
Bayesian Neural Networks Avoid Encoding Complex and
Perturbation-Sensitive Concepts

Qihan Ren * 1 Huiqi Deng * 1 Yunuo Chen 1 Siyu Lou 1 Quanshi Zhang 1 2

Abstract
In this paper, we focus on mean-field variational
Bayesian Neural Networks (BNNs) and explore
the representation capacity of such BNNs by in-
vestigating which types of concepts are less likely
to be encoded by the BNN. It has been observed
and studied that a relatively small set of interac-
tive concepts usually emerge in the knowledge
representation of a sufficiently-trained neural net-
work, and such concepts can faithfully explain
the network output. Based on this, our study
proves that compared to standard deep neural
networks (DNNs), it is less likely for BNNs to
encode complex concepts. Experiments verify
our theoretical proofs. Note that the tendency to
encode less complex concepts does not necessar-
ily imply weak representation power, considering
that complex concepts exhibit low generalization
power and high adversarial vulnerability. The
code is available at https://github.com/
sjtu-xai-lab/BNN-concepts.

1. Introduction
Unlike standard deep neural networks (DNNs), Bayesian
neural networks (BNNs) represent network weights as prob-
ability distributions. Therefore, BNNs exhibit distinctive
representation capacities from standard DNNs. Existing
studies (Blundell et al., 2015; Gal & Smith, 2018; Kristiadi
et al., 2020; Carbone et al., 2020; Wenzel et al., 2020; Krish-
nan et al., 2020; Zhang et al., 2022) usually analyzed BNNs
in terms of generalization power, adversarial robustness, and
optimization.

In contrast to the above studies, this paper proposes a new
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perspective to investigate the representation capacity of
BNNs, i.e., we discover and theoretically prove that BNNs
are less likely to encode complex and perturbation-sensitive
concepts than standard DNNs. In fact, such a property
brings specific advantages to feature representations of
BNNs. To be precise, we limit our study to the scope
of mean-field variational BNNs (Blundell et al., 2015),
which is one of the most commonly used BNNs. Thus, in
this paper, we just use the term BNN to refer to mean-field
variational BNNs.

Common phenomenon of concept emergence in various
neural networks. Although it is well-known that a neural
network does not explicitly encode concepts like graphical
models, recent studies have discovered (Ren et al., 2023a; Li
& Zhang, 2023) and theoretically proved (Ren et al., 2023c)
a common concept-emerging phenomenon that neural net-
works usually implicitly encode a small number of inter-
active concepts for inference, which have been observed
in different neural networks for various tasks. Specifically,
each interactive concept represents an AND relationship
among a set of input variables.

For example, we can use I(S = {eyes, nose, mouth}) = US ·
exist(eyes) · exist(nose) · exist(mouth) to illustrate the AND
relationship for the face concept in image classification. If
any image patch in the set S = {eyes, nose, mouth} is masked,
then the face concept will be deactivated, and the numerical
effect of this concept is removed (I(S) = 0) and no longer
influences the network output.

More importantly, interactive concepts can be considered as
faithful inference patterns encoded by the neural network.
It is because Ren et al. (2023a) has proved that people can
use a relatively small number of interactive concepts to well
mimic the inference logic of the neural network on a certain
input sample. That is, numerical effects of these concepts
always well predict diverse network outputs, no matter how
the input sample is masked.

BNNs ignore complex and perturbation-sensitive con-
cepts. Based on the interactive concepts, we discover and
theoretically prove that compared to standard DNNs, it is
more difficult for a neural network to encode complex inter-
active concepts, as long as it has weight uncertainty. The
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Figure 1. (a) Illustration of interactive concepts encoded by a neural network. Each interactive concept S corresponds to an AND
relationship among a specific set S of input variables (image patches). CS represents the activation state of the concept S. The patch x1 is
masked (unmask(x1) = 0), so the concept S2 is deactivated, i.e., CS2 =

∧3
i=1 unmask(xi) = 0. Similarly, x6 is masked, so that the

concept S3 is deactivated, and CS3 = 0. (b) Experiments demonstrate the common concept-emerging phenomenon. Neural networks
with various architectures all encode sparse interactive concepts. In other words, most interactive concepts have near-zero effects, i.e.,
I(S) ≈ 0, and can be considered as noises; only a relatively small number of interactive concepts have significant effects. For better
visualization, the interactive concepts are sorted by strengths in descending order.

complexity of an interactive concept S is defined as the
number of variables in the set S, i.e., complexity(S) = |S|.
Here, |S| is also termed the order of the interactive concept.

We prove the above conclusion through three steps. First, it
is difficult to theoretically analyze interactive concepts en-
coded by BNNs, because BNNs represent network weights
as probability distributions. To this end, we find that we can
usually use a surrogate DNN model, which is constructed
by adding perturbations to both the input and low-layer
features of a standard DNN, to approximate feature repre-
sentations of a BNN. In this way, we can directly analyze
the surrogate DNN model with feature uncertainty, instead
of investigating the BNN with weight uncertainty.

Second, we prove that in the surrogate DNN model, high-
order interactive concepts are more sensitive to random
perturbations than low-order interactive concepts.

Third, we prove that the sensitivity makes high-order in-
teractive concepts difficult to be learned when features are
perturbed. In this way, we can conclude that high-order
interactive concepts are also less likely to be learned by the
BNN when its weights are perturbed.

In addition, experiments showed that the strength of high-
order (complex) interactive concepts encoded by BNNs
was weaker than those encoded by standard DNNs, which
verified the above theoretical conclusion.

Note that our proof does NOT mean that a BNN has
limited representation capacity. Instead, we just demon-
strate the distinctive tendency of avoiding encoding complex
(high-order) interactive concepts, when weight uncertainty
is introduced into the neural network. This does not mean
that BNNs have weaker representation power than standard
DNNs. If the task loss requires to encode complex concepts,

then our research indicates that the BNN must reduce its
weight uncertainty, to some extent.

Practical values and advantages of avoiding encoding
complex concepts. Although we prove that BNNs tend
to avoid encoding complex concepts, it is not necessarily
a disadvantage of the BNN, compared to standard DNNs.
On the contrary, it has been found that compared to sim-
ple (low-order) concepts, complex (high-order) concepts
encoded by a neural network usually have poorer generaliza-
tion ability (Lengerich et al., 2022) and are more vulnerable
to adversarial attacks (Ren et al., 2021). Thus, encoding less
complex concepts might be an advantage.

2. BNNs ignore complex and perturbation-
sensitive concepts

Unlike standard DNNs, a BNN represents each weight in
the network as a probability distribution, instead of a scalar.
In this paper, we limit the scope of our study to mean-field
variational BNNs (Blundell et al., 2015), where all weights
W are formulated as a Gaussian distribution N (W ;µ,Σ),
and the covariance matrix Σ is diagonal. Other types of
BNNs (e.g., BNNs based on the Monte Carlo Dropout (Gal
& Ghahramani, 2016)) are not discussed. The BNN learns
parameters θ = (µ,Σ), and we use qθ(W ) to represent the
weight distribution. Let us consider a classification task
with the training data D = {(x(1), y(1)), . . . , (x(n), y(n))}.
Training a BNN is to minimize the Kullback-Leibler (KL)
divergence between the distribution qθ(W ) and the posterior
distribution p(W |D).

θ∗= argmin
θ

KL[qθ(W )∥p(W |D)] (1)

= argmin
θ
−EW∼qθ(W )[log p(D|W )]+KL[qθ(W )∥p(W )],
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where the first term is the classification loss, and the second
term is the KL divergence between qθ(W ) and the prior dis-
tribution p(W ), which is usually formulated as a Gaussian
distribution N (W ;0, I). In addition, given a testing sample
x, the inference of the BNN is conducted as follows. First,
network weights are sampled from the weight distribution
qθ(W ) to construct multiple neural networks. Then, each
network is used to conduct inference on the sample x, and
the final inference result p(y|x) is computed as the average
classification probability of all the networks,

p(y|x) = EW∼qθ(W )[p(y|x,W )]. (2)

2.1. Preliminaries: emergence of sparse concepts

The learning of neural networks is usually regarded as
a fitting problem between the ground-truth label and the
model prediction, without explicit learning of specific con-
cepts. However, recent studies have empirically discov-
ered (Ren et al., 2023a; Li & Zhang, 2023) and theoretically
proved (Ren et al., 2023c) that sparse AND relationships
between input variables were usually implicitly encoded by
a neural network when it was sufficiently trained. As shown
in Figure 1(a), these AND relationships can be viewed as
specific types of interactive concepts, which will be intro-
duced in the interactive concepts paragraph.

Although counter-intuitive, this concept-emerging phe-
nomenon does exist in various neural networks. Further-
more, such interactive concepts have been used to prove
the representation bottleneck of the neural network (Deng
et al., 2022) and obtain optimal masking states for attribution
methods (Ren et al., 2023b). We also verify the trustwor-
thiness of using interactive concepts to explain neural
networks in experiments (see the end of this section).

Interactive concepts. Ren et al. (2021) proposed the in-
teraction effect I(S) to study the emergence of concepts.
Let us consider a pre-trained neural network v and an input
sample x = [x1, . . . , xn] with n input variables indexed by
N = {1, . . . , n}. Let Ω denote a set of interactive con-
cepts extracted from the network. Each interactive concept
S ∈ Ω corresponds to the collaboration (AND relation-
ship) between input variables in a specific set S ⊆ N , thus
Ω ⊆ 2N = {S|S ⊆ N}. For instance, as Figure 1(a) shows, a
concept S = {x1, x2, x3} is formed due to the co-occurrence
of the three image patches. The concept will be activated
and make a certain interaction effect I(S) on the network
output, only if the patches x1, x2, x3 are all present. In con-
trast, the absence (masking) of any patch among x1, x2, and
x3 will deactivate the concept and remove the interaction
effect, i.e., I(S|xmask) = 0.

Specifically, the interaction effect I(S|x) on the sample x is
computed by the Harsanyi dividend (Harsanyi, 1963).

I(S|x) =
∑

T⊆S
(−1)|S|−|T | · v(xT ). (3)

If I(S|x) has a significant value, then the neural network is
considered to encode an interactive concept S; otherwise, if
I(S|x) ≈ 0, the concept S does not exist. Here, xT denotes
the masked input sample, where variables in N \ T are
masked and variables in T are kept unchanged. Besides,
v(xT ) ∈ R can be computed as a scalar output of the neural
network on the masked sample xT (e.g., the confidence
score of classifying the input sample xT to the ground-truth
category v(xT ) = log p(y=ytruth|xT )

1−p(y=ytruth|xT )
).

Faithfulness of interactive concepts. Given an input sam-
ple x with n variables, we have 2n different ways to mask
the sample x and obtain the masked sample xT w.r.t. all
subsets T ⊆ N . To this end, Ren et al. (2021) proved that

∃ Ω ⊆ 2N , s.t. ∀ T ⊆ N, v(xT ) =
∑

S∈Ω,S⊆T
I(S|x), (4)

where 2N = {S|S ⊆ N}. The equation indicates that inter-
active concepts in Ω can well mimic network outputs on all
the 2n masked samples. Thus, we can consider that all in-
teractive concepts in the set Ω as faithful inference patterns
encoded by the neural network.

Sparsity of interactive concepts. More crucially, exten-
sive experiments (Ren et al., 2023a; Li & Zhang, 2023)
discovered that interactive concepts emerging in a neural
network are usually very sparse. Figure 1(b) shows that
most interactive concepts have near-zero interaction effects
(|I(S|x)| ≈ 0), thus having negligible influence on the net-
work output. Only a few salient interactive concepts have
significant effects I(S|x) on the network output. In this way,
the network output can be mimicked by only a few salient
interactive concepts in Ωsalient.

∀ T ⊆ N, v(xT ) =
∑

S∈Ωsalient
I(S|x) + ϵ (5)

The above equation decomposes the output v(xT ) into two
parts: (1) effects of all salient interactive concepts in Ωsalient,
and (2) a small residual term ϵ containing negligible effects
of all non-salient interactive concepts.

Empirically verifying the sparsity of concepts. Based
on Eq. (5), in the following analysis, only salient inter-
active concepts in Ωsalient are regarded as valid concepts
encoded by a neural network. We empirically verify the
emergence of sparse concepts in various neural networks,
including multi-layer perceptrons (MLPs), residual multi-
layer perceptrons (ResMLPs) (Touvron et al., 2022), long
short-term memory (LSTM) (Hochreiter & Schmidhuber,
1997), and convolutional neural networks (CNNs), and on
different datasets, including tabular data (Census dataset
and TV news dataset (Dua & Graff, 2017)), language data
(CoLA (Warstadt et al., 2019) and SST-2 (Socher et al.,
2013)), and image data (MNIST (LeCun et al., 1998)). Fig-
ure 1(b) verifies that concepts encoded by various neural
networks are all sparse.
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Complexity of a neural network representing a concept.
In many previous studies (Deng et al., 2022; Wang et al.,
2021; Zhang et al., 2021), the complexity of an interactive
concept S was measured by the number of variables in the
set S (also termed the order of the interactive concept),
i.e., complexity(S) = order(S) = |S|. Then, a low-order
concept represents a simple collaboration among a few input
variables, while a high-order concept represents a complex
collaboration among many input variables.

2.2. Approximating weight uncertainty by adding input
perturbations

In this paper, we aim to prove that compared to standard
DNNs, it is more difficult to encode high-order (complex)
interactive concepts as long as the network has weight un-
certainty. Note that previous studies (Lengerich et al., 2022;
Ren et al., 2021) found that a DNN encoding less com-
plex concepts was NOT necessarily equivalent to a weak
representation capacity. Instead, it usually boosts the gen-
eralization power and adversarial robustness. In addition,
as discussed in the last two paragraphs of the introduction,
the BNN can still encode complex concepts when it learns
small variances.

Unlike standard DNNs, a BNN formulates each weight as
a probability distribution, which boosts the difficulty of
theoretically analyzing interactive concepts encoded in a
BNN. Therefore, in this subsection, we first discover that
introducing uncertainty to weights in the BNN can be ap-
proximated by adding perturbations to input variables and
low-layer features in experiments. In other words, we add
random perturbations to both input variables and low-layer
features of a standard DNN, and we demonstrate that such a
perturbed DNN performs as a surrogate DNN model, which
well approximates feature representations of a BNN.

Let us consider a feed-forward BNN, which has L cascaded
linear layers and ReLU layers. Given an input sample x ∈
RD0 (D0 = n), the feature of the l-th layer h(l) ∈ RDl

(1 ≤ l ≤ L) is computed as follows.

h(l) =W (l)(· · ·Φ(1)(W (1)x+ b(1)) · · · ) + b(l), (6)

where W (l) ∈ RDl×Dl−1 and b(l) ∈ RDl denote the weight
matrix and bias of the l-th linear layer, respectively. In the
BNN, W (l)

ij ∼ N (W
(l)
ij , (σ

(l)
ij )

2) is independently sampled
from Gaussian distributions. We use µW (l) = [W

(l)
ij ] ∈

RDl×Dl−1 to denote the mean of the weight matrix. Besides,
b(l) ∼ N (µb(l) ,Σb(l)), where Σb(l) is a diagonal matrix. The
diagonal matrix Φ(l) = diag(ϕ

(l)
1 , · · · , ϕ(l)

Dl
) ∈ {0, 1}Dl×Dl

denotes binary gating states of the l-th ReLU layer.

Then, we construct the surrogate DNN model with the
same architecture as the BNN, to approximate the BNN’s
feature distribution. Parameters of this surrogate DNN
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Figure 2. Comparison between the feature distribution of the BNN
and the feature distribution of the surrogate DNN model. We
randomly selected a feature dimension from each layer of the
network. Each sub-figure compares feature distributions between
the BNN and the surrogate DNN model in the selected dimension.
Please see Appendix I for results on tabular datasets.

Table 1. Approximation error of the surrogate model and approxi-
mation error of the baseline distribution. The approximation error
was measured using features of the last layer of the network.

MLP-5 on LeNet on MLP-8 on MLP-8 on
MNIST CIFAR-10 Census TV news

surrogate 0.16 0.06 0.11 0.16
baseline 21.38 19.68 4.79 4.50

model ψ are set as the mean of the weight distribution
and the mean of the bias distribution in the BNN, i.e., ψ =

{µW (l) ,µb(l)}
L
l=1. Given an input sample x, we add pertur-

bations ∆x ∼ N (0,Σ∆x) to input variables and perturba-
tions ∆h(l′) ∼ N (0,Σ

∆h(l′)) to features between the first
layer and the (l − 1)-th layer in the surrogate DNN model
(1 ≤ l′ ≤ l − 1). In this way, we can obtain the distribution
of the l-th layer feature h̃(l) in the surrogate DNN model,
denoted as pDNN(h̃

(l)|∆ = {Σ∆x,Σ∆h(1) , · · · ,Σ∆h(l−1)}),
and we use pDNN(h̃

(l)|∆) to mimic the feature distribution
pBNN(h

(l)) in the BNN. Thus, the objective function is for-
mulated as minimizing the following KL divergence.

∀ 1 ≤ l ≤ L, min
∆

KL(pBNN(h
(l))∥pDNN(h̃

(l)|∆)), (7)

where we set Σ∆x,Σ∆h(l′) ∈∆ as diagonal matrices.

However, it is difficult to directly optimize Eq. (7). In-
stead, we learn the covariance matrices in a layer-wise
manner, as follows. First, we learn the covariance ma-
trix Σ∆x on input variables to match the first-layer fea-
ture of the surrogate DNN model to the first-layer feature
of the BNN, i.e., minΣ∆x KL(pBNN(h

(1))∥pDNN(h̃
(1)|Σ∆x)).

Then, we fix the learned covariance matrix Σ∆x (note
that it is not to fix the perturbation ∆x), and learn the
covariance matrix Σ∆h(1) on the first-layer feature to fit
feature distributions of the second layer by minimizing
KL(pBNN(h

(2))∥pDNN(h̃
(2)|Σ∆x,Σ∆h(1))). We recursively

learn the covariance matrix of an upper layer by fixing the
covariance matrices in all lower layers, until the last layer.
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Experimental verification. We trained BNNs on image
datasets and tabular datasets to verify the quality of using
the surrogate DNN model to approximate the feature dis-
tribution of the BNN. For image datasets, we tested BNNs
with two architectures. For the MNIST dataset (LeCun
et al., 1998), we constructed a BNN with the architecture
of a 5-layer MLP. We also tested a BNN with the LeNet
architecture (LeCun et al., 1998), which was trained on the
CIFAR-10 dataset (Krizhevsky et al., 2009). We used two
tabular datasets, including the UCI TV news dataset (termed
TV news) and the UCI census income dataset (termed Cen-
sus) (Dua & Graff, 2017). We constructed BNNs with an
8-layer MLP architecture for these tabular datasets. All
MLPs contained 100 neurons in each hidden layer. For
each BNN, we constructed a corresponding surrogate DNN
model. Please see Appendix H for implementation details.

Figure 2 shows that the feature distribution of the
surrogate DNN model well matched the feature dis-
tribution of the BNN. Furthermore, we used the KL
divergence KL(pBNN(h

(l))∥pDNN(h̃
(l)|∆)) in Eq. (7) to

measure the approximation error. To compare with
KL(pBNN(h

(l))∥pDNN(h̃
(l)|∆)), we further constructed a sim-

ple baseline distribution of the features pbase(h
(l)) =

N (µ̂1, σ̂2I), where µ̂ and σ̂2 denote the mean and the vari-
ance over all feature dimensions of the BNN, respectively.
We computed KL(pBNN(h

(l))∥pbase(h
(l))) for comparison. Ta-

ble 1 shows that the approximation error of the surrogate
DNN model was significantly smaller than the approxima-
tion error of the baseline distribution.

Experimental results showed that the weight uncertainty
in a BNN could be well approximated by adding random
perturbations to both input variables and low-layer features.

2.3. High-order concepts are sensitive to perturbations

In the previous subsection, we have demonstrated that
adding random perturbations to input variables and low-
layer features can successfully approximate the feature dis-
tribution in a BNN with weight uncertainty. In this way,
proving the difficulty of BNNs in encoding high-order in-
teractive concepts can be converted into the proof of the
following two steps. First, in this subsection, we prove
that high-order interactive concepts are more sensitive to
perturbations than low-order interactive concepts, which is
inspired by the proof in Zhou et al. (2023). Then, in the
next subsection, we will prove that perturbation-sensitive
concepts are difficult to be learned by a neural network.

Note that according to Section 2.2, introducing the weight
uncertainty in a BNN can be approximated by adding ran-
dom perturbations to both input variables and features of
different layers. However, simultaneously adding perturba-
tions to features of multiple layers significantly boosts the
difficulty of analysis. Fortunately, adding perturbations to

output features of the l-th layer can be considered as per-
turbing input variables of the (l+1)-th layer. Hence, in this
subsection, we just analyze interactive concepts in a simple
case where we perturb input variables in a certain layer,
instead of analyzing the complex case of simultaneously
perturbing features of different layers.

To prove that high-order interactive concepts are more sen-
sitive to input perturbations than low-order interactive con-
cepts, let us first derive the analytical form of the interaction
effect I(S) of an interactive concept.

Lemma 2.1. Given a neural network v and an arbitrary in-
put sample x′ ∈ Rn, the network output can be decomposed
using the Taylor expansion v(x′) =

∑
S⊆N

∑
π∈QS

US,π ·
J(S,π|x′). In this way, according to Eq. (3), the interaction
effect I(S|x′) on the sample x′ can be reformulated as

I(S|x′) =
∑

π∈QS

US,π · J(S,π|x′), (8)

where J(S,π|x′) =
∏

i∈S

(
sign(x′

i − ri) · x
′
i−ri
τ

)πi

de-
notes an expansion term of the degree π, π ∈ QS =

{[π1, . . . , πn]|∀i ∈ S, πi ∈ N+; ∀i ̸∈ S, πi = 0}. US,π=
τm∏n

i=1 πi!

∂mv(x∅)

∂x
π1
1 ···∂xπn

n
·
∏

i∈S [sign(x
′
i − ri)]

πi , m =
∑n

i=1 πi.

Lemma 2.1 provides a new perspective to analyze the sensi-
tivity of the interaction effect I(S). In particular, just like
in Ren et al. (2023a) and Ren et al. (2023b), we mask the
input variable xi by setting it to its reference value xi ← ri.
The reference value ri is designed as follows. Let Ex[xi]

denote the average value of the input variable xi over all in-
put samples, which is usually regarded as a no-information
state of this input variable (Ancona et al., 2019). In this
paper, we remove the information from the input variable
xi by pushing xi by a large enough distance τ towards its
mean value. In other words, if xi > Ex[xi], we set the ref-
erence value ri = xi − τ1; otherwise, ri = xi + τ . Here,
τ ∈ R is a pre-defined constant. In this way, compared to
setting ri = Ex[xi], the above setting ensures comparable
perturbation magnitudes over different input dimensions.

Furthermore, in order to simplify the proof, when we add
a small Gaussian perturbation ϵ ∼ N (0, σ2I) to the sample
x, we ignore the extremely low possibility of large perturba-
tions |ϵi| ≥ τ because the variance σ2 is small.

Let us start with a simple case in Lemma 2.1. Since people
usually adopt low-order Taylor expansion for approximation
in real implementations, we first approximate the interaction
effect I(S|x′) using the expansion term of the lowest degree,
and analyze the influence of input perturbations on I(S|x′).

Theorem 2.2. Let π̂ denote the lowest degree of the expan-

1We need to avoid the case of over-perturbation, by setting
ri ← max(ri,Ex[xi]), if xi > Ex[xi]; ri ← min(ri,Ex[xi]),
otherwise. However, such cases are not common in real applica-
tions, so we ignore such settings in the following analysis.
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sion terms of the interaction effect I(S|x′), i.e., ∀i ∈ S, π̂i =

1;∀i ̸∈ S, π̂i = 0. Let us consider the interaction effect
I(S|x′) only containing the expansion term of the lowest
degree, i.e., I(S|x′) = US,π̂ · J(S, π̂|x′). In this way, the
mean and variance of the interaction effect I(S|x′ = x+ ϵ)

over different perturbations ϵ are given as

Eϵ[I(S|x+ ϵ)] = US,π̂,

Varϵ[I(S|x+ ϵ)] = U2
S,π̂((1 + (σ/τ)2)|S| − 1).

(9)

Theorem 2.2 proves that the variance Varϵ[I(S|x + ϵ)] in-
creases along with the order |S| of the interactive concept in
an exponential manner. It indicates that high-order interac-
tive concepts are much more sensitive to input perturbations
than low-order concepts. Furthermore, as mentioned in
Section 2.2, since we can add perturbations to a surrogate
DNN model to well mimic feature representations of a BNN,
we can consider that high-order interactive concepts en-
coded by the BNN are much more sensitive to weight
uncertainty in the BNN than low-order concepts.
Theorem 2.3 (Proof in Appendix G.3). Let π ∈ QS =

{[π1, . . . , πn]|∀i ∈ S, πi ∈ N+;∀i ̸∈ S, πi = 0} denote an
arbitrary degree. Then, the mean and the variance of
J(S,π|x+ ϵ) over perturbations ϵ are

Eϵ[J(S,π|x+ ϵ)] = Eϵ[
∏

i∈S
(1 +

ϵi
τ
)πi ],

Varϵ[J(S,π|x+ ϵ)] = Varϵ[
∏

i∈S
(1 +

ϵi
τ
)πi ]

(10)

Theorem 2.3 extends Theorem 2.2 to a general case, where
we use a higher-order Taylor expansion to represent I(S|x′).

Theorem 2.4 (Proof in Appendix G.4). Let S and S′ be
two interactive concepts, such that S ⊊ S′. Let us con-
sider expansion terms J(S,π) and J(S′,π′), where the term
J(S′,π′) is extended from the term J(S,π) with π ≺ π′.
I.e., (1) ∀i ∈ S′, π′

i ∈ N+; otherwise, π′
i = 0. (2) Given π′,

∀j ∈ S, πj = π′
j; otherwise, πj = 0. Then, we have

Varϵ[J(S
′,π′|x+ ϵ)]

Varϵ[J(S,π|x+ ϵ)]
>

∏
i∈S′\S

E2
ϵi [(1 +

ϵi
τ
)π

′
i ],

Eϵ[J(S′,π′|x+ ϵ)]/Varϵ[J(S
′,π′|x+ ϵ)]

Eϵ[J(S,π|x+ ϵ)]/Varϵ[J(S,π|x+ ϵ)]

<
1∏

i∈S′\S Eϵi [(1 +
ϵi
τ
)π

′
i ]
,

(11)

and we can also obtain Eϵi [(1 +
ϵi
τ
)π

′
i ] ≥ 1.

Theorem 2.4 indicates that for an arbitrary degree π of the in-
teractive concept S, Varϵ[J(S′,π′|x+ ϵ)]/Varϵ[J(S,π|x+

ϵ)] increases in an exponential manner along with |S′ \
S| = |S′| − |S|. Therefore, we can roughly consider that
Varϵ[J(S,π|x + ϵ)] increases exponentially w.r.t. the or-
der |S|. Furthermore, according to Lemma 2.1, I(S|x+ ϵ)

can be re-written as the weighted sum of J(S,π|x + ϵ).

Since coefficients US,π w.r.t. different S and π are usu-
ally chaotic, we can roughly consider that the sensitiv-
ity of I(S|x + ϵ) also grows exponentially along with
the order |S| of the interactive concept S. In addition,
Theorem 2.4 also proves the approximately exponential
decrease of Eϵ[J(S

′,π′|x+ϵ)]/Varϵ[J(S
′,π′|x+ϵ)]

Eϵ[J(S,π|x+ϵ)]/Varϵ[J(S,π|x+ϵ)] along with
|S′| − |S|. Similarly, we can obtain that the relative stability
Eϵ[I(S|x + ϵ)]/Varϵ[I(S|x + ϵ)] decreases along with the
order |S|.

Conclusions. Both Theorem 2.2 and Theorem 2.4 tell us
that high-order interactive concepts are much more sensitive
to input perturbations. Furthermore, combined with the
conclusion in Section 2.2, we can conclude that high-order
interactive concepts encoded by the BNN are much more
sensitive to the weight uncertainty in the BNN than low-
order concepts.

Experimental verification. We conducted experiments
to verify the above conclusions. To verify the sensitiv-
ity to input perturbations, we added a random perturba-
tion ϵ ∼ N (0, σ2I) to a given input sample x, where
σ2 = 0.052. Then, we used the following two metrics,
V

(s)
noise = Ex[E|S|=s[Varϵ∼N (0,σ2I)[I(S|x + ϵ)]]] and K

(s)
noise =

Ex[E|S|=s[
|E

ϵ∼N(0,σ2I)
[I(S|x+ϵ)]|

Var
ϵ∼N(0,σ2I)

[I(S|x+ϵ)] ]], to measure the average
variance and the average relative stability of the s-order
interactive concepts w.r.t. the input perturbation ϵ. Then, a
large V

(s)
noise or a small K(s)

noise indicated that the s-order inter-
active concepts were sensitive to input perturbations.

Similarly, to verify the sensitivity to the weight un-
certainty, we sampled different weights W from the
weight distribution qθ(W ) of the BNN. Then, we used
V

(s)
BNN = Ex[E|S|=s[VarW∼qθ(W )[I(S|x,W )]]] and K

(s)
BNN =

Ex[E|S|=s[
|EW∼qθ(W )[I(S|x,W )]|
VarW∼qθ(W )[I(S|x,W )]

]] to measure the average
variance and the average relative stability of the s-order
interactive concepts w.r.t. the weight uncertainty in the
BNN. Therefore, a large value of V (s)

BNN or a small value of
K

(s)
BNN indicated that the s-order interactive concepts were

sensitive to the weight uncertainty. We followed experimen-
tal settings in the experiments paragraph in Section 2.2 to
train BNNs. Specifically, we trained BNNs with the MLP
architecture on the MNIST dataset, the TV news dataset,
and the Census dataset. We trained BNNs with the LeNet ar-
chitecture on the CIFAR-10 dataset. Appendix H introduces
how to efficiently compute I(S|x) on images.

Figure 3 shows that the average variance V
(s)

noise and V
(s)

BNN

increased exponentially along with the order s, while the
relative stability K

(s)
noise and K

(s)
BNN both decreased along with

the order. This demonstrated that high-order interactive
concepts were much more sensitive to input perturbations
and the weight uncertainty in the BNN, thereby verifying
Theorem 2.2 and Theorem 2.4.
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Figure 3. (a) The exponential increase of the average variance V
(s)

noise and (b) the roughly exponential decrease of the average relative
stability K

(s)
noise along with the order s, under perturbations from a distribution ϵ ∼ N (0, 0.052 · I). (c) The exponential increase of the

average variance V
(s)

BNN and (d) the roughly exponential decrease of the average relative stability K
(s)
BNN along with the order s, under

weight uncertainty in the BNN.

2.4. Perturbation-sensitive concepts are difficult to learn

In this subsection, we prove that high-order interactive con-
cepts, which are sensitive to input perturbations and weight
uncertainty, are difficult to be learned by a BNN in a regres-
sion task. Specifically, we measure the learning effects of
interactive concepts (denoted by US), and Theorems 2.5 and
2.6 prove the small learning effects of perturbation-sensitive
concepts.

To facilitate the analysis, we first simplify the conceptual
learning as a linear problem. Specifically, we first rewrite
the interaction effect of an interactive concept S. Given an
input sample x, according to Eq. (8), the interaction effect
of the concept S on the sample x′ (obtained by applying
some transformations on x), I(S|x′), can be rewritten as

I(S|x′) = US · CS(x
′), (12)

where the constant US = I(S|x) denotes the interaction
effect of the concept S, and the function for the activation
state is given as CS(x

′) =
∑
π∈QS

US,πJ(S,π|x′)/US .

Understanding of CS(x
′). Let us consider a sample x′

where each input variable x′
i is either masked by the refer-

ence value ri or kept unchanged as xi. Then, the function
CS(x

′) defined above represents the binary activation state
of the concept S in the sample x′, which is an AND rela-
tionship between all variables in S:

CS(x
′) =

∧
i∈S

unmask(x′
i), (13)

where the binary function unmask(x′
i) ∈ {0, 1} checks

whether the i-th variable x′
i is masked in the sample x′. If

the i-th variable is masked, then unmask(x′
i) = 0; otherwise,

unmask(x′
i) = 1.

Only when all input variables in S are not masked in the
sample x′, the concept S is activated, and CS(x

′) = 1. If any
input variable in S is masked, then the concept S will not
be activated (CS(x

′) = 0), yielding zero interaction effect
I(S|x′) = 0.

Thus, we can extend Eq. (4) to a continuous version that

explains the output as a linear regression problem.

v(x′) =
∑

S∈Ω
US · CS(x

′), (14)

where the activation state CS(x
′) can be considered as an in-

put dimension of the linear function, which reflects whether
the input sample x′ contains the concept S.

Therefore, the absolute value of the coefficient US can be
considered as the strength of the neural network in learning
the interactive concept S. According to Section 2.1 and Ren
et al. (2023a), most interactive concepts have negligible
coefficients |US | ≈ 0, so we can consider that the neural
network only encodes a few interactive concepts S with
large absolute values |US |.

Let us facilitate the poof on a regression task. Based on
the conclusion in Section 2.2, we can roughly consider
that training a BNN on normal samples is equivalent to
training a surrogate DNN model on perturbed input samples
x′ = x+ ϵ. Then, according to Eq. (14), the learning of the
BNN on a certain input sample can be roughly represented
as min{US |S∈Ω} L({US}), and the loss is given by

L({US}) = Eϵ
[
(y∗ − v(x′))2

]
= Eϵ[(y∗ −

∑
S∈Ω

US · CS(x+ ϵ))2]
(15)

where x and y∗ denote the input sample and the ground-
truth output, respectively, and x′ = x+ ϵ.

Theorem 2.5 (Proof in Appendix G.5). Given two random
interactive concepts S and S′, we can roughly assume that
CS(x + ϵ) is independent of CS′(x + ϵ), because the two
concepts S and S′ usually have little overlap in most cases.
Let Eϵ[CS(x+ϵ)] and Varϵ[CS(x+ϵ)] denote the mean and
the variance of CS(x + ϵ) w.r.t. ϵ, respectively. Then, the
solution to Eq. (15) satisfies the following property:

∀ S ∈ Ω, |U∗
S | ∝ |Eϵ[CS(x+ ϵ)]/Varϵ[CS(x+ ϵ)]| (16)

Theorem 2.5 proves that the learning effect of an interactive
concept S, measured by |U∗

S |, is proportional to the relative
stability of the activation state of the interactive concept
|Eϵ[CS(x+ ϵ)]/Varϵ[CS(x+ ϵ)]| w.r.t. perturbations ϵ. This
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最后第二行用的是lenet cifar10，训
练acc到同一level的图
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Figure 4. (a) Comparison of the strength of interactive concepts (i) between a trained BNN θ∗ and the constructed standard DNN ψθ∗ ,
(ii) between a trained standard DNN ψ∗ and the constructed BNN θψ∗ . (b) We trained a standard DNN ψ̂ and a BNN θ̂ with the LeNet
architecture on the CIFAR-10 dataset, and compared the strength of interactive concepts between the two networks when the two networks
were trained to have the same training accuracy.

indicates that perturbation-sensitive interactive concepts are
more difficult to learn.

Theorem 2.6 (Proof in Appendix G.6). Let Amin =

minS |US | and Amax = maxS |US | denote the lower bound
and the upper bound of |US | over all interactive concepts S.
Then, for any S ⊆ N , we have

Amin · |Eϵ[I(S|x+ ϵ)]|
Varϵ[I(S|x+ ϵ)]

≤ |Eϵ[CS(x+ ϵ)]|
Varϵ[CS(x+ ϵ)]

≤ Amax · |Eϵ[I(S|x+ ϵ)]|
Varϵ[I(S|x+ ϵ)]

(17)

Theorem 2.6 proves that high-order (complex) interactive
concepts have low relative stability w.r.t. perturbations ϵ.
In fact, both Theorem 2.4 and Figure 3 have told us that
|Eϵ[I(S|x + ϵ)]/Varϵ[I(S|x + ϵ)]| significantly decreases
along with the order s = |S| of the interactive concept S.
Therefore, both the lower bound and the upper bound of
|Eϵ[CS(x+ ϵ)]/Varϵ[CS(x+ ϵ)]| in Eq. (17) decrease along
with the order s significantly. In this way, we can approx-
imately consider that the strength of encoding a concept
|U∗

S | ∝ |Eϵ[CS(x+ϵ)]/Varϵ[CS(x+ϵ)]| also decreases along
with the order of interactive concepts. In other words, we
prove that high-order interactive concepts are more difficult
to be learned under perturbations ϵ. Combining the conclu-
sion in Section 2.2, we also prove that high-order interactive
concepts are more difficult to be learned by the BNN.

3. Experiments
In this section, we experimentally verified that compared to
standard DNNs, BNNs were less likely to encode high-order
(complex) interactive concepts. Specifically, we constructed
three pairs of baseline networks for comparison.

(1) Given a trained BNN θ∗, we constructed a standard
DNN by setting its weights to the mean value of the weight
distribution of the BNN. The standard DNN was denoted

by ψθ∗ . Then, we compared the strength of all high-order
interactive concepts between the BNN θ∗ and the standard
DNN ψθ∗ without weight/feature uncertainty.

(2) Similarly, given a trained standard DNN ψ∗, we con-
structed a BNN θψ∗ by setting the mean value of its weight
distribution to the weights of the standard DNN. We set all
weight dimensions in the l-th layer of the BNN to share the
same variance σ2

l , where σ2
l was computed as the average

of variances of all weight dimensions in the l-th layer of
the previous BNN θ∗. Then, we compared the strength of
high-order interactive concepts between the standard DNN
ψ∗ and the BNN θψ∗ .

(3) We trained a standard DNN and a BNN with the same
architecture. Then, we compared the strength of high-order
interactive concepts between each pair of standard DNN
ψ̂ and the BNN θ̂ when these two networks were trained
to have the same training accuracy. We used the training
accuracy to align the learning progress of the two networks
for fair comparison.

Specifically, the average strength of the s-order
interactive concepts was measured as I

(s)
strength =

Ex[ES⊆N,|S|=s[|I(S|x)|]]. To compute the interaction
effect I(S|x), we set v(xS) = log p(y=y∗|xS)

1−p(y=y∗|xS)
∈ R,

which reflected the confidence of classifying the masked
input sample xS into the ground-truth category y∗. For
standard DNNs, p(y = y∗|xS) referred to the classification
probability of the ground-truth category on the masked
sample xS . For BNNs, p(y = y∗|xS) was computed
according to Eq. (2), where we sampled ten neural networks
from the weight distribution qθ(W ) of the BNN, and
computed the average classification probability over all
these networks.

We followed experimental settings in the experiments para-
graph in Section 2.2 to train the networks. Specifically, we
trained standard DNNs and BNNs with the MLP architec-
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ture on the TV news dataset, the Census dataset, and the
MNIST dataset. We trained standard DNNs and BNNs with
the LeNet architecture on the CIFAR-10 dataset. Appendix
H introduces how to efficiently compute I(S|x) on images.
Figure 4 shows that the strength of high-order interactive
concepts of BNNs was much weaker than that of standard
DNNs in all comparisons. This verified that BNNs were less
likely to encode high-order (complex) interactive concepts
than standard DNNs.

4. Conclusion and discussion
In this paper, we have proven the tendency of mean-field
variational BNNs to avoid encoding high-order (complex)
concepts. Many studies (Ren et al., 2023a; Li & Zhang,
2023; Ren et al., 2023c) have shown that there does exist a
concept-emerging phenomenon when a neural network is
sufficiently trained.

Besides, as discussed in the introduction, encoding less com-
plex concepts does not mean that BNNs have weaker rep-
resentation power than standard DNNs, because a standard
DNN can be considered as a specific BNN with zero weight
uncertainty. More crucially, Ren et al. (2021) and Lengerich
et al. (2022) proved that high-order concepts are usually vul-
nerable to adversarial attacks and have weak generalization
power. Thus, it is hard to say whether the tendency to avoid
encoding complex concepts is a demerit or not.
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A. Discussion on literature in representation capacities of BNNs
Many studies investigated the representation capacity of BNNs from different perspectives. Gal & Smith (2018) and Carbone
et al. (2020) proved that BNNs were robust to adversarial attacks. Kristiadi et al. (2020) proved that BNNs could mitigate the
over-confidence problem in standard ReLU networks. Wenzel et al. (2020) considered that the poor performance of BNNs
was due to the inappropriate prior distribution of weights in the BNN, and a series of studies (Wu et al., 2019; Krishnan et al.,
2020; Fortuin et al., 2022) found that using carefully-designed prior distributions of weights could improve the performance
of the BNN. Zhang et al. (2022) also showed that adding adversarial perturbations to weights during training could improve
the performance of the BNN. Besides, Foong et al. (2020) proved that using either fully-factorized Gaussian distributions or
dropout operations to approximate the posterior distribution of a BNN would lead to inaccurate uncertainty estimation of the
network prediction. Unlike previous studies, we focus on the conceptual representation of BNNs, and theoretically prove
that mean-field variational BNNs are less likely to encode complex interactive concepts than standard DNNs.

B. Discussion on literature in interactions in neural networks
Interactions in game theory are often used to explain neural networks and are closely related to the quantification of
concepts. Grabisch & Roubens (1999) first proposed the Shapley interaction index, and Lundberg et al. (2018) later used this
index to explain tree ensembles. Janizek et al. (2021) explained the pairwise feature interaction in DNNs, while Sundararajan
et al. (2020) proposed the Shapley Taylor interaction index to quantify interactions among multiple input variables. Ren
et al. (2023a) used game-theoretic interactions to analyze the emergence of concepts in the training of neural networks, and
proved the faithfulness and sparsity of such formulation of concepts. In this paper, we follow the definition of concepts
in Ren et al. (2023a), and prove BNNs’ tendency to avoid encoding high-order (complex) concepts.

C. Discussion on literature in the connection between adversarial robustness and interpretability
Recent studies have shown that adversarial robustness is closely related to the interpretability of neural networks. Etmann
et al. (2019) discovered and explained the phenomenon that adversarially robust models exhibit simpler and more human-
interpretable saliency maps. Engstrom et al. (2019) demonstrated that adversarially robust models showed clear human-
recognizable features when using the optimization-based feature visualization method (Olah et al., 2017), and the mapping
from input images to intermediate features of the model is approximately invertible. Ilyas et al. (2019) demonstrated that
adversarial samples can be attributed to the existence of non-robust features (features that are noisy and not interpretable
to humans, but are highly predictive). Ren et al. (2021) showed that high-order (complex) interactive concepts encoded
by neural networks are vulnerable to adversarial attacks, and that adversarially-trained DNNs encode more discriminative
low-order (simple) interactive concepts than standard DNNs. In this paper, we prove that BNNs tend to avoid encoding
high-order (complex) interactive concepts, which implies that BNNs may exhibit good adversarial robustness, from the
perspective of conceptual representations.

12



Bayesian Neural Networks Avoid Encoding Complex and Perturbation-Sensitive Concepts

D. Experiments on the connection between conceptual complexity and adversarial robustness
We show experimental results in (Ren et al., 2021) to demonstrate that high-order (complex) interactive concepts are more
vulnerable to adversarial attacks, as illustrated in Figure 5. Although the interaction used in (Ren et al., 2021) was a bit
different from the interaction used in this paper, we can prove that the Harsanyi dividend interaction in this paper is the
elementary component of the multi-order interaction in (Ren et al., 2021). Thus, experimental results still reflect adversarial
vulnerability of high-order interactive concepts. Please see Ren et al. (2021) for more details.
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Figure 5. Adversarial attacks mainly affect high-order interactive concepts. Please refer to Ren et al. (2021) for more details.

E. Comparison of adversarial robustness between BNNs and standard DNNs
This experiment compares the adversarial robustness between BNNs and standard DNNs. Specifically, we train two BNNs
with 8-layer MLP architecture on tabular datasets, including the Census dataset and the TV news dataset. All MLPs
contain 100 neurons in each hidden layer. For each trained BNN θ∗, we compare this BNN with a standard DNN ψθ∗

that is constructed by following the experimental setting of Comparison (1) in Section 3. In other words, the standard
DNN ψθ∗ is constructed by setting its weights to the mean value of the weight distribution of the BNN. Thus, with such
experimental settings, the main difference between the BNN θ∗ and the DNN ψθ∗ is the weight uncertainty of BNNs, so
that our experiment can faithfully reflect the impact of weight uncertainty of BNNs on the adversarial robustness.

We compare the classification accuracy on adversarial samples in the testing set between the BNN θ∗ and the standard DNN
ψθ∗ . To this end, for each pair of BNN and standard DNN, we adopt the untargeted PGD adversarial attack (Madry et al.,
2018) based on the l∞ norm, and accordingly obtain their accuracies on adversarial samples. In the PGD attack based on
the l∞ norm, an adversarial sample x̃ is constrained wthin the l∞-ball around the original sample x, i.e., ∥x̃− x∥∞ ≤ ϵ.
We conduct the attack for 20 steps with ϵ = 0.1, and set the step size to 0.01. Table 2 shows that BNNs exhibit higher
adversarial accuracies than the corresponding DNNs, which indicates that BNNs are more robust to adversarial attacks.

Table 2. Adversarial accuracies of the BNN θ∗ and the standard DNN ψθ∗ constructed based on the BNN.

MLP-8 on Census MLP-8 on TV news
BNN θ∗ 77.51% 53.54%
DNN ψθ∗ 75.22% 50.54%

F. Experiments on the connection between conceptual complexity and generalization power.
Zhou et al. (2023) have investigated the connection between the generalization ability of an interactive concept encoded by

a neural network and the complexity (order) of this concept.

The generalization ability of a concept S is defined as follows. For a generalizable concept S, if the concept is frequently
extracted from training samples, then it is supposed to be also frequently extracted from testing samples and to make
consistently positive (or consistently negative) effects to the classification of a certain category. Otherwise, this concept
would not be considered generalizable. Thus, the generalization ability of a specific concept can be evaluated by whether
this concept’s interaction effects over training samples are similar to its interaction effects over testing samples. To this end,
Zhou et al. (2023) quantified the average generalization ability g(m) over all m-order interactive concepts by the similarity
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between interaction effects of m-order interactive concepts in training samples and those in testing samples:

g(m) def
= Ec

[
sim

(
I
(m)
train, c, I

(m)
test ,c

)]
, (18)

where the vector I
(m)
train, c = [Ex∈train,c [I (S1|x)] ,Ex∈train,c [I (S2|x)] , . . . ,Ex∈train,c [I (Sd|x)]]⊤ ∈ Rd denotes

interaction effects of all m-order interactive concepts [S1, · · · , Sd]. The interaction effect of each concept
Ex∈train,c [I (Si|x)] is averaged over different training samples in the category c. Accordingly, the vector I

(m)
test, c =

[Ex∈test,c [I (S1|x)] ,Ex∈test,c [I (S2|x)] , . . . ,Ex∈test,c [I (Sd|x)]]⊤ ∈ Rd denotes interaction effects of all m-order in-
teractive concepts, which are averaged over different testing samples in the category c.

In addition, the similarity is defined as the following Jaccard similarity between non-negative elements of I(m)
train, c and I

(m)
test, c.

sim
(
I
(m)
train,c, I

(m)
test,c

)
= Jaccard sim

(
Ĩ
(m)
train,c, Ĩ

(m)
test,c

)
=

∥∥∥min
(
Ĩ
(m)
train ,c, Ĩ

(m)
test,c

)∥∥∥
1∥∥∥max

(
Ĩ
(m)
train,c, Ĩ

(m)
test,c

)∥∥∥
1

, (19)

where the 2d-dimensional vector Ĩ(m)
train,c =

[(
max

(
I
(m)
train,c, 0

))⊤
,−

(
min

(
I
(m)
train,c, 0

))⊤
]⊤

is constructed to contain non-

negative elements of Itrain,c. Similarly, Ĩtest,c is constructed based on Itest,c to contain non-negative elements. Thus, a high
Jaccard similarity indicates that most m-order interactive concepts can be well-generalized from training samples to testing
samples.

In this experiment, we train 8-layer MLPs for tabular datasets, including the Census dataset and the TV news dataset.
All MLPs contain 100 neurons in each hidden layer. For each DNN, we compute the interaction effects of all interactive
concepts encoded by the network. Then, we follow Zhou et al. (2023) to evaluate the average generalization ability g(m)

of interactive concepts of different complexities (orders) on the above-mentioned DNNs. Table 3 shows that complex
(high-order) interactive concepts usually have poorer generalization power than simple (low-order) interactive concepts.

Table 3. Comparison of the generalization ability g(m) of interactive concepts of different orders.

order=1 order=3 order=5 order=7 order=9
MLP-8 on Census 0.7989 0.6203 0.5505 0.4436 0.3758
MLP-8 on TV news 0.8156 0.5854 0.3860 0.3322 0.1522
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G. Proof of Theorems
G.1. Proof of Lemma 2.1 in the main paper

Lemma 2.1. Given a neural network v and an arbitrary input sample x′ ∈ Rn, the network output can be decomposed
using the Taylor expansion v(x′) =

∑
S⊆N

∑
π∈QS

US,π · J(S,π|x′). In this way, according to Eq. (3) in the main paper, the
interaction effect I(S|x′) on the sample x′ can be reformulated as

I(S|x′) =
∑

π∈QS

US,π · J(S,π|x′), (20)

where J(S,π|x′) =
∏

i∈S

(
sign(x′

i − ri) · x
′
i−ri
τ

)πi

denotes an expansion term of the degree π, π ∈ QS = {[π1, . . . , πn]|∀i ∈

S, πi ∈ N+;∀i ̸∈ S, πi = 0}. US,π=
τm∏n

i=1 πi!

∂mv(x∅)

∂x
π1
1 ···∂xπn

n
·
∏

i∈S [sign(x
′
i − ri)]

πi , m =
∑n

i=1 πi.

Proof. Let us denote the function on the right of Eq. (20) by Ĩ(S|x′), i.e.,

Ĩ(S|x′) =
∑

π∈QS

US,πJ(S, π|x′) (21)

We need to prove that for any arbitrary input sample ∀x′ ∈ Rn, Ĩ(S|x′) = I(S|x′).

Actually, it has been proven in Grabisch & Roubens (1999) and Ren et al. (2023a) that the Harsanyi dividend I(S|x′) is the
unique metric satisfying the faithfulness requirement mentioned in the main paper, i.e., satisfying

∀ T ⊆ N, v(x′
T ) =

∑
S∈Ω,S⊆T

I(S|x′). (22)

Thus, as long as we can prove that Ĩ(S|x′) also satisfies the above faithfulness requirement, we can obtain Ĩ(S|x′) = I(S|x′).

To this end, we only need to prove Ĩ(S|x′) also satisfies the faithfulness requirement in Eq. (22). Specifically, given an
input sample ∀x′ ∈ Rn, let us consider the Taylor expansion of the network output v(xT ) of an arbitrarily masked sample
x′
T (T ⊆ N), which is expanded at x′

∅ = [r1, . . . , rn]. Then, we have

∀ T ⊆ N, v(x′
T ) =

∞∑
π1=0

∞∑
π2=0

· · ·
∞∑

πn=0

1∏n
i=1 πi!

∂mv(x′
∅)

∂xπ1
1 · · · ∂x

πn
n
·

n∏
i=1

[(x′
T )i − ri]

πi , (23)

where π ∈ {[π1, . . . , πn]|∀i ∈ N,πi ∈ N} denotes the degree vector of Taylor expansion terms, and m =
∑n

i=1 πi. In addition,
ri denotes the reference value to mask the input variable xi.

According to the definition of the masked sample x′
T , we have that all variables in T keep unchanged and other variables are

masked to the reference value. That is, ∀ i ∈ T , (x′
T )i = xi; ∀ i ̸∈ T , (x′

T )i = ri. Hence, we obtain ∀i ̸∈ T, [(x′
T )i − ri]

πi = 0.
Then, among all Taylor expansion terms, only terms corresponding to degrees π in the set P = {[π1, . . . , πn]|∀i ∈ T, πi ∈
N; ∀i ̸∈ T, πi = 0} may not be zero. Therefore, Eq. (23) can be re-written as

∀ T ⊆ N, v(x′
T ) =

∑
π∈P

1∏n
i=1 πi!

∂mv(x′
∅)

∂xπ1
1 · · · ∂x

πn
n
·
∏
i∈T

(x′
i − ri)

πi . (24)

We find that the set P can be divided into multiple disjoint sets as follows, P = ∪S⊆TQS , where QS = {[π1, . . . , πn]|∀i ∈
S, πi ∈ N+;∀i ̸∈ S, πi = 0}. Then, we can derive that

∀ T ⊆ N, v(x′
T ) =

∑
S⊆T

∑
π∈QS

1∏n
i=1 πi!

∂mv(x′
∅)

∂xπ1
1 · · · ∂x

πn
n
·
∏
i∈S

(x′
i − ri)

πi

=
∑
S⊆T

∑
π∈QS

τm∏n
i=1 πi!

∂mv(x′
∅)

∂xπ1
1 · · · ∂x

πn
n

∏
i∈S

(δi)
πi

︸ ︷︷ ︸
termed US,π

·
∏
i∈S

(δi
x′
i − ri
τ

)πi

︸ ︷︷ ︸
termed J(S,π|x′)

,
(25)

where τ ∈ R is a pre-defined constant and δi = sign(xi − ri) ∈ {−1, 1} is a sign function and it satisfies
∏

i∈S(δi)
2πi = 1.

Then, Eq. (25) can be re-written as

∀ T ⊆ N, v(x′
T ) =

∑
S⊆T

∑
π∈QS

US,π · J(S,π|x′) =
∑
S⊆T

Ĩ(S|x′). (26)
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Thus, Ĩ(S|x′) satisfies the faithfulness requirement in Eq. (22) when Ω = 2N .

Therefore, Lemma 1 holds.

G.2. Proof of Theorem 2.2 in the main paper

Theorem 2.2. Let π̂ denote the lowest degree of the expansion terms of the interaction effect I(S|x′), i.e., ∀i ∈ S, π̂i =

1;∀i ̸∈ S, π̂i = 0. Let us consider the interaction effect I(S|x′) only containing the expansion term of the lowest degree,
i.e., I(S|x′) = US,π̂ · J(S, π̂|x′). In this way, the mean and variance of the interaction effect I(S|x′ = x+ ϵ) over different
perturbations ϵ are given as

Eϵ[I(S|x+ ϵ)] = US,π̂,

Varϵ[I(S|x+ ϵ)] = U2
S,π̂((1 + (σ/τ)2)|S| − 1).

(27)

Proof. If we only consider Taylor expansion term of the lowest degree, then I(S|x′) = US,π̂ · J(S, π̂|x′), where
J(S, π̂|x′) =

∏
i∈S sign(x′

i − ri) · x
′
i−ri
τ .

Let us add a Gaussian perturbation ϵ ∼ N (0, σ2I) to the input sample x. In this way, we have

I(S|x+ ϵ) ≈ US,π̂ · J(S, π̂|x+ ϵ)

J(S, π̂|x+ ϵ) =
∏
i∈S

sign(xi + ϵi − ri) ·
xi + ϵi − ri

τ

=
∏
i∈S

(
sign(xi + ϵi − ri) ·

xi − ri
τ

+ sign(xi + ϵi − ri) ·
ϵi
τ

) (28)

According to the setting of the reference value in Section 2.3, we have ∀i ∈ S, xi − ri ∈ {−τ, τ}. Also in Section 2.3, we
have assumed that the variance of the perturbation ϵ is small, so that we can ignore the extremely low probability that the
perturbation is large such that |ϵi| ≥ τ . In this way, we have sign(xi + ϵi − ri) = sign(xi − ri), and we can obtain

J(S, π̂|x+ ϵ) =
∏
i∈S

(
sign(xi − ri) ·

xi − ri
τ

+ sign(xi − ri) ·
ϵi
τ

)
=

∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

) (29)

⇒ Eϵ[J(S, π̂|x+ ϵ)] = Eϵ

[∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

)]

Varϵ[J(S, π̂|x+ ϵ)] = Varϵ

[∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

)] (30)

Since sign(xi − ri) ∈ {−1, 1}, we have 1 + sign(xi − ri) · ϵiτ ∼ N (1, (σ/τ)2),∀i ∈ S.

Proposition G.1. If random variables X1, X2, · · · , Xk are independent of each other, then E[X1X2 · · ·Xk] =
∏k

i=1 E[Xi],
and Var[X1X2 · · ·Xk] =

∏k
i=1(E[Xi]

2 +Var[Xi])−
∏k

i=1 E[Xi]
2.

According to the above proposition, we have

Eϵ[J(S, π̂|x+ ϵ)] =
∏
i∈S

1 = 1

Varϵ[J(S, π̂|x+ ϵ)] =
∏
i∈S

(
12 + (σ/τ)

2
)
−

∏
i∈S

12

=
(
1 + (σ/τ)

2
)|S|
− 1

(31)
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Therefore,
Eϵ[I(S|x+ ϵ)] = Eϵ[US,π̂ · J(S, π̂|x+ ϵ)] = US,π̂

Varϵ[I(S|x+ ϵ)] = Varϵ[US,π̂ · J(S, π̂|x+ ϵ)] = U2
S,π̂

((
1 + (σ/τ)

2
)|S|
− 1

)
(32)

G.3. Proof of Theorem 2.3 in the main paper

Theorem 2.3. Let π ∈ QS = {[π1, . . . , πn]|∀i ∈ S, πi ∈ N+; ∀i ̸∈ S, πi = 0} denote an arbitrary degree. Then, the mean and
the variance of J(S,π|x+ ϵ) over perturbations ϵ are

Eϵ[J(S,π|x+ ϵ)] = Eϵ[
∏

i∈S
(1 +

ϵi
τ
)πi ],

Varϵ[J(S,π|x+ ϵ)] = Varϵ[
∏

i∈S
(1 +

ϵi
τ
)πi ]

(33)

Proof. According to Lemma 2.1, given an arbitrary input sample x′, we have

J(S,π|x′) =
∏

i∈S

(
sign(x′

i − ri) ·
x′
i − ri
τ

)πi

(34)

Let us add a Gaussian perturbation ϵ ∼ N (0, σ2I) to the input sample x. In this way, we have

J(S,π|x+ ϵ) =
∏
i∈S

(
sign(xi + ϵi − ri) ·

xi + ϵi − ri
τ

)πi

=
∏
i∈S

(
sign(xi + ϵi − ri) ·

xi − ri
τ

+ sign(xi + ϵi − ri) ·
ϵi
τ

)πi
(35)

According to the setting of the reference value in Section 2.3, ∀i ∈ S, xi − ri ∈ {−τ, τ}. Also, in Section 2.3, we have
assumed that the variance of the perturbation ϵ is small, so that we can ignore the extremely low probability that the
perturbation is large such that |ϵi| ≥ τ . In this way, sign(xi + ϵi − ri) = sign(xi − ri), and we can obtain

J(S,π|x+ ϵ) =
∏
i∈S

(
sign(xi − ri) ·

xi − ri
τ

+ sign(xi − ri) ·
ϵi
τ

)πi

=
∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

)πi
(36)

⇒ Eϵ[J(S,π|x+ ϵ)] = Eϵ

[∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

)πi

]

Varϵ[J(S,π|x+ ϵ)] = Varϵ

[∏
i∈S

(
1 + sign(xi − ri) ·

ϵi
τ

)πi

] (37)

Since ∀i ∈ S, ϵi is independent of each other, according to Proposition G.1 and Eq. (37), we have

Eϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 + sign(xi − ri) ·

ϵi
τ

)πi
]

Varϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 + sign(xi − ri) ·

ϵi
τ

)2πi
]
−

∏
i∈S

(
Eϵi

[(
1 + sign(xi − ri) ·

ϵi
τ

)πi
])2 (38)

Since sign(xi − ri) ∈ {−1, 1}, we have Eϵi

[(
1 + sign(xi − ri) · ϵiτ

)k]
= Eϵi

[(
1 + ϵi

τ

)k]
,∀k ∈ N+. Therefore, we

obtain
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Eϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 +

ϵi
τ

)πi
]

= Eϵ

[∏
i∈S

(
1 +

ϵi
τ

)πi

]

Varϵ[J(S,π|x+ ϵ)] =
∏
i∈S

Eϵi

[(
1 +

ϵi
τ

)2πi
]
−

∏
i∈S

(
Eϵi

[(
1 +

ϵi
τ

)πi
])2

= Varϵ

[∏
i∈S

(
1 +

ϵi
τ

)πi

]
.

G.4. Proof of Theorem 2.4 in the main paper

Theorem 2.4. Let S and S′ be two interactive concepts, such that S ⊊ S′. Let us consider expansion terms J(S,π) and
J(S′,π′), where the term J(S′,π′) is extended from the term J(S,π) with π ≺ π′. I.e., (1) ∀i ∈ S′, π′

i ∈ N+; otherwise,
π′
i = 0. (2) Given π′, ∀j ∈ S, πj = π′

j; otherwise, πj = 0. Then, we have

Varϵ[J(S
′,π′|x+ ϵ)]

Varϵ[J(S,π|x+ ϵ)]
>

∏
i∈S′\S

E2
ϵi [(1 +

ϵi
τ
)π

′
i ],

Eϵ[J(S′,π′|x+ ϵ)]/Varϵ[J(S
′,π′|x+ ϵ)]

Eϵ[J(S,π|x+ ϵ)]/Varϵ[J(S,π|x+ ϵ)]
<

1∏
i∈S′\S Eϵi [(1 +

ϵi
τ
)π

′
i ]
,

(39)

and we can also obtain Eϵi [(1 +
ϵi
τ
)π

′
i ] ≥ 1.

Proof. According to Theorem 2.3, we have

Varϵ[J(S
′,π′|x+ ϵ)] = Varϵ

[∏
i∈S′

(
1 +

ϵi
τ

)π′
i

]

= Varϵ

∏
i∈S

(
1 +

ϵi
τ

)π′
i ∏
i∈S′\S

(
1 +

ϵi
τ

)π′
i

 //S ⊊ S′

= Varϵ


∏
i∈S

(
1 +

ϵi
τ

)πi

︸ ︷︷ ︸
A

∏
i∈S′\S

(
1 +

ϵi
τ

)π′
i

︸ ︷︷ ︸
B

 //∀i ∈ S, π′
i = πi

= Varϵ[AB]

= (E2
ϵ[A] + Varϵ[A])(E2

ϵ[B] + Varϵ[B])− E2
ϵ[A]E2

ϵ[B]

//A and B are independent; Proposition G.1

= E2
ϵ[A]Varϵ[B] + E2

ϵ[B]Varϵ[A] + Varϵ[A]Varϵ[B]

> E2
ϵ[B]Varϵ[A] + Varϵ[A]Varϵ[B]

(40)
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Therefore, we can prove the first equality as follows.

Varϵ[J(S
′,π′|x+ ϵ)]

Varϵ[J(S,π|x+ ϵ)]
=

Varϵ[AB]

Varϵ[A]

> E2
ϵ[B] + Varϵ[B]

> E2
ϵ[B]

= E2
ϵ

 ∏
i∈S′\S

(
1 +

ϵi
τ

)π′
i


=

∏
i∈S′\S

E2
ϵi

[(
1 +

ϵi
τ

)π′
i

]
//ϵi is independent of each other; Proposition G.1

(41)

Furthermore, we have

Eϵ[J(S
′,π′|x+ ϵ)] = Eϵ

[∏
i∈S′

(
1 +

ϵi
τ

)π′
i

]

= Eϵ

∏
i∈S

(
1 +

ϵi
τ

)π′
i ∏
i∈S′\S

(
1 +

ϵi
τ

)π′
i

 //S ⊊ S′

= Eϵ

∏
i∈S

(
1 +

ϵi
τ

)πi ∏
i∈S′\S

(
1 +

ϵi
τ

)π′
i

 //∀i ∈ S, π′
i = πi

= Eϵ[AB]

(42)

and also

Eϵ[J(S,π|x+ ϵ)] = Eϵ

[∏
i∈S

(
1 +

ϵi
τ

)πi

]
= Eϵ[A]. (43)

Therefore, we have
Eϵ[J(S

′,π′|x+ ϵ)]

Eϵ[J(S,π|x+ ϵ)]
=

Eϵ[AB]

Eϵ[A]
= Eϵ[B]. (44)

Then, we can prove the second inequality as follows.

Eϵ[J(S
′,π′|x+ ϵ)]/Varϵ[J(S

′,π′|x+ ϵ)]

Eϵ[J(S,π|x+ ϵ)]/Varϵ[J(S,π|x+ ϵ)]

=
Eϵ[B]

Varϵ[AB]/Varϵ[A]

<
Eϵ[B]

E2
ϵ[B]

=
1

Eϵ[B]

=
1

Eϵ

[∏
i∈S′\S

(
1 + ϵi

τ

)π′
i

]
=

1∏
i∈S′\S Eϵi

[(
1 + ϵi

τ

)π′
i

]

(45)

Moreover, we can prove that Eϵi [(1 +
ϵi
τ )

k] ≥ 1,∀k ∈ N+, i.e., E[Xk] ≥ 1, where X ∼ N (1, (σ/τ)2).
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For a random variable following a Gaussian distribution X̃ ∼ N (µ̃, σ̃2), Willink (2005) proved the following property:

E
[
X̃k+1

]
= µ̃E

[
X̃k

]
+ kσ̃2E

[
X̃k−1

]
(46)

Now let us consider X ∼ N (1, (σ/τ)2). We have E
[
Xk+1

]
= E

[
Xk

]
+ k(σ/τ)2E

[
Xk−1

]
. By induction, it is easy to

prove that E[Xk] ≥ E[X] = 1.

G.5. Proof of Theorem 2.5 in the main paper

Theorem 2.5. Given two random interactive concepts S and S′, we can roughly assume that CS(x + ϵ) is independent
of CS′(x + ϵ), because the two concepts S and S′ usually have little overlap in most cases. Let Eϵ[CS(x + ϵ)] and
Varϵ[CS(x+ ϵ)] denote the mean and the variance of CS(x+ ϵ) w.r.t. ϵ, respectively. Then, the solution to Eq. (15) in the
main paper satisfies the following property:

∀ S ∈ Ω, |U∗
S | ∝ |Eϵ[CS(x+ ϵ)]/Varϵ[CS(x+ ϵ)]| (47)

Proof. Let p = |Ω|. Let C(x+ ϵ) = [CS1(x+ ϵ), · · · , CSp(x+ ϵ)]⊤ denote the vector of all CS(x+ ϵ), S ∈ Ω, and let
U = [US1

, · · · , USp
]⊤ denote the vector of all coefficients US , S ∈ Ω. To further simplify the notation, we simply useC to

denote the random vector C(x+ ϵ). Besides, since we assume that each dimension of the vector C(x+ ϵ) is independent
of each other, we can use Eϵ[C] = [α1, · · · , αp]

⊤ ∈ Rp and Varϵ[C] = diag(β2
1 , · · · , β2

p) ∈ Rp×p to denote the mean
vector and covariance matrix of the random vector C(x+ ϵ), respectively. We prove this theorem in three steps.

Step 1. We first prove that the optimal solution to Eq. (15) in the main paper is given by

∀1 ≤ i ≤ p, U∗
Si

=
1

detM
det(M1, · · · ,Mi−1,ρ,Mi+1, · · · ,Mp) (48)

whereM = Eϵ[C]Eϵ[C]⊤ +Varϵ[C], ρ = y∗Eϵ[C], andMj denotes the j-th column of the matrixM .

We can rewrite the objective function in Eq. (15) in the main paper as

min
U

Eϵ[(y
∗ −U⊤C(x+ ϵ))2] (49)

To minimize the loss L = Eϵ[(y
∗ −U⊤C)2], we set the gradient of the loss w.r.t U to zero, i.e.,

∇UL = Eϵ[2C(U⊤C − y∗)]

= 2Eϵ[CC
⊤U − y∗C]

= 2Eϵ[CC
⊤]U − 2y∗Eϵ[C]

= 2(Eϵ[C]Eϵ[C]⊤ +Varϵ[C])U − 2y∗Eϵ[C] = 0

(50)

⇒ (Eϵ[C]Eϵ[C]⊤ +Varϵ[C])U = y∗Eϵ[C] (51)

LetM = Eϵ[C]Eϵ[C]⊤ +Varϵ[C], and ρ = y∗Eϵ[C]. By Cramer’s rule, we can obtain the solution to Eq. (51):

∀1 ≤ i ≤ p, U∗
Si

=
1

detM
det(M1, · · · ,Mi−1,ρ,Mi+1, · · · ,Mp)

whereMj denotes the j-th column of the matrixM .

Step 2. We prove that for the optimal solution U∗, we have

∀1 ≤ i, j ≤ p,
|U∗

Si
|

|U∗
Sj
|
=
|Eϵ[CSi(x+ ϵ)]/Varϵ[CSi(x+ ϵ)]|
|Eϵ[CSj

(x+ ϵ)]/Varϵ[CSj
(x+ ϵ)]|

(52)

SinceM = Eϵ[C]Eϵ[C]⊤ +Varϵ[C], we can obtain the j-th column ofM as

Mj = αjEϵ[C] + Vj (53)
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where Eϵ[C] = [α1, · · · , αp]
⊤, and Vj = [0, · · · , β2

j , · · · , 0]⊤.

According to the conclusion in Step 1, we have

|U∗
Si
| = | 1

detM
| · | det(M1, · · · ,Mi−1,ρ,Mi+1, · · · ,Mj−1,Mj ,Mj+1, · · · ,Mp)| (54)

|U∗
Sj
| = | 1

detM
| · | det(M1, · · · ,Mi−1,Mi,Mi+1, · · · ,Mj−1,ρ,Mj+1, · · · ,Mp)| (55)

We know that exchanging the rows or columns of a matrix only changes the sign of the determinant of the matrix, but does
not change the absolute value of the determinant. Therefore, we have

|U∗
Si
| = | 1

detM
| · | det(Mj ,ρ,M1, · · · ,Mi−1,Mi+1, · · · ,Mj−1,Mj+1, · · · ,Mp)|

= | 1

detM
| · | det(Mj ,ρ,Mothers)| //LetMothers denote the third to the last column

= | 1

detM
| · | det(αjEϵ[C] + Vj , y

∗Eϵ[C],Mothers)| //Eq. (53)

= | 1

detM
| · | det(αjEϵ[C], y∗Eϵ[C],Mothers)︸ ︷︷ ︸

=0

+det(Vj , y
∗Eϵ[C],Mothers)|

//The determinant is 0 if two columns are linearly dependent

= | 1

detM
| · | det(Vj , y

∗Eϵ[C],Mothers)|

= | 1

detM
| · | det



0 y∗α1 α1α1 + β2
1 · · · α1αp

...
0 y∗αi αiα1 · · · αiαp

...
β2
j y∗αj αjα1 · · · αjαp

...
0 y∗αp αpα1 · · · αpαp + β2

p


|

= | 1

detM
| · |det


β2
j y∗αj αjα1 · · · αjαp

0 y∗αi αiα1 · · · αiαp

0 y∗α1 α1α1 + β2
1 · · · α1αp

...
0 y∗αp αpα1 · · · αpαp + β2

p

 | //Exchange rows

= | αi

detM
| · | det


β2
j y∗αj αjα1 · · · αjαp

0 y∗ α1 · · · αp

0 y∗α1 α1α1 + β2
1 · · · α1αp

...
0 y∗αp αpα1 · · · αpαp + β2

p

 | //Extract out αi

= |
αiβ

2
j

detM
| · | detM ′|,

(56)

where

M ′ =


y∗ α1 · · · αp

y∗α1 α1α1 + β2
1 · · · α1αp

· · ·
y∗αp αpα1 · · · αpαp + β2

p

 . (57)

Similarly, we can prove that

|U∗
Sj
| = | αjβ

2
i

detM
| · | detM ′|. (58)
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Therefore, we have

∀1 ≤ i, j ≤ p,
|U∗

Si
|

|U∗
Sj
|
=
|αi/β

2
i |

|αj/β2
j |

=
|Eϵ[CSi

(x+ ϵ)]/Varϵ[CSi
(x+ ϵ)]|

|Eϵ[CSj (x+ ϵ)]/Varϵ[CSj (x+ ϵ)]|
.

Step 3. Based on Step 2, we can directly prove that for the optimal solution U∗, we have

∀S ∈ Ω, |U∗
S | ∝ |Eϵ[CS(x+ ϵ)]/Varϵ[CS(x+ ϵ)]| (59)

G.6. Proof of Theorem 2.6 in the main paper

Theorem 2.6. Let Amin = minS |US | and Amax = maxS |US | denote the lower bound and the upper bound of |US | over all
interactive concepts S. Then, for any S ⊆ N , we have

Amin · |Eϵ[I(S|x+ ϵ)]|
Varϵ[I(S|x+ ϵ)]

≤ |Eϵ[CS(x+ ϵ)]|
Varϵ[CS(x+ ϵ)]

≤ Amax · |Eϵ[I(S|x+ ϵ)]|
Varϵ[I(S|x+ ϵ)]

(60)

Proof. According to Eq. (12) in the main paper, we have I(S|x′) = US · CS(x
′). Hence, we have

|Eϵ[I(S|x+ ϵ)]| = |US | · |Eϵ[CS(x+ ϵ)]|, Varϵ[I(S|x+ ϵ)] = U2
S ·Varϵ[CS(x+ ϵ)],

Therefore,
|Eϵ[CS(x+ ϵ)]|
Varϵ[CS(x+ ϵ)]

= |US | ·
|Eϵ[I(S|x+ ϵ)]|
Varϵ[I(S|x+ ϵ)]

Then, let Amin
S = minS |US | and Amax

S = maxS |US | denote the lower bound and the upper bound of the absolute value |US |
over all interactive concepts S, we have

Amin
S · |Eϵ[I(S|x+ ϵ)]|

Varϵ[I(S|x+ ϵ)]
≤ |Eϵ[CS(x+ ϵ)]|

Varϵ[CS(x+ ϵ)]
≤ Amax

S · |Eϵ[I(S|x+ ϵ)]|
Varϵ[I(S|x+ ϵ)]

H. Experimental details
Training settings. We trained standard DNNs and BNNs with the same architectures on two image datasets and two tabular
datasets. For image datasets, we trained standard DNNs and BNNs with two architectures. On the MNIST dataset, we
trained a standard DNN and a BNN with the 5-layer MLP architecture. On the CIFAR-10 dataset, we trained a standard
DNN and a BNN with the LeNet architecture. On the two tabular datasets, including the UCI TV news dataset (termed TV
news) and the UCI census income dataset (termed census), we trained standard DNNs and BNNs with the 8-layer MLP
architecture. All MLPs contained 100 neurons in each hidden layer. For the training of BNNs, the prior distribution of
network weights was set to N (W ;0, I), and the number of Monte Carlo sampling of network weights was set to 1. All
standard DNNs and BNNs were trained using the Adam optimizer (Kingma & Ba, 2015) with learning rate 0.001. The
5-layer MLPs (standard DNN and BNN) on the MNIST dataset was trained for 50 epochs. The LeNet (standard DNN and
BNN) on the CIFAR-10 dataset was trained for 300 epochs. The 8-layer MLPs (standard DNN and BNN) on tabular datasets
were trained for 200 epochs.

Implementation details for the calculation of I(S). Since the computational cost of I(S) was intolerable for image
datasets, we applied a sampling-based approximation method to calculate US . For the CIFAR-10 dataset (32× 32 pixels on
each image), we uniformly split each input image into 8× 8 patches. Furthermore, we random sampled 12 patches from the
central 6× 6 region (i.e., we did not sample patches that were on the edges of an image), and considered these patches as
input variables for each image. The remaining 52 patches were set to the reference value. Similarly, for the MNIST dataset
(28× 28 pixels on each image), we uniformly split each input image into 7× 7 patches, and randomly sampled 12 patches
from the central 5× 5 region.
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Approximated feature distribution of the surrogate modelFeature distribution of the BNN
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Figure 6. More visualization results of MLP-5 on the MNIST dataset.

Implementation details of the reference value. Let Ex[xi] denote the mean value of the i-th input dimension over all input
samples in the dataset. Then, given an input sample x, the reference value is set as follows.

ri =

{
xi − τ, xi > Ex[xi]
xi + τ, xi < Ex[xi]

where τ ∈ R is a constant. We set τ = 0.5 on all datasets (including the TV news dataset, the Census dataset, the MNIST
dataset, and the CIFAR-10 dataset). In our experiments, we assume that input samples have been normalized as follows. First,
we subtract the mean value of each input dimension over the whole dataset from the input sample. Second, we divide each
dimension of the input sample by the standard deviation of this input dimension over the whole dataset. In this way, input
samples have zero mean and unit variance on each dimension over the whole dataset, i.e., ∀i ∈ N,Ex[xi] = 0,Varx[xi] = 1.

Implementation details of the experiment in Section 2.2 of the main paper. In Section 2.2 of the main paper, we
minimized the KL divergence between the feature distribution in the surrogate DNN model and the feature distribution in the
BNN. The feature distributions in the surrogate DNN model and in the BNN were not Gaussian distributions. Therefore, the
KL divergence between the feature distributions did not have a close-form formula. To facilitate the optimization, we simply
used two Gaussian distributions to approximate the feature distributions in the surrogate DNN model and in the BNN, and
optimized the KL divergence between the two Gaussian distributions. Besides, we did not consider the dependency between
different feature dimensions to simplify the computation.

I. More visualization results for experiments in Section 2.2 of the main paper
In this subsection, we provided more visualization results to show that the feature distribution of the surrogate DNN model
could well approximate the feature distribution of the BNN.
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Figure 7. More visualization results of LeNet on the CIFAR-10 dataset.
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Figure 8. More visualization results of MLP-8 on the Census dataset.
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Figure 9. More visualization results of MLP-8 on the TV news dataset.
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