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Abstract
We present Simplex Random Features (SimRFs),
a new random feature (RF) mechanism for unbi-
ased approximation of the softmax and Gaussian
kernels by geometrical correlation of random pro-
jection vectors. We prove that SimRFs provide
the smallest possible mean square error (MSE)
on unbiased estimates of these kernels among
the class of weight-independent geometrically-
coupled positive random feature (PRF) mech-
anisms, substantially outperforming the previ-
ously most accurate Orthogonal Random Fea-
tures (ORFs, Yu et al., 2016) at no observable
extra cost. We present a more computationally
expensive SimRFs+ variant, which we prove is
asymptotically optimal in the broader family of
weight-dependent geometrical coupling schemes
(which permit correlations between random vec-
tor directions and norms). In extensive empirical
studies, we show consistent gains provided by
SimRFs in settings including pointwise kernel
estimation, nonparametric classification and scal-
able Transformers (Choromanski et al., 2020).1

1. Introduction
Embedding methods, which project feature vectors into a
new space, are ubiquitous in machine learning. The canoni-
cal example is the Johnson-Lindenstrauss Transform (JLT)
(Johnson, 1984; Dasgupta et al., 2010; Kane & Nelson,
2014; Kar & Karnick, 2012), where a collection of high-
dimensional points is embedded in a much lower dimen-
sional space whilst (approximately) preserving their metric
relationships, e.g. distances and dot-products. Another ap-
plication is found in kernel approximation (Liu et al., 2022;
Yang et al., 2014; Pennington et al., 2015; Li et al., 2010),
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where the nonlinear similarity measure (kernel) in the origi-
nal space is translated to a linear kernel in the latent space.
For example, a kernel K(·, ·) : Rd×Rd → R can be approx-
imated using so-called random features (RFs): randomised
nonlinear transformations ϕ(·) : Rd → Rd′

constructed
such that

K(x,y) = E[K̂(x, y)], where K̂(x, y)
def
= ϕ(x)⊤ϕ(y).

(1)
Provided K is stationary, meaning K(x,y) = K(x− y),
we can use Bochner’s theorem to write

K(x− y) =

∫
Rd

p(w)eiw
⊤(x−y)ddw, (2)

where p(w) is the Fourier transform of K. If K is posi-
tive semidefinite, p(w) is non-negative so we can treat it
as a probability density. This invites Monte Carlo (MC)
sampling, yielding Random Fourier Features (RFFs) of the
following form, where vectors wi are sampled from p(w),
m is their number and ⊙ denotes concatenation (Rahimi &
Recht, 2007; 2008):

ϕRFF(z)
def
=

√
1

m
(⊙m

i=1[sin(w
⊤
i z), cos(w

⊤
i z)])

⊤. (3)

Furthermore, if K is a Gaussian kernel, defined by

Kgauss(x,y)
def
= exp(−∥x− y∥22

2
), (4)

random vectors wi are sampled from the multivariate Gaus-
sian distribution N (0, Id). Another kernel, of key interest
in Transformer architectures (Vaswani et al., 2017; Choro-
manski et al., 2020), is the so-called softmax kernel:

Ksmax(x,y)
def
= exp(x⊤y). (5)

Since Kgauss(x,y) = Ksmax(x,y) exp(−x2

2 −
y2

2 ), RF
mechanisms for the Gaussian kernel can be readily con-
verted into the corresponding mechanism for softmax and
vice versa (Likhosherstov et al., 2022). Our results will
hence apply to both settings. For brevity, we will mostly
refer to Kgauss.

However, as noted in (Choromanski et al., 2020), RFFs lead
to unstable training of implicit linear-attention Transformers.
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The authors address this by proposing Positive Random
Features (PRFs), defined by

Kgauss(x,y) = E[ϕPRF(x)
⊤ϕPRF(y)], (6)

where for w1, ...,wm ∼ N (0, Id),

ϕPRF(z)
def
=

√
1

m
exp(−∥z∥22)(⊙m

i=1[exp(w
⊤
i z)])

⊤.

(7)

The straightforward implementation of PRFs (and RFFs)
draws wi independently – a strategy we refer to as IIDRFs.
However, the isotropy of the Gaussian distribution per-
mits us to entangle different wi to be exactly orthogo-
nal2 whilst preserving the Gaussian marginal distributions
wi ∼ N (0, Id) (Yu et al., 2016). This mechanism is re-
ferred to as Orthogonal Random Features (ORFs), and is an
example of a weight-independent geometrically-coupled RF
mechanism.
Definition 1.1. Consider the random vectors {wi|i ≤
m} ⊂ Rd, which can be described by norms wi = ∥wi∥2
and directions ŵi =

wi

∥wi∥2
. An RF mechanism is described

as geometrically-coupled if the norms of random vectors
{wi} are independent, but the directions {ŵi} are permitted
to be correlated with one another and with the norms {wi}.
Such a coupling is weight-independent under the further re-
striction that directions {ŵi} are independent of the norms
{wi}.

Unless otherwise stated, all coupling mechanisms consid-
ered in this work will be geometrical. ORFs provide a lower
mean squared error (MSE) on Gaussian kernel approxima-
tion than IIDRFs (Yu et al., 2016; Choromanski et al., 2020),
though for RFFs only at asymptotically large d. ORFs are
used in a broad range of applications including kernel ridge
regression and Transformers. In the latter case, they offer
linear (cf. quadratic) space- and time-complexity of the
attention module, enabling efficient long-range attention
modelling as part of the so-called Performer architecture
(Choromanski et al., 2020). Sec. 2 details further appli-
cations beyond Gaussian and softmax kernel estimation.
Recently Likhosherstov et al. (2022) showed that further
MSE reduction (for fixed m and preserving unbiasedness)
can be achieved by collecting light data statistics. RFs can
also be applied with more computationally expensive pre-
processing to improve accuracy in downstream tasks (Troki-
cic & Todorovic, 2019), but they no longer approximate the
Gaussian kernel.

However, the following question remains open: do ORFs
provide the lowest possible MSE on unbiased estimates of
the Gaussian kernel among the class of weight-independent
geometrically-coupled PRF mechanisms?

2All wi can be orthogonal if m ≤ d. If m > d we construct
ensembles of independent orthogonal blocks.

IIDRFs < ORFs < SimRFs < SimRFs+

Geometrically-coupled

Weight-independent Weight-dependent

Figure 1. Schematic of performance of RF mechanisms described
in this manuscript. SimRFs and SimRFs+ are novel.

Here, we comprehensively answer this question, finding
that ORFs are not optimal. We derive the optimal mecha-
nism, coined Simplex Random Features (SimRFs), and show
that it substantially outperforms ORFs at close to no extra
computational cost. We also consider the broader family of
weight-dependent geometrically-coupled PRFs, where ran-
dom vector directions {ŵi} can be correlated with norms
{wi}, and present a SimRFs+ variant which we prove is
asymptotically optimal in this more general class. Our em-
pirical studies demonstrate the consistent gains provided
by SimRFs in diverse settings, including pointwise kernel
estimation, nonparametric classification and scalable Trans-
formers (Choromanski et al., 2020).

In more detail, our principal contributions are as follows:

1. In Sec. 3, we introduce SimRFs and prove that they
provide the lowest kernel estimator MSE of any weight-
independent geometrically-coupled PRF mechanism,
outperforming the previously most accurate ORFs. We
demonstrate that a fast, simple scheme applying minor
alterations to SimRFs yields SimRFs+: a marginally
better weight-dependent mechanism. See Fig. 1.

2. In Sec. 4, we provide novel theoretical results to add
insight to the discussion in Sec. 3. They may be of in-
dependent interest. We derive the first non-asymptotic
closed-form formulae for the MSE for PRFs in the
IIDRF, ORF and SimRF settings, and show how it is
straightforward to generalise some of these forms to
RFFs. This allows us to precisely quantify how much
the kernel estimator MSE can be suppressed by ge-
ometrical coupling. We also compare the time- and
space-complexities of the different PRF mechanisms
and describe a faster, approximate implementation.

3. In Sec. 5, we support our theoretical results with com-
prehensive experiments, demonstrating the superiority
of SimRFs over ORFs and IIDRFs. We empirically
confirm that they offer lower kernel estimator MSE,
and find that this translates to better downstream per-
formance in nonparametric classification tasks (Sec.
5.3) and scalable Transformers (Sec. 5.4).

Proofs not provided in the main body are in Appendix A.
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2. Related Work
The literature on structured RFs, where random vectors are
conditionally dependent, is extensive (Ailon & Chazelle,
2009; Liberty et al., 2011; Ailon & Liberty, 2013; Le et al.,
2013; Yu et al., 2017). ORFs were first proposed for nonlin-
ear kernel estimation in (Yu et al., 2016), where the authors
derived strict asymptotic gains from ORFs compared to
IIDRFs when using RFFs for Gaussian kernel approxima-
tion. We refer to this phenomenon – the supression of kernel
estimator MSE when random features are conditioned to be
orthogonal – as the orthogonality gap.

Further progress towards an understanding of the orthog-
onality gap was provided in (Choromanski et al., 2018),
where the authors introduced and studied the so-called
charm property of stationary kernels. However, a rigor-
ous mathematical analysis in the non-asymptotic setting
remained out of reach. In (Choromanski et al., 2017), the
authors showed the superiority of ORFs over IIDRFs for
angular kernel estimation in any d (not just asymptotic) and
conducted an extensive analysis of the linear (dot-product)
kernel, but they did not address stationary kernels. The
authors of (Lin et al., 2020) used the lens of determinan-
tal point processes and the negative dependence property
(Kulesza & Taskar, 2012) to explore the efficacy of ORFs.

ORFs are used with PRFs in Performers (Choromanski et al.,
2020; Schlag et al., 2021; Luo et al., 2021; Likhosherstov
et al., 2021; Chowdhury et al., 2021; Xiao et al., 2022):
a recently-proposed class of efficient Transformer (Kitaev
et al., 2020; Roy et al., 2021) that can be applied to ultra-
long sequences or to expedite inference on regular-size se-
quences.

3. Simplex Random Features (SimRFs)
In this section, we describe our core contributions.

We begin by presenting Simplex Random Features (Sim-
RFs). In analogy to the square orthogonal block, we define
the so-called simplex block, consisting of d d-dimensional
random vectors {wi|i ≤ d}. In practical applications where
m > d random features are needed, multiple simplex blocks
are constructed independently.

Instead of being orthogonal, the rows of the simplex block
point towards the vertices of a d − 1-dimensional sim-
plex embedded in d-dimensional space, subtending angles
θ = arccos(− 1

d−1 ). The entire simplex (or, equivalently,
the vector it operates on) is randomly rotated to preserve
isotropy, and the rows are independently renormalised by
weights wi ∼ χd such that they are marginally Gaussian.
Explicitly, we define the simplex block Wsimp ∈ Rd×d by

Wsimp = DSR (8)

where D ∈ Rd×d = diag(wi) with wi sampled from a

120◦

IIDRFs ORFs SimRFs

d = 2

d = 3

Figure 2. Schematic of different geometrical couplings for small d.
Dotted lines have a component into the plane of the paper, thick
lines have a component out, and ⊙ is purely out (i.e. perpendicular
to the paper’s plane). With IIDRFs, the respective orientations of
vectors are chosen independently. With ORFs, we condition the
vectors to be perpendicular. With SimRFs, they subtend angles θ =
arccos(− 1

d−1
). Intuitively, conditioning the vectors to subtend

fixed, obtuse angles means they ‘explore’ Rd better, suppressing
the kernel estimator MSE. All norms are drawn independently
from a χd-distribution.

χd-distribution. R ∈ Rd×d is a random orthogonal matrix
drawn from Haar measure on O(d), the group of orthog-
onal matrices in Rd×d, constructed e.g by Gram-Schmidt
orthogonalisation of an unstructured Gaussian matrix (Yu
et al., 2016). The rows si of the simplex projection matrix
S ∈ Rd×d are given by the unit vectors

si =


√

d
d−1ei −

√
d+1

(d−1)3/2
(1, ..., 1, 0)⊤ for 1 ≤ i < d

1√
d−1

(1, 1, ..., 1, 0)⊤ for i = d

(9)
which are manifestly normalised and subtend obtuse angles.
Fig. 2 visualises the different geometrical couplings of
IIDRFs, ORFs and SimRFs in low data dimensionality d.

3.1. RF-Conformity and SimRFs vs ORFs

Recalling again that the Gaussian and softmax kernels are
readily interchanged, we focus on Kgauss without loss of
generality. We begin by defining the RF-conformity.
Definition 3.1. The RF-conformity, ρ(x,y), is given by

ρ(x,y)
def
=

Γ( d
2
)

m(m− 1)

∑
i,j ̸=i

Ewij

(
∞∑

k=0

v2kw2k
ij

22kk!Γ(k + d
2
)

)
,

(10)
with wij = ∥wi +wj∥2, v = ∥x + y∥2 for x,y ∈ Rd, Γ
the Gamma-function and m the no. random vectors wi.

ρ(x,y) depends on correlations induced between random
vector directions. It is bigger when random vectors point
in similar directions, ‘exploring’ Rd less effectively. In
Appendix A.1, we prove the following important result.
Theorem 3.2 (MSE depends on RF-conformity). For PRFs,
the MSE of the unbiased estimator K̂(x,y) is given by

MSE(K̂) =
e−2x2−2y2

m

(
(e2v

2

− ev
2

)

+(m− 1)(ρ(x,y)− ev
2

)
)
.

(11)
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That is, the MSE is an increasing function of the RF-
conformity.

For any wi, wj , SimRFs give strictly smaller values of wij

than ORFs because the random vectors subtend a bigger
angle. Explicitly, wij = (w2

i + w2
j + 2wiwj cos θ)

1/2 is
smaller when cos θ = − 1

d−1 (SimRFs) compared to when
cos θ = 0 (ORFs). This leads to smaller values of ρ(x,y),
which immediately implies the following important result.

Corollary 3.3 (SimRFs outperform ORFs). For PRFs, the
kernel estimator MSE obtained with SimRFs is strictly lower
than with ORFs for arbitrary data dimensionality d.

In fact, we are able to make the following substantially
stronger statement, proved in Appendix A.2.

Theorem 3.4 (SimRFs optimal for weight-independent geo-
metrical coupling). Supposing that d random vector norms
{wi|i ≤ d} are i.i.d., SimRFs constitute the best possible
weight-independent geometrical coupling mechanism, giv-
ing the lowest possible PRF kernel estimator MSE.

3.2. SimRFs+

Now we consider the broader family of weight-dependent
geometrical coupling mechanisms, where random vector
directions {ŵi} are permitted to be correlated with norms
{wi}. In particular, given d vectors {wi} of known norms
(from d draws of χd), we would like to arrange them in
d-dimensional space in order to minimise the sum3

ρ(x,y) =
Γ(d2 )

m(m− 1)

∑
i,j ̸=i

( ∞∑
k=0

v2kw2k
ij

22kk!Γ(k + d
2 )

)
. (12)

One brute-force approach is to parameterise each of
the d random vector directions in hyperspherical coordi-
nates and use an off-the-shelf numerical optimiser (e.g.
scipy.optimize). This is prohibitively slow, and moreover
the solution has data-dependence via v = ∥x+ y∥2 which
frustrates the method’s scalability: the optimisation needs to
be carried out pairwise for every (x,y), which undermines
our ability to quickly evaluate K̂(x,y) = ϕ(x)⊤ϕ(y) for
any given pair of input vectors. However, the numerical ap-
proach does benchmark the lowest possible RF-conformity
that can be achieved with weight-dependent geometrical
coupling.

The generic analytic minimisation of Eq. 12 is challenging,
and solutions will suffer the same v-dependence described
above, so we instead consider a tractable approximation.

3We remove the expectation value because, given a fixed set
of norms, assigning any probability mass to suboptimal configura-
tions will increase the RF-conformity in expectation – that is, the
best geometrical coupling between vectors of known magnitudes
{wi} is deterministic.

Dropping constant prefactors for clarity, the first few terms
from Eq. 10 are given by:∑

i,j ̸=i

Ewij

(
1

Γ(d2 )
+

v2w2
ij

4Γ(d2 + 1)
+

v4w4
ij

32Γ(d2 + 2)
+ ...

)

=
1

Γ(d2 )

∑
i,j ̸=i

1 + τ

(
1 +

v2

8

Γ(d2 + 1)

Γ(d2 + 2)

E(w4
ij)

E(w2
ij)

+ ...

)
(13)

with τ =
Γ( d

2 )v
2E(w2

ij)

4Γ( d
2+1)

. The precise value of
E(w4

ij)

E(w2
ij)

will
depend on the geometrical coupling scheme employed, but
for the types we have considered we generally expect it to
scale as ∼ d, with some constant prefactor4. Therefore the
sum in Eq. 10 can be approximated by:

1

Γ(d2 )

∑
i,j ̸=i

1 +
Γ(d2 )v

2E(w2
ij)

4Γ(d2 + 1)

(
1 +O(v2) + ...

)
. (14)

In the limit of small v, this invites us to truncate the sum
at k = 1, dropping the O(v2) terms. Omitting additive
constants, we are left with the approximate objective

ρ̃(x,y) =
Γ(d/2)v2

4m(m− 1)Γ(1 + d/2)

∑
i,j ̸=i

w2
ij , (15)

the physical analogue of which is the Heisenberg Hamil-
tonian with different coupling constants between different
spin pairs. This is exactly minimised by

wi = −
∑

j ̸=i wj

∥
∑

j ̸=i wj∥2
wi i = 1, ..., d (16)

where each random vector points away from the resultant of
all the others (see Appendix A.3 for details). Fig. 3 captures
this essential difference between SimRFs and SimRFs+: in
the latter case, vectors with larger norms subtend bigger
angles. Empirically, we find that the iterative update scheme

wi ← −
∑

j ̸=i wj

∥
∑

j ̸=i wj∥2
wi (17)

converges to Eq. 16 quickly (after a small number of passes
through the set of d vectors), especially if we initialise in the
near-optimal simplex geometry. Conveniently, the solution
has no v-dependence and is therefore scalable: the optimisa-
tion needs to be carried out for every draw of weights {wi}
but not every pair of data points (x,y). We refer to this
mechanism of weight-dependent geometrical coupling as
SimRFs+, and emphasise that it is asymptotically optimal
(in the sense of minimising ρ(x,y)) in the v ≪ 1 limit.

4For example, with orthogonal coupling
E(w4

ij)

E(w2
ij)

=

E(w4
i +w4

j+2w2
i w

2
j )

E(w2
i +w2

j )
=

E(w4
i )

E(w2
i )
+E(w2

i ) = 2
Γ( d

2
+2)

Γ( d
2
+1)

+2
Γ( d

2
+1)

Γ( d
2
)

∼ d,

where we took moments of the χd distribution. We can perform
similar analyses in the i.i.d. and simplex cases.
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120◦120◦

SimRFs SimRFs+

Figure 3. With SimRFs, random vectors are geometrically corre-
lated such that all pairs subtend an equal angle θ = arccos(− 1

d−1
).

With SimRFs+, random vectors with bigger norms subtend bigger
angles, guaranteeing smaller kernel estimator MSE when v is suf-
ficiently small.

Fig. 4 compares the RF-conformity of the mechanisms we
have considered, as well as the outcome of the inefficient
numerical optimisation. The additional benefits of weight-
dependent coupling are marginal: SimRFs+ access only
slightly lower conformity than SimRFs at the expense of
an extra optimisation step of time-complexity O(d3). This
gives context to the excellent performance of SimRFs; they
can compete with members of a much broader class at a
fraction of the computational cost. We also note that the
minimisation of the truncated objective (SimRFs+) is a good
approximation to the minimisation of the true objective (‘nu-
merically optimised’), accessing comparably small values
of ρ. Informally, SimRFs+ are close to optimal among
the class of weight-dependent geometrically-coupled PRF
mechanisms.

0 5 10 15
iterations

2.2

2.4

2.6

2.8

3.0

3.2

̂
ρ(
x,
y)

RF-conformity optimisation

IIDRFs
ORFs
SimRFs
SimRFs+
numerically optimised

Figure 4. Comparison of the RF-conformity defined in Eq. 10
(lower is better) for a single random draw of norms {wi}, v =
∥x+ y∥2 = 1 and d = 6. IIDRFs, ORFs, SimRFs and SimRFs+
are implemented as described in the main text. ‘Numerically
optimised’ uses an off-the-shelf numerical optimiser to arrange
vectors to minimise the RF-conformity: a scheme which is too
computationally inefficient to be practical but benchmarks the
lowest possible value. Any improvements above SimRFs using
weight-dependent geometrical coupling are marginal. The IIDRF
value is averaged over 100 random couplings of fixed weights, and
the shaded region gives 1 standard deviation.

4. From ORFs to SimRFs: the Theory
This section provides more detailed theoretical analysis
to add insight to the results of Sec. 3. It can safely be
omitted on a quick reading. We derive analytic expressions
for the RF-conformity ρ(x,y), and therefore the kernel
estimator MSE, for IIDRFs, ORFs and SimRFs. This allows
us to quantitatively compare the performance of different
coupling mechanisms. As before, we specialise to Kgauss.
Detailed proofs are provided in Appendix A.

We have seen that RF-conformity depends on an expectation
value over wij = ∥wi +wj∥2. This motivates us to begin
with the following auxiliary lemma.

Lemma 4.1 (IIDRF conformity). When random vectors
wi,wj ∈ Rd are i.i.d. (IIDRFs), the probability distribution
p(wij) with wij = ∥wi +wj∥2 is given by

pi.i.d.(wij) =
wd−1

ij e−w2
ij/4

2d−1Γ(d2 )
(18)

which induces an RF-conformity

ρIIDRF(x,y) = ev
2

(19)

where x,y ∈ Rd and v = ∥x+ y∥2.

Now we make the following important observation.

Lemma 4.2 (PDF for vectors subtending θ). Supposing
random vectors wi,wj are marginally Gaussian but are
conditioned to subtend a fixed angle θ, the probability dis-
tribution pθ(wij), is given by

w2d−1

2d−2Γ(d2 )
2

∫ π/2

ϕ=0

dϕ(sinϕ cosϕ)d−1 e−
w2

2(1+sin 2ϕ cos θ)

(1 + sin 2ϕ cos θ)d
.

(20)

ORFs and SimRFs correspond to special instances of this
with cos θ = 0 and cos θ = − 1

d−1 , respectively. It is instruc-
tive to observe that, in the orthogonal case, the distribution
reduces to the χ2d-distribution. The probability distribution
pθ(wij) induces an RF-conformity

ρθ(x,y) =
1

2d−1Γ(d2 )

∫ π

0

dϕ(sinϕ)d−1

·
∞∑
k=0

v2k(1 + sinϕ cos θ)k

2kk!Γ(k + d
2 )

Γ(k + d).

(21)

Inspecting the form closely, we see that every term in the
sum over k is proportional to the integral∫ π

0

dϕ(sinϕ)d−1(1 + sinϕ cos θ)k (22)

which is strictly smaller for cos θ < 0 compared to cos θ =
0 (since sinϕ is nonnegative everywhere in the domain).
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Since every term in the sum is positive, we immediately
conclude that for PRFs the conformity of SimRFs is strictly
smaller than ORFs, and hence the MSE is smaller. We
already derived this in Sec. 3, but are now also able to
provide the following closed forms.

Theorem 4.3 (ORF and SimRF conformity closed forms).
For PRFs with x,y ∈ Rd, the RF-conformity of ORFs is

ρORF(x,y) =
Γ(d2 )

Γ(d)

∞∑
k=0

v2k

2kk!

Γ(k + d)

Γ(k + d
2 )

(23)

whereas the RF-conformity of SimRFs is

ρSimRF(x,y) =

√
π

Γ(d2 )2
d−1

∞∑
k=0

Γ(k + d)

Γ(k + d
2 )

v2k

2k

·
k∑

p=0

(
− 1

d− 1

)p Γ(d+p
2 )

Γ(d+p+1
2 )

1

(k − p)!p!
.

(24)

These results are novel. They permit the first analytic
characterisation of the difference in kernel estimator
MSE between IIDRFs, ORFs and SimRFs. We make one
further observation.

Corollary 4.4 (ORFs always outperform IIDRFs). In the
PRF setting, the orthogonality gap (difference in kernel
estimator MSE between IIDRFs and ORFs) is given by

∆MSE(K̂(x,y)) = e−2x2−2y2 m− 1

m

·

(
ev

2

− Γ(d/2)

Γ(d)

∞∑
k=0

v2k

k!

Γ(k + d)

Γ(k + d/2)

) (25)

where x,y ∈ Rd, v = ∥x+ y∥2 and m ≤ d is the number
of random vectors. This is positive everywhere.

The sign of this orthogonality gap was first reported in
(Choromanski et al., 2020) but without an accompanying
closed form.

Plotting each of derived probability distributions p(wij)
(Eq. 18 and Eq. 20, taking cos θ = 0 and cos θ = − 1

d−1 )
and noting from Eq. 10 that the RF-conformity depends
on the expectation value of the monotonically increasing

function f(wij , v) = Γ(d2 )
∑∞

k=0

v2kw2k
ij

22kk!Γ(k+ d
2 )

, the intuitive
reason for the relative efficacy of SimRFs, ORFs and IIDRFs
becomes clear: conformity is penalised by tails at large wij ,
which we suppress with geometrical coupling (Fig. 5).

0.0 2.5 5.0 7.5 10.0
wij

0.0

0.2
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0.6

p(
w
ij)
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50
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200

250

f(w
ij,
v)

Probability distributions over wij, d=6
i.i.d.
orthogonal
simplex
f(wij, v)

Figure 5. Probability distributions over the random variable wij =
∥wi +wj∥2 for IIDRFs, ORFs and SimRFs. The RF-conformity
depends on the expectation of a monotonically increasing function
f(wij). With PRFs, geometrical coupling decreases this by reduc-
ing the probability mass at large wij .

4.1. Extension to RFFs

We briefly note that, with minimal work, the preceding
results for PRFs can be modified to consider RFFs. For
example, the following is true.
Theorem 4.5 (RFF orthogonality gap). In the RFF setting,
the orthogonality gap (difference in kernel estimator MSE
between IIDRFs and ORFs) is given by

∆MSE(K̂(x,y)) =
m− 1

m

(
e−z2

−

Γ(d/2)

Γ(d)

∞∑
k=0

(−z2)k

2kk!

Γ(k + d)

Γ(k + d/2)

) (26)

where x,y ∈ Rd, z = ∥x− y∥2 and m ≤ d is the number
of random vectors.

To the best of our knowledge, this result is also novel. The
expression does not admit the same simple analysis as the
PRF form (25) because successive terms in the sum oscillate
in sign, but a cursory numerical analysis reveals that the
MSE of ORFs is smaller than IIDRFs up to some threshold
zcrit(d), the value of which diverges as d → ∞. Taylor
expanding our exact result in 1

d reproduces the following.
Corollary 4.6 (RFF asymptotic MSE ratio, Yu et al. (2016)).
The ratio of ORF to IIDRF kernel estimator MSE is given
by

MSE(K̂ORF)

MSE(K̂IIDRF)
= 1− (m− 1)

(
e−z2z4

d(1− e−z2)2
+O

(
1

d2

))
,

(27)
where x,y ∈ Rd, z = ∥x− y∥2 and m ≤ d is the number
of random features.
The negative subleading term shows that the RFF orthogo-
nality gap is positive everywhere when d→∞.

4.2. Implementation, Complexity and Fast SimRFs

The replacement of ORFs with SimRFs is straightforward:
instead of calculating random projections Wx using the
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orthogonal block Wort = DR, we use the simplex block
Wsimp = DSR, with the matrices D,S,R ∈ Rd×d and the
object x ∈ Rd defined at the beginning of Sec. 3. By choos-
ing the order of computation D(S(Rx)), we can avoid the
O(d3) time complexity of computing matrix-matrix prod-
ucts. Both D and S support matrix-vector multiplication of
time complexity O(d) (see Appendix B.2.1). Generically,
the time complexity to sample the random orthogonal ma-
trix R is O(d3) and the matrix-vector multiplication Rx is
O(d2). However, following exactly the same tricks as with
ORFs, it is possible to replace R with a proxy R̃ which is
approximately sampled from the orthogonal group accord-
ing to Haar measure and which supports fast matrix-vector
multiplication: for example, HD-product matrices (Choro-
manski et al., 2017) or products of Givens random rotations
(Dao et al., 2019). Then the time-complexity will be limited
by the computation R̃x which is subquadratic by construc-
tion (e.g. O(d log d) for the examples above). We refer
to this mechanism as fast SimRFs, and show its excellent
experimental performance in Appendix B.2.2.

SimRFs+ are implemented by Wsimp+ = DS′R, where S′

is obtained from S according to the O(d3) iterative optimi-
sation scheme defined in Eq. 17. This will dominate the
scaling of time-complexity if we apply fast SimRFs+.

Table 1. Time complexities of RF-mechanisms and their fast vari-
ants.

Time-complexity
ORFs SimRFs SimRFs+

Regular O(d3) O(d3) O(d3)
Fast O(d log d) O(d log d) O(d3)

For all regular schemes, the space complexity to store R is
O(d2). For fast ORFs and fast SimRFs, the space complex-
ity becomes O(d) because we no longer need to explicitly
store R̃, just the d weights {wi} from χd. But the space
complexity of fast SimRFs+ is still O(d2) since all vectors
must be stored during the optimisation step.

It is clear that SimRFs are essentially equal in compu-
tational cost to ORFs, and in Sec. 5 we will see that
they often perform substantially better in downstream tasks.
Meanwhile, SimRFs+ are mostly of academic interest.

5. Experiments
Here we report the outcomes of an extensive empirical eval-
uation of SimRFs for PRFs, demonstrating their superiority
over IIDRFs and ORFs in a variety of settings. Technical
details are reported in Appendix B. The section is organ-
ised as follows: (a) in Sec. 5.1 we plot the derived MSE
expressions for IIDRFs, ORFs and SimRFs; (b) in Sec. 5.2
we verify that SimRFs permit higher-quality kernel matrix
approximation by considering the Frobenius norm of the dif-

ference between the true and approximated Gram matrices;
(c) in Sec. 5.3 we compare the performance of the different
RF mechanisms on nonparametric classification tasks using
kernel regression; (d) in Sec. 5.4 we compare the RF mech-
anisms for approximation of the attention module in vision
Performer-Transformers.

5.1. Comparison of MSE Between RF Mechanisms

We begin by plotting the MSE of the PRF estimator K̂
with IIDRFs, ORFs and SimRFs, given by Eq. 10 with
the RF-confirmities 19, 23 and 24. We note that the ratio
of the MSE of any pair of RF mechanisms only depends
in the data x,y via v = ∥x + y∥2, so it is natural to plot
MSEORF/MSEIIDRF and MSESimRF/MSEIIDRF as a function
of v – see Fig. 6. We take d = 64 which is standard in
Transformer applications.

SimRFs always outperform ORFs and IIDRFs, but the
size of the improvement depends sensitively on the data.
SimRFs are particularly effective compared to ORFs and
IIDRFs when estimating kernel evaluations at small v.
This can be understood from their respective Taylor ex-
pansions. For both IIDRFs and ORFs, the MSE goes as
MSEIIDRF,ORF = v2 + O(v4). Meanwhile, for SimRFs,

MSESimRF = v2
(
1−

√
πΓ(d+1)Γ( d

2+
1
2 )

Γ( d
2 )Γ(

d
2+1)22d

)
+ O(v4). For

d = 64, the SimRF v2 prefactor evaluates to 0.0078 which
is manifestly substantially smaller than 1.

10−3 10−2 10−1 100 101 102

v

10−2

10−1

100

M
SE

 ra
tio

MSE ratio between RF mechanisms

IIDRFs

ORFs

SimRFs

Figure 6. Analytic form the the MSE ratio of the PRF kernel
estimator K̂ for different couplings, plotted as a function of
v = ∥x + y∥2. Smaller values indicate lower MSE and are
hence better. SimRFs always perform the best, followed by ORFs
then IIDRFs. The size of the improvement depends on the data; it
is bigger at smaller v.

5.2. Quality of Gram Matrix Approximation

Another straightforward task is to directly compare the qual-
ity approximation of the Gram matrix K̂ with the different
RF mechanisms. We can quantify this using the Frobe-
nius norm between the exact and approximated matrices∑N

i=1

∑N
j=1(Kij − K̂ij)

2, where Kij
def
= Kgauss(xi,xj)

and K̂ij is the corresponding low-rank decomposition. For
demonstration purposes, we randomly generate N = 64
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data points of dimensionality d = 64 according to the dis-
tribution xi ∼ N (0, σ2Id). We take σ = 0.1. Fig. 7
shows the results; the quality of Gram matrix approximation
improves with the number of features, and is better with
SimRFs than ORFs and IIDRFs.

100 101

No. features (/d)

10−3

10−2

Fr
ob

. n
or

m
 (/

d2
)

Gram matrix Frobenius error

IIDRFs

ORFs

SimRFs

Figure 7. Frobenius norm between the true and approximated
Gram matrices (lower is better) using different RF mechanisms
and a different number of random features. More features give a
better approximation, and SimRFs consistently outperform ORFs
and IIDRFs. The data is of dimensionality d = 64 and we take
N = 64 points, generated normally with σ = 0.1. The shading
gives one standard deviation on estimates of the mean.

5.3. Nonparametric Classification Using Kernel
Regression

Here we demonstrate how reduced kernel estimator MSE
translates to better performance in downstream classifi-
cation tasks. We use 8 different datasets retrieved from
the UCI Machine Learning Repository (Dua & Graff,
2017a), each consisting of L training data {(x,y)} and
test data {(x′,y′)}. The objects are d-dimensional vec-
tors x,x′ ∈ Rd and their labels are one-hot encoded
y,y′ ∈ Rn. We predict the label distribution of a test object
using kernel regression with the Gaussian kernel, y′

pred =∑L
i=1 K(σx′, σx(i))y(i)/

∑L
i=1 K(σx′, σx(i)). We then

predict a class by taking the greatest argument of y′
pred. We

measure accuracy by the proportion of correct label pre-
dictions across the test-set. The σ > 0 hyperparameter is
tuned for good PRF performance on a validation dataset; see
Appendix B.1 for detailed discussion. Fig. 8 presents the
results, plotting classification accuracy against the number
of random features used. The size of the benefit accrued
from using SimRFs depends on the data (as we noted in Sec.
5.1) and in the limit of large m performance tends towards
the exact kernel result. SimRFs consistently perform best.

5.3.1. SIMRFS+ FOR NONPARAMETRIC
CLASSIFICATION

Table 2 compares the classification accuracies achieved with
SimRFs and SimRFs+ on the task detailed above, using
m = d random features. As suggested in Sec. 3 (see in
particular Fig. 4), SimRFs are already close to optimal and
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Figure 8. Nonparametric classification using kernel regression for
a variety of datasets (Dua & Graff, 2017a; Nash et al., 1994; Dua
& Graff, 2017b; Bohanec & Rajkovic, 1988; Horton & Nakai,
1996; Lim et al., 2000; Olave et al., 1989; Dua & Graff, 2017c),
where the Gaussian kernel is approximated with different RFs.
Plots show mean classification accuracy vs the number of random
features used to approximate the kernel (/d, the dimensionality
of the objects x). Shading gives the standard deviation on the
estimates of the mean. SimRFs consistently perform best.

any gain provided by using SimRFs+ is marginal. Moreover,
improvements tend to occur where v is small so truncating
the objective series expansion at k = 1 is reasonable.

Table 2. Classification accuracies from kernel regression with
SimRFs and SimRFs+, using random features of length m = d. v̄
records the mean (σ-scaled) value of v in each dataset. Note that
both variants substantially outperform ORFs on every dataset.

Data set v̄ Classification accuracy
SimRFs SimRFs+

abalone 1.7 0.1421±0.0002 0.1419±0.0002
banknote 2.6 0.7229±0.0012 0.7132±0.0012
car 5.0 0.6754±0.0004 0.6751±0.0004
yeast 3.1 0.3202±0.0004 0.3208±0.0004
cmc 2.0 0.4047±0.0005 0.4065±0.0005
nursery 1.4 0.6874±0.0005 0.6917±0.0004
wifi 0.8 0.6314±0.0018 0.6473±0.0018
chess 2.3 0.2000±0.0001 0.2000±0.0001

5.4. SimRFs-Performers: Scalable Attention for
Transformers

PRFs were first introduced in (Choromanski et al., 2020)
in order to accurately approximate the softmax attention
module of Transformers – an architecture coined the Per-
former. This technique for kernelising the attention mecha-
nism, which identifies complex dependencies between the
elements of an input sequence, permits linear (c.f. quadratic)
space- and time-complexity without assuming restrictive
priors such as sparsity and low-rankness. Performers offer
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Figure 9. Accuracy comparison (higher is better) of the SimRFs-
Performer and the regular ORFs-Performer. Tests are on four
image classification tasks: (a) ImageNet2012, (b) Fashion-MNIST,
(c) I-Naturalist2021, (d) Places365. x-axis is training epochs.

competitive results across a range of tasks (Tay et al., 2021),
including vision modeling (Yuan et al., 2021; Horn et al.,
2021) and speech (Liutkus et al., 2021).

Since Performers apply the ORF variant of PRFs, it is nat-
ural to expect that the SimRFs mechanism, which gives
provably lower kernel estimator MSE, will be more effec-
tive. We refer to this architecture as the SimRFs-Performer,
and show that it outperforms the regular ORFs-Performer.

We focus on the ‘performised’ versions of Vision Trans-
formers (ViTs) (Dosovitskiy et al., 2021) and consider four
datasets: (a) ImageNet2012 (Deng et al., 2009) (1K classes,
1.2M training images, 100K test set); (b) Fashion-MNIST
(Xiao et al., 2017) (10 classes, 60K training images, 10K test
set); (c) I naturalist2021 (Horn et al., 2018) (10K classes,
2.7M training images, 500K test set) and (d) Places365
(Zhou et al., 2018) (365 classes, 1.8M training images, 328K
test set). These are often used to benchmark ViTs.

In all four experiments, we use a ViT with 12 layers, 12
heads, mlp dim equal to 3072, a dropout rate of 0.1 and no
attention dropout. We use the adam optimiser with weight
decay equal to 0.1 and batch size bs = 4096, trained for 300
epochs on the TPU architecture. We apply 130 random vec-
tors to approximate the softmax attention kernel with PRFs,
testing both the ORF and SimRF coupling mechanisms.

The results, comparing ORFs and SimRFs for approxi-
mating attention, are presented in Fig. 9. The SimRFs-
Performer often achieves gains over the regular ORFs-
Performer – and is certainly never worse – for no observable
extra cost. The exact difference depends on the data distri-
bution (see. Sec. 5.1) and the importance of MSE reduction
for that particular task; if some other factor is bottleneck-
ing Performer accuracy, then improving the approximation
of the attention matrix cannot provide gains. Nonetheless,
for some of the tested datasets the difference is substan-
tial: for instance, on ImageNet2012, which is frequently

used to benchmark new Transformer variants, the SimRFs-
Performer saturates at an accuracy which is greater than
the regular ORFs-Performer by 0.5%. It is remarkable that
such a large gain can be accrued with a single drop-in matrix
multiplication at no observable computational cost, without
any architectural or ViT-specific changes.

6. Conclusion
We have introduced Simplex Random Features (SimRFs), a
new mechanism for unbiased approximation of the Gaus-
sian and softmax kernels. By correlating the directions of
random vectors in the ensemble, we access lower kernel
estimator MSE than the previously predominant Orthogo-
nal Random Features (ORFs): a fact we have verified both
theoretically and empirically via extensive experiments. We
have shown that the suppressed MSE of SimRFs compared
to ORFs often permits better performance in downstream
applications, including in nonparametric classification and
scalable Transformer training. However, the size of the gain
depends on the data distribution and whether the quality
of kernel approximation is currently bottlenecking model
performance. We have proved that SimRFs constitute the
best weight-independent geometrically-coupled PRF mecha-
nism, with further marginal improvements available in some
regimes from a weight-dependent SimRFs+ variant. Finally,
through our detailed quantitative analysis of the different
RF mechanisms, we have derived novel closed-form results
for ORFs, precisely formalising qualitative and asymptotic
findings previously reported in the literature.
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A. Supplementary Proofs and Discussion
In this appendix we provide further discussion and proofs of results stated in the main text.

A.1. Proof of Theorem 3.2 (MSE Depends on RF-conformity)

We begin by deriving a form for the kernel estimator MSE in the PRF setting, showing how it depends upon the so-called
RF-conformity defined in Eq. 10.

From the definitions in Eq. 6 and Eq. 7, it follows that

K̂ = ϕ(x)⊤ϕ(y) =
e−x2−y2

m

m∑
i=1

ew
⊤
i (x+y) =

e−x2−y2

m

m∑
i=1

bi (28)

where m is the number of random features and x,y ∈ Rd. We introduced bi, where

bi
def
= ew

⊤
i v, (29)

with v = x + y ∈ Rd. Here, i = 1, ...,m enumerates the random features. It is straightforward to show that this is an
unbiased estimator of the Gaussian kernel K(x,y) = exp(−∥x−y∥2

2

2 ) when wi are sampled from N (0, Id); in particular,

we find that E(bi) = e
v2

2 . After some algebra, we can also show that

MSE(K̂) =
e−2x2−2y2

m

(e2v
2

− ev
2

) + (m− 1)(
1

m(m− 1)

∑
i

∑
i ̸=j

E[bibj ]− ev
2

)

 . (30)

Now consider the correlation term 1
m(m−1)

∑
i

∑
i̸=j E[bibj ] =

1
m(m−1)

∑
i

∑
i ̸=j E[e(wi+wj)

⊤v] more carefully. Evi-
dently, we care about the probability distribution over the random variable wi +wj , denoted compactly by wij . For all
couplings we consider, the random vectors wi and wj are marginally isotropic (a necessary condition to be marginally
Gaussian) and their resultant wij will also be marginally isotropic. This permits us to rewrite the expectation value using the
Hankel transform (Faris, 2008):

E[ew
⊤
ijv] =

∫
Rd

ddwijp(wij)e
w⊤

ijv

= Γ(d/2)2
d
2−1

∫ ∞

0

dwijp(wij)(iwijv)
1− d

2 J d
2−1(iwijv)

(31)

where J d
2−1 is a Bessel function of the first kind5. Importantly, we are integrating over a single variable: the norm of the

resultant random vector, wij = ∥wi+wj∥2. The probability distribution p(wij) will depend on whether the random vectors
are i.i.d. or exhibit geometrical coupling, even though the marginal distributions are identical (Gaussian) in every case.

Recalling the Taylor expansion

Jα(z) =

∞∑
k=0

(−1)k

k!Γ(k + α+ 1)

(z
2

)2k+α

, (32)

we can rewrite the correlation term as

E[bibj ] = Γ

(
d

2

)
Ewij

( ∞∑
k=0

v2kw2k
ij

22kk!Γ(k + d
2 )

)
. (33)

Inserting this into Eq. 74, this immediately yields the important result:

MSE(K̂) =
e−2x2−2y2

m

(
(e2v

2

− ev
2

) + (m− 1)(ρ(x,y)− ev
2

)
)
, (34)

5In fact, given the purely imaginary argument, the function Iα(x) = i−αJα(ix) is referred to as the modified Bessel function.
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where we defined the RF-conformity

ρ(x,y)
def
=

Γ(d2 )

m(m− 1)

∑
i

∑
j ̸=i

Ewij

( ∞∑
k=0

v2kw2k
ij

22kk!Γ(k + d
2 )

)
, (35)

as in Eq. 10 of the main text. Summations run from i = 1 to m, the number of random features. The MSE is manifestly an
increasing function of ρ(x,y), which itself depends sensitively on the any correlations induced between random vectors
via p(wij). It is clear that any coupling mechanisms that reduce values of wij = ∥wi +wj∥2, e.g. by conditioning that
random vectors point away from one another, will suppress ρ(x,y). The RF-conformity will form a core consideration in
the discussion that follows.

A.2. Proof of Theorem 3.4 (SimRFs Optimal for Weight-Independent Geometrical Coupling)

Here, we prove the central result that, supposing the weights wi = ∥wi∥2, i = 1, ..., d are i.i.d. (in our case from χd),
SimRFs constitute the best possible weight-independent geometrical coupling scheme. Recall again that by ‘weight-
independent’ we mean that vector directions {ŵi} are independent of norms {wi}, though directions can still be correlated
among themselves. Our choice of geometrical coupling will not depend on each particular draw of norms; we just use the
fact that all wi are identically distributed.

We begin by proving the following simpler auxiliary lemma.

Lemma A.1 (SimRFs optimal for equal norms). Suppose that, instead of being sampled from a χd distribution, we condition
that wi ∈ Rd for i = 1, ..., d all have equal lengths w. Then ρ(x,y) is minimised when the ensemble exhibits simplex
geometrical coupling.

Proof: given the set of vector norms wi = w with i = 1, ..., d, we would like to know how to choose the angles θij subtended
between each pair wi and wj to minimise the RF-conformity ρ(x,y). It is immediately obvious that we should choose θij
deterministically rather than probabilistically, because assigning probability mass to suboptimal configurations will always
increase the expectation value (that is, p(wij |wi, wj = w) = δ(wij −

√
2w2(1 + cos θij)), with δ the delta function). So

the task is to choose {θij} to minimise

ρ(x,y) =
Γ(d2 )

m(m− 1)

∑
i

∑
j ̸=i

∞∑
k=0

v2kw2k

22kk!Γ(k + d
2 )
∥ŵi + ŵj∥2k2 =

∑
i

∑
j ̸=i

f(∥ŵi + ŵj∥22) (36)

where we defined the increasing convex function

f(∥ŵi + ŵj∥22)
def
=

Γ(d2 )

m(m− 1)

∞∑
k=0

v2kw2k

22kk!Γ(k + d
2 )
∥ŵi + ŵj∥2k2 . (37)

It follows from Jensen’s inequality that

∑
i

∑
j ̸=i

f(∥ŵi + ŵj∥22) ≥ m(m− 1)f

(∑
i

∑
j ̸=i ∥ŵi + ŵj∥22
m(m− 1)

)
(38)

with equality when ∥ŵi+ ŵj∥2 is identical for every i, j, i.e. all random vectors subtend equal angles. Since f is increasing,

∑
i

∑
j ̸=i

∥ŵi + ŵj∥22 =
∑
i

∑
j ̸=i

2 + 2ŵ⊤
i ŵj

= 2m(m− 1) + 2
∑
i

ŵ⊤
i

∑
j ̸=i

ŵj

= 2m(m− 2) + 2(
∑
i

ŵi)
⊤(
∑
j

ŵj)

= 2m(m− 2) + 2∥
∑
i

ŵi∥22 ≥ 2m(m− 2)

(39)
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with equality achieved when
∑

i ŵi = 0. Therefore,

ρ(x,y) =
∑
i

∑
j ̸=i

f(∥ŵi + ŵj∥22) ≥ m(m− 1)f

(
2(m− 2)

m− 1

)
. (40)

This shows that the conformity is minimised when we have that i) all vectors ŵi subtend equal angles, and ii)
∑

i ŵi = 0.
This is nothing other than the geometry of a d− 1-dimensional simplex embedded in d-dimensional space, as described by
the basis vectors defined in Eq. 9.

Armed with the result of Lemma A.1, we now consider the more general setting where {wi} are i.i.d. random variables but
draws are not generically identical.

We begin with the observation that, if random variables w1, ..., wd are i.i.d., the joint distribution p(w1, w2, ..., wd) =
p(w1) ·p(w2) · ... ·p(wd) is invariant under permutation of wi. This is because the joint distribution factorises into d identical
functions, though more general joint distributions with this property exist. Intuitively, for every given draw of weights
{w1, ..., wd}, there are d!− 1 other draws of equal probability given by the permutations {wP1 , ..., wPd

} where P ∈ Sd, the
symmetric group on d letters. Therefore, the RF conformity can be expressed as

ρ(x,y) =
Γ(d2 )

m(m− 1)

∫
dw1dw2...dwdp(w1, ..., wd)

∑
i

∑
j ̸=i

∞∑
k=0

v2kw2k
ij

22kk!Γ(k + d
2 )

=
Γ(d2 )

m(m− 1)

∫
dw1dw2...dwd

p(w1, ..., wd)

d!

·
∑
P∈Sd

∑
i

∑
j ̸=i

∞∑
k=0

v2k

22kk!Γ(k + d
2 )

(
w2

Pi
ŵ⊤

i ŵi + w2
Pj
ŵ⊤

j ŵj + 2wPi
wPj

ŵ⊤
i ŵj

)k
(41)

where we wrote p(w1, ..., wd) =
1
d!

∑
P∈Sn

p(wP1
, wP2

, ..., wPd
) then relabelled the integration variables. Here, we have

permuted the random vector norms wi but not the directions ŵi. We would like to obtain the geometry {ŵi} that minimises
ρ(x,y), subject to the condition that the normalisations of the unit vectors ŵ⊤

i ŵi = 1 are fixed. Since the integrand is
nonnegative everywhere, we minimise the sum in the final line of Eq. 41, namely∑

P∈Sd

∑
i

∑
j ̸=i

f
(
w2

Pi
+ w2

Pj
+ 2wPi

wPj
ŵ⊤

i ŵj

)
=
∑
P∈Sd

∑
i

∑
j ̸=i

∞∑
k=0

v2k

22kk!Γ(k + d
2 )

(
w2

Pi
+ w2

Pj
+ 2wPiwPj ŵ

⊤
i ŵj

)k (42)

where f is once again convex and positive definite. Relabelling summation variables then using Jensen’s inequality, we can
write this as∑

P∈Sd

∑
i

∑
j ̸=i

f
(
w2

i + w2
j + 2wiwjŵ

⊤
Pi
ŵPj

)
≥ d!

∑
i

∑
j ̸=i

f

(∑
P∈Sd

w2
i + w2

j + 2wiwjŵ
⊤
Pi
ŵPj

d!

)
(43)

with equality when ŵ⊤
Pi
ŵPj

is identical for every permutation – that is, when all the random vectors subtend identical
angles. With this in mind, we write the Lagrangian as

L =
∑
P∈Sd

∑
i

∑
j ̸=i

∞∑
k=0

v2k

22kk!Γ(k + d
2 )

(
w2

Pi
ŵ⊤

i ŵi + w2
Pj
ŵ⊤

j ŵj + 2wPi
wPj

ŵ⊤
i ŵj

)k
−
∑
i

λi(ŵ
⊤
i ŵi − 1). (44)

Differentiating wrt ŵi,∑
P∈Sd

∑
j ̸=i

∞∑
k=0

v2kkw2k−2
PiPj

22kk!Γ(k + d
2 )

(
w2

Pi
ŵi + wPiwPj ŵj

)
− λiwi = 0 i = 1, ..., d. (45)

where we used that ŵ⊤
Pi
ŵPj = ŵ⊤

i ŵj to take

w2
Pi
ŵ⊤

i ŵi + w2
Pj
ŵ⊤

j ŵj + 2wPiwPj ŵ
⊤
i ŵj = wPiPj = w2

Pi
ŵ⊤

Pi
ŵPi + w2

Pj
ŵ⊤

Pj
ŵPj + 2wPiwPj ŵ

⊤
Pi
ŵPj . (46)
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Eq. 45 implies that

ŵi ∝ −
∑
j ̸=i

∞∑
k=0

v2kk

22kk!Γ(k + d
2 )

(∑
P∈Sd

w2k−2
PiPj

wPi
wPj

)
ŵj i = 1, ..., d (47)

with the proportionality constant fixed by the normalisation of ŵi. Crucially, since we are summing over all permutations Sd

of the d labels, the term in parentheses
(∑

P∈Sd
w2k−2

PiPj
wPi

wPj

)
is identical for every i, j. This immediately implies that

ŵi ∝ −
∑
j ̸=i

ŵj i = 1, ..., d. (48)

Subject to the further constraint that all ŵi subtend equal angles, this is uniquely given by the simplex geometry described
by the basis vectors in Eq. 9. That is, supposing the vector norms wi are i.i.d. and that the geometrical coupling is
weight-independent, SimRFs give the lowest possible MSE in the PRF setting.

An intuitive explanation of this result is as follows. In Lemma A.1, we observed that SimRFs are optimal if all vector norms
wi are equal. Supposing norms are not equal but are identically distributed, any geometrical coupling scheme that is better
for some particular draw of norms {wi} will be worse for some of the (equally probable) label permutations {wPi

}, P ∈ Sd.
The effect of summing over all the permutations is the same as collapsing all the distributions over wi to a single, identical
value.

A.3. Derivation of Eq. 16 (SimRFs+ Geometry Minimises the Truncated RF-Conformity Objective)

Here, we show that the SimRFs+ geometrical coupling mechanism (Eq. 16) minimises the truncated approximation to the
RF-conformity ρ̃(x,y) (Eq. 15). Writing a Lagrangian using the truncated sum and differentiating, it is straightforward to
find that ∑

j ̸=i

(
v2

4Γ(1 + d
2 )

(wi +wj)

)
− λiwi = 0 i = 1, ..., d (49)

with the Lagrange multipliers λi fixed by the (known) normalisations of wi. Should such a geometry exist, this will be
solved by

wi ∝ −
∑
j ̸=i

wj i = 1, ..., d. (50)

Note that, on account of the truncation of the objective, we do not need to make any assumptions about the vector norms
or angles subtended being equal to reach this conclusion. It is straightforward to convince oneself that such a geometry
always exists for any set of norms: if one norm wi exceeds the sum of all the others, Eq. 50 is trivially satisfied by arranging
the vector of maximum norm to be antialigned with all the rest; if this is not the case, it is always possible to arrange the
vectors such that they sum to 0, i.e. form a closed loop. Then wi = −

∑
j ̸=i wj , which satisfies Eq. 50. We conclude that

the SimRFs+ geometry

wi = −
∑

j ̸=i wj

∥
∑

j ̸=i wj∥2
wi i = 1, ..., d (51)

minimises ρ̃(x,y).

We briefly note that Eq. 51 does not actually define one unique geometrical coupling, but empirically the iterative update
scheme in Eq. 17 always finds a good solution when initialised in the simplex geometry.

A.4. Proof of Lemma 4.1 (IIDRF Conformity)

In this appendix, we derive the probability distribution p(wij) over wij = ∥wi + wj∥2 in the case that all wi follow
independent Gaussian distributions N (0, Id), and use it to evaluate the corresponding IIDRF conformity ρ(x,y).

In the i.i.d. case, each component of the vector wi +wj is the sum of two standard normal distributions, N (0, 1). This
gives another normal distribution with twice the variance, N (0, 2), which leads simply to the generalised χd distribution

p(wij) =
wd−1

ij e−w2
ij/4

2d−1Γ(d2 )
. (52)
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Considering the definition of ρ(x,y) in Eq. 10, it is straightforward to calculate

ρ (x,y) = Γ(
d

2
)

∫ ∞

0

dw
wd−1e−

w2

4

2d−1Γ(d2 )

∞∑
k=0

v2kw2k

22kk!Γ(k + d
2 )

=

∞∑
k=0

v2k

k!
= ev

2

, (53)

as reported in the main text. We used the fact that all wij follow the same distribution and suppressed the ij subscripts for

notational clarity. To perform the integral over w, we used the identity
∫∞
w=0

dww2z−1e−
w2

2 = 2z−1Γ(z) .

This result is obtained more quickly by noting that, following the notation in Sec. A.1, ρ(x,y) =
1

m(m−1)

∑
i

∑
i ̸=j E[e(wi+wj)

⊤v] = E[ew⊤
1 v]E[ew⊤

2 v]. We used the fact that wi and wj are independent and that all

wij follow the same distribution (then choosing i = 1 and j = 2 wlg). We have already seen that E[ew⊤
1 v] = e

v2

2 (in fact
the condition for unbiased estimation of K̂), which immediately yields ρ(x,y) = ev

2

. But the approach using p(wij) is a
good warmup for the theorems that follow and will permit a more unified account.

A.5. Proof of Lemma 4.2 (PDF for Vectors Subtending θ)

In this appendix, we derive the form of Eq. 20, the probability distribution of wij = ∥wi + wj∥2 if wi,wj ∈ Rd are
marginally Gaussian vectors conditioned to subtend a fixed angle θ. Later, the special cases of θ = π

2 (orthogonal) and
θ = arccos(− 1

d−1 ) (simplex) will be of particular interest.

Clearly w2 = w2
i + w2

j + 2wiwj cos θ, with weight magnitudes wi,j ∼ χd (we have suppressed the ij subscript, replacing
wij by w, to minimise notational clutter). Diagonalising the quadratic form, we see that a constant w surface will trace out
an ellipse in (wi, wj) space with semi-major (-minor) axis lengths w√

1±cos(θ)
. Now

p(w < w′) =

∫
A
pχ(wi)pχ(wj)dwidwj (54)

where pχ denotes the χd distribution obeyed by wi,j and A denotes the area in the positive quadrant bounded by an ellipse
of constant w = w′ (recall that wi,j ≥ 0 since these are vector magnitudes). Expressing this in polar coordinates,

p(w < w′) =

∫ π/2

ϕ=0

dϕ
∫ w′√

1+sin(2ϕ) cos(θ)

r=0

drrpχ(r cosϕ)pχ(r sinϕ). (55)

Differentiating wrt w′ to get the pdf,

p(w) =

∫ π/2

ϕ=0

dϕ
w√

1 + sin(2ϕ) cos(θ)
pχ(

w cosϕ√
1 + sin(2ϕ) cos(θ)

)pχ(
w sinϕ

1 + sin(2ϕ) cos(θ)
)

=
w2d−1

2d−2Γ(d2 )
2

∫ π/2

ϕ=0

dϕ(sinϕ cosϕ)d−1 e−
w2

2(1+sin 2ϕ cos θ)

(1 + sin 2ϕ cos θ)d
,

(56)

as reported in Eq. 20 of the main text.

As an aside, it is instructive to set θ = π/2 and inspect the form of p(w). Doing so, we arrive at the integral

p(w) =
w2d−1

2d−2Γ(d2 )
2

∫ π/2

ϕ=0

dϕ(sinϕ cosϕ)d−1e−
w2

2 =
w2d−1

22d−2Γ(d2 )
2

∫ π

ϕ=0

dϕ(sinϕ)d−1e−
w2

2

=
√
π

w2d−1

22d−2Γ(d2 )Γ(
d
2 + 1

2 )
e−

w2

2 .

(57)

Recalling the Legendre duplication formula,
√
πΓ(2z) = 22z−1Γ(z)Γ(z + 1

2 ), this reduces to

p(w) =
w2d−1e−w2/2

2d−1Γ(d)
. (58)

This is nothing other than the χ-distribution with 2d degrees of freedom. This makes intuitive sense because, since wi and
wj are orthogonal, it follows that w2 = w2

i + w2
j . Now wi,j follow χd distributions (square root of sum of squares of d

standard normal variates), so w must be a square root of sum of squares of 2d standard normal variates – that is, a χ2d

distribution.
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A.6. Proof of Theorem 4.3 (ORF and SimRF Conformity Closed Forms)

Here, we derive the RF-conformities ρ(x,y) of the ORF and SimRF variants.

Recall the form of ρ(x,y), defined in Eq. 10 and reproduced here for convenience:

ρ(x,y) =
Γ(d2 )

m(m− 1)

∑
i

∑
j ̸=i

Ewij

( ∞∑
k=0

v2kw2k
ij

22kk!Γ(k + d
2 )

)
. (59)

Use the probability distribution for two marginally Gaussian weights conditioned to subtend an angle θ,

p(wij) =
w2d−1

ij

2d−2Γ(d2 )
2

∫ π/2

ϕ=0

dϕ(sinϕ cosϕ)d−1 e−
w2

ij
2(1+sin 2ϕ cos θ)

(1 + sin 2ϕ cos θ)d
, (60)

where wij = ∥w2
i +w2

j∥2 with i ̸= j (see Lemma 4.2 and the accompanying proof in Sec. A.5). Since all wij follow the
same distribution, the sums give a multiplicative factor of m(m− 1) that cancels with the denominator. Now we have

ρθ(x,y) =
∞∑
k=0

v2k

22kk!2d−2Γ(d2 )Γ(k + d
2 )

∫ ∞

w=0

dw

∫ π
2

ϕ=0

dϕw2k+2d−1(sinϕ cosϕ)d−1 e−
w2

2(1+sin 2ϕ cos θ)

(1 + sin 2ϕ cos θ)d
. (61)

Changing variables w → w
√
1 + sin 2ϕ cos θ and doing the integral over w,

ρθ(x,y) =

∞∑
k=0

v2kΓ(k + d)

2kk!2d−2Γ(d2 )Γ(k + d
2 )

∫ π
2

ϕ=0

dϕ(sin 2ϕ)d−1(1 + sin 2ϕ cos θ)k. (62)

Finally, changing variables ϕ→ ϕ
2 and rearranging, we arrive at

ρθ(x,y) =
1

2d−1Γ(d2 )

∫ π

0

dϕ(sinϕ)d−1 ·
∞∑
k=0

v2k(1 + sinϕ cos θ)k

2kk!Γ(k + d
2 )

Γ(k + d) (63)

as reported in Eq. 21 of the main text.

Now we substitute in the values of θ corresponding to the particular cases of ORFs and SimRFs.

1) ORFs: cos θ = 0

Note that
1

Γ(d2 )

∫ π

ϕ=0

dϕ(sinϕ)d−1 =
√
π

Γ(d2 )

Γ(d2 + 1
2 )Γ(

d
2 )

= 2d−1Γ(
d
2 )

Γ(d)
(64)

where we used the identity
∫ π

0
dx sind x =

√
πΓ( d

2+
1
2 )

Γ( d
2+1)

and the Legendre duplication formula. It follows immediately that

ρORF(x,y) =
Γ(d2 )

Γ(d)

∞∑
k=0

v2k

2kk!

Γ(k + d)

Γ(k + d
2 )

. (65)

We could have obtained this more directly using the χ2d distribution (see discussion at the end of Sec. A.5), but leaving θ
unspecified for as long as possible permits a more direct comparison with SimRFs.

2) SimRFs: cos θ = − 1
d−1

Carrying out the binomial expansion,∫ π

0

dϕ(sinϕ)d−1

(
1− sinϕ

d− 1

)k

=

k∑
p=0

k!

(k − p)!p!

(
− 1

d− 1

)p ∫ π

0

dϕ(sinϕ)d+p−1

=

k∑
p=0

k!

(k − p)!p!

(
− 1

d− 1

)p√
π

Γ(d+p
2 )

Γ(d+p+1
2 )

.

(66)
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Substituting this in, we immediately arrive at

ρSimRF(x,y) =

√
π

Γ(d2 )2
d−1

∞∑
k=0

Γ(k + d)

Γ(k + d
2 )

v2k

2k

k∑
p=0

(
− 1

d− 1

)p Γ(d+p
2 )

Γ(d+p+1
2 )

1

(k − p)!p!
(67)

which we have seen is smaller than ρORF(x,y).

A.7. Proof of Corollary 4.4 (ORFs Always Outperform IIDRFs)

Here we derive an analytic expression for the orthogonality gap (difference in kernel estimator MSE between the IIDRF and
ORF mechanisms) and show that it is positive everywhere.

From Eq. 11, we immediately have that

∆MSE(K̂(x,y)) = e−2(x2+y2)m− 1

m
(ρIIDRF(x,y)− ρORF(x,y)) . (68)

Inserting the respective RF-conformities from Eqs. 19 and 23,

∆MSE(K̂(x,y)) = e−2(x2+y2)m− 1

m

(
ev

2

−
Γ(d2 )

Γ(d)

∞∑
k=0

v2k

2kk!

Γ(k + d)

Γ(k + d
2 )

)

= e−2x2−2y2 m− 1

m

∞∑
k=0

v2k

k!

(
1− (k + d− 1)!

(d− 1)!

(d− 2)!!

(2k + d− 2)!!

)
,

(69)

where !! denotes the double factorial. We can write the term in parentheses as

1− d

d
· d+ 1

d+ 2
· ... · d+ k − 2

d+ 2(k − 2)
· d+ k − 1

d+ 2(k − 1)
> 0 (70)

so the series expansion is positive. It follows that the kernel estimator MSE with ORFs is upper bounded but that of
IIDRFs.

A.8. Proof of Theorem 4.5 (RFF Orthogonality Gap)

Here, we demonstrate how, with minor modifications, many of the stated results for PRFs can be translated to RFFs.

Recall the RFF definition, stated in Eq. 3 of the main text and reproduced here for convenience.

ϕRFF(z)
def
=

√
1

m
(⊙m

i=1[sin(w
⊤
i z), cos(w

⊤
i z)])

⊤. (71)

Now we have that

K̂ = ϕ(x)⊤ϕ(y) =
1

m

m∑
i=1

cosw⊤
i (x− y) =

1

m

m∑
i=1

ai (72)

where we defined
ai

def
= cos(w⊤

i z) (73)

and let z = x− y. It is straightforward to show that K̂ is an unbiased estimator of the Gaussian kernel e−
∥x−y]|22

2 when we
sample wi ∼ N (0, Id); that is, E[ai] = e−

z2

2 . After some work, we also have that

MSE(K̂) =
1

m

 (1− e−z2

)2

2
+ (m− 1)(

1

m(m− 1)

∑
i

∑
i ̸=j

E[aiaj ]− e−z2

)

 . (74)

The object of interest (which is precisely the analogue of ρ(x,y) but for RFFs) is
∑

i

∑
i ̸=j E[aiaj ] =∑

i

∑
i ̸=j E[cosw⊤

i z cosw⊤
j z]. It will vary depending on any geometrical coupling scheme employed.
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From elementary trigonometry, cosw⊤
i z cosw⊤

j z = 1
2 (cos

(
(wi +wj)

⊤z
)
+ cos

(
(wi −wj)

⊤z
)
. It is also simple to

convince oneself that, when the random vectors wi and wj are (a) i.i.d. or (b) conditioned to be orthogonal, the distributions
of the two random variables wi +wj and wi −wj are identical. As such, we can just consider the single random variable
wij = wi +wj wlg. Then we have that

E[cosw⊤
ijz] =

∫
Rd

p(wij)e
−iw⊤

ijzddwij

= Γ(d/2)2
d
2−1

∫ ∞

0

dwijp(wij)(wijz)
1− d

2 J d
2−1(wijz)

(75)

where we have used that the probability distribution p(wij) is real regardless of whether the random vectors are i.i.d. or
orthogonal, and written the expression as a Hankel transform (Faris, 2008). Note that we do not consider the simplex
coupling case, where the random variables wi +wj and wi −wj will follow different distributions.

Carefully comparing with Eq. 31 in Sec. A.1, we observe that the expression is identical to the PRF case, but instead
taking v → −iz. This means that we can obtain all the previously stated IIDRF and ORF results in the RFF setting with
minimal extra work. For instance, inspecting Eq. 25, we can immediately state the RFF orthogonality gap (difference in
kernel estimator MSE between IIDRFs and ORFs) reported in Theorem 4.5:

∆MSE(K̂(x,y)) =
m− 1

m

(
e−z2

− Γ(d/2)

Γ(d)

∞∑
k=0

(−z2)k

2kk!

Γ(k + d)

Γ(k + d/2)

)
. (76)

(Note that we also dropped the exponential prefactor e−2x2−2y2

, originating from the definition of PRFs (7) where it is
needed to keep kernel estimation unbiased).

A.9. Proof of Corollary 4.6 (RFF Asymptotic MSE Ratio)

Here we derive Eq. 27, the ratio of ORF to IIDRF kernel estimator MSEs in the d→∞ limit. This was first reported in (Yu
et al., 2016), and is included here to show consistency with our more general (finite d) closed forms.

Considering the discussion in Sec. A.8, it is straightforward to reason that the ratio of MSEs is given by

MSEORF

MSEIIDRF
= 1 +

2(m− 1)

(1 + e−z2)2
(Eort(a1a2)− e−z2

) (77)

where ai = e−iw⊤
i z and the expectation is being taken over the random variable w12 = ∥w1+w2∥2, with w1,2 conditioned

to be orthogonal (see e.g. Eq. 58 for the appropriate probability distribution). From the discussion in Sec. A.8, the term in
parentheses on the right can be written as the series expansion

∞∑
k=0

(−z2)k

k!

(
1

2k
Γ(k + d)Γ(d2 )

Γ(k + d
2 )Γ(d)

− 1

)
. (78)

Recalling Stirling’s formula for the asymptotic form of the Gamma function,

lim
x→∞

Γ(x+ 1) =
√
2πxe−xxx, (79)

we can rewrite term

lim
d→∞

1

2k
Γ(k + d)Γ(d2 )

Γ(k + d
2 )Γ(d)

=
1

2k

√
(k + d− 1)(d2 − 1)

(k + d
2 − 1)(d− 1)

(k + d− 1)m+d−1(d2 − 1)
d
2−1

(k + d
2 − 1)k+

d
2−1(d− 1)d−1

=

√
(k + d− 1)(d2 − 1)

(k + d
2 − 1)(d− 1)

· 1
2k

(
k + d− 1

k + d
2 − 1

)k

·

(
1 + k

d−1

)d−1

(
1 + k

d
2−1

) d
2−1

.

(80)

We can Taylor expand each of the constituent components,√
(k + d− 1)(d2 − 1)

(k + d
2 − 1)(d− 1)

≃ 1− k

2d
(81)
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1

2k

(
k + d− 1

k + d
2 − 1

)k

≃ 1− k(k − 1)

d
(82)

(
1 + k

d−1

)d−1

(
1 + k

d
2−1

) d
2−1
≃ 1 +

k2

2d
(83)

which combine to yield

1

2k
Γ(k + d)Γ(d2 )

Γ(k + d
2 )Γ(d)

≃ 1− k(k − 1)

2d
. (84)

It follows that

∞∑
k=0

(−z2)k

k!

(
1

2k
Γ(k + d)Γ(d2 )

Γ(k + d
2 )Γ(d)

− 1

)
= −

∞∑
k=0

(−z2)k

k!

k(k − 1)

2d
= − z4

2d
e−z2

. (85)

Putting this into Eq. 77,

MSE(K̂ORF)

MSE(K̂IIDRF)
= 1− (m− 1)

(
e−z2

z4

d(1− e−z2)2
+O

(
1

d2

))
, (86)

as reported in Eq. 27 and (Yu et al., 2016). Importantly, the negative sign of the subleading term means that, in the RFF
setting, ORFs will always outperform IIDRFs when d→∞.

B. Experimental Details
In this appendix, we provide further experimental details to supplement the discussion in Sec. 5.

B.1. Choosing σ

Here we elaborate on Sec 5.3, where we report tuning the hyperparameter σ with a validation dataset. In particular, given

some fixed dataset (x,y) and a Gaussian kernel K(x,x′) = e−
∥x−x′∥22

2 , we apply the scalar transformation (x,y) →
(σx,y) with σ ∈ R+ to optimise the IIDRF performance. There are two (potentially competing) factors to consider:

1. σ implicitly controls the smoothness of the the kernel K that we are approximating. Multiplying the data by σ is

equivalent to rescaling the kernel characteristic lengthscale by 1
σ , i.e. taking K(x,x′) = e−

∥x−x′∥22
2 → e

− ∥x−x′∥22
2/σ2 .

This will change the classifier accuracy even when using the exact kernel.

2. The kernel estimator variance has some dependence on the data (x,x′) – consider e.g. any of the results in Sec. 4, or
Fig. 6. Roughly speaking, PRFs tend to perform worse at large σ (equivalent to a sharply varying kernel).

In order to navigate a possible tradeoff between these factors and pick a suitable value for σ, we tune by running a coarse
search optimising classifier accuracy on a validation set. This is sensible because we are specifically interested in comparing
the performance of SimRFs, ORFs and IIDRFs in settings where kernel approximation with random features is already
effective. Fig. 10 shows the results; we choose the value of σ at which the i.i.d. PRF classification accuracy (orange solid
line) peaks. As we have suggested, this does not generically coincide with where the exact kernel performance (blue dotted
line) peaks.
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Figure 10. Plots showing classification accuracy vs the data rescaling factor σ for each of the nonparametric classification validation
datasets, including both the exact (dotted blue) and IIDRF (solid orange) kernels. They are used for tuning the σ hyperparameter. The RFs
are of dimensionality m = 10d, with d the data dimensionality, and the shaded region gives one standard deviation on the estimate of the
mean classification accuracy over N = 10 samples. During this coarse σ search phase, the large nursery and chess datasets are restricted
to 1000 training examples and 100 test examples for speed.

There is also a broader question about the relationship between the kernel estimator MSE and the performance in downstream
tasks. The fact that SimRFs consistently outperform ORFs and IIDRFs in a variety of nonparametric classification tasks
and when used to approximate the attention module in Performers confirms that lower variance on kernel estimates often
helps performance in applications. But making rigorous mathematical statements about the effect of estimator variance –
especially, why its importance differs between tasks – is complicated and is left as an open question.

B.2. Fast SimRFs: Further Discussion and Experimental Results

In this appendix, we provide more detailed discussion of fast SimRFs (Sec. 4.2) and demonstrate a simple implementation
on the nonparametric classification task. Experiments will be closely related to those described in Sec. 5.3 so readers are
advised to review this section first.

Recall the definition of the simplex block,

Wsimp = DSR, (87)

where D ∈ Rd×d = diag(wi) with wi sampled from a χd-distribution. R ∈ Rd×d is a random orthogonal matrix drawn
from Haar measure on O(d), the group of orthogonal matrices in Rd×d. The rows si of the simplex projection matrix
S ∈ Rd×d are given by the simplex unit vectors, defined in Eq. 9 and reproduced below for convenience.

si =


√

d
d−1ei −

√
d+1

(d−1)3/2
(1, ..., 1, 0)⊤ for 1 ≤ i < d

1√
d−1

(1, 1, ..., 1, 0)⊤ for i = d.
(88)

Recall further that, with fast SimRFs, we replace the matrix R by an orthogonal proxy R̃ that is only approximately sampled
from Haar measure, but which supports fast matrix-vector multiplication.

B.2.1. S SUPPORTS FAST MATRIX-VECTOR MULTIPLICATION

We begin by showing that the matrix S supports fast matrix-vector multiplication, as stated in the main body. The following
simple algorithm of time-complexity O(d) calculates Sx, with x ∈ Rd.
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Algorithm 1 Fast matrix-vector multiplication with S

Input: object vector x ∈ Rd with components xi, i = 1, ..., d
Output: ‘simplex projection’ vectors y = Sx ∈ Rd

Main:
yd = 1√

d−1

∑d−1
i=1 xi

for i = 1 to d− 1 do

yi =
√

d
d−1xi −

√
d+1
d−1 yd

end for

We note that, in downstream applications such as the SimRFs-Performer, the time taken by this extra simplex projection
(whether using the fast implementation or not) is typically dwarfed by other computational requirements. It is rarely
observable. That said, the extra time cost compared to ORFs is technically nonzero and constitutes the only real weakness
of SimRFs.

B.2.2. IMPLEMENTATION USING HD-PRODUCT MATRICES

To demonstrate one possible implementation, we use the so-called HD-product matrices, formed by multiplication of k ∈ N
HD blocks,

R̃ =

k∏
i=1

HD
(R)
i . (89)

Here, H is the normalised Hadamard matrix, defined by the recursive relation

H1 = (1), Hi =
1√
2

(
Hi−1 Hi−1

Hi−1 −Hi−1

)
for i > 1, (90)

and D
(R)
i = diag(di) with di ∼ Unif({±1}), i.i.d. Rademacher random variables. HD-blocks have previously received

attention for dimensionality reduction (Ailon & Chazelle, 2009), locally-sensitive hashing methods (Bojarski et al., 2017)
and kernel approximation (Choromanski et al., 2017), where they exhibit good computational and statistical properties.
Importantly, given some vector x ∈ Rd, the matrix-vector product Hx can be computed in time O(d log d) via the fast
Walsh-Hadamard transform.

We report the results of the nonparametric classification tasks described in Sec. 5.3, now inserting HD-product matrices
with k = 3 in place of R. With m = d random features, we observe that using fast SimRFs and fast ORFs does not
substantially change the accuracy of nonparametric classification. Results are frequently identical to the regular case.

Table 3. Classification accuracies from kernel regression with IIDRFs, ORFs and SimRFs, where we include both regular and fast
implementations in the latter two cases. Replacing the random orthogonal matrix R (sampled from Haar measure) with a structured
HD-product does not change the accuracy of nonparametric classification.

Classification accuracy

Dataset IIDRFs ORFs SimRFs
Regular Fast Regular Fast

abalone 0.1432± 0.0003 0.1445± 0.0003 0.1447± 0.0003 0.1455± 0.0003 0.1462± 0.0003
banknote 0.6441± 0.0024 0.6612± 0.0025 0.6596± 0.0024 0.7196± 0.0019 0.7296± 0.0017
car 0.6768± 0.0006 0.6788± 0.0006 0.6784± 0.0006 0.6797± 0.0006 0.6800± 0.0006
yeast 0.3187± 0.0006 0.3193± 0.0006 0.3171± 0.0006 0.3187± 0.0006 0.3195± 0.0006
cmc 0.4088± 0.0009 0.4149± 0.0009 0.4159± 0.0009 0.4206± 0.0008 0.4222± 0.0008
nursery 0.5870± 0.0013 0.6213± 0.0019 0.6193± 0.0019 0.7030± 0.0008 0.7037± 0.0008
wifi 0.4914± 0.0026 0.5224± 0.0025 0.5310± 0.0024 0.6509± 0.0027 0.6533± 0.0027
chess 0.2011± 0.0002 0.2017± 0.0002 0.2016± 0.0002 0.2021± 0.0002 0.2021± 0.0002

Note that Hadamard matrices are defined such that H ∈ Rd×d with d = 2i, i ∈ N a non-negative integer. Given data of
some arbitrary dimensionality, we have to ‘pad’ each object vector x with 0s such that its length is a power of 2. This
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accounts for the small discrepancies between the results reported in Table 3 and accuracies in Fig. 8, where vectors are
not padded so m = d is smaller. Results in each column of the table are for the same effective d so the regular and fast
mechanisms can be safely compared.
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