 2.2 can be
applied at even and odd sub-sequence indices separately
obtaining an interlaced sequence. Thus, we can think of the

sequence as aj =

{
A1(n) j = 2n− 1
A2(n) j = 2n

(if we ignore

the a0 element). We now have a natural decomposition
of the bj and aj sequences to βb and βa sub-sequences re-
spectively, and up to taking the least common multiplier
of βb and βa we may assume that both are equal to the
same β, which we call the period of the SICF. Hence, we
have functions Bi, Ai : N → Z for i = 1, . . . , β such that
b(n−1)×β+i = Bi(n), a(n−1)×β+i = Ai(n),∀n ∈ N\0.

While Bi are always constant 1 or −1, in general, ESMA
may find many types of Ai functions (though they must be
some combination of polynomials and exponents). How-
ever, in all results so far, the functions found were linear
polynomials (see Appendix A), leading us to question what
sort of numbers can be represented with polynomial Ai ’s
and in a more general sense what constants one can expect
ESMA to catch (find conjectures for). We denote this set
of numbers, the representable set of the SICF structure of
the form K∞

1
bj
aj

, as R1 where the following conditions are
satisfied:

∃β and Ai, Bi i = {1, . . . , β}, s.t. b(n−1)×β+i = Bi(n),

Bi ≡ ±1 a(n−1)×β+i = Ai(n) ∀n ∈ N\0, (9)

Ai is polynomial,K∞
1

bj
aj

converges

The above set refers to the set of all possible numbers that
have a formula with SICF up to some Mobius transform.
Similar to common standard CF representations (Cuyt et al.,
2008), here too we can represent the more general CF using
Mobius transforms (for details, see Appendix B.1). More
specifically, given a Mobius transform:(

a b
c d

)
(z) = az+b

cz+d a, b, c, d ∈ Z, we get that:

K∞
1

bj
aj

= lim
N→∞

N∏
j=1

(
0 bj
1 aj

)
(0) = (10)

lim
N→∞

N+1∏
j=1

(
0 bj
1 aj

)
(∞)

In our interlaced presentation above, the matrices come in
natural batches of size β, and it is only natural to multiply
each such batch together to form a single polynomial matrix,
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which we refer to as the collapsed matrix:

Nβ∏
j=1

(
0 bj
1 aj

)
=

N∏
n=1

[
β∏

i=1

(
0 b(n−1)×β+i

1 a(n−1)×β+i

)]
(11)

Mn =

β∏
i=1

(
0 b(n−1)×β+i

1 a(n−1)×β+i

)
,∀n ∈ N\0

We denote the collapsed matrix by Mn and we get that
the entries of Mn are polynomial in n. The collapsed ma-
trix can additionally be used to represent the more general
case where both our aj and bj sequences are interlaced
polynomial sequences, an interlaced CF. Thus, we can au-
tomatically deduce that R1 above is contained in a much
more general set,

R2 =

{
lim

N→∞

[
N∏

n=1

Mn

]
(∞) | Mn is a 2 × 2 matrix

with polynomial entries

}
.

(12)

While the presentation as a product of a polynomial matrix
can seem very general, it can almost always be presented in
a much simpler manner, namely as a polynomial CF. Poly-
nomial CFs are well known (Bowman & Laughlin, 2002;
Laughlin & Wyshinski, 2005; Raayoni et al., 2021; David
et al., 2021) and have been shown to enable swift proofs on
the properties of CFs and the constants they can represent,
thus providing information on a seemingly more general
structure (e.g., Apery’s proof of ζ(3) ’s irrationality).

Theorem 1. Let Mn =

(
cn dn
en fn

)
, satisfying en ̸= 0,

be some polynomial matrix (c, d, e, f ∈ Z[x]) for which
the following limit exists limN→∞

[∏N
n=1 Mn

]
(∞). Then

there exists some Mobius transform T with entries in Z, and
polynomials a′, b′ ∈ Z[x] such that:

lim
N→∞

[
T

N∏
n=1

Mn

]
(∞) = K∞

1

b′(n)

a′(n)

Proof. See Appendix B.2

Note that since the Mobius transform T has its entries in Z,
a number α is rational if and only if T (α) is rational. Hence,
up to Mobius equivalence we see that ℜ2 is contained in the
set of numbers with expansions as polynomial CFs,

ℜ3 =

{
K∞

1

b′(n)

a′(n)
| a′, b′ ∈ Z[x]

}
. (13)

As a result, we can deduce that up to an integer Mobius
transformation ℜ1 ⊆ R2 ⊆ R3.

We present the Folding Transform T , which converts any
polynomial matrix satisfying the theorem’s conditions to

a polynomial CF (see Appendix B.2). In other words, the
Folding transform can convert any constant equal to an inter-
laced CF to a polynomial CF, up to some Mobius transform.
For any α ∈ R equal to a general interlaced CF where
both bj and aj are interlaced polynomial sequences, and
specifically for a SICF where bj = ±1, we can multiply all
matrices in each period to obtain a polynomial matrix, Mn.
Applying the Folding transform on the resulting polynomial
matrices, we obtain a polynomial CF that we denote by
T (Mn). We say that α and T (Mn) are semi-equivalent.
For example, applying the Folding transform on the simple
CF of e, we obtain the following polynomial CF formula
(for the full derivation see Appendix B.3):

e− 2 =
1

1 + 1
2+ 1

1+ 1
1+ 1

4+ 1
1+...

−→
T −8e+ 19

e− 2
(14)

=
4× 22 + 4× 2− 3

8× 22 + 16× 2 + 8 + 4×32+4×3−3

8×32+16×3+8+ 4×42+4×4−3

8×32+16×3+8+...

The Folding transform allows us to better understand the
largely unexplored SICF structure by utilizing prior knowl-
edge of polynomial CF properties, shining light on what
constants SICFs can represent. We further present a novel
connection showing that constants with SICF expansions
can be presented in simpler forms.

4.3. Representable set of Signed Interlaced Continued
Fractions (SICFs)

At first glance, the representable set of SICFs, ℜ1, may
seem to expand the set of numbers we can represent with
a simple CF by allowing for sign variation. However, we
find that every SICF expansion of an irrational constant
can be presented as a simple CF with a "regular" pattern
up to some Mobius mapping. Rational numbers may have
SICF expansions but always have a finite CF and are not
of interest to us. We denote the representable set of simple
CFs with interlaced polynomial sequences, also referred to
as simple interlaced CFs, as:

ℜ4 =

K∞
1

1

aj

∣∣∣∣ ∃β and Ai, Bi i = 1, . . . , β, s.t.
a(n−1)×β+i = Ai(n) ∀n ∈ N\0

Ai polynomial


(15)

Unlike SICFs, simple CFs have been studied extensively
(Lang, 1995; Olds, 1963; Hardy & Wright, 1980; Laughlin
& Wyshinski, 2005; Bugeaud, 2012), much is known about
their properties and about constants’ simple CF expansions.
Therefore, discovering that for irrational numbers ℜ1 ≡ R4

up to some Mobius transform shines light on what constants
we can expect ESMA to catch: those whose simple CF
expansions have a pattern in their partial denominator. In
other words, we expect ESMA to catch numbers who have
simple interlaced CF expansions.
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Theorem 2. For any signed interlaced continued fraction
equal to α ∈ R/Q, there exists some Mobius transform of
α which is equal to a simple interlaced continued fraction.

Proof. See Appendix C.1

The proof of Theorem 2 is constructive, meaning we have
an algorithm to convert every SICF to a simple interlaced
CF expansion (see Appendix C.2 for an example).

As a result of Theorem 2, we can fully characterize the rep-
resentable set of SICFs, ℜ1, with simple interlaced CFs, a
much less general structure. This reveals a limiting property
of ESMA, it can only catch constants with regular patterns
or interlaced sequences in the partial denominator of their
simple CF (which is unique). This set of numbers includes e,
tan(1), second-degree algebraic numbers, and more. How-
ever, constants such as π which have no discernible pattern
in their simple CF (Lange, 1999) probably cannot be caught
by ESMA. We analyze polynomial CF expansions semi-
equivalent to simple interlaced CFs to better characterize
the representable set of SICFs.

We find that the representable set of simple interlaced CFs
with non-constant partial denominator sequences is charac-
terized by irrational constants whose polynomial CF expan-
sions converge super-exponentially revealing to us why most
of our results are of constants who have super-exponentially
converging expansions. We do not analyze simple interlaced
CFs with constant partial denominator sequences as they are
trivially characterized by the 2nd degree algebraic numbers
(Denjoy, 1938; Balkova & Hrušková, 2013).

Theorem 3. Given a simple interlaced continued fraction
satisfying Bi(n) = 1 & Ai(n) > 0, where Ai, Bi ∈
Z[x], i ∈ {1, . . . , β},∀n ∈ N of period β, where ∃i ∈
{1, . . . , β} s.t deg (Ai) > 0, its semi-equivalent polyno-
mial continued fraction’s partial numerator b′n and partial
denominator a′n ∀n ∈ N satisfy:

deg (b′) =

β−1∑
i=1

2× deg (Ai) ,

deg (a′) =

[
β−1∑
i=1

2× deg (Ai)

]
+ deg (Aβ)

Proof. See Appendix D.1

Through the utilization of known properties of polynomial
CFs (Bowman & Laughlin, 2002; Laughlin & Wyshinski,
2005; David et al., 2021) the above theorem provides us
with valuable information to better understand the rate of
convergence of these polynomial CF representations and the
irrationality of the constants ESMA can catch.

Corollary 2. A polynomial continued fraction semi-
equivalent to a simple interlaced continued fraction, sat-
isfying ∃i ∈ {1, . . . , β} s.t deg (Ai) > 0, converges super-

exponentially.

Proof. See Appendix D.2

Lemma 3. The partial denominator sequence of a polyno-
mial continued fraction semi-equivalent to a simple inter-
laced continued fraction is positive: a′n ∈ Z[x],
a′n > 0 ∀n ∈ N\0

Proof. See Appendix D.1

Corollary 3. Any number α ∈ R equal to a simple inter-
laced continued fraction converges to an irrational limit.

Proof. See Appendix D.3

As can be directly deduced from Theorem 3 and Lemma
1, the set of numbers representable by a simple in-
terlaced CF, ℜ4, and thus SICFs is a subset of irra-
tional numbers that have polynomial CF expansion which
converge super-exponentially. Specifically, those with
a positive partial denominator whose degree is greater
than or equal to that of the partial numerator, ℜ4 ⊂
{ℜ3 | deg (b′) ≤ deg (a′) , a′(n) > 0 ∀n ∈ N\0}. Re-
call, ℜ3 refers to the representable set of polynomial CFs.
We can therefore deduce, that as ℜ1 ≡ R4 ⊂ R3, meaning
numbers who have SICF expansions are a subset of numbers
which have polynomial CF expansions.

Overall, the representable set of SICFs, which is also the
space of constants we expect ESMA to catch, is character-
ized by irrational constants whose simple CF expansion is
made of interlaced polynomial sequences (up to a Mobius
transform). Such CFs with constant partial denominator
sequences converge at an exponential rate to 2nd degree
algebraic numbers. Such CFs with non-constant sequences
have polynomial CF expansions that converge at a super-
exponential rate. Intriguingly, ESMA could potentially find
CFs with non-polynomial subsequences. However, our ex-
tensive runs on ESMA with up to 50 different constants only
found polynomial subsequences and thus further supports
the conclusions of our mathematical analysis.

ESMA’s main shortcoming is that it can only find conjec-
tures that converge super-exponentially (apart from conjec-
tures of 2nd degree algebraic numbers). The limitation is
even more severe - any constant which ESMA can catch
must also have an interlaced polynomial pattern in its simple
CF. Such a pattern is not known for mathematical constants
such as π, ζ(3), and G, and thus we expect ESMA cannot
find conjectures for them, unless such a formula could be
found for a transformation of those constants.

We highlight that to potentially overcome these shortcom-
ings and expand ESMA’s search space, one could define
any general bn sequence (e.g.,bn = n6) and utilize it to ex-
tract the an sequence to discover conjectures as previously
described in this paper.
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5. Discussion and Outlook
The ESMA algorithm was designed with the hopes that the
conjectures it discovers will reveal more efficient expan-
sions of mathematical constants and more generally reveal
unknown underlying patterns. Looking forward, the ESMA
algorithm represents a wider effort to automate and acceler-
ate mathematical discovery through the utilization of compu-
tational power. In particular, similar to how analysis of the
algorithm’s abilities led us to develop novel methods for ma-
nipulating CFs (e.g., the Folding transform), the proofs for
its conjectures may require developing novel mathematical
tools, further accelerating mathematical discovery.

We further note, the impact of algorithmic-assisted discov-
eries will be in creating large pools of results upon which
generalizations can be made to provide insights on the un-
derlying structure of constants. In this way, our algorithm
is a tool to aid mathematicians in the discovery of general
structures, and not only of specific formulas. For example,
a large group of conjectured formulas for e in (Raayoni
et al., 2021) was generalized into an infinite family which
converges to e by Zeilberger (Dougherty-Bliss & Zeilberger,
2020). Such a result is much stronger than any particular
formula. Therefore, we hope ESMA will be utilized in the
search for the underlying structure of various fundamental
constants. Moreover, one may build upon ESMA’s features
in attempt to adapt it to various domains.

In recent years, automation in mathematics has increased
in popularity, as researchers increasingly harness the power
of artificial intelligence and computational techniques to
tackle complex mathematical problems. Our algorithm and
its results represent one more step forward in this evolving
domain, demonstrating the potential of automated methods
for generating mathematical conjectures. We hope that our
findings inspire and encourage more researchers to explore
this promising direction, fostering further advancements at
the intersection of mathematics and computer automation.
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A. Additional Results by the ESMA Algorithm
In this section we present a small sample of conjectures and known formulas found by the ESMA algorithm. For each
conjecture found, we present the signed bj sequence used for its extraction, the found LFSR or recurrence relation which
models the aj sequence, the initial conditions of the recurrence relation, the resultant aj sequence, and the resultant CF’s
convergence rate. The convergence rate is a linear approximation of the number of digits obtained in the CF approximation
per CF term in the log scale of approximation error. While super-exponential convergence is non-linear (in the log scale),
this approximation captures the overall magnitude of convergence indicating what conjectures converge faster. Additional
numerical analysis of the convergence rate is best done by plotting the approximation error with CF depth. We denote the
initial conditions of the recurrence relation in list form under the relation. For example, if a0 = 1, a1 = 1, a2 = 1, a3 = 3
then we write the following under the recurrence relation: [1, 1, 1, 3]. We further denote the periodic bj sequence using
the following notation: {1,−1, . . . , 1}, this notation describes a period of the sequence thus fully describing the sequence,
b(n−1)×β+1 = 1, b(n−1)×β+2 = −1, . . . ,∀n ∈ N\0.

Table 1. Conjectures involving e, e2,
√
e, tanh

(
1
4

)
. Digits per term value refers to the number of digits in the CF approximation per CF

term, averaged over 100 terms.
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Table 2. Conjectures for tan(1) (in radians).
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Table 3. Conjectures of ratios of Bessel functions of different orders at x = 1
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For our code please refer to our git through: www.ramanujanmachine.com. Notice, the code returns a sequence
starting from a0 while in our analysis we ignore a0, moving it to the left-hand side of the equation.

As seen in the results, we solely obtained linear interlaced sequences in the partial denominator. Furthermore, all the
constants have polynomial CF expansions that converge super-exponentially. ESMA can additionally trivially catch second-
degree algebraic numbers whose CF expansions converge exponentially. Overall, the ESMA algorithm was run on more
than 50 constants, in the following list we present a sample of constants which the algorithm did not find conjectures for:
ζ(2), ζ(3), ζ(5), π,G,

√
φ, 2

1
3 , 100

1
5 , and many more. We deduce that these constants could not be caught by ESMA as

they are not in the representable set of the SICF structure utilized (see section 4).

A.1. Efficient Continued Fraction Expansions found by the ESMA algorithm

The ESMA algorithm found various conjectures for constants that converge significantly faster than known formulas.
Even for 2nd degree algebraic numbers, whose CF can be trivially calculated, the ESMA algorithm was able to find more
efficient expansions of various constants such as φ,

√
2, and many more. Below we denote a sample of conjectures found on

J1(1)/J3(1), J5(1)/J3(1), and φ which converge at a faster rate, and thus more efficiently approximate the constant, than
their simple CF expansions (to our knowledge).

Looking at J1(1)/J3(1) it’s simple CF expansion converges at a rate of 1.8643 digits per term whilst our conjecture on
J1(1)/J3(1) (see Table 3) converges at a rate of 2.6693 digits per term (averaged over 100 terms). In a similar manner, our
conjecture on 2/((J5(1)/J3(1)) + 1) converges at a rate of 4.3008 digits per term, whilst the simple CF for J5(1)/J3(1)
converges at a rate of 1.9046, more than twice as fast. Furthermore, the simple CF of The Golden ratio, φ, which is famously
given by φ = 1 + 1/(1 + 1/(1 + 1/(. . .)) converges at a rate of 0.4096 digits per term, while the following conjecture
found by converges at a rate of 2.4576 digits per term:

1 + 2φ

−3 + 2φ
= 18− 1

18− 1
18−...

. (16)

The formula and conjecture on φ converge at an exponential rate, and therefore the convergence rate is exactly the log(error)
slope. The convergence plots for all the above conjectures and formulas are presented below:

Figure 6. ESMA results that converge faster than the corresponding simple CFs. log (error) plot of a known formula and conjecture
on φ, J1(1)/J3(1), and J5(1)/J3(1). We see the conjectures found by the ESMA algorithm (green, blue, and black) approximate the
constants significantly faster.

The increased rate of convergence of our conjectures relative to their respective simple CF formulas can be clearly seen.

All the conjectures are simply a Mobius transform of the constant we attempt to approximate. In these cases, the Mobius
transforms do not "bother" us as we can find an expression which converges at the same rate while isolating the constant.
For example, the conjecture on φ can be written in the following way to directly approximate φ :

φ = −3

2
+

2

17− 1
18− 1

18− 1
18−....1

. (17)
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We note that some fast-converging expansions found by ESMA are known but were previously unappreciated for their fast
convergence. For example, the formula found for 1/2 + e2/2 (see Table 1), which can be easily derived from the known CF
of tanh(1), converges at a rate of 4.2727 digits per term whilst its known simple CF formula converges at a rate of 2.2806
digits per term. The known formulas found further add confidence in the correctness of our conjectures.

B. Tools for Manipulating Continued Fractions
B.1. Definitions

We recall, any matrix M =

(
a b
c d

)
with a non-zero determinant, det(M) = ad− bc ̸= 0, can represent the following

Mobius transform:

M(x) =

(
a b
c d

)
(x) =

ax+ b

cx+ d
a, b, c, d ∈ Z. (18)

As such, each single fraction of a CF, e.g., b
a+··· , can be represented as a Mobius transform of the following form:

(
0 b
1 a

)
(x) =

b

a+ x
. (19)

We refer to a single fraction of a CF, (19), as a layer of the CF.

As such, any CF can be represented as a composition or product of Mobius transforms which act on 0, for example:

b1

a1 +
b2
a2

=

(
0 b1
1 a1

)(
0 b2
1 a2

)
(0).

Therefore, we can represent a CF as a matrix product of its layers in the following form:

α = a0 + lim
N→∞

N∏
j=1

(
0 bj
1 aj

)
(0), aj , bj ∈ Z. (20)

In this paper, an interlaced continued fraction refers to a CF in which its partial numerator and denominator are interlaced
sequences: a sequence formed of β ≥ 1 different integer polynomial sub-sequences that alternate with a given order. An
interlaced CF of a number α ∈ R is a CF of the form:

α = a0 +
b1

a1 +
b2

a2+
b3

...+
bβ+1

aβ+1+···

= a0 +
B1(1)

A1(1) +
B2(1)

A2(1)+
B3(1)

···++
B1(2)

A1(2)+···

(21)

Where b(n−1)×β+i = Bi(n), a(n−1)×β+i = Ai(n), Ai, Bi ∈ Z[x],∀n ∈ N\0 are the partial numerator and denominator
sequences, respectively, and i ∈ {1, . . . , β} such that β ∈ N represents the amount of sub-sequences that are interlaced in
the partial numerator or denominator, also referred to as the period. For each i, Ai(n) represents the nth element of the ith

polynomial sub-sequence. For the rest of this paper the leading integer a0 will be ignored as it is more comfortable to treat it
as part of the constant α.

The nth collapsed matrix of an interlaced CF refers to a matrix, denoted by Mn, which is the product of all matrices in the
nth period of the interlaced CF. Meaning given the above interlaced CF of α and of period β :
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α = lim
N→∞

N∏
n=1

β∏
i=1

(
0 b(n−1)×β+i

1 a(n−1)×β+i

)
(0) = lim

N→∞

N∏
n=1

β∏
i=1

(
0 Bi(n)
1 Ai(n)

)
(0) = lim

N→∞

N∏
n=1

Mn(0) (22)

Mn =

β∏
i=1

(
0 Bi(n)
1 Ai(n)

)
=

(
cn dn
en fn

)
c, d, e, f ∈ Z[x] (23)

where bj and aj are the interlaced sequences from (21). All layers in each period are polynomial with the same n, as can be
seen from the notation in (21), b(n−1)×β+i = Bi(n), a(n−1)×β+i = Ai(n) ∈ Z[x], n ∈ N\0. Therefore, the elements of
the collapsed matrix c, d, e, f , being a product of various integer polynomial sequences with index n, will be polynomial
with index n, and the collapsed matrix is a polynomial matrix.

B.2. The Folding Transform and Proof of Theorem 1

We introduce the Folding Transform; a transform which acts on a constant’s interlaced CF expansion, or in a more general
sense acts on polynomial matrices. Given a constant α ∈ R which has an interlaced CF expansion with a known period, we
can "fold" (multiply) its layers in each period to form a polynomial matrix. Therefore, our analysis on general polynomial
matrices applies to interlaced CFs in particular. The Folding transform applies a Mobius transform on α on the left-hand
side of the equation while multiplying each of α ’s polynomial matrices on the right-hand side. The result of the Folding
transform is a polynomial CF equal to a Mobius transform of α.

Given an α which satisfies α = limN→∞

[∏N
n=1 Mn

]
(∞), with a collapsed matrix Mn =

(
cn dn
en fn

)
where en ̸= 0

∀n ∈ N\0, the Folding transform utilizes a sequence of matrices Un such that:

α′ = (M1U2)
−1

(α) = lim
N→∞

[
N∏

n=2

U−1
n MnUn+1

]
(∞) (24)

where (M1U2)
−1

(α) is a Mobius transform acting on α and U−1
n MnUn+1 is a polynomial CF layer. Two constants or

CFs that are connected by the Folding transform are said to be semi-equivalent. This intriguing transform reveals a novel
connection between polynomial CFs and interlaced CFs. Every constant that has an interlaced CF expansion, up to some
Mobius transform, must have a polynomial CF expansion regardless of the number of interlaced sequences and the seeming
complexity of the interlaced CF.

It is important to note that for every converging interlaced CFs as we defined them (see Appendix B.1), en ̸= 0. Assessing the

collapsed matrices, if we falsely assume en = 0 we obtain a CF which does not converge. If Mn =

(
cn dn
0 fn

)
∀n ∈ N\0,

the nβ − 1th convergent (rational approximation of the CF) can be represented in the following form (Raayoni et al., 2021;
Cuyt et al., 2008):

pnβ−1

qnβ−1
=

(
pnβ−1 pnβ
qnβ−1 qnβ

)
(∞) =

(
0 b1
1 a1

)
. . .

(
0 bnβ
1 anβ

)
(∞) = M1M2 . . .Mn(∞)(

cn dn
0 fn

)
(∞) = ∞

M1M2 . . .

(
cn dn
0 fn

)
(∞) = M1M2 . . .Mn−1(∞) = by induction ∞.

Proving the CF diverges. Therefore, any converging interlaced CF must satisfy en ̸= 0 and one could apply the Folding
transform on it. Note, we see here that for an interlaced CF,

[∏N
n=1 Mn

]
(∞) =

[∏N−1
n=1 Mn

]
(0), and therefore taking the

mapping at ∞ is simply assessing a sub-sequence of the convergents the CF.
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Theorem 1. Let Mn =

(
cn dn
en fn

)
, satisfying en ̸= 0, be some polynomial matrix (c, d, e, f ∈ Z[x]) for which the

following limit exists limN→∞

[∏N
n=1 Mn

]
(∞). Then there exists some Mobius transform T with entries in Z, and

polynomials a′, b′ ∈ Z[x] such that:

lim
N→∞

[
T

N∏
n=1

Mn

]
(∞) = K∞

1

b′(n)

a′(n)

Proof:

For a given polynomial matrix Mn, satisfying limN→∞

[∏N
n=1 Mn

]
(∞) = α, we utilize the Folding transform to obtain a

polynomial CF of a Mobius transform of α which we denote α′. To prove Theorem 1 , we must prove that:

1. The Folding transform does not change the limit of the polynomial matrix product: limN→∞

[∏N
n=1 Mn

]
(∞) =

α

2. The Folding transform obtains a polynomial CF.

1. To prove that the limit is unchanged we must show that just as the original product of polynomial matrices converges to
α, limN→∞

[∏N
n=1 Mn

]
(∞) = α, so too does the resultant polynomial CF meaning we must prove that (see equation

24):

lim
N→∞

[
U1

N∏
n=1

U−1
n MnUn+1

]
(∞) = lim

N→∞
U1U

−1
1 M1U2U

−1
2 M2 . . .MNUN+1(∞) = lim

N→∞
M1M2 . . .MNUN+1(∞) = α

Given a polynomial matrix, Mn =

(
cn dn
en fn

)
, c, d, e, f ∈ Z[x], en ̸= 0∀n ∈ N\0, the Folding transform utilizes the

following polynomial matrices Un :

Un =

(
1 cn
0 en

)
, U−1

n =

(
en −cn
0 1

)
. (25)

Assessing the result of mapping Un+1 to ∞ we obtain,
(

1 cn+1

0 en+1

)
(∞) = ∞.

Therefore, we find that the limit is unchanged by the Folding transform as

lim
N→∞

M1M2 . . .MNUN+1(∞) = lim
N→∞

M1M2 . . .MN (∞) = lim
N→∞

[
N∏

n=1

Mn

]
(∞) = α

2. We prove that we obtain a polynomial CF. Applying the Folding transform, the following product is obtained:

α = lim
N→∞

[
U1

N∏
n=1

U−1
n MnUn+1

]
(∞) = lim

N→∞

[
U1

N∏
n=1

(
en −cn
0 1

)(
cn dn
en fn

)(
1 cn+1

0 en+1

)]
(∞)

α = lim
N→∞

[
U1

N∏
n=1

(
0 en+1 (−det (Mn))
en encn+1 + fnen+1

)]
(∞).
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We apply the equivalence transform (Lang, 1995; Cuyt et al., 2008) with the following sequence gn =

{
1, n = 0
en, n > 0

to

normalize the bottom left element of each matrix in the product to obtain correct CF form (see equation 19 in Appendix
B.1):

α = lim
N→∞

[
U1

N∏
n=1

(
0 gn−1gnen+1 (endn − cnfn)
en gn (encn+1 + fnen+1)

)]
(∞) =

lim
N→∞

[
U1

N∏
n=1

(
0 en−1en+1 (endn − cnfn)
1 (encn+1 + fnen+1)

)]
(∞)

Note, The equivalence transform (Cuyt et al., 2008) refers to the following transform: Given a CF {aj , bj} and any nonzero
infinite sequence of {gi}∞i=1 ∈ C :

a0 +
b1

a1 +
b2

a2+...

= a0 +
g1b1

g1a1 +
g1g2b2
g2a2+...

These two CFs are equivalent to any depth n ∈ N.

Since c, d, e, f ∈ Z[x], are all polynomial with n any product or sum of the sequences is polynomial with n. The first layer
of n = 1 is taken out of the product as it doesn’t follow the polynomial pattern of the rest of the CF, as g0 = 1, and we
obtain:

α = lim
N→∞

[(
1 c1
0 e1

)(
0 e2 (e1d1 − c1f1)
1 (e1c2 + f1e2)

) N∏
n=2

(
0 en−1en+1 (endn − cnfn)
1 (encn+1 + fnen+1)

)]
(∞).

Where, (
1 c1
0 e1

)(
0 e2 (e1d1 − c1f1)
1 (e1c2 + f1e2)

)
= U1U

−1
1 M1U2 = M1U2.

We obtain a polynomial CF:

(M1U2)
−1

(α) = lim
N→∞

[
N∏

n=2

(
0 en−1en+1 (endn − cnfn)
1 (encn+1 + fnen+1)

)]
(∞). (26)

The above polynomial CF is said to be semi-equivalent to α ’s interlaced CF.

We can utilize the connection revealed by the Folding transform to assess properties of interlaced CFs based on their
semi-equivalent and more extensively researched polynomial CFs expansions. For example, given a polynomial CF that
converges to an irrational limit (M1U2)

−1
(α) and that it is semi-equivalent to an interlaced CF that converges to α, we can

trivially deduce that α must be irrational.

B.3. Applying the Folding Transform on the Simple CF of e

We apply the Folding transform on the simple CF of e (found in (Olds, 1970)). Looking at the simple CF of e, we can
represent it in matrix form and notice that the CF is a simple interlaced CF:

e− 2 =
1

1 + 1
2+ 1

1+ 1
1+ 1

4+ 1
1+...

e− 2 =

[(
0 1
1 1

)(
0 1
1 2

)(
0 1
1 1

)(
0 1
1 1

)(
0 1
1 4

)(
0 1
1 1

)(
0 1
1 1

)(
0 1
1 6

)(
0 1
1 1

)
. . .

]
(0)
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The above simple interlaced CF has a period of 3 (as clarified by the highlighted colors) with Bi(n) = 1 ∀n, i ∈ N and

Ai(n) =

 1 i = 1
2n i = 2
1 i = 3

∀n ∈ N . We find its collapsed matrices and apply the Folding transform:

e− 2 = lim
N→∞

[
N∏

n=1

3∏
i=1

(
0 Bi(n)
1 Ai(n)

)]
(0) = lim

N→∞

[
N∏

n=1

(
2n 2n+ 1

2n+ 1 2n+ 2

)]
(0).

Mn =

(
2n 2n+ 1

2n+ 1 2n+ 2

)
and therefore from equation (25), Un =

(
1 2n
0 2n+ 1

)
, and the Folding transform is given

by:

(M1U2)
−1

(e− 2) = lim
N→∞

[
N∏

n=1

(
2n+ 1 −(2n)

0 1

)(
2n 2n+ 1

2n+ 1 2n+ 2

)(
1 2n+ 2
0 2n+ 3

)]
(0),

((
0 1
1 2

)(
1 2
0 3

))−1

(e− 2) = lim
N→∞

[
N∏

n=2

(
0 2n+ 3

2n+ 1 8n2 + 16n+ 8

)]
(0).

We then apply equivalence theorem (see note in Appendix B.1) to reach the correct form of a CF layer and we get the
following polynomial CF:

−8e+ 19

e− 2
= lim

N→∞

[
N∏

n=2

(
0 4n2 + 4n− 3
1 8n2 + 16n+ 8

)]
(0),

−8e + 19

e− 2
=

21

72 + 45
128+ 17

200+···

. (27)

B.4. Determinant Property of the Folding Transform

When applying the Folding transform one can notice the determinant property of the Folding transform. No-
tice that in the Folding transform’s product U−1

n MnUn+1, in the left-hand side product we obtain U−1
n Mn =(

en −cn
0 1

)(
cn dn
en fn

)
=

(
0 −det (Mn)
en fn

)
where the top right element of the resultant matrix is equal

to minus the determinant of the collapsed matrix: |
(

cn dn
en fn

)
|= endn − cnfn. An interlaced CF of period β ’s

collapsed matrix determinant at each period is given by:

|
(

cn dn
en fn

)
|= |

(
0 B1(n)
1 A1(n)

)(
0 B2(n)
1 A2(n)

)
. . .

(
0 Bβ(n)
1 Aβ(n)

)
|=

β∏
i=1

(−Bi(n)) = (−1)β
β∏

i=1

Bi(n).

Therefore, we can simplify the left-hand side product to:

(
en −cn
0 1

)(
cn dn
en fn

)
=

(
0 (−1)β

∏β
i=1 Bi(n)

en fn

)
. (28)

This property eases calculations when trying to predict resultant polynomial CF properties such as polynomial degree after
applying the Folding transform.
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C. The Simple Interlaced CF expansions of SICFs
C.1. Moving from an SICF to a Simple CF - Proof of Theorem 2

Recall, a simple CF can be represented in the following forms (Olds, 1963):

α = a0 +
1

a1 +
1

a2+
1
...

= [a0; a1, a2, a3, a4 . . .] . (29)

To represent the partial numerator, we add a sign variable to the above notation. This enables us to represent Signed
Interlaced Continued Fractions (SICFs):

α = a0 +
b1

a1 +
b2

a2+
b3
···

, aj > 0 ∈ Z, bj ∈ {1,−1}∀j ∈ N, (30)

α = [a0; (a1, b1) , (a2, b2) , (a3, b3) , . . .]

For example, given the following SICF:

α = a0 −
1

a1 +
1

a2− 1
···

,

We can represent α in reduced notation:

α = [a0; (a1,−1) , (a2, 1) , (a3,−1) , . . .] .

For the sake of our analysis, as previously done, we will ignore a0 and represent each SICF in the following form:

α = [(a1, b1) , (a2, b2) , (a3, b3) , . . .] . (31)

Theorem 2. For any signed interlaced continued fraction equal to α ∈ R\Q, there exists some Mobius transform of α which
is equal to a simple interlaced continued fraction.

Outline of Proof:

To prove Theorem 2, we address two possible cases: SICFS with constant partial denominator sequences and SICFs with
non-constant partial denominator sequences.

SICFs with constant partial denominator sequences (Proof of Theorem 2)

Proof
We show that given a converging SICF of period β with constant partial denominator sequences, meaning aj = aj+βn

∀j ∈ N,∀n ∈ N, we converge to 2nd degree algebraic numbers and therefore by (Olds, 1963) there exists a Mobius
transform which is equal to a simple interlaced CF (a simple CF with a pattern in its partial denominator sequence). A
constant SICF of period β has a constant collapsed matrix:

Mn = M =

(
a b
c d

)
, a, b, c, d ∈ Z ∀n ∈ N

As any simple or signed CF layers are made of unimodular matrices, and the product of unimodular matrices is a unimodular
matrix, the determinant of M is given by det(M) = ad − bc = ±1. We want to study the limit of Mk(0) which is
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known to converge, α = limk→∞ pk/qk = limk→∞ Mk(0), therefore in the case that det(M) = −1 we can instead
consider the limit of the sub-sequence M2k(0) for which det

(
M2
)
= 1, allowing us to assume det(M) = 1. We denote

the eigen vectors of matrix M as v1 =

(
v11
v12

)
and v2 =

(
v21
v22

)
and the eigen values as λ1 and λ2 which satisfy

λ1λ2 = det(M) = ±1. The eigen values are the roots of the second-degree monic characteristic polynomials of M and
therefore are 2nd degree algebraic numbers.

If λ1 = λ2 ∈ C
If the eigen values are complex, one must be the complex conjugate of the other. Complex eigen values indicate rotation and
scaling and therefore the matrix Mk converges to a rational number or diverges. We show that any real 2 by 2 matrix M

with complex eigen values is similar to a shift rotation matrix R =

(
r cos(θ) −r sin(θ)
r sin(θ) r cos(θ)

)
.

Utilizing a single eigen vector, v1, we construct a matrix C =

(
Re (v11) − Im (v11)
Re (v12) − Im (v12)

)
= (Re (v1) ,− Im (v1)), where

Re and Im are the real and imaginary parts of a complex number respectively. Through simple matrix multiplication one can
see that M = CRC−1 by showing that MC = CR.

We therefore obtain a rotation matrix R which rotates vectors on the unit circle. Looking at the k = nβ convergent:
Mk(0) = CRkC−1(0).

For all θ = 0, 2πl ∀l ∈ N we obtain an identity matrix and converge to rational numbers which are not of interest to us.
Otherwise, Mk infinitely rotates the C−1(0) vector by θ and the CF does not converge.

If |λ1| ≠ |λ2| , λ1, λ2 ∈ R
If matrix M has two distinct eigen values, then it is diagonalizable and can be written in the following form:

(
a b
c d

)
= PDP−1 =

1

v11v22 − v12v21

(
v11 v21
v12 v22

)(
λ1 0
0 λ2

)(
v22 −v21
−v12 v11

)
.

Note, the above matrix represents a Mobius transform and therefore, cM = M .

Without loss of generality, we can assume |λ1| > |λ2|. Looking at Mk :

Mk(0) = PDkP−1(0) =

(
v11 v21
v12 v22

)(
λk
1 0
0 λk

2

)(
−v21
v11

)
=

(
λk
1v11 λk

2v21
λk
1v12 λk

2v22

)(
−v21
v11

)
,

Mk(0) =
λk
1v11

(
− v21

λ11

)
+ λk

2v21

λk
12v12

(
−v21

v11

)
+ λk

2v22
=

v11

(
−v21

v11

)
+

λk
2

λk
k

v21

v12

(
−v12

v11

)
+

λk
k

λk
1
v22

k→∞−→=
v11
v12

.

The eigen vector must satisfy
(

a− λ1 b
c d− λ1

)(
v11
v12

)
= 0, therefore, the limit is given by: v11

v12
= λ1−d

c . As such,

we have shown that in this case the SICF converges to the eigen values which are 2nd degree algebraic numbers.

If |λ1| = |λ2| , λ1, λ2 ∈ R
In this case M is either diagonalizable or non-diagonalizable. We denote |λ1| = |λ2|, and recall that λ1λ2 = det(M) = 1
meaning the eigen values are of the same sign, λ1 = λ2 = λ = ±1. Without loss of generality we assume λ = 1 as if
λ = −1 we can look at M2. If M is diagonalizable, then M is a mapping that is equivalent to scaling and we are guaranteed
to either diverge or converge to a rational number:

Mk = PDkP−1 = P

(
λ 0
0 λ

)k

P−1 = P

(
1 0
0 1

)k

P−1 = PP−1 = I.
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This is an identity matrix and is therefore of no interest to us in the analysis of CF of irrational numbers. If M is not

diagonalizable, it must be of the following form: P
(

1 b
0 1

)
P−1. This is the simple Jordan form. Where P ’s columns

are given by the eigen vectors of matrix M . If M = P

(
1 b
0 1

)
P−1, we see that

(
1 b
0 1

)k

(x) = x+kb and therefore

we obtain a Mobius transform that maps any x to either infinity or to a rational number when applied repeatedly,

lim
k→∞

PMkP−1(0) = lim
k→∞

P

(
−v21
v11

+ kb

)
= lim

k→∞

(
v11 v21
v12 v22

)(
−v21
v11

+ kb

)
= lim

k→∞

kb

v12kb+ v22
.

If v12 ̸= 0 we will converge to a rational number otherwise we converge to infinity.

Therefore, in the cases where the SICF with constant sequences converges to an irrational number, the SICF converges to a
2nd degree algebraic number. This ensures there is a simple interlaced CF expansion for the number, where the interlaced
sequences are constant sequences. Simple CFs with constant sequences (or k-periodic CFs) have a bijective correspondence
to the real 2nd degree algebraic numbers as given by Minkowski’s Question Mark Function (Denjoy, 1938; Balkova &
Hrušková, 2013), up to initial CF layers which do not always follow the periodic pattern. Therefore, all 2nd degree algebraic
numbers, up to some Mobius transform, have a mathematical formula involving a k-periodic CF (Olds, 1963). In summary,
as the SICF converges to a 2nd degree algebraic number we are guaranteed that this same number will have a simple
interlaced CF expansion (up to some Mobius transform).

Note, these CFs with constant sequences converge at an exponential rate (Raayoni et al., 2021). Conjectures on 2nd degree
algebraic numbers can be trivially calculated (Balkova & Hrušková, 2013) and thus further analysis of periodic CFs does not
provide additional insight on the algorithm.

SICFs with non-constant partial denominator sequences (Proof of Theorem 2)
Given an SICF which converges to α ∈ R\Q,

α = [(a1, b1) , (a2, b2) , (a3, b3) , . . . , (aβ , bβ) , . . .] , bj ∈ {±1},

We prove there exists some Mobius transform of α which equals to a simple interlaced CF. We assume ∃i ∈ {1, β} s.t
deg (Ai) > 0, Ai(n) = a(n−1)×β+i, meaning we have non-constant sequences in the partial denominator. We address base
cases and prove two lemmas to prove the above theorem in this case. We utilize the following identities to aid our proof.

Identities for proof

For a given SICF, we may find a negative partial numerator in the CF, e.g., bj+1 = −1. Our goal is to find an equivalent CF
expansion with all partial numerators all equal to 1. To this end we utilize the following matrix identity:

(*)
(

0 1
1 aj

)(
0 −1
1 aj+1

)
=

(
0 1
1 aj − 1

)(
1 1
0 1

)(
−1 0
1 1

)(
0 1
1 aj+1 − 1

)
=(

0 1
1 aj − 1

)(
0 1
1 1

)(
0 1
1 aj+1 − 1

)
We thus found a method to "get rid" of negative partial numerators but we pay for it by decreasing the denominators. In a
case where all interlaced sequences only have values greater than 2 then we can simply apply (*) iteratively over all the
SICF to obtain a simple interlaced CF. Therefore, we must address cases were this is not met. We introduce identities which
will aid us in our proof. Most of the identities are simply a result of matrix multiplication and decomposition, with identity 1
generalizing the decomposition in (*). For example, the derivation of identity 3 is given by:

(
0 bj−1

1 aj−1

)(
0 bj
1 0

)(
0 bj+1

1 aj+1

)
=

(
0 bj−1bj+1

bj bjaj+1 + bj+1aj−1

)
= matrix is a Mobius transform, b2j = 1(

0 bj−1bjbj+1

1 aj+1 + bjbj+1aj−1

)
.
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Identity 1

α = [. . . , (aj−1, bj−1) , (aj ,−1) , . . .] = [. . . , (aj−1 − 1, bj−1) , (1, 1), (aj − 1, 1) , . . .] .

Identity 2

α = [. . . , (aj−1, bj−1) , (0, bj) , (aj+1, bj+1) , . . .] = [. . . , (aj+1 + bj+1bjaj−1, bj−1bjbj+1) , . . .] .

Identity 3 - Equivalence Theorem

For any non-zero infinite sequence, gi, the following equality is met (see note Appendix B.1)

α = [. . . , (aj−1, bj−1) , (aj , bj) , (aj+1, bj+1) , . . .] →
α = [. . . , (gj−1aj−1, gj−2gj−1bj−1) , (gjaj , gj−1gjbj) , (gj+1aj+1, gjgj+1bj+1) , . . .]

When applying identity 1 and 2 we assume it is applied in every period of the SICF, we will prove this does not affect
convergence in the proof of lemma 1 . We further note that if we "shift" our period in an SICF, it is simply equivalent to
applying a Mobius transform on our constant α. To shift our period is to look at the period in a different order, for example:

α = lim
N→∞

[
N∏

n=1

(
0 b1
1 A1(n)

)
. . .

(
0 bβ
1 Aβ(n)

)]
(0) →

((
0 b1
1 A1(n+ 1)

))−1

(α) = lim
N→∞

[
N∏

n=1

(
0 b2
1 A2(n)

)
. . .

(
0 bβ
1 Aβ(n)

)(
0 b1
1 A1(n+ 1)

)]
(0).

Proof
We prove inductively that any SICF can be represented as a simple interlaced CF up to a Mobius transform. This will follow
immediately if we can prove the next lemma.

1. If all aj’s are positive, aj > 0, we can decrease the number of bj’s = −1 in each period at least by 1.

To prove the above lemma, we need to prove an additional lemma which addresses edge cases met in the first lemma:

2. Given an SICF for which there is a single ak = 0 in each period ( ak = a(n−1)×β+k = 0 ∀n ∈ N\0 ), satisfying
ak = 0, bk = ±1, while all other aj’s are positive: then there is an equivalent representation of the CF with all aj’s
being positive without increasing the number of bj’s = −1 in each period.

Proof of Lemma 2
Given a SICF of period β,

α = [(a1, b1) , (a2, b2) , . . . , (aβ , bβ) , . . .] , bj ∈ {±1},

for which there exists a k ∈ {1, . . . , β} such that a(n−1)×β+k = 0 ∀n ∈ N\0 we find an equivalent representation of the
CF with all aj’s> 0 without increasing the number of bj’s= −1 in each period.

The proof of lemma 2 is described in the following flow chart:
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Figure 7. Flow chart proof of lemma 2: Given a converging SICF with a single ak = a(n−1)×β+k = 0∀n ∈ N\0 in each period, we show
that there exists an equivalent representation (using identity 2 and 3 ) with all positive partial denominators. Recall, applying identity 2
decreases the period of the SICF by 2, therefore we are bound to either find a representation with all positive partial denominators or
prove by contradiction that the SICF diverges or converges to a rational number.

We begin by assessing different periods.

If β = 1 :

If β = 1, we obtain a diverging CF. We have a single layer in each period, meaning every layer has a 0 in its partial
denominator and we obtain a CF which satisfies:

α = [(0, b1) , (0, b1) , . . . , (0, b1) , . . .] =
b1

0 + b1
0+···

.

As b1 = ±1, at each N th approximation of the CF we obtain either ∞ or 0 and therefore the SICF diverges and is not
relevant to our analysis. If β = 2:

We obtain the following CF, which converges to 0,

α = [(A1(1), b1) , (0, b2) , . . .] = lim
N→∞

[
N∏

n=1

(
0 b1
1 A1(n)

)(
0 b2
1 0

)]
(0) = lim

N→∞

[
N∏

n=1

(
b1 0

A1(n) b2

)]
(0),

Since
(

b1 0
A1(n) b2

)
(0) = 0, if the limit exists it must be 0 which is rational and of no interest to us.
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If β ≥ 3:

As the period is ≥ 3, we can "shift" the period such that the ak = 0 element is between two matrices within the period and
apply identity 2 ,

α = [. . . , (ak−1, bk−1) , (0, bk) , (ak+1, bk+1) , . . .] =
identity 2 [. . . , (ak+1 + bkbk+1ak−1, bk−1bkbk+1) , . . .]

we see our period is reduced from β to a new period β′ = β − 2.

If ak+1 + bkbk+1ak−1 > 0, we obtain a layer with a positive partial denominator and the total number of partial
numerators equal to −1 either remains the same or decreases depending on the sign of bk−1bkbk+1, satisfying lemma 2.

If ak+1 + bkbk+1ak−1 = 0, then depending on our period we treat it by induction:
If β = 3, we obtain the case of β = 1 and therefore a CF which diverges.
If β = 4, we obtain the case of β = 2 and therefore a CF which converges to 0.

If ak+1 + bkbk+1ak−1 < 0 and β = 3, we obtain a SICF of period 1 (as the period is reduced to β − 2 ) with a negative
partial denominator. This is referred to as β′ = 1 in the flowchart. We can apply the equivalence theorem (identity 3 with
gj = −1 ∀j ∈ N ) to ensure that we obtain a positive partial numerator:

α = [. . . , (ak−1 − ak+1,−bk−1) , . . .] = [. . . , (gk (ak−1 − ak+1) ,−gkgk−1bk−1) , . . .] =

[. . . , (− (ak−1 − aj+1) ,−bk−1) , . . .] .

Again, we do not increase the number of bj’s= −1 as gkgk−1 = 1.

If β > 4, we obtain the case of β ≥ 3 and treat it accordingly with the new period given by β − 2.

If ak+1 + bkbk+1ak−1 < 0 and β ≥ 4 then we have another layer within the period and we could use it to "absorb" the
negative partial denominator, ensuring positive partial denominators. This is referred to as β′ ≥ 2 in the flow chart. This is
done using the equivalence theorem (identity 3) with g(n−1)×β+k = −1
∀n ∈ {1, 2, 3 . . .} and gj = 1 ∀j ̸= (n− 1)× β + k.

α = [. . . , (ak−1 − ak+1,−bk−1) , (ak+2, bk+2) , . . .] = [. . . , (gk (ak−1 − ak+1) ,−gkbk−1) , (ak+2, gkbk+2) , . . .] ,

α = [. . . , (− (ak−1 − ak+1) , bk−1) , (ak+2,−bk+2) , . . .] .

We do not increase the number the number of bj’s = −1 in each period. If bk+2 = −1 we decrease the total amount of
negative bj’s, and if bk+2 = 1 we remain with the same amount of negative bj’s as its given that bkbk+1 = −1 and that was
canceled out when we applied identity 3 .

Thus, we ensured that all partial denominators are positive without increasing the number of bj’s = −1 in the period.

Furthermore, all identities were applied within a given period up to a shift which is equivalent to a Mobius transform,
therefore the resultant CF with positive aj’s will have an interlaced pattern.

Proof of Lemma 1
We show that, given a SICF that converges to an irrational number, if all aj are positive, we can always decrease the number
of bj’s= −1 in each period at least by 1 . We first show, as base cases, that any SICF of period β = 1 or β = 2 can be
represented as a simple interlaced CF up to some Mobius transform.

Base cases

The first base case is a SICF of period 1, which must be addressed as identity 1 requires at least two layers within a given
period to be applied. The second base case is a SICF of period 2.
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Base case: SICF of period β = 1

For any SICF of period 1, we shift the CF to some depth for which A1(n) > 2 (for simplicity we keep n = 1 as starting
index regardless of shift):

α = lim
N→∞

[
N∏

n=1

(
0 −1
1 A1(n)

)]
(0) = lim

N→∞

[
N∏

n=1

(
−1 0
1 1

)(
0 1
1 A1(n)− 1

)]
(0) =

lim
N→∞

[(
−1 0
1 1

) N∏
n=1

(
0 1
1 A1(n)− 1

)(
−1 0
1 1

)]
(0) =

lim
N→∞

[(
−1 0
1 1

) N∏
n=1

(
0 1
1 A1(n)− 2

)(
0 1
1 1

)]
(0).

We obtain a integer Mobius transform of a simple interlaced CF; Note, that we obtain a sub-sequence of the CF and as
simple CFs always converge we obtain a simple interlaced expansion which converges to α.

Base case: SICF of period β = 2

There are several possibilities of SICFs of period 2, we solve the possibility which seems most complex. The other cases are
solved in a similar manner and often more simply. for example,

α = lim
N→∞

[
N∏

n=1

(
0 1
1 A1(n)

)(
0 −1
1 1

)]
(0) = identity 1

lim
N→∞

[
N∏

n=1

(
0 1
1 A1(n)− 1

)(
0 1
1 1

)(
0 1
1 0

)]
(0) =shift, identity 2

lim
N→∞

[(
0 1
1 A1(1)− 1

) N∏
n=1

(
0 1
1 A1(n+ 1)

)]
(0).

A similar application of identity 1, a shift, then identity 2 can be easily applied in the case that A1(n)’s layer has a negative
partial numerator. We therefore analyze the more complicated case where all bj’s= −1 :

α = lim
N→∞

[
N∏

n=1

(
0 −1
1 A1(n)

)(
0 −1
1 1

)]
(0)

We notice that
(

0 −1
1 1

)
=

(
1 −1
0 1

)(
1 0
1 1

)
, and therefore:

α = lim
N→∞

[
N∏

n=1

(
0 −1
1 A1(n)

)(
1 −1
0 1

)(
1 0
1 1

)]
(0),

α = lim
N→∞

[(
0 −1
1 A1(1)

)(
1 −1
0 1

) N∏
n=1

(
1 0
1 1

)(
0 −1
1 A1(n+ 1)

)(
1 −1
0 1

)]
(0),

α = lim
N→∞

[(
0 −1
1 A1(1)

)(
1 −1
0 1

) N∏
n=1

(
0 −1
1 A1(n+ 1)− 2

)]
(0).

We obtain a 1-periodic SICF which can be represented as a simple interlaced CF (as shown in the base case of β = 1).
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General case: SICF of period β ≥ 3

Given a SICF,

α = [(a1, b1) , (a2, b2) , . . . , (aβ , bβ) , . . .] , bj ∈ {±1}, aj > 0

There are 2 cases that must be addressed:

1. bj = −1 ∀j ∈ N. Recall, we are discussing a SICF with non-constant partial denominator sequences, therefore
∃i ∈ {1, β} s.t deg (Ai) > 0. Therefore, we can ensure aj > 1 as Ai(n) = a(n−1)×β+k. As the period ≥ 3 we can
"shift" the period such that this aj is adjacent to another matrix from the left within the period. This enables us to apply
identity 1 while guaranteeing that aj − 1 > 0, This decreases the number of bj’s = −1 in each period by 1 .

(
0 bj−1

1 aj−1

)(
0 −1
1 aj

)
=

(
0 bj−1

1 aj−1 − 1

)(
1 1
0 1

)(
−1 0
1 1

)(
0 1
1 aj − 1

)
=(

0 bj−1

1 aj−1 − 1

)(
0 1
1 1

)(
0 1
1 aj − 1

)

We have therefore decreased the number of bj’s= −1 and treat potential zeros (aj−1 − 1 = 0) as outlined in lemma 2.

We can then apply the iterative decomposition as in case 2 seen below, as we guarantee that at least one partial numerator
satisfies bj = 1.

2. ∃k ∈ N | bk−1 = 1 & bk = −1. This case can occur in any SICF that has at least a single bj = 1 in each period, as
then we can shift the period to match the conditions order (first positive than negative layer) and decompose the CF
using identity 1, thus decreasing the total number of bj’s = −1 in each period.

α = [. . . , (ak−1, 1) , (ak,−1) , . . .] → α = [. . . , (ak−1 − 1, 1) , (1, 1), (ak − 1, 1) , . . .] .

Note: this is done in every period of the SICF

We treat potential zeros on the left layer and right layer separately, enabling us to satisfy the assumption in Lemma 2: that
there is only one zero partial denominator element in each period.

If ak−1 − 1 = 0, we can simply add 1 to the previous layer, (guaranteed to have one as the period ≥ 3 )

α = [. . . , (ak−2 + 1, bk−2) , (ak − 1, 1) , . . . , (aβ , bβ) , . . .]

If ∀n ∈ N\0,k = 2+ (n− 1)× β (meaning ak−1 is the first layer of each period), we can shift the period and add 1 to the
final layer.

α = [. . . , (ak − 1, 1) , . . . , (aβ + 1, bβ) , . . .]

If ak − 1 = 0, we utilize lemma 2 to return to a state in which all partial denominators are positive.

If we do not get any zero in the partial denominators, we increased the SICF’s period from β to β + 1 and decreased the
number of bj’s= −1, proving lemma 1.

Note, to transform the SICF to a simple interlaced CF we iteratively apply identity 1 from left to right in the period to every
bj = −1 we encounter. The iterative process continues until we either obtain a simple interlaced CF (reducing the number
of bj’s= −1 at each iteration until all bj’s= 1 ) or obtain a 0 that will be dealt with as formalized in Lemma 2.
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Proof of convergence

Throughout the above proof of theorem 2 we utilize 3 identities of matrix multiplication which might change the limit of the
CF. Identities 2 and 3 do not change the limit as identity 2 simply collapses a sub-sequence of the CF and identity 3 does not
affect convergence. Therefore, to prove the limit is unchanged we prove identity 1 does not affect the convergence of the
SICF. The SICF converges therefore,

α = [. . . , (aj−1 − 1, 1) , (1, 1), (aj − 1, 1) , . . .] .

We define N(n) = j + βn ∀n ∈ N (as N → ∞ means n → ∞ ). The SICF satisfies:

α = lim
N→∞

pN
qN

= lim
N→∞

(
0 b1
1 a1

)
. . .

(
0 −1
1 aN

)
(0) =

lim
N→∞

(
0 b1
1 a1

)
. . .

(
0 1
1 aN−1 − 1

)(
0 1
1 1

)(
0 1
1 aN − 1

)
(0).

We must assess whether this decomposition affects the convergence of the CF. For most subsequences we can trivially

see there is no effect on the convergence,
(

0 1
1 aN−1 − 1

)(
0 1
1 1

)
(0) =

(
0 1
1 aN−1

)
. We therefore assess a

non-trivial case:

(
0 b1
1 a1

)
. . .

(
0 1
1 aN−1 − 1

)
(0) =

(
0 b1
1 a1

)
. . .

(
0 1
1 aN−1

)
(−1)

=

(
pN−1 pN
qN−1 qN

)
(−1) =

pN − pN−1

qN − qN−1

To prove that the above expression converges we must show that:

lim
N→∞

pN − pN−1

qN − qN−1
= lim

N→∞

pN
qN

= α → lim
N→∞

pN − pN−1

qN − qN−1
− pN

qN
= 0.

We notice that the above expression satisfies:

pN − pN−1

qN − qN−1
− pN

qN
=

qN (pN − pN−1)− pN (qN − qN−1)

qN (qN − qN−1)
= det

((
pN−1 pN
qN−1 qN

))
= ±1

±1

qN (qN − qN−1

)
.

If the SICF converges to an irrational number, it guarantees that: |qN | →N→∞ ∞.

As if we assume that qN is bounded, meaning |qN | < B B ∈ Z, then pN must be bounded and then we would have a
sub-sequence that converges to a rational number. However, we might encounter problems for cases which qN = qN−1 for

an infinite amount of N ’s. Since, det
((

pN−1 pN
qN−1 qN

))
= ±1, if qN = qN−1 then they must be ±1 for infinity many

N ’s which contradicts |qN | →N→∞ ∞. Therefore, it is not possible for qN = qN−1 for an infinite amount of N ’s and we
obtain:

lim
k→∞

|qN (qN − qN−1)| = ∞ → lim
k→∞

±1

qN (qN − qN−1)
= 0 → lim

N→∞

pN − pN−1

qN − qN−1
= lim

N→∞

pN
qN

= α (32)

And the resultant CF converges to the same limit.

Overall, lemma 1 guarantees that given a SICF (all aj are positive) it can always reduce the number of bj’s= −1 in each
period yet it may result in edge cases of 0 in the partial denominator.Lemma 2 guarantees if all aj in each period are positive
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but one, ∃k ∈ N | ak = ak+(n−1)×β = 0, there is an equivalent representation with all aj being positive without increasing
the number of bj’s = −1 in each period. Therefore, the lemma’s show that we can ensure that the number of bj’s = −1 is
monotonically decreasing thus ensuring that for a converging SICF we can find a representation such that all bj’s= 1 while
all aj’s remain positive. Therefore, by proving both the lemma’s we prove that every constant equal to a SICF has a Mobius
transform equal to a simple CF.

C.2. Example of moving from an SICF to a Simple Interlaced CF

We take the following conjecture of 2
tan(1) found by the ESMA algorithm,

2

tan(1)
− 2 = lim

N→∞

[
N∏

n=1

(
0 −1
1 3n− 1

)(
0 −1
1 2

)(
0 −1
1 3n

)(
0 −1
1 2 + 12n

)]
(0). (33)

We attempt to transform it to a simple interlaced CF, using the method from the constructive proof described in Appendix C.1
2

tan(1)
− 2 = lim

N→∞

[
N∏

n=1

(
−1 0
1 1

)(
0 1
1 3n− 2

)(
0 −1
1 2

)(
0 −1
1 3n

)(
0 −1
1 1 + 12n

)(
1 1
0 1

)]
(0),

= lim
N→∞

[(
−1 0
1 1

) N∏
n=1

(
0 1
1 3n− 3

)(
1 1
0 1

)(
−1 0
1 1

)(
0 1
1 1

)(
0 −1
1 3n

)(
0 −1
1 1 + 12n

)(
0 1
1 1

)]
(0),

= lim
N→∞

[(
−1 0
1 1

) N∏
n=1

(
0 1
1 3n− 3

)(
0 1
1 1

)(
0 1
1 1

)(
0 −1
1 3n

)(
0 −1
1 1 + 12n

)(
0 1
1 1

)]
(0),

= lim
N→∞

[(
−1 0
1 1

) N∏
n=1

(
0 1
1 3n− 3

)(
0 1
1 1

)(
0 1
1 0

)(
0 1
1 1

)(
0 1
1 3n− 1

)(
0 −1
1 1 + 12n

)(
0 1
1 1

)]
(0),

= lim
N→∞

[(
−1 0
1 1

) N∏
n=1

(
0 1
1 3n− 3

)(
0 1
1 1

)(
0 1
1 0

)(
0 1
1 1

)(
0 1
1 3n− 2

)(
0 1
1 1

)(
0 1
1 12n

)(
0 1
1 1

)]
(0),

= lim
N→∞

[(
−1 0
1 1

) N∏
n=1

(
0 1
1 3n− 3

)(
0 1
1 2

)(
0 1
1 3n− 2

)(
0 1
1 1

)(
0 1
1 12n

)(
0 1
1 1

)]
(0),

= lim
N→∞

[(
−1 0
1 1

)(
0 1
1 0

) N∏
n=1

(
0 1
1 2

)(
0 1
1 3n− 2

)(
0 1
1 1

)(
0 1
1 12n

)(
0 1
1 1

)(
0 1
1 3n

)]
(0),

− 1
2

tan(1) − 2
− 1 = lim

N→∞

[
N∏

n=1

(
0 1
1 2

)(
0 1
1 3n− 2

)(
0 1
1 1

)(
0 1
1 12n

)(
0 1
1 1

)(
0 1
1 3n

)]
(0).

D. Propeties of Simple Interlaced CFs
D.1. Proof of Theorem 3 - Predicting Degrees of Polynomial CFs semi-equivalent to Simple Interlaced CFs

Theorem 3. Given a simple interlaced continued fraction satisfying Bi(n) = 1 & Ai(n) > 0, where Ai, Bi ∈
Z[x], i ∈ {1, . . . , β},∀n ∈ N of period β, where ∃i ∈ {1, . . . , β} s. t deg (Ai) > 0, its semi-equivalent polynomial
continued fraction’s partial numerator b′n and partial denominator a′n
∀n ∈ N satisfy:

deg (b′) =

β−1∑
i=1

2× deg (Ai) , deg (a′) =

[
β−1∑
i=1

2× deg (Ai)

]
+ deg (Aβ) .

Complementary theorem

As defined previously, the form of a simple interlaced CF, α, with a period of β is given by:

α = lim
N→∞

[
N∏

n=1

β∏
i=1

(
0 Bi(n)
1 Ai(n)

)]
(0) = lim

N→∞

[
N∏

n=1

Mn

]
(0) = lim

N→∞

[
N∏

n=1

(
cn dn
en fn

)]
(0),

Ai ∈ Z[x], Ai(n) > 0,∀n ∈ N, i ∈ {1, . . . , β}.
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We prove a complementary theorem which will enable the proof of Theorem 3.

Complementary Theorem. The collapsed matrix sequences, cn, dn, en, fn, of a simple interlaced CF’s of period β ≥ 2

collapsed matrix Mn =

(
cn dn
en fn

)
, have the following polynomial degree with n :

(∗ ∗ ∗)



deg(c) =
{∑β−1

i=2 deg (Ai) if β > 2

0

deg(d) =
∑β

i=2 deg (Ai)

deg(e) =
∑β−1

i=1 deg (Ai)

deg(f) =
∑β

i=1 deg (Ai)

(34)

Proof: We prove the complementary theorem using induction.

Base case of induction β = 2 :

For β = 2, we obtain the following collapsed matrix:(
0 1
1 A1(n)

)(
0 1
1 A2(n)

)
=

(
1 A2(n)

A1(n) A1(n)A2(n) + 1

)
=

(
cn dn
en fn

)
.

Meaning the induction hypothesis is met.

We assume the induction hypothesis is met for all simple interlaced CFs of period ≤ β − 1 and prove that it is met for all
simple interlaced CF of period β. We consider the effect of multiplying some product of the first β − 1 layer to the βth layer
of the nth collapsed matrix:

(
Cn Dn

En Fn

)(
0 1
1 Aβ(n)

)
=

(
Dn Cn +DnAβ(n)
Fn En + FnAβ(n)

)
=

(
cn dn
en fn

)
By our assumption, the product of the first β − 1 layers have the following polynomial degrees:

deg(C) =

β−2∑
i=2

deg (Ai) ,deg(D) =

β−1∑
i=2

deg (Ai) ,deg(E) =

β−2∑
i=1

deg (Ai) ,deg(F ) =

β−1∑
i=1

deg (Ai) .

Notice that as the elements of the collapsed matrix are a product and linear combination of positive polynomial sequences
the elements are also positive polynomial sequences: c, d, e, f ∈ Z[x], cn ≥ 0, dn, en, fn > 0 and therefore there can be no
cancelation of polynomials. The resultant collapsed matrix satisfies:

deg(c) =

β−1∑
i=2

deg (Ai) ,deg(d) =

β∑
i=2

deg (Ai) ,deg(e) =

β−1∑
i=1

deg (Ai) , and deg(f) =

β∑
i=1

deg (Ai)

Proving our complementary theorem.

Proof of Theorem 3 (and lemma 3)

We utilize the complementary theorem to analyze the resultant polynomial CFs obtained when applying the Folding
transform on the nth collapsed matrix. Given a collapsed matrix (n > 1) for some interlaced CF, the Folding transform on
the nth collapsed matrix is given by:

(
en −cn
0 1

)(
cn dn
en fn

)(
1 cn+1

0 en+1

)
=

(
0 en+1 (endn − cnfn
en encn+1 + fnen+1

)
= equivalence transform(

0 en−1en+1 (endn − cnfn)
1 (encn+1 + fnen+1)

)
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Utilizing the determinant property (see Appendix B.4):

∣∣∣∣( cn dn
en fn

)∣∣∣∣ = (−1)β
β∏

i=1

Bi.

In this case Bi = 1
∀i ∈ N, we therefore obtain:

−
∣∣∣∣( cn dn

en fn

)∣∣∣∣ = endn − cnfn = (−1)β+1 =

{
1 β(mod)2 = 1

−1 β(mod)2 = 0
,

And therefore, we obtain:

(
0 en−1en+1 (endn − cnfn)
1 (encn+1 + fnen+1)

)
=

(
0 en−1en+1(−1)β+1

1 (encn+1 + fnen+1)

)
As cn ≥ 0, dn, en, fn > 0 ∀n > 1 we can deduce that (encn+1 + fnen+1) > 0 thus proving lemma 3. Therefore, the
resultant polynomial degree is the sum of polynomial degrees of the polynomial products (recalling equation (24) in
Appendix B.2):

(M1U2)
−1

(α) = lim
N→∞

[
N∏

n=2

(
0 en−1en+1(−1)β+1

1 (encn+1 + fnen+1

)]
(0).

If we denote b′n and a′n as the partial numerator and denominator of α′, respectively,

deg (b′) = 2 deg(e) =

β−1∑
i=1

2 ∗ deg (Ai) ,deg (a
′) = deg(e) + deg(f) =

β−1∑
i=1

2 ∗ deg (Ai) + deg (Aβ) .

Note, deg(e) + deg(f) ≥ deg(e) + deg(c) as deg(f) = deg(c) + deg (A1) + deg (Aβ) by (∗ ∗ ∗).

Thus, proving Theorem 3.

D.2. Proof of Corollary 2: A Polynomial CF semi-equivalent to a simple Interlaced Continued Fraction converges
super-exponentially

Corollary 2. A polynomial continued fraction semi-equivalent to a simple interlaced continued fraction, satisfying
∃i ∈ {1, . . . , β} s.t deg (Ai) > 0, converges super-exponentially.

Proof:

In (Raayoni et al., 2021) the following condition for super-exponential convergence of a polynomial CF was proven: Given
a polynomial CF with partial numerator b′n and partial denominator a′n the polynomial CF converges superexponentially iff
deg(b′)
deg(a′) < 2. In the case of a simple interlaced CF, by Theorem 3 its semi-equivalent polynomial CF satisfies:

deg (b′)

deg (a′)
=

∑β−1
i=1 2× deg (Ai)∑β−1

i=1 2× deg (Ai) + deg (Aβ)
≤
∑β−1

i=1 2× deg (Ai)∑β−1
i=1 2× deg (Ai)

= 1 < 2.

Therefore, the polynomial CF converges at a super-exponential rate.

D.3. Proof of Corollary 3: Irrationality of a Simple Interlaced Continued Fraction

Corollary 3. Any number α ∈ R equal to a simple interlaced continued fraction converges to an irrational limit.
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Proof:

Utilizing Tietze’s Criterion it can be directly proven that any simple interlaced CF is irrational. We denote α as the constant
equal to the simple interlaced CF with partial numerator bn and partial denominator an, and α′ as its semi-equivalent
constant equal to the polynomial CF. Recall Tietze’s Criterion (as outlined in the second page of (Bowman & Laughlin,
2002)):

Let {bj}∞j=1 be a sequence of integers and {aj}∞j=1 a sequence of positive integers, if there exists a positive integer N0 such
that: {

aj ≥ |bj |
aj ≥ |bj |+ 1 for bj+1 < 0

∀j ≥ N0. (35)

Then α′ = b1
a1+

b2
a2+···

converges and its limit is irrational.

By definition, a simple interlaced CF satisfies aj ≥ |bj | = 1 (by lemma 3) and bj > 0∀j and therefore a simple Interlaced
CF converges to an irrational limit.

E. Interesting Continued Fractions found with the Folding Transform
Representation of the Golden Ratio as a Balanced Polynomial CF

Looking at the following SICF, where k, q, r ∈ Z :

α = lim
N→∞

[
N∏

n=1

(
0 −1
1 1

)(
0 1
1 kn+ q

)(
0 −1
1 kn+ r

)(
0 −1
1 1

)]
(0) =

lim
N→∞

[(
0 −1
1 1

)(
0 1
1 k + q

) N∏
n=1

(
0 1
1 1 + k + q − r

)]
(0).

This converges for (1 + k + q − r)2 > −4 (Raayoni et al., 2021), we constrain the above expression to obtain the CF of
Golden Ratio r = 1k = 1q = 0 :

φ− 1 = lim
N→∞

[
N∏

n=1

(
0 1
1 1

)]
(0)

Meaning that looking at the original SICF:

− 1

φ
=

(
0 −1
1 1

)
(φ− 1) = lim

N→∞

[(
0 −1
1 1

)(
0 1
1 1

) N∏
n=1

(
0 1
1 1

)]
(0),

However, we can also apply the Folding transform to the SICF before collapsing it to a 1-periodic CF, r = 1, k = 1, q = 0
so we obtain:

− 1

φ
= lim

N→∞

[
N∏

n=1

(
0 −1
1 1

)(
0 1
1 n

)(
0 −1
1 n+ 1

)(
0 −1
1 1

)]
(0).

We can collapse the above layers and apply the Folding transform to obtain the following polynomial CF:

(
21 15
3 1

)(
− 1

φ

)
= lim

N→∞

[
N∏

n=2

(
0 n4 + 4n3 + 2n2 − 4n− 3
1 −n2 − 3n− 3

)]
(0).
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As a result, we found a balanced polynomial CF representation for the Golden Ratio:

21
(
− 1

φ

)
+ 15

3
(
− 1

φ

)
+ 1

=
−21 + 15φ

−3 + φ
= lim

N→∞

[
N∏

n=2

(
0 n4 + 4n3 + 2n2 − 4n− 3
1 −n2 − 3n− 3

]
(0).

By rationalizing the denominator, we obtain a simpler expression:

−21 + 15φ

−3 + φ
=

60− 48
√
5

−30
=

−30 + 24
√
5

15
=

−54 + 48(1+
√
5)

2

15
=

−54 + 48φ

15

−54 + 48φ

15
= lim

N→∞

[
N∏

n=2

(
0 n4 + 4n3 + 2n2 − 4n− 3
1 −n2 − 3n− 3

)]
(0). (36)
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