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Abstract
Modern hierarchical vision transformers have
added several vision-specific components in the
pursuit of supervised classification performance.
While these components lead to effective accura-
cies and attractive FLOP counts, the added com-
plexity actually makes these transformers slower
than their vanilla ViT counterparts. In this paper,
we argue that this additional bulk is unnecessary.
By pretraining with a strong visual pretext task
(MAE), we can strip out all the bells-and-whistles
from a state-of-the-art multi-stage vision trans-
former without losing accuracy. In the process,
we create Hiera, an extremely simple hierarchi-
cal vision transformer that is more accurate than
previous models while being significantly faster
both at inference and during training. We evaluate
Hiera on a variety of tasks for image and video
recognition. Our code and models are available at
https://github.com/facebookresearch/hiera.

1. Introduction
Since their introduction by Dosovitskiy et al. (2021) a few
years ago, Vision Transformers (ViTs) have dominated sev-
eral tasks in computer vision. While architecturally simple,
their accuracy (Touvron et al., 2022) and ability to scale
(Zhai et al., 2021) make them still a popular choice today.
Moreover, their simplicity unlocks the use of powerful pre-
training strategies such as MAE (He et al., 2022), which
make ViTs computationally and data efficient to train.

However, this simplicity comes at a cost: by using the same
spatial resolution and number of channels throughout the
network, ViTs make inefficient use of their parameters. This
is in contrast to prior “hierarchical” or “multi-scale” models
(e.g., Krizhevsky et al. (2012); He et al. (2016)), which use
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Figure 1. Hiera cuts out expensive specialized operations (e.g.,
convs) from hierarchical transformers to create a simple, efficient,
and accurate model that is fast across many image and video tasks.
Above we compare to recent MAE-based works (Woo et al., 2023;
Feichtenhofer et al., 2022). All speeds measured with A100, fp16.

fewer channels but higher spatial resolution in early stages
with simpler features, and more channels but lower spatial
resolution later in the model with more complex features.

Several domain specific vision transformers have been in-
troduced that employ this hierarchical design, such as Swin
(Liu et al., 2021) or MViT (Fan et al., 2021). However, in
the pursuit of state-of-the-art results using fully supervised
training on ImageNet-1K (an area where ViT has histori-
cally struggled), these models have become more and more
complicated as they add specialized modules (e.g., cross-
shaped windows in CSWin (Dong et al., 2022), decomposed
relative position embeddings in MViTv2 (Li et al., 2022c)).
While these changes produce effective models with attrac-
tive floating point operation (FLOP) counts, under the hood
the added complexity makes these models slower overall.

We argue that a lot of this bulk is actually unnecessary. Be-
cause ViTs lack inductive bias after their initial patchify
operation, many of the changes proposed by subsequent
vision specific transformers serve to manually add spatial bi-
ases. But why should we slow down our architecture to add
these biases, if we could just train the model to learn them
instead? In particular, MAE pretraining has shown to be a
very effective tool to teach ViTs spatial reasoning, allowing
pure vision transformers to obtain good results on detection
(Li et al., 2022b), which was a task previously dominated
by models like Swin or MViT. Moreover, MAE pretraining
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Figure 2. Hiera Setup. Modern hierarchical transformers like Swin (Liu et al., 2021) or MViT (Li et al., 2022c) are more parameter
efficient than vanilla ViTs (Dosovitskiy et al., 2021), but end up slower due to overhead from adding spatial bias through vision-specific
modules like shifted windows or convs. In contrast, we design Hiera to be as simple as possible. To add spatial bias, we opt to teach it to
the model using a strong pretext task like MAE (pictured here) instead. Hiera consists entirely of standard ViT blocks. For efficiency, we
use local attention within “mask units” (Fig. 4, 5) for the first two stages and global attention for the rest. At each stage transition, Q and
the skip connection have their features doubled by a linear layer and spatial dimension pooled by a 2× 2 maxpool. Hiera-B is shown here
(see Tab. 2 for other configs).

is sparse and can be 4− 10× as fast as normal supervised
training, making it an already desirable alternative across
many domains for more than just accuracy (He et al., 2022;
Feichtenhofer et al., 2022; Huang et al., 2022b).

We test this hypothesis with a simple strategy: using some
implementation tricks (Fig. 4), take an existing hierarchical
ViT (e.g., MViTv2) and carefully remove non-essential com-
ponents while training with MAE (Tab. 1). After tuning the
MAE task to this new architecture (Tab. 3), we find that we
can actually simplify or remove all of the non-transformer
components, while increasing in accuracy. The result is an
extremely efficient model with no bells-and-whistles: no
convolutions, no shifted or cross-shaped windows, no de-
composed relative position embeddings. Just a pure, simple
hierarchical ViT that is both faster and more accurate than
prior work across several model sizes, domains, and tasks.

Our Simple Hierarchical Vision Transformer (Hiera) outper-
forms the SotA on images and far exceeds prior work on
video while being much faster (Fig. 1) at every model scale
(Fig. 3) and across extensive datasets and tasks (Sec. 5, 6).

2. Related Work
Vision transformers (ViTs) have attracted attention be-
cause of their massive success on several vision tasks in-
cluding image classification (Dosovitskiy et al., 2021), video
classification (Fan et al., 2021; Arnab et al., 2021; Bertasius
et al., 2021), semantic segmentation (Ranftl et al., 2021),
object detection (Carion et al., 2020; Li et al., 2022b), video
object segmentation (Duke et al., 2021), 3D object detec-
tion (Misra et al., 2021) and 3D reconstruction (Bozic et al.,
2021). The key difference between vanilla ViT (Dosovit-
skiy et al., 2021) and prior convolutional neural networks
(CNNs) (LeCun et al., 1998) is that ViT partitions images
into, e.g., 16×16 pixel, non-overlapping patches and flattens

Figure 3. Performance vs. prior work. Hiera compared to B, L,
and H variants of SotA models that use MAE-like pretraining. On
images, Hiera is faster and more accurate than even the most recent
SotA (He et al., 2022; Gao et al., 2022; Woo et al., 2023), offering
30-40% speed-up compared to the best model at every scale. On
video, Hiera represents a new class of performance, significantly
improving accuracy, while being over 2× faster than popular ViT
models. Marker size is proportional to FLOP count.

the spatial grid into a 1D sequence, whereas CNNs maintain
this grid over multiple stages of the model, reducing the
resolution in each stage and introducing inductive biases
such as shift equivariance. Recently, the field has shown
an increased interest in hybrid methods (Fan et al., 2021;
Liu et al., 2021; Li et al., 2022c; Dong et al., 2022; Wang
et al., 2021) that combine transformers with convolution-
like operations and the hierarchical stage structure of prior
CNNs. This direction has shown success and has achieved
state-of-the-art on various vision tasks. However, in practice
these models are actually slower than their vanilla ViT coun-
terparts and convs are not easily compatible with popular
self-supervised tasks such as masked image modeling. We
address both of these issues in the creation of Hiera.
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Masked pretraining has emerged as a powerful self-
supervised learning pretext task for learning visual represen-
tations (Vincent et al., 2010; Pathak et al., 2016; Chen et al.,
2020; He et al., 2022; Bao et al., 2022; Xie et al., 2022; Hou
et al., 2022). Among previous works, Masked AutoEncoder
(MAE, He et al. (2022)) takes advantage of vanilla ViTs,
which allow any length of input, and thereby derives an effi-
cient training regime using the sparsity of masked images.
This greatly improves the training efficiency of masked pre-
training, but adapting sparse training to hierarchical models
is nontrivial, because the input is no longer laid out in a
rigid 2D grid. There have been several attempts to enable
hierarchical ViTs to use masked pretraining. MaskFeat (Wei
et al., 2022) and SimMIM (Xie et al., 2022) replace masked
patches with [mask] tokens, meaning most computation
is wasted on non-visible tokens and training is incredibly
slow. Huang et al. (2022a) introduce several techniques to
enable sparsity in every component of the network, in the
end creating a much more complicated model that doesn’t
improve much in accuracy. UM-MAE (Li et al., 2022a)
uses a special masking strategy to allow for sparsity, but
this restriction significantly hurts accuracy. MCMAE (Gao
et al., 2022) uses masked convolution in the first couple of
stages which obtains high accuracy but significantly reduces
the efficiency of the model overall. We bypass all of these
complicated techniques and restrictions by designing our ar-
chitecture specifically for sparse MAE pretraining, thereby
creating a powerful yet simple model.

3. Approach
Our goal is to create a powerful and efficient multiscale
vision transformer that is, above all, simple. We argue that
we do not need any specialized modules like convolution
(Fan et al., 2021), shifted windows (Liu et al., 2021), or
attention bias (Graham et al., 2021; Li et al., 2022c) to obtain
high accuracy on vision tasks. This may seem difficult, as
these techniques add much needed spatial (and temporal)
biases that vanilla transformers (Dosovitskiy et al., 2021)
lack. However, we employ a different strategy. While prior
work adds spatial bias through complicated architectural
changes, we opt to keep the model simple and learn these
biases through a strong pretext task instead. To show the
efficacy of this idea, we devise a simple experiment: take
an existing hierarchical vision transformer and ablate its
bells-and-whistles while training with a strong pretext task.

For the pretext task, we use Masked Autoencoders (MAE,
He et al. (2022)), which has been shown effective in teaching
ViTs localization capabilities for downstream tasks (e.g., de-
tection (Li et al., 2022b)) by having the network reconstruct
masked input patches (Fig. 2). Note that MAE pretrain-
ing is sparse—that is, masked tokens are deleted instead
of being overwritten like in other masked image modeling

Figure 4. MAE for Hierarchical Models. MAE is not compatible
with multi-stage models, but we can apply some simple tricks to
remedy this. While MAE masks individual tokens, tokens in multi-
stage transformers start very small (e.g., 4× 4 pixels), doubling
size in each stage. (a) Thus, we mask coarser “mask units” (32×32
pixels) instead of tokens directly. (b) For efficiency, MAE is sparse,
meaning it deletes what it masks (a problem for spatial modules
like convs). (c) Keeping masked tokens fixes this, but gives up the
potential 4 − 10× training speed-up of MAE. (d) As a baseline,
we introduce a trick that treats mask units as a separate entities
for convs, solving the issue but requiring undesirable padding.
(e) In Hiera, we side-step the problem entirely by changing the
architecture so the kernels can’t overlap between mask units.

approaches (Wei et al., 2022; Xie et al., 2022). This makes
pretraining efficient, but poses a problem for existing hi-
erarchical models as it breaks the 2D grid that they rely
on (Fig. 4b). Moreover, MAE masks out individual tokens,
which are large 16×16 patches for ViT, but only small 4×4
patches for most hierarchical models (Fig. 4a).

To address both of these issues, we opt to distinguish tokens
from “mask units”. As described in Fig. 4a, mask units
are at the resolution we apply MAE masking, while tokens
are the internal resolution of the model (like in Wei et al.
(2022); Xie et al. (2022)). In our case, we mask 32×32 pixel
regions, meaning one mask unit is 8× 8 tokens at the start
of the network. Once we have made this distinction, we can
use a clever trick (Fig. 4d) to evaluate hierarchical models
by treating mask units as contiguous, separate from other
tokens. Thus, we can continue with our experiments and
use MAE with an existing hierarchical vision transformer.

3.1. Preparing MViTv2

We choose MViTv2 as our base architecture, as its small
3 × 3 kernels are affected the least by the separate-and-
pad trick described in Fig. 4d, though we likely could have
chosen a different transformer and obtained a similar end
result. We briefly review MViTv2 below.
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Figure 5. Mask Unit Attention. MViTv2 uses pooling attention
(a) which performs global attention with a pooled version of K
and V . This can get expensive for large inputs (e.g., for video),
so we opt to replace this with “Mask Unit Attention” (b) which
performs local attention within mask units (Fig. 4a). This has no
overhead because we already group tokens into units for masking.
We do not have to worry about shifting like in Swin (Liu et al.,
2021), because we use global attention in stages 3 and 4 (Fig. 2).

MViTv2 (Li et al., 2022c) is a hierarchical model. That is,
it learns multi-scale representations over its four stages. It
starts by modeling low level features with a small channel
capacity but high spatial resolution, and then in each stage
trades channel capacity for spatial resolution to model more
complex high-level features in deeper layers.

A key feature of MViTv2 is pooling attention (Fig. 5a),
wherein features are locally aggregated—typically using
3× 3 convolution, before computing self-attention. In pool-
ing attention, K and V are pooled to decrease computation
in the first two stages, while Q is pooled to transition from
one stage to the next by reducing spatial resolution. MViTv2
also features decomposed relative position embeddings in-
stead of absolute ones and a residual pooling connection to
skip between pooled Q tokens inside the attention blocks.
Note that by default, pooling attention in MViTv2 contain
convs with stride 1 even if no downsampling is required.

Applying MAE. Since MViTv2 downsamples by 2 × 2 a
total of three times (Fig. 2) and because it uses a token size
of 4 × 4 pixels, we employ a mask unit of size 32 × 32.
This ensures that each mask unit corresponds to 82, 42, 22,
12 tokens in stages 1, 2, 3, 4 respectively, allowing each
mask unit to cover at least one distinct token in each stage.
Then as described in Fig. 4d, to make sure conv kernels do
not bleed into deleted tokens, we shift the mask units to the
batch dimension to separate them for pooling (effectively
treating each mask unit as an “image”) and then undo the
shift afterward to ensure that self-attention is still global.

3.2. Simplifying MViTv2

In this section we remove non-essential components of
MViTv2 while training with MAE. In Tab. 1, we find that we
can remove or otherwise simplify all of them and still main-
tain high accuracy for image classification on ImageNet-1K.
We use MViTv2-L to ensure our changes work at scale.

Relative Position Embeddings. MViTv2 swaps the abso-

Image Video
Setting acc. im/s acc. clip/s
MViTv2-L Supervised 85.3 219.8 80.5 20.5
Hiera-L MAE
a. replace rel pos with absolute ∗ 85.6 253.3 85.3 20.7
b. replace convs with maxpools ∗ 84.4 99.9† 84.1 10.4†

c. delete stride=1 maxpools ∗ 85.4 309.2 84.3 26.2
d. set kernel size equal to stride 85.7 369.8 85.5 29.4
e. delete q attention residuals 85.6 374.3 85.5 29.8
f. replace kv pooling with MU attn 85.6 531.4 85.5 40.8

Table 1. Simplifying MViTv2. MViTv2 employs several architec-
tural tweaks to perform well on supervised training. By progres-
sively removing them in Sec. 3.2, we find these bells-and-whistles
are unnecessary when training with a strong pretext task (MAE).
In the process, we create an extremely simple model (Fig. 2) that is
accurate while being significantly faster. We report fp16 inference
speed for ImageNet-1K and Kinetics-400 on an A100. Our final
Hiera-L in gray . ∗Requires the separate-and-pad trick described
in Fig. 4d. †PyTorch’s maxpool3d interacts unfavorably with this.

lute position embeddings in Dosovitskiy et al. (2021) for
more powerful relative ones added to attention in each block.
Technically, we could implement a version of this that is
compatible with sparse pretraining, but doing so would add
a lot of complexity. Instead, we opt to start our study here
by undoing this change and using absolute position embed-
dings instead. As shown in Tab. 1a, these relative position
embeddings are not necessary when training with MAE.
Further, absolute position embeddings are much faster.

Removing Convolutions. Next, we aim to remove the
convs in the model, which are vision specific modules and
add potentially unnecessary overhead. We first attempt to
replace every conv layer with maxpools (shown by Fan et al.
(2021) to be the next best option), which itself is fairly
costly. The result (Tab. 1b) drops accuracy by over 1% on
images, but this is to be expected: we’ve also replaced all
of the extra stride=1 convs with maxpools, which impacts the
features significantly (with padding and small mask units,
this in effect performs a relu on every feature map). Once
we delete those additional stride=1 maxpools (Tab. 1c), we
nearly return to the accuracy we had before, while speeding
up the model by 22% for images and 27% for video. At this
point, the only pooling layers that remain are for Q at stage
transitions and for KV pooling in the first two stages.

Removing Overlap. The remaining maxpool layers still
have a kernel size of 3 × 3, necessitating the use of the
separate-and-pad trick in Fig. 4d during both training and
inference. However, as shown in Fig. 4e, we can avoid this
problem entirely if we just do not let these maxpool kernels
overlap. That is, if we set the kernel size equal to stride for
each maxpool, we can use sparse MAE pretraining without
the separate-and-pad trick. As shown in Tab. 1d, this speeds
up the model by 20% on image and 12% on video while
increasing accuracy, likely due to not having to pad.
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Figure 6. Mask Unit Attn vs. Window Attn. Window attention
(a) performs local attention within a fixed size window. Doing so
would potentially overlap with deleted tokens during sparse MAE
pretraining. In contrast, Mask Unit attention (b) performs local
attention within individual mask units, no matter their size.

Removing the Attention Residual. MViTv2 adds a resid-
ual connection in the attention layer between Q and the
output to assist in learning its pooling attention. However,
so far we’ve minimized the number of layers, making atten-
tion easier to learn. Thus, we can safely remove it (Tab. 1e).

Mask Unit Attention. At this point, the only specialized
module left is pooling attention. Pooling Q is necessary
to maintain a hierarchical model, but KV pooling is only
there to reduce the size of the attention matrix in the first
two stages. We can remove this outright, but it would con-
siderably increase the computational cost of the network.
Instead, in Tab. 1f we replace it with an implementationally
trivial alternative: local attention within a mask unit.

During MAE pretraining, we already have to separate out
mask units at the start of the network (see Fig. 2). Thus the
tokens are already neatly grouped by units once they arrive
at attention. We can then simply perform local attention
within these units with no overhead. While this “Mask Unit
attention” is local instead of global like pooling attention
(Fig. 5), K and V were only pooled in the first two stages,
where global attention isn’t as useful. Thus, as shown in
Tab. 1, this change has no impact on accuracy but increases
throughput by quite a lot—up to 32% on video.

Note that mask unit attention is distinct from window atten-
tion because it adapts the window size to the size of mask
units at the current resolution. Window attention would
have a fixed size throughout the network, which would leak
into deleted tokens after a downsample (see Fig. 6).

Hiera. The result of these changes is an extremely simple
and efficient model, which we denote “Hiera”. Hiera is 2.4×
faster on images and 5.1× faster on video than the MViTv2
we started with and is actually more accurate because of
MAE. Furthermore, because Hiera supports sparse pretrain-
ing, the results in Tab. 1 are extremely fast to obtain. In fact,
to obtain superior accuracy on images, Hiera-L is 3× faster
to train than a supervised MViTv2-L (Fig. 7). For video,
Wei et al. (2022) report 80.5% using a cut down version
of MViTv2 with double the KV stride in the first 3 stages.
Compared to this model, our Hiera-L obtains 85.5% in 800
pretrain epochs while being 2.1× faster to train (Fig. 7). All

Figure 7. Training time. Measured in half precision A100 days.
Our Hiera is significantly faster to train than MViTv2 due to being
more efficient and benefiting from sparse pretraining (as opposed
to MaskFeat). Here, supervised uses 300 epochs for ImageNet-1K
and 200 for Kinetics-400, while MaskFeat and MAE use 400 for
pretraining on images and 800 on video followed by 50 epochs of
finetuning for both. Note that Hiera-L at 200 epochs of pretraining
(81.8) already outperforms MViTv2-L supervised (80.5) on video,
making it 5.6× faster to obtain higher accuracy.

benchmarks in this paper are on an A100 with fp16 (as this
setting is most useful in practice) unless noted otherwise.

While we used Hiera-L for the experiments in this section,
we can of course instantiate it in different sizes, e.g. Tab. 2.

model #Channels #Blocks #Heads FLOPs Param
Hiera-T [96-192-384-768] [1-2-7-2] [1-2-4-8] 5G 28M
Hiera-S [96-192-384-768] [1-2-11-2] [1-2-4-8] 6G 35M
Hiera-B [96-192-384-768] [2-3-16-3] [1-2-4-8] 9G 52M
Hiera-B+ [112-224-448-896] [2-3-16-3] [2-4-8-16] 13G 70M
Hiera-L [144-288-576-1152] [2-6-36-4] [2-4-8-16] 40G 214M
Hiera-H [256-512-1024-2048] [2-6-36-4] [4-8-16-32] 125G 673M

Table 2. Configuration for Hiera variants. #Channels, #Blocks
and #Heads specify the channel width, number of Hierablocks and
heads in each block for the four stages, respectively. FLOPs are
measured for image classification with 224 × 224 input. The stage
resolutions are [562, 282, 142, 72]. We introduce B+ for more
direct comparison against prior work with slower B models.

4. MAE Ablations
In this section, we ablate MAE pretraining settings in Hiera
for both images and video, using ImageNet-1K (IN1K, Deng
et al. (2009)) and Kinetics-400 (K400, Kay et al. (2017)).
Like in He et al. (2022); Feichtenhofer et al. (2022), we
ablate using our large model, Hiera-L, to ensure that our
method works at scale. We evaluate performance by finetun-
ing. All metrics are top-1 accuracies using standard evalua-
tion protocols—a single (resized) center crop on IN1K and
3 spatial × 5 temporal views on K400.

Multi-Scale decoder. While He et al. (2022); Feichtenhofer
et al. (2022) use the tokens from the last block of the encoder
as the input to the decoder, Hiera being hierarchical permits
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multi-scale image video
✗ 85.0 83.8
✔ 85.6 85.5

(a) Multi-Scale Decoder. Hiera being hi-
erarchical, using multi-scale information
for decoding brings significant gains.

mask image mask video
0.5 85.5 0.75 84.9
0.6 85.6 0.9 85.5
0.7 85.3 0.95 84.4

(b) Mask ratio. High masking ratios lead to
good performance, with video benefiting from
higher masking than image modality.

target image video
pixel 85.6 85.5
HOG 85.7 86.1

(c) Reconstruction target. Both pixel
and HOG targets result in strong perfor-
mance.

dpr image video
0.0 85.2 84.5
0.1 85.6 85.4
0.2 85.6 85.5
0.3 85.5 85.2

(d) Drop path rate. Surprisingly, we find
drop path important during MAE pretrain-
ing, especially for video, unlike in He
et al. (2022); Feichtenhofer et al. (2022).

depth image video
4 85.5 84.8
8 85.6 85.5
12 85.5 85.4

(e) Decoder depth. We find that a
deeper decoder than in Feichtenhofer et al.
(2022) works better for video.

epochs image video
400 85.6 84.0
800 85.8 85.5

1600 86.1 86.4
3200 86.1 87.3

(f) Pretraining schedule. Our pre-
training follows the same trend as He
et al. (2022), benefiting significantly from
longer training.

Table 3. Ablating MAE pretraining with Hiera-L. For each ablation, we use 400 (800) epochs of sparse MAE pretraining for IN1K
(K400) and 50 epochs of dense finetuning unless otherwise noted. Our default† settings are marked in gray . For design choices not
ablated here, we find the defaults in (He et al., 2022; Feichtenhofer et al., 2022) to be appropriate. † default pretraining length for the rest
of the paper is 1600 (3200) epochs, unless otherwise noted.

more flexibility: as in Gao et al. (2022), we can use multi-
scale information by fusing representations from all stages,
which brings large gains in both modalities (Tab. 3a).

Masking ratio. Feichtenhofer et al. (2022) find video to
require a much higher masking ratio than images, suggesting
higher information redundancy. We observe a similar trend
in Tab. 3b with optimal masking ratios of 0.6 for images but
0.9 for video. Our optimal ratio for images, 0.6, is slightly
lower than the 0.75 used in He et al. (2022). We expect
this is due to increased difficulty of the pretext task from
using a 32 × 32 mask unit instead of 16 × 16 as in He
et al. (2022). Interestingly, we find the same 0.9 masking
ratio to be appropriate for video as in Feichtenhofer et al.
(2022). This could be because they actually find 0.95 to
work optimally if allowed to train twice as long. With our
increased task difficulty, 0.9 works out to be best.

Reconstruction target. We find (Tab. 3c) that both pixel
(w/ norm) and HOG (Dalal & Triggs, 2005) targets result in
strong performance. While HOG targets results in slightly
better performance for the default number of pretraining
epochs we use in ablations, we found that with longer train-
ing HOG targets achieve the same performance as pixel
targets for video, but slightly worse for images.

Droppath rate. The original MAE pretraining recipes (He
et al., 2022; Feichtenhofer et al., 2022) explicitly do not use
drop path (Huang et al., 2016) during pretraining, instead
opting to only do so while finetuning. However, our Hiera-
L has twice the depth of a ViT-L model: 48 for Hiera-L
vs. 24 for ViT-L. While each layer individually has a lower
parameter count, due to the sheer depth of Hiera, there could
be a significant benefit from drop path.

In Tab. 3d, we ablate applying drop path during pretraining
(finetuning employs drop path by default) and find signifi-
cant gains. This is surprising because it means that without
drop path, Hiera can overfit to the MAE task.

Decoder depth. We find a significant benefit from a deeper
decoder than previous work use for video (Feichtenhofer
et al., 2022), see Tab. 3e. This brings the decoder for video
in line with images (He et al., 2022).

Pretraining schedule. Several masked image modeling
approaches (He et al., 2022; Wei et al., 2022) have found
benefits from longer pretraining schedules, often using up
to 1600 epochs. In Tab. 3f, we observe the same trend
for Hiera, increasing +0.5% over 400 epochs on IN1K. In
fact, Hiera’s accuracy at 400ep is +0.7% higher than ViT-
L MAE (84.9%) at the same number of epochs but only
+0.2% higher at 1600 epochs—suggesting that Hiera is a
more efficient learner. On K400, even with only 800 epochs
of pretraining, Hiera outperforms the previous SotA result
that uses 1600 epochs (85.2%). Gains from longer training
saturate less quickly on video, with a large 0.9% gain from
800 epochs to 1600 epochs and beyond.

5. Video Results
We report our results on video recognition. All models input
16 frames of 2242 pixels unless otherwise specified. For
video, mask units are 2× 32× 32 px (i.e., 1× 8× 8 tokens
as before). The rest of the model is the same as for images.

Kinetics-400,-600,-700. In Tab. 4, we compare Hiera
trained with MAE to the SotA on Kinetics-400 (Kay et al.,
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backbone pretrain acc. FLOPs (G) Param
ViT-B MAE 81.5 180×3×5 87M
Hiera-B MAE 84.0 102×3×5 51M
Hiera-B+ MAE 85.0 133×3×5 69M
MViTv2-L - 80.5 377×1×10 218M
MViTv2-L MaskFeat 84.3 377×1×10 218M
ViT-L MAE 85.2 597×3×5 305M
Hiera-L MAE 87.3 413×3×5 213M
ViT-H MAE 86.6 1192×3×5 633M
Hiera-H MAE 87.8 1159×3×5 672M

Table 4. K400 results. Hiera improves on previous SotA by a
large amount, while being lighter and faster. FLOPs are reported
as inference FLOPs × spatial crops × temporal clips.

backbone pretrain acc. FLOPs (G) Param
MViTv2-L Sup, IN-21K 85.8 377×1×10 218M
MViTv2-L MaskFeat 86.4 377×1×10 218M
Hiera-L MAE 88.3 413×3×5 213M
Hiera-H MAE 88.8 1159×3×5 672M

(a) Kinetics-600 video classification

backbone pretrain acc. FLOPs (G) Param
MViTv2-L Sup, IN-21K 76.7 377×1×10 218M
MViTv2-L MaskFeat 77.5 377×1×10 218M
Hiera-L MAE 80.3 413×3×5 213M
Hiera-H MAE 81.1 1159×3×5 672M

(b) Kinetics-700 video classification

Table 5. K600 and K700 results. Hiera improves over SotA by a
large margin. FLOPs reported as inference FLOPs × spatial crops
× temporal clips. Approaches using extra data are de-emphasized.

2017) at a system level. We compare to MViTv2-L (Li
et al., 2022c) pretrained with MaskFeat (Wei et al., 2022)
and ViT (Dosovitskiy et al., 2021) pretrained with MAE
on video (Feichtenhofer et al., 2022; Tong et al., 2022).
Hiera-L brings large gains (+2.1%) over previous SotA (Fe-
ichtenhofer et al., 2022; Tong et al., 2022), while using
∼45% fewer flops, being ∼43% smaller and 2.3× faster
(Fig. 3). In fact, Hiera-L significantly outperforms (+0.7%)
models one tier higher, while being 3× smaller and 3.5×
faster. Hiera-L achieves a gain of +6.8% over the corre-
sponding MViTv2-L supervised baseline. Going one tier
up in size, Hiera-H improves performance over previous
SotA by +1.2%, establishing a new SotA for 2242 without
external data. We show similarly large improvements over
the art on K600 (+1.9%) and K700 (+2.8%) in Tab. 5, with
our H models bringing even further gains.

Something-Something-v2 (SSv2). In Tab. 6, we compare
our Hiera with the current art on SSv2 (Goyal et al., 2017b)
at a system level: MViTv2-L (Li et al., 2022c) pretrained
with MaskFeat (Wei et al., 2022) and ViT (Dosovitskiy et al.,
2021) pretrained with MAE on video (Tong et al., 2022).
When pretrained on K400, Hiera-L outperforms the runner-

backbone pretrain acc. FLOPs (G) Param
K400 pretrain
ViT-L supervised 55.7 598×3×1 304M
MViTv2-L40,312 MaskFeat 74.4 2828×3×1 218M
ViT-L MAE 74.0 597×3×2 305M
Hiera-L MAE 74.7 413×3×1 213M
Hiera-L MAE 75.0 413×3×2 213M

SSv2 pretrain
ViT-L MAE 74.3 597×3×2 305M
Hiera-L MAE 74.9 413×3×1 213M
Hiera-L MAE 75.1 413×3×2 213M
ViT-L32 MAE 75.4 1436×3×1 305M
Hiera-L32 MAE 76.5 1029×3×1 213M

Table 6. SSv2 results pretrained on Kinetics-400 and SSv2. Hiera
improves over SotA by a large margin. We report inference FLOPs
× spatial crops × temporal clips.

up method MaskFeat by +0.6%, but Hiera is dramatically
more efficient, using 16 frames at 2242 resolution vs. 40
frames at 3122 resolution in MaskFeat, effectively using
3.4× fewer FLOPs. When pretrained on SSv2, Hiera-L
achieves 75.1%, outperforming ViT-L pretrained with MAE,
by +0.8%, while using ∼45% fewer flops and being ∼43%
smaller. Our Hiera-L32 model further achieves 76.5%, SotA
among approaches trained only on SSv2.

Transferring to action detection (AVA). We evaluate trans-
fer learning of K400/K600/K700 pretrained Hiera on action
detection using AVA v2.2 dataset (Gu et al., 2018). In
Tab. 7 we compare the pretrained Hiera with SotA meth-
ods, MViTv2 with MaskFeat (Wei et al., 2022) and ViT
with MAE on video (Tong et al., 2022; Feichtenhofer et al.,
2022) at system level, and report mean average precision
(mAP). Our K400 pretrained Hiera-L outperforms an MAE
pretrained ViT-L by +2.8% and an MViTv2-L40,312 Mask-
Feat by +1.3% mAP while Hiera-L has fewer FLOPs and
parameters. Our Hiera-H outperforms an MAE pretrained
ViT-H by +3.0% mAP. We observe similar performance
improvement of the K600/K700 pretrained Hiera as well.
Specifically, the K700 pretrained Hiera-H outperforms an
MAE pretrained ViT-H by +3.2, establishing a new SotA.

6. Image Results
We first evaluate performance on IN1K and then transfer to
other image recognition, detection, and segmentation tasks.

6.1. Performance on ImageNet-1K

In Tab. 8, we perform a system-level comparison of Hi-
era trained with MAE to relevant prior work. First, we
observe that the supervised MViTv2 baselines are already
quite strong, with MViTv2-B (L) reaching 84.4 (85.3) top-1
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backbone pretrain mAP FLOPs (G) Param
K400 pretrain
ViT-L supervised 22.2 598 304M
MViTv2-L40,312 MaskFeat 38.5 2828 218M
ViT-L MAE 37.0 597 305M
Hiera-L MAE 39.8 413 213M
ViT-H MAE 39.5 1192 633M
Hiera-H MAE 42.5 1158 672M

K600 pretrain
ViT-L MAE 38.4 598 304M
MViTv2-L40,312 MaskFeat 39.8 2828 218M
Hiera-L MAE 40.7 413 213M
ViT-H MAE 40.3 1193 632M
Hiera-H MAE 42.8 1158 672M

K700 pretrain
ViT-L MAE 39.5 598 304M
Hiera-L MAE 41.7 413 213M
ViT-H MAE 40.1 1193 632M
Hiera-H MAE 43.3 1158 672M

Table 7. AVA v2.2 results pretrained on Kinetics. Hiera improves
over SotA by a large margin. All inference FLOPs reported with a
center crop strategy following Fan et al. (2021).

accuracy—better than several approaches that use pretrain-
ing (e.g. ViT-B MAE). This showcases the significant ben-
efits that convolutions give in the supervised setting, espe-
cially at the base model size and lower. Remarkably, even
at this size, Hiera-B without using any bells-and-whistles
(e.g., convs), is able to reach 84.5% (slightly) outperforming
MViTv2-B; MCMAE-B achieves a higher accuracy, but the
model is significantly heavier. Our Hiera-B+ model handily
outperforms it in both speed (Fig. 3) and accuracy. Going
even smaller, Hiera-S, -T demonstrate remarkably strong
performance - in a scale regime where convolutions have
historically dominated, consistent with our core premise
that good spatial biases can be learned.

At our default scale, Hiera-L MAE reaches an accuracy of
86.1%, a significant +0.8% gain over MViTv2-L; it also
(slightly) outperforms ViT-L MAE, which is 42% larger and
has 1.6× the FLOPs, by +0.2%. Note that while we adopted
the MAE pretraining in this work due to its efficient sparse
pretraining, Hiera-L is readily compatible with complemen-
tary, orthogonal approaches, e.g. using an EMA teacher
(El-Nouby et al., 2021; Baevski et al., 2022).

6.2. Transfer learning experiments

Here, we perform transfer learning experiments on down-
stream classification, detection, and segmentation tasks.

Classification on iNaturalists and Places. In Tab. 9 we
evaluate transfer learning performance on downstream iNat-
uralist (Van Horn et al., 2018) and Places (Zhou et al., 2014)
datasets. We finetune the ImageNet-1K pretrained Hiera on

backbone pretrain acc. FLOPs (G) Param
Swin-T 81.3 5 29M
MViTv2-T 82.3 5 24M
Hiera-T MAE 82.8 5 28M
Swin-S 83.0 9 50M
MViTv2-S 83.6 7 35M
Hiera-S MAE 83.8 6 35M
ViT-B 82.3 18 87M
Swin-B 83.3 15 88M
MViTv2-B 84.4 10 52M
ViT-B BEiT, DALLE 83.2 18 87M
ViT-B MAE 83.6 18 87M
ViT-B MaskFeat 84.0 18 87M
Swin-B SimMIM 83.8 15 88M
MCMAE-B MCMAE 85.0 28 88M
Hiera-B MAE 84.5 9 52M
Hiera-B+ MAE 85.2 13 70M
ViT-L 82.6 62 304M
MViTv2-L 85.3 42 218M
ViT-L BEiT, DALLE 85.2 62 304M
ViT-L MAE 85.9 62 304M
ViT-L MaskFeat 85.7 62 304M
Swin-L SimMIM 85.4 36 197M
MCMAE-L MCMAE 86.2 94 323M
Hiera-L MAE 86.1 40 214M
ViT-H 83.1 167 632M
ViT-H MAE 86.9 167 632M
Hiera-H MAE 86.9 125 673M

Table 8. ImageNet-1K comparison to previous MIM approaches.
We de-emphasize approaches using extra data and indicate the
source of extra data.

iNaturalist 2017, 2018, and 2019, and Places 365. Hiera con-
sistently outperforms ViT pretrained with MAE (He et al.,
2022), indicating that our Hiera-L and Hiera-H architectures
are effective outside of just ImageNet.

Object detection and segmentation on COCO. We fine-
tune Mask R-CNN (He et al., 2017) with different pretrained
backbones on the COCO dataset (Lin et al., 2014). We re-
port APbox and APmask for object detection and instance
segmentation. We utilize the training recipe following ViT-
Det (Li et al., 2022b) and incorporate multi-scale features
from Hiera with a Feature Pyramid Network (FPN, Lin et al.
(2017)) as described in the original paper.

In Tab. 10, our Hiera with MAE pretraining demonstrates
a strong scaling behavior when compared models with su-
pervised pretraining such as MViTv2 (Li et al., 2022c),
while being consistently faster. For example, Hiera-L is
+1.8 APbox higher than MViTv2-L (55.0 vs. 53.2) with
a 24% reduction in inference time. Even when compared
to MViTv2 using ImageNet-21K pretraining, Hiera-L still
performs +1.4 APbox better than MViTv2-L.

When compared to the state-of-the-art method, ViTDet,
our Hiera models achieve comparable results while having
faster inference and a lower operation count. For exam-
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backbone iNat17 iNat18 iNat19 Places365
ViT-B 70.5 75.4 80.5 57.9
Hiera-B 73.3 77.9 83.0 58.9
Hiera-B+ 74.7 79.9 83.1 59.2
ViT-L 75.7 80.1 83.4 59.4
Hiera-L 76.8 80.9 84.3 59.6
ViT-H 79.3 83.0 85.7 59.8
Hiera-H 79.6 83.5 85.7 60.0
ViT-H448 83.4 86.8 88.3 60.3
Hiera-H448 83.8 87.3 88.5 60.6

Table 9. Transfer learning on iNaturalists and Places datasets.

backbone pretrain APbox APmask FLOPs params time
Swin-B Sup, 21K 51.4 45.4 0.7T 109M 164ms
MViTv2-B Sup, 21K 53.1 47.4 0.6T 73M 208ms
Swin-B Sup 50.1 44.5 0.7T 109M 164ms
MViTv2-B Sup 52.4 46.7 0.6T 73M 208ms
ViTDet-B MAE 51.6 45.9 0.8T 111M 201ms
Hiera-B MAE 52.2 46.3 0.6T 73M 173ms
Hiera-B+ MAE 53.5 47.3 0.6T 92M 192ms

Swin-L Sup, 21K 52.4 46.2 1.1T 218M 243ms
MViTv2-L Sup, 21K 53.6 47.5 1.3T 239M 447ms
MViTv2-L Sup 53.2 47.1 1.3T 239M 447ms
ViTDet-L MAE 55.6 49.2 1.9T 331M 396ms
Hiera-L MAE 55.0 48.6 1.2T 236M 340ms

Table 10. COCO object detection and segmentation using Mask-
RCNN. All methods are following the training recipe from Li et al.
(2022b) and pretrained on ImageNet-1K by default. Methods
using ImageNet-21K pretraining are de-emphasized. Test time is
measured on a single V100 GPU with full precision.

ple, Hiera-B shows +0.6 higher APbox than ViTDet-B with
34% fewer parameters and 15% lower inference time. Ad-
ditionally, Hiera-B+ achieves +1.9 boxAP improvements
while having lower inference time and model complexity
vs. ViTDet-B. For the large model, Hiera-L is consistently
faster than ViTDet-L with only a slightly lower accuracy.

7. Conclusion
In this work, we create a simple hierarchical vision trans-
former by taking an existing one and removing all its bells-
and-whistles while supplying the model with spatial bias
through MAE pretraining. The resulting architecture, Hiera,
is more effective than current work on image recognition
tasks and surpasses the state-of-the-art on video tasks. We
hope Hiera can allow future work to do more, faster.
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A. Implementation Details
A mask unit for video corresponds to a block of 2 frames ×
32 px × 32 px (as opposed to images which use 1 × 32 ×
32). Following Feichtenhofer et al. (2022), each token in
Hiera on video corresponds to 2 frames of the input. Since
the mask units also span 2 frames, the window sizes for
Mask Unit Attention do not change for video (i.e., 1× 8× 8
tokens in the first stage, 1 × 4 × 4 tokens in the second
stage)—meaning we use exactly the same implementation
for images and video (just the mask unit size is changed).
We use learned spatial (separable spatio-temporal) position
embeddings for images (video). These are all the differences
between Hiera for images and for video. The rest of the
encoder is completely agnostic to spatio-temporal structure.

As in Wei et al. (2022), we remove Q-pooling before the
last stage for MAE pretraining only. This is done so that
MAE settings from prior work using ViT also work for
Hiera with minimal modifications. This introduces little
extra computation as stage 4 is small. If desired, by design,
pretraining with Hiera can also work without removal of
query pooling during pretraining, since a mask unit of 1×
8× 8 tokens would correspond to 1 distinct token in the last
stage.

A.1. Video Experiments

Kinetics-400, -600, -700. Our settings mainly follow Fe-
ichtenhofer et al. (2022). We report the pretraining and
finetuning settings for our main results on the Kinetics-400
(Kay et al., 2017), -600 (Carreira et al., 2018) and -700 (Car-
reira et al., 2019) human action datasets in Tab. 11. Epochs
are always reported as effective epochs (Feichtenhofer et al.,
2022), i.e. accounting for repeated sampling. We use 16× 4
sampling as in Feichtenhofer et al. (2022).

Something-Something-v2 (SSv2). We evaluate Hiera-L on
the SSv2 dataset (Goyal et al., 2017b). SSv2 is a dataset
focusing on human-object interaction classification. We
pretrain Hiera-L on either Kinetics 400 or SSv2 and finetune
on SSv2. We report the top-1 classification accuracy in
Tab. 6. We provide further details about the pretraining and
finetuning settings on SSv2 in Tab. 12.

AVA v2.2. We perform transferring experiments on AVA
v2.2 (Gu et al., 2018) for human action localization in video.
We adopt a detection framework following (Feichtenhofer
et al., 2019) for human action localization. We extract ROI
features from the feature map of the last layer in Hiera and
pool the ROI features via spatial max-pooling. We then
use a linear classifier trained with cross entropy loss to
predict the action class. We use the center crop for Hiera
in the evaluation and report the mAP in Tab. 7. We use
Kinetics pretrained and finetuned Hiera in the experiments.

config value
optimizer AdamW (Loshchilov & Hutter, 2019)

optimizer momentum β1, β2=0.9, 0.95
weight decay 0.05
learning rate 8e-4 (B, B+, L); - / 8e-4 / 3.2e-4

(H)
learning rate sch. cosine decay (Loshchilov & Hutter, 2017)

warmup epochs (Goyal et al., 2017a) 120
epochs 800 / 1600 / 3200
repeated sampling (Hoffer et al., 2020) 4
augmentation hflip, crop [0.5, 1]
batch size 512
num. decoder blocks 8
num. decoder heads 8
mask ratio 0.9
drop path (Huang et al., 2016) 0.1 (B); 0.2 (B+, L); - / 0.3 / 0.4

(H)

(a) Pretraining

config value
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.999
weight decay 0.05
learning rate 8e-4 (B, B+, L), 4e-4 (H)
learning rate schedule cosine decay
warmup epochs 10
epochs 150 (B, B+), 100 (L, H)
repeated sampling 2
augmentation RandAug (7, 0.5) (Cubuk et al., 2020)

batch size 256
gradient clipping 5.0
mixup (Zhang et al., 2018) 0.8
cutmix (Yun et al., 2019) 1.0
label smoothing (Szegedy et al.,

2016)

0.1

drop path 0.2 (B, B+, L), 0.3 (H)
dropout (Srivastava et al., 2014) 0.3 (B, B+), 0.5 (L, H)
layer-wise decay (Clark et al.,

2020)

- / 0.85 / 0.8 (B, B+); 0.925 / 0.9 /
0.875 (L, H)

(b) Finetuning

Table 11. Settings for Kinetics-400, -600, -700. Notation: setting
corresponding to 800 / 1600 / 3200 epochs of pretraining.

We provide details about the finetuning setting on AVA v2.2
in Tab. 13.

A.2. Image Experiments

ImageNet-1K. Our settings mainly follow He et al. (2022).
We report the pretraining and finetuning settings for our
main results in Tab. 14.

Transfer learning on iNaturalists and Places. We
conduct transfer learning experiments on classification
datasets including iNaturalist2017, iNaturalist2018, iNat-
uralist2019 (Van Horn et al., 2018) and Places365 (Zhou
et al., 2014). Following (He et al., 2022), we adjust learn-
ing rate, training epochs on each dataset. We search the
layer-wise decay among 0.875, 0.9 and 0.925, drop path
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config value
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.95
weight decay 0.05
learning rate 8e-4
learning rate schedule cosine decay
warmup epochs 30
epochs 1600
augmentation crop [0.5, 1]
batch size 1024
gradient clipping 0.02
num. decoder blocks 8
num. decoder heads 8
mask ratio 0.9
drop path 0.2

(a) Pretraining

config values
optimizer SGD
weight decay 1e-4
learning rate 0.16 / 0.08
learning rate schedule cosine decay
warmup epochs 3
epochs 40
augmentation RandAug (7, 0.5)
batch size 256 / 128
mixup 0.8 / -
cutmix 1.0 / -
label smoothing 0.1 / -
drop path 0.1 / 0.2
dropout 0.5
layer-wise decay 0.875

(b) Finetuning

Table 12. Settings for SSv2. Notation: setting corresponding to
Hiera-L / L32.

config values
optimizer SGD
weight decay 1e-8
learning rate 3.6
learning rate schedule cosine decay
warmup epochs 5
epochs 30
batch size 128
drop path 0.4
dropout 0.5
layer-wise decay 0.875

Table 13. Settings for AVA. Hiera-L and Hiera-H finetuning set-
tings on AVA.

rate between 0.1 to 0.5, and the dropout rate among 0.1,
0.2 and 0.3. For Hiera-H448, we set the learning rate decay
of the positional embedding to 0.5 instead of following the
layer-wise decay rule.

COCO. We use the Mask R-CNN (He et al., 2017) frame-
work in Detectron2 (Wu et al., 2019) for object detection and
instance segmentation experiments on the COCO dataset.
Similar to ViTDet (Li et al., 2022b), we use 2 hidden convo-
lution layers for the RPN and 4 hidden convolution layers

config value
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.95
weight decay 0.05
learning rate 8e-4
learning rate sch. cosine decay
warmup epochs 40
epochs 400 / 1600
augmentation hflip, crop [0.2, 1]
batch size 4096
num. decoder blocks 8
num. decoder heads 16
mask ratio 0.6
drop path 0.0 (T, S); 0.2 (B, B+, L); 0.3

(H)

(a) Pretraining

config value
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.999
weight decay 0.05
learning rate 2e-3 (T, S, B); 1e-3 (B+, L, H)
learning rate schedule cosine decay
warmup epochs 5
epochs 300 (T); 200 (S); 100 (B, B+);

50 (L, H)
augmentation RandAug (9, 0.5)
batch size 1024
mixup 0.8
cutmix 1.0
label smoothing 0.1
drop path 0.1 (T, S, B, B+); 0.2 / 0.1 (L);

0.3 (H)
layer-wise decay 0.65 (T, S); 0.7 (B, B+); 0.9 /

0.85 (L); 0.85 (H)

(b) Finetuning

Table 14. Settings for ImageNet-1K. Notation: setting corre-
sponding to 400 / 1600 epochs of pretraining.

for the RoI heads for Hiera and all comparison detection
methods. These layers are followed by LayerNorm layers.
For the training recipe, we follow ViTDet to use input size
as 1024×1024 with large-scale jittering (LSJ) (Ghiasi et al.,
2021). We don’t use the layer-wise decay during training.
Additional hyperparamters can be found in Tab. 15.

config values
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.999
weight decay 0.1
learning rate 3.5e-5 (B, B+), 3e-5 (L)
learning rate schedule step-wise decay
epochs 100
augmentation LSJ [0.1, 2.0]
batch size 64
drop path 0.2 (B, B+), 0.4 (L)

Table 15. Settings for COCO. Hiera finetuning settings on COCO.
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size ViT MCMAE ConvNextV2 Hiera
T - - 1381 2758
S - - - 2211
B 1448 1069 646 1556
B+ - 936 - 1247
L 514 381 414 531
H 205 194 202 274

Table 16. Image speed benchmarking on A100 fp16 (im/s).

size ViT Hiera
B 47.1 133.6
B+ - 84.1
L 17.8 40.8
H 11.3 20.9

Table 17. Video speed benchmarking on A100 fp16 (clip/s).

A.3. Speed Benchmarking

We use an NVIDIA A100 40GB GPU, PyTorch v1.12.1
and CUDA 11.4 to benchmark speed for all baselines and
our approach, unless otherwise mentioned. Note that we
did not use Flash Attention (Dao et al., 2022) or any other
attention speed-up mechanism in this paper, though they can
be used to further increase speed. For each of the methods,
we measure purely the model inference throughput. We
compute the throughput with various batch sizes, and report
the throughput with the optimal batch size. We use half
precision (fp16) to run speed benchmarking unless other-
wise specified. We set the input resolution to 224×224×3
for image benchmarking, and 224×224×3 with 16 frames
as a clip for video benchmarking. To measure the training
time, we measure the speed of a forward-backward pass on
a single gpu and extrapolate the total training time according
to the size of the dataset and the number of training epochs,
ignoring dataloading and communication overheads when
training with multiple GPUs.

We report the image benchmarking results on NVIDIA
A100 with fp16 and compared with in ViT (Dosovitskiy
et al., 2021), ConvNextV2 (Woo et al., 2023) and MC-
MAE (Gao et al., 2022) in Tab. 16. We provide video
benchmarking results in Tab. 17.

B. From Scratch Supervised Training
In the main paper, we show that we can replace the spatial
biases offered by specialized modules in a hierarchical vi-
sion transformer with a strong pretext task like MAE (He
et al., 2022), thereby teaching these spatial biases instead.
This renders these bells-and-whistles unnecessary, and we
remove them to construct an extremely fast and accurate
vision transformer: Hiera.

However, we do not claim that these modules are unneces-

Figure 8. Training on classification from scratch. Here we re-
peat the experiment in Tab. 1 but without MAE pretraining, using
MViTv2’s supervised recipe instead. As expected, the bells-and-
whistles that Hiera removes are actually necessary when training
from scratch—hence their introduction in prior work in the first
place. Hiera learns spatial biases instead.

sary in general. In fact, here we intend to show the opposite:
the reason these spatial biases were necessary in the first
place is because they are required when training a vision
transformer from scratch with classification. In Fig. 8, we
show this by repeating the ablations in Tab. 1 on ImageNet-
1K starting from an MViTv2-B model and ending at Hiera-B,
but this time training on classification from scratch.

As expected, we see the opposite trend as we did when
training with a strong pretext task: the bells-and-whistles
are necessary when training in a classical supervised setting.
This reiterates the fact that, by training with MAE, we are
replacing the need to explicitly build spatial biases into the
network’s architecture itself.

Note that this also has ramifications for downstream tasks:
while prior specialized Vision Transformers like MViT or
Swin act like convnets (e.g., you can just use a normal Mask
R-CNN (He et al., 2017) head for detection), Hiera acts
like a ViT. Thus, we recommend using transformer-based
solutions for downstream tasks such as ViTDet (Li et al.,
2022b) for detection instead of Mask R-CNN.
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