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Abstract
We consider the problem of ranking n experts
based on their performances on d tasks. We make
a monotonicity assumption stating that for each
pair of experts, one outperforms the other on all
tasks. We consider the sequential setting where
in each round, the learner has access to noisy
evaluations of actively chosen pair of expert-task,
given the information available up to the actual
round. Given a confidence parameter δ ∈ (0, 1),
we provide strategies allowing to recover the cor-
rect ranking of experts and develop a bound on
the total number of queries made by our algorithm
that hold with probability at least 1− δ. We show
that our strategy is adaptive to the complexity of
the problem (our bounds are instance dependent),
and develop matching lower bounds up to a poly-
logarithmic factor. Finally, we adapt our strategy
to the relaxed problem of best expert identifica-
tion and provide numerical simulation consistent
with our theoretical results.

1. Introduction
Consider the problem of ranking n experts based on noisy
evaluations of their performances in d tasks. This problem
arises in many modern applications such as recommender
systems (Zhou et al., 2012) and crowdsourcing (Snow et al.,
2008; Raykar et al., 2010; Karger et al., 2011; Lu et al.,
2015), where the objective is to recommend, for instance,
films, music, books, etc based on the product ratings. Sports
is another field where ranking plays an important role via
the task of player ranking based on their data-driven per-
formances (Morgulev et al., 2018; Pappalardo et al., 2019).
In many situations, it is possible to rank experts in an ac-
tive fashion by sequentially auditing the performance of a
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chosen expert on a specific task, based on the information
collected previously.

In this paper, we consider such a sequential and active
ranking setting. For a positive integer N we write JNK =
{1, . . . , N}. We consider that the performance of each ex-
pert i ∈ JnK on task j ∈ JdK is modeled via random variable
following an unknown 1-sub-Gaussain distribution νij with
mean Mij - and the matrix M = (Mi,j)i,j encodes the
mean performance of each expert on each task. Samples
are collected sequentially in an active way: at each round t,
the learner chooses a pair expert-task and receives a sample
from the corresponding distribution - and we assume that
the obtained samples are mutually independent conditional
on the chosen distribution.

Our setting is related to the framework of comparison-
based ranking considered in the active learning literature
(Jamieson & Nowak, 2011; Heckel et al., 2019). This lit-
erature stream is tightly connected to the dueling bandit
setting (Yue et al., 2012; Ailon et al., 2014), where the
learner receives binary and noisy feedback on the relative
performance of any pair of experts - which is a specific
case of our setting when n = d. An important decision for
setting the ranking problem is then on defining a notion of
order between the experts based on the mean performance
M - which is ambiguous for a general M . In the active
ranking literature, as well as in the dueling bandit literature,
it is customary to define a notion of order among any two
experts, for instance, through a score as e.g. the Borda score,
or through another mechanism as e.g. Condorcet winners.
E.g. the widely used Borda scores corresponds, for each
expert i, to the average performance of expert i on all ques-
tions - so that this corresponds to ranking experts based on
their average performance across all tasks. We discuss this
literature in more detail in Section 3.

In this paper, we are inspired by recent advances in the batch
literature on this setting - where we receive one sample for
each entry expert-task pair. Beyond the historical parametric
Bradley-Luce-Terry (BLT) model (Bradley & Terry, 1952),
recent papers have proposed batch ranking algorithms in
more flexible settings, where no parametric assumption is
made, but where a monotonicity assumption, up to some
unknown permutation, is made on the matrix M . A minimal
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such assumption was made in (Flammarion et al., 2019)
where it is assumed that the matrix M is monotone up to
a permutation of its lines, namely of the experts. More
precisely, they suppose that there is a complete ordering of
the n experts, and that expert i is better than expert k if the
first outperforms the latter in all tasks:

“ i
•
≥ k ” : ∀j ∈ JdK, Mij ≥Mkj . (1)

Such a shape constraint is arguably restrictive, yet realistic
in many applications - e.g. when the tasks are of varying
difficulty yet of same nature. There have been recently very
interesting advances in the batch literature on this setting,
through the construction and analysis of efficient algorithm
that fully leverage such a shape constraint. And importantly,
these approaches vastly overperform on most problems with
a naive strategy that would just rank the experts according
to their Borda scores. Beyond the Borda score, this remark
is true for any fixed score, as the recent approaches men-
tioned ultimatively resort in adapting the computed scores
to the problem in order to put more emphasis on informative
questions.See Section 3 for an overview of this literature.

In this paper, we start from the above remark in the batch
setting - namely that in the batch setting and under a mono-
tonicity assumption, ranking according to fixed scores as
e.g. Borda is vastly sub-optimal - and we aim at exploring
whether this is also the case in the sequential and active
setting. We therefore make the monotonicity assumption of
Equation (1), and aim at recovering the exact ranking in the
active and online setting described above. More precisely,
given a confidence parameter δ ∈ (0, 1), our objective is
to rank all the experts using as few queries as possible and
consequently adapt to the unknown distributions (νij)ij .

In this paper, we make the following contributions: First,
In Section 4, we consider the problem of comparing two
expert (n = 2) based on their performances on d tasks
under a monotonicity assumption. We provide a sampling
strategy and develop distribution dependent upper bound on
the total number of queries made by our algorithm to output
the correct ranking with probability at least 1− δ, δ ∈ (0, 1)
being prescribed confidence. We then consider the problem
of ranking estimation for a general n in Section 5, we use the
previous algorithm for pairwise comparison as a building
block and provide theoretical guarantees on the correctness
of our output and a bound on the total number of queries
made that holds with high probability. Next, we consider
the relaxed objective of identifying the best expert out of
n, we provide a sampling strategy for this problem and a
bound on the query budget that holds with high probability.
In Section 6 we give some instance-dependent lower bounds
for the three problems above, showing that all our algorithms
are optimal up to a poly-logarithmic factor. In Section 7 of
the appendix, we make numerical simulations on synthetic
data. The proofs of the theorems are in the appendix.

2. Problem formulation and notation
Consider a set of n experts evaluated on d tasks. As noted
in the introduction, the performance of each expert i ∈ JnK
on task j ∈ JdK, is modeled via a random variable following
an unknown distribution νij with mean Mij - and write
M = (Mij)i≤n,j≤d. We refer to ν = (νij)i≤n,j≤d as
the (expert-task) performance distribution, and to M =
(Mij)i≤n,j≤d as the mean (expert-task) performance. We
have two aims in this work: (i) Ranking identification (R),
namely identifying the permutation that ranks the expert,
and (ii) Best-expert identification (B), namely identifying
the best expert - we will define precisely these two objectives
later.

On top of assuming as explained in the introduction the
existence of a total ordering of experts following (1), we
also make an identifiability assumption, so that we have a
unique assumption for our problems of ranking (R) and
best-expert identification (B); this is summarised in the
following assumption.

Assumption 2.1. Suppose that the following assumption
holds:

• Monotonicity: there exists a permutation π : JnK →
JnK, such that ∀i ∈ Jn − 1K,∀j ∈ JdK : Mπ(i)j ≥
Mπ(i+1)j .

• Bounded mean performance: we assume that the
mean performance M takes value in [0, 1], namely
Mi,j ∈ [0, 1] for all i ∈ JnK and j ∈ JdK.

We will then assume one of these two identifiability assump-
tions, depending on whether we are considering the ranking
identification problem (R), or the best expert identification
problem (B).

• Identifiability for (R): for i, k ∈ JnK, if i ̸= k then
∃j ∈ JdK : Mi,j ̸= Mk,j .

• Identifiability for (B): for i ∈ {2, . . . , n}, ∃j ∈ JdK :
Mπ(i),j ̸= Mπ(1),j .

Note that under the identifiability assumption for (R), there
exists a unique ranking, and that under the identifiability
assumption for (B), there exists a unique best expert (and
that the identifiability assumption for (R) implies the the
identifiability assumption for (B)).

We write π : JnK→ JnK for the corresponding permutation
such that: π(1)

•
≥ π(2)

•
≥ . . .

•
≥ π(n). In what follows, we

writeMn,d ⊂ Rn×d for the set of matrices M satisfying
Assumption 2.1. Moreover, we are also going to assume in
what follows that the samples collected by the learner are
sub-Gaussian.
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Assumption 2.2. For each i ∈ JnK, j ∈ JdK: νij is 1-sub-
Gaussian.

It is satisfied for e.g. random variables taking values in [0, 1],
or for Gaussian distributions of variance bounded by 1.

We consider the fixed confidence setting presented in the
sequential and active identification literature (Heckel et al.,
2019; Kaufmann et al., 2016; Garivier & Kaufmann, 2016).
At each time t, the learner tasks an expert on a task - we
write (It, Jt) for this pair of expert and task - based on
previous observations, and receive an independent sample
Zt following the distribution of νItJt

. Based on this infor-
mation, the learner also decides whether it terminates, or
continues sampling - and we write N for the termination
time, to which we also refer to as number of queries. Upon
termination, the learner outputs an estimate, and we con-
sider here the two problems of ranking (R), and best-expert
identification (B):

• (i) Ranking identification (R): the learner aims at
outputting a ranking π̂ that estimates π. For a given
confidence parameter δ ∈ (0, 1), we say that it is δ-
accurate for ranking (R) if it satisfies:

(R) : P(π̂ ̸= π) ≤ δ

• (ii) Best-expert identification (B): the learner aims at
outputting an expert k̂ ∈ JdK that estimates the best per-
forming expert, namely π(1). For a given confidence
parameter δ ∈ (0, 1), we say that it is δ-accurate for
best-expert identification (B) if it satisfies:

(B) : P(k̂ ̸= π(1)) ≤ δ.

The performance of any δ-accurate algorithm is then mea-
sured through the total number N of queries made when the
procedure terminates. The emphasis is then put on develop-
ing high probability guarantees on N i.e., bounds on N on
the event of probability at least 1− δ where the δ-accurate
algorithm is correct .

Notation: Let A ∈ Rn×d be a rectangular matrix, for
i ∈ JnK, we write Ai for its ith line. Let ∥.∥2 denote the
euclidean norm and ∥.∥1 denotes the l1 norm on Rd. For
two numbers x, y, denote x ∨ y = max{x, y}.

3. Related work
Best-arm identification and Top-k bandit problems:
Active ranking is related to many works in the vast liter-
ature of identification in the multi-armed bandit (MAB)
model (Mannor & Tsitsiklis, 2004; Kaufmann et al., 2016;
Garivier & Kaufmann, 2016), where each arm is associated
to a univariate random variable. The learner’s objective is
to build a sampling strategy from the arms’ distributions

to identify the one with the largest mean - which would
resemble our objective of best expert identification. Other
related works consider the more general objective of iden-
tifying the top-k arms with the largest means - and in the
case where the problem is solved for all k, it resembles the
ranking problem. In this work, we consider a more general
setting where instead of having a univariate distribution that
characterizes the performance of an expert (akin to an arm
in the aforementioned literature), we have a multivariate
distribution, corresponding to the d questions.
Many of the previous works rely on a successive elimination
approach by discarding arms that are seemingly sub-optimal.
This idea is not directly applicable in our setting due to the
multi-dimensional aspect of the rewards/performances of
each candidate expert. Perhaps, the most natural way to
cast our setting into the standard MAB framework is to
associate each expert with the average of its performances
in all tasks. For expert i ∈ JnK, let Yi :=

∑d
j=1 Xij/d

and mi := E[Yi] and observe that due to the monotonic-
ity assumption on the matrix M , the ranking experts with
respect to the means mi leads to the correct ranking. More-
over, the learner has access to samples of Yi by sampling
the performance of expert i in a task chosen uniformly at
random from d. Using the last scheme, one can exploit
MAB methods to recover the correct ranking. However,
we argue that such methods are sub-optimal: consider the
problem of comparing two experts associated with distribu-
tions Y1 and Y2 defined previously. The minimum number
of queries necessary to decide the better expert is of or-
der O(1/(m1 −m2)

2) = O(d2/(
∑d

j=1 M1j −M2j)
2), in

contrast, the procedure presented in Section 4, decides the
optimal expert using at most O(d/

∑d
j=1(M1j −M2j)

2)
up to logarithmic factors. We can show using Jensen’s in-
equality that our bound matches in the worst case the former.
However, in general, the improvement can be up to a factor
of d. This is due to the fact that our strategy uses a more
refined choice of tasks to sample from.

On comparison-based ranking algorithms and duelling
bandits: Many previous works consider the problem of
ranking based on comparisons between experts in the online
learning literature (Ailon et al., 2014; Chen et al., 2020;
Heckel et al., 2019; Jamieson & Nowak, 2011; Jamieson
et al., 2015; Urvoy et al., 2013; Yue et al., 2012). For
instance, in (Heckel et al., 2019), the authors consider a
setting where data consist of noisy binary outcomes of com-
parisons between pairs of experts. More precisely, the out-
come of a queried pair of expert (i, j) ∈ JnK × JnK is a
Bernoulli variable with mean Mij . The experts are ranked
with respect to their Borda scores defined for expert i by
τi :=

∑
k∈JnK\{i} Mik/(n − 1). The authors provide a

successive elimination-based procedure leading to optimal
guarantees up to logarithmic factors. Their bound on the
total number of queries to recover the correct ranking is of
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order Õ(
∑n−1

i=1 /(τπ(i)−τπ(i+1))
2), where π is the permuta-

tion corresponding to the correct ranking. Their setting can
be harnessed into ours by considering that d = n and that
for each expert i, the task j consists of outperforming expert
j. However, contrary to duelling bandit, our model under-
lies the additional assumption that experts’ performances
are monotone which is common in the batch ranking lit-
erature – see the next paragraph. In the duelling bandit
framework, our monotonicity assumption is equivalent to
the strong stochastic transitivity assumption (Shah et al.,
2016), in the sense that Mπ(i+1),k ≤ Mπ(i),k for all k. In
this work, our main idea is to build upon the monotonoticity
assumption to drastically reduce in some problem instances
the number of queries. Existing approaches based on fixed
scores cannot be optimal on all problem instances as they
do not adapt to the problem - e.g. applying Borda-scores
algorithms in our setting leads to a total number of queries
of order d2/(

∑d
j=1 M1,j −M2,j)

2, which compared to our
bound is sub-optimal, with a difference up to a factor d.

On batch ranking: In Batch learning, the problem of
ranking has attracted a lot of attention since the seminal
work of Bradley & Terry, 1952. In this setting, the learner
either observes noisy comparisons between experts or the
performances of experts in given tasks. Observing that
parametric models such as Bradley-Luce-Terry are some-
times too restrictive Shah et al., 2016 have initiated a stream
of literature on non-parametric models under shape con-
straints (Flammarion et al., 2019; Shah et al., 2020; Mao
et al., 2018; Liu & Moitra, 2020; Shah et al., 2019; Panan-
jady et al., 2020; Pananjady & Samworth, 2022; Pilliat et al.,
2022). Our monotonicity assumption inspired from Flam-
marion et al., 2019 is the weakest one in this literature. That
being said, our results and methods differ importantly from
this literature as we aim at recovering the true ranking with
a sequential strategy while these works aim at estimating an
approximate ranking according to some loss function in the
batch setting.

Link to adaptive signal detection: Consider two expert
(n = 2) and let M1,M2 ∈ Rd be their mean performance
vectors on d tasks. A closely related problem to the ob-
jective of identifying the best expert out of the two (under
monotonicity assumption) is signal detection performed on
the differences vector ∆ = M1 −M2, where the aim is to
decide whether {M1 = M2} or {M1 ̸= M2}. There is a
vast literature in the batch setting for the last testing prob-
lem (Baraud, 2002; Ingster et al., 2012; Poor, 1998).(Castro,
2014) considered the signal detection problem in the active
setting: given a budget T , the learner’s objective is to decide
between the two hypotheses {∆ = 0} and {∆ ̸= 0}, under
the assumption that ∆ is s-sparse. When the magnitude of
non-zero coefficients is µ, they proved that reliable signal
detection requires a budget of order d log(1/δ)

sµ2 , where δ is

a prescribed bound on the risk of hypothesis testing. Our
theoretical guarantees are consistent with the last bound and
are valid for any difference vector ∆.

Link to bandits with infinitely many arms: As discussed
earlier, a key feature of our setting, is the ability of the
learner to pick the task to assess the performance of chosen
experts. When comparing two experts, since the tasks un-
derlying the greatest performance gaps are unknown, the
learner should balance between exploring different tasks
and committing to a small number of tasks to build a reli-
able estimate of the underlying differences. This type of
breadth versus depth trade-off in pure exploration arises in
the context of best-arm identification in the infinitely-many
armed bandit problem. It was introduced by (Berry et al.,
1997) and analysed in many subsequent works (Jamieson
et al., 2016; Aziz et al., 2018; Katz-Samuels & Jamieson,
2020; de Heide et al., 2021). While comparing two experts
in our setting includes dealing with similar challenges in the
previous literature, note that we are particularly interested
in detecting the existence (and the sign) of the gaps between
experts’ performances rather than identifying tasks with the
largest performance difference.

4. Comparing two experts (n = 2)
We start by considering the case where n = 2, which we
will then use as a building block for the general case. In
this case, the ranking problem (R) is equivalent to the best-
expert identification problem (B). Algorithm 1 takes as
input two parameters: a confidence level δ ∈ (0, 1), and a
precision parameter ϵ > 0, and outputs the best expert if the
L2 distance between the compared experts is greater than ϵ.

One wants ideally to focus on the task displaying the greater
gap in performance in order to quickly identify the best ex-
pert, however, such knowledge is not available to the learner.
This raises the challenge of balancing between sampling
as many different tasks as possible to pick one that has a
large gap and focusing on one task to be able to distinguish
between the two experts based on this task. Such width
versus depth trade-off arises in many works of best arm
identification with infinitely many arms (de Heide et al.,
2021; Jamieson et al., 2016), where the proportion of op-
timal arms is p ∈ (0, 1) and the gap between optimal and
sub-optimal arms is ∆ > 0. In contrast, the gaps between
tasks (equivalent to arms in the previous problem) may be
dense, in order to bypass this difficulty we make the follow-
ing observation: For j ∈ JdK let xj denote the gap in task
j: xj := |M1,j −M2,j |. Denote x(j) the corresponding
decreasing sequence, we have:

max
s∈JdK

sx2
(s) ≤

d∑
j=1

x2
j ≤ log(2d) max

s∈JdK
sx2

(s). (2)
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The last inequality was presented in (Audibert et al., 2010)
in the context of fixed budget best arm identification (see
Lemma F.3 in the appendix). It suggests that, up to a loga-
rithmic factor in d, the L2 distance is mainly concentrated
in the top s∗ elements with the largest magnitude, where
s∗ is an element in JdK satisfying the maximum in equation
(2). We exploit this observation by focusing our exploration
effort on tasks with the largest s∗ gaps.

In the first part of our strategy, presented in Algorithm 1,
we discretize the set of possible values of s∗ and x(s∗) us-
ing a doubling trick. The last scheme was adapted from
(Jamieson et al., 2016), and allows to be adaptive to the
unknown quantities (s∗, x(s∗)). In the second part, given
a prior guess (s, h), we run Algorithm 2 consisting of two
main ingredients: (i) sampling strategy and (ii) stopping rule.
We start by sampling a large number of tasks (with replace-
ment) to ensure that with large probability, a proportion s/d
of “good tasks” - i.e. relevant for ranking the two experts,
namely the tasks where the experts differ the most - where
chosen, then we proceed by median elimination by keeping
only half of the tasks with the largest empirical mean in
each iteration and doubling the number of queries made to
have a more precise estimate of the population means. The
aim of this process is to focus the sampling force on the
“good tasks”, by gradually eliminating tasks where the two
experts perform similarly. Also, at each iteration, we run a
test on the average of the kept tasks to potentially conclude
on which one of the two experts is best and terminate the
algorithm.

Algorithm 1 Compare(δ, ϵ)
Input: δ, ϵ.
Initialize: ρ = 1, output k̂ = null.
while {k̂ = null} and ϵ2 < 4 log(2d)d 2−ρ do

for r = 0, . . . , ρ do
Set sr = 2rd/2ρ, hr = 1/

√
2r.

Run: Try-compare(δ/(10ρ3 log(d)), sk, hk)

and Set : k̂ its output.
If k̂ ̸= null, break.

end for
ρ← ρ+ 1

end while
Output: k̂.

We now turn to the analysis of the performance of
compare. We first show that with probability at least
1 − δ, Algorithm 1 does not make the wrong diagnostic.
Based on the precision parameter ϵ, we prove that if the
unknown squared L2 distance between the experts’ perfor-
mance vectors is larger than ϵ, then the algorithm identifies
the optimal expert out of the two, with a large probability.
We also bound on the same event the total number of queries
N made by the procedure.

Algorithm 2 Try-compare(δ, s, h)
Input: δ ∈ (0, 1), s ≤ d, h > 0.
Initialize: ϕ = 2⌈log2[26 log(1/δ)d/s]⌉, n0 = 64/h2, k̂ ←
null.
Draw a set (denoted S1) of ϕ elements from JdK uni-
formly at random with replacement.
Initialize: S(12)

1 = S1 and S
(21)
1 = S1.

for ℓ = 1, . . . , ⌈log4/3(d/s)⌉+ 1 do
Sample: For each element j ∈ S

(12)
ℓ ∪ S

(21)
ℓ , sample

the entries (1, j) and (2, j) tℓ = nϕ/
∣∣∣S(12)

ℓ

∣∣∣ times,

denote (X
(u,ℓ)
1,j , X

(u,ℓ)
2,j )u≤tℓ the obtained samples.

Compute: the means

µ̂
(12)
j,ℓ =

1

tℓ

tℓ∑
u=1

(
X

(u,ℓ)
1,j −X

(u,ℓ)
2,j

)
µ̂
(12)
ℓ =

1

n0ϕ

tℓ∑
u=1

∑
j∈Sℓ

(
X

(u,ℓ)
1,j −X

(u,ℓ)
2,j

)
.

Denote µ̂
(21)
ℓ = −µ̂(12)

ℓ

if µ̂
(12)
ℓ ≥

√
2 log(2/δ)

n0ϕ
then

k̂ = 1, break
else if µ̂(21)

ℓ ≥
√

2 log(2/δ)
n0ϕ

then

k̂ = 2, break
else

Find the median of (µ̂(12)
j,ℓ )

i∈S
(12)
ℓ

and (µ̂
(21)
j,ℓ )

i∈S
(21)
ℓ

,

denoted m
(12)
ℓ and m

(21)
ℓ resp.

S
(12)
ℓ+1 ← S

(12)
ℓ \ {i ∈ S

(12)
ℓ : µ̂

(12)
j,ℓ < m

(12)
ℓ }.

S
(21)
ℓ+1 ← S

(21)
ℓ \ {i ∈ S

(21)
ℓ : µ̂

(21)
j,ℓ < m

(21)
ℓ }.

end if
end for
Output: k̂

Theorem 4.1. Suppose Assumption 2.1 holds. For δ ∈
(0, 1), ϵ > 0, consider Algorithm 1 with input (δ, ϵ). Define

H :=
d

∥M1 −M2∥22
.

With probability at least 1− δ, we have

• The output k̂ satisfies: k̂ ∈ {null, π(1)}.

• If ϵ < ∥M1 −M2∥2, the output satisfies: k̂ = π(1).

Moreover, with probability at least 1− δ, its total number
of queries, denoted N , satisfies:

N ≤ c̃× log(1/δ)Hϵ,
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where c̃ = log2(d) log(Hϵ) log(log(Hϵ ∨ d)), where Hϵ :=
min{H, d/ϵ2} and where c is a numerical constant.

We now discuss some properties of the algorithms and its
corresponding guarantees. The sample complexity of Al-
gorithm 1 is of order H = d/∥M1 −M2∥22, matching the
lower bound presented in Theorem 6.1 in Section 6 up to
a poly-logarithmic factor. The dependence on the L2 dis-
tance between experts is mainly due to the sampling scheme
introduced in Algorithm 2, relying on median elimination.
We illustrate the gain of our algorithm with respect to a
uniform allocation strategy across all tasks. Such sampling
schemes rely on the average performances of each expert
across all tasks as a criterion (Heckel et al., 2019; Jamieson
et al., 2015; Urvoy et al., 2013). Suppose that the differ-
ence vector is s-sparse and the amplitude of the non-zero
gaps is equal to ∆. Then, sampling a task uniformly at
random leads to an expected gap of s∆/d, which leads to
a sample complexity of O(d2/(s∆)2) in order to identify
the optimal expert. On the other hand, our bound suggests
that the total number of queries scales asO(d/(s∆2)). This
gain is due to the median elimination strategy allowing the
concentration of the sampling effort on tasks with large
gaps. More precisely, we prove that the initially sampled
set of tasks S1 contains a proportion of s/d of non-zero
gaps and that at each iteration in median elimination the
last proportion increases by at least a constant factor r > 1.
Consequently, after roughly log(d/s) iteration, “good tasks”
constitute a constant proportion of the active tasks, which
allows the algorithm to conclude by satisfying the stopping
rule condition.

5. Ranking estimation (general n)
5.1. Ranking identification

In this section, we consider the task of ranking identification
(R). Algorithm 3 takes as input δ ∈ (0, 1) and outputs a
ranking π̂ of all the experts. We use Algorithm 1 with preci-
sion ϵ = 0 to compare any pair experts. Given Algorithm 1
as a building block, we proceed using the binary insertion
sort procedure: experts are inserted sequentially and the
location of each expert is determined using a binary search.
Algorithm 3 presents the procedure, where in each iteration
(corresponding to the insertion of a new expert) a call to
the procedure Binary-search is made. A detailed im-
plementation of the last procedure (using Algorithm 1) is
presented in Section C in the appendix.

The following theorem presents the theoretical guarantees
on the output and sample complexity of Algorithm 3.

Theorem 5.1. Suppose Assumption 2.1 holds. Let δ ∈

Algorithm 3 Active-ranking(δ)
Input: δ.
Initialize: Define π̂ by π̂(1) = 1.
for i = 2, . . . , n do
j ← Binary-search( δ

n⌈log2(n)⌉
), i, π̂, 1, i− 1).

Shift the rank of π̂[k] for k ≥ j by one.
π̂[j]← i

end for
Output: π̂.

(0, 1), and define for i ∈ Jn− 1K:

Hi :=
d∥∥Mπ(i) −Mπ(i+1)

∥∥2
2

.

Let H∗ = maxi≤n−1 Hi. With probability at least 1 − δ,
Algorithm 3 outputs the correct ranking, and its total number
of queries (denoted N ) is upper bounded by:

N ≤ c̃× log(1/δ)

n−1∑
i=1

Hi ,

where c̃ = c log(n) log2(d) log(H∗) log(n log(H∗ ∨ d))
and where c is a numerical constant.

The first result states that Algorithm 3 with input δ is δ-
accurate. The second guarantee is a control on the total
number of queries made by our procedure, with a large
probability. As one would expect, the cost of full ranking
of experts underlies the cost of distinguishing between two
consecutive experts π(i) and π(i+ 1) for i ∈ Jn− 1K. The
last cost is characterized by the sample complexity Hi =

d/
∥∥Mπ(i) −Mπ(i+1)

∥∥2
2
. Consequently, the total number of

queries made by Algorithm 3 is of order of O
(∑n−1

i=1 Hi

)
up to a poly-logarithmic factor.

5.2. Best expert identification:

Algorithm 4 takes as input the confidence parameter δ and
outputs a candidate for the best expert. Note that while
ranking the experts using Algorithm 3 would lead to identi-
fying the top item, one would expect to use fewer queries
for this relaxed objective. Algorithm 4 builds on a variant
of the Max-search algorithm (a detailed implementation
is presented in Section D). In the last algorithm, given a
subset of expert S and a precision ϵ, we initially select an
arbitrary element as a candidate for the best expert, then
we perform comparisons with the remaining elements of S
using compare(δ/n, ϵ) and update the candidate for the
best expert accordingly. This method leads to eliminating
sub-optimal experts that have an L2 distance with respect to
expert π(1) larger thanO(ϵ). Therefore, performing sequen-
tially Max-search and dividing the prescribed precision
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ϵ by 4 after each iteration allows identifying the optimal
expert after roughly log4(1/

∥∥Mπ(1) −Mπ(2)

∥∥2
2
) iterations.

Algorithm 4 Best-expert(δ)
Input: δ, S = JnK, ϵ = 1, δ′ = δ/2
while |S| > 1 do
S ← Max-search(δ′, S, ϵ).
ϵ← ϵ/4
δ′ ← δ′/2

end while
Output: S.

The theorem below analyses the performance of Algo-
rithm 4.
Theorem 5.2. Suppose Assumption 2.1 holds. Let δ ∈
(0, 1), and define for i ∈ J2, nK:

Gi :=
d∥∥Mπ(1) −Mπ(i)

∥∥2
2

.

Let G∗ = maxi∈J2,nK Gi. With probability at least 1 − δ,
Algorithm 4 outputs π(1), and the total number of queries
(denoted N ) satisfies

N ≤ c̃× log(1/δ)

n∑
i=2

Gi,

with c̃ = c log2(d) log2(G∗) log(n log(d)) and c a numeri-
cal constant.

In the first result, we show that Algorithm 4 is δ-accurate for
(B). The second result presents a bound on the total number
of queries made by the algorithm. Observe that for each
i ∈ {2, . . . , n} the quantity Gi = d/

∥∥Mπ(1) −Mπ(i)

∥∥2
2

characterizes the sample complexity to distinguish expert
π(i) from the optimal expert. In order to identify the correct
expert, a number of queries of order Gi is required for each
suboptimal expert π(i), which leads to a total number of
queries of order

∑n
i=2 Gi, up to a poly-logarithmic factor.

5.3. Discussion

Algorithms 3 and 4 are proven to be δ accurate for the
ranking problem (R) and best expert (B). Moreover,
Theorems 6.2 and 6.3 in Section 6 below show that their
sample complexities are optimal up to a poly-logarithmic
factor. While both procedures rely on comparing pairs of
experts, their use of the compare procedure presented in
Algorithm 1 is different. The ranking procedure builds
on compare(δ, 0), i.e., we need the exact order between
compared experts. In contrast, for best expert identifica-
tion, we only need approximate comparisons output by
compare(δ, ϵ) for an adequately chosen precision ϵ. This
difference is due to the fact that a complete ranking under-
lies comparing the closest pair of experts (in L2 distance)
while best expert identification requires distinguishing only
the optimal expert from the sub-optimal ones.

6. Lower bounds
In this section, we provide some lower bounds on the num-
ber of queries of any δ-accurate algorithm. As for the upper
bound, we first consider the case of 2 experts (n = 2) in
which ranking identification is the same as best expert iden-
tification. Then we consider the general case (any n ≥ 2).

6.1. Lower bound in the case of two experts (n = 2)

Problem-dependent lower bounds, i.e. lower bounds that
depend on the problem instance at hand1, are generally ob-
tained by considering slight changes of any fixed problem,
and proving that it is not possible to have an algorithm that
performs well enough simultaneously on all the resulting
problems. In the ranking problem, our monotonicity as-
sumption constraint heavily restricts the nature of problem
changes that we are allowed to consider.

For a given matrix M0 ∈M2,d representing the mean per-
formance of a problem, a minimal and very natural class is
the one containing M0 = ((M0)1,., (M0)2,.)

T , and also the
matrix ((M0)2,., (M0)1,.)

T where the two rows (experts)
are permuted. In this class, however, we know the position
of the question leading to maximal difference of perfor-
mance between the two experts, as it is the question j such
that |(M0)1,j − (M0)2,j | is maximised. So that an opti-
mal strategy over this class would leverage this information
by sampling only this question, and would be able to ter-
minate using a number of query N smaller in order than
log(1/δ)/maxj

[(
(M0)1,j − (M0)2,j

)2]
, with probability

larger than 1 − δ. Note that this is significantly smaller
than our upper bound in Theorem 4.1, but that the algorithm
that we alluded to is dependent on the exact knowledge of
the matrix M0 - and in particular the positions of the in-
formative questions - which is not available to the learner,
and also very difficult to estimate. In order to include this
absence of knowledge in the lower bound, we have to make
the class of problems larger, by ensuring in particular that
the position of informative questions are not available to
the learner. A natural enlargement of the class of problem
that takes this into account, but that is still very natural and
tied to the matrix M0, is to consider the class of all matrices
whose gaps between experts are equal to those in M0 up to
a permutation of rows and columns (experts and questions).
This is precisely the class that we consider in our lower
bound, and that we detail below.

Let M0 ∈ M2,d. Write ∆ = |(M0)1,. − (M0)2,.| for the
vector of gaps between experts, and π0 for the permutation
that makes M0 monotone - and we remind that (M0)π0(2),.

is the least performant of the two experts. Write DM0 for
the set of performance distributions, namely of distributions

1which is what we need in order to match the upper bound in
Theorem 4.1.
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of X = (Xi,j)i∈J2K,j∈JdK corresponding to means M , such
that: (i) Assumption 2.2 is satisfied for X, and (ii) The
mean performance Mπ ∈ M2,d, with associated permuta-
tion π that transforms it into a monotone matrix, is such that
Mπ(2),. = (M0)π0(2),., and such that there exists a permu-
tation σ of JdK such that Mπ(1),. = (M0)π0(2),. +∆σ(.).

The set DM0
is therefore the set of all distributions of X

that are 1-sub-Gaussian, and where while one expert in M
is equal to the worst expert (M0)π0(2),. of M0, the best
expert is equal to (M0)π0(2),. plus a permutation of the gap
vector ∆. This ensures that the gap structure over the mean
performance is the same for all problems in DM0 .

The following theorem establishes a high probability lower
bound on the termination time N over the class of problems
DM0

.

Theorem 6.1. Fix n = 2. Let d ≥ 1 and δ ∈ (0, 1/4).
Consider any matrix M0 ∈ M2,d. For any δ-accurate
algorithm A for either the ranking identification, or best
expert identification (which is the same for n = 2), we have:

max
B∈DM0

PB,A

[
N ≥ d

2∥(M0)1,. − (M0)2,.∥22
log

(
1

6δ

)]
≥ δ,

where PB,A is the probability corresponding to samples
collected by algorithm A on problem B.

This theorem lower bounds the budget of any δ-accurate
algorithm by d

∥M1−M2∥2
2
log
(

1
6δ

)
, which matches up to

logarithmic terms the upper bound in Theorem 4.1. In-
terestingly, the query complexity depends therefore only
on ∥(M0)1 − (M0)2∥22, independently of the gap profile
of (M0)1 − (M0)2 - i.e. of whether there are many small
differences in performances across tasks, or a few large
differences. Of course, a related optimal algorithm would
solve differently the width versus depth trade-off on a sparse
or dense problem, as discussed in Section 4, yet it does not
show in the final bound on the query complexity thanks to
the adaptivity of the sampling. A related phenomenon was
already observed - albeit in a different regime and context -
in (Castro, 2014).
The bound on N in Theorem 6.1 is in high probability, on
an event of high probability 1 − δ - where 1 − δ is also
the minimal probability of being accurate for the algorithm.
This matches our upper bound in Theorem 4.1, where we
also provide high probability upper bounds for N .

6.2. Lower bound in the general case (any n)

We now consider the general problem of ranking and best
expert identification when n > 2. As these two problems
are not equivalent anymore, we provide two lower bounds.

In this part, we will consider classes of problems for con-
structing the lower bound which are wider than the one

constructed for the case n = 2, see Theorem 6.1 and the
class DM0 . Driven by the fact that the quantity that ap-
pears there is the L2 norm between experts, we will define
the classes of problems by imposing constraints on the L2

distance between pairs of experts.

6.2.1. RANKING IDENTIFICATION

Fix any ∆ = (∆1, . . . ,∆n−1), such that ∆i > 0 for each
i ≤ n − 1. Write Dn,d

∆ for the set of performance distri-
butions, namely of distributions of X = (Xi,j)i∈JnK,j∈JdK
corresponding to means M , such that: (i) Assumption 2.2 is
satisfied for X, and (ii) The mean performance M ∈Mn,d

satisfies

∥Mπ(i) −Mπ(i+1)∥22 = ∆2
i , for i = 1, . . . , n− 1 .

The class Dn,d
∆ is such that the L2 distance between the i-th

best expert π(i) and the i+1-th best expert π(i+1) is fixed
to ∆i. We however do not make further assumption on the
gap structure within questions, as is done in Theorem 6.1
through the class DM0

.

Next, we provide a minimax lower bound for general n. The
following theorem lower bound the expected budget when
we fix the sequence of L2 distances between consecutive
rows.

Theorem 6.2. Let n, d ≥ 1, δ ∈ (0, 1). For any δ-accurate
algorithm A for ranking identification (R), we have:

max
B∈Dn,d

∆

EB,A[N ] ≥
n−1∑
i=1

d

∆2
i

log(1/(4δ)).

where EB,A is the probability corresponding to samples
collected by algorithm A on problem B.

6.2.2. BEST EXPERT IDENTIFICATION

Fix any positive and non-decreasing sequence ∆ =
(∆1, . . . ,∆n−1), such that ∆i > 0 for each i ≤ n − 1.
Write Dn,d

∆ for the set of performance distributions, namely
of distributions of X = (Xi,j)i∈JnK,j∈JdK corresponding to
means M , such that:

the set of distributions of experts performances such that:
(i) Assumption 2.2 is satisfied for X, and (ii) The mean
performances matrix M ∈Mn,d satisfies

∥Mπ(1) −Mπ(i+1)∥22 ≥ ∆
2

i , for i = 1, . . . , n− 1 .

The class Dn,d

∆ is such that the L2 distance between the best
expert π(1) and the i-th best expert π(i+ 1) is fixed to ∆i.
It is related to the construction for Theorem 6.2 of the set
Dn,d

∆ , yet here we only consider the distance to the best
expert.
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Theorem 6.3. Let n, d ≥ 1, δ ∈ (0, 1). For any δ-accurate
algorithm A for best expert identification (B), we have:

min
A∈A(δ)

max
B∈Dn,d

∆

EB,A[N ] ≥
n−1∑
i=1

d

∆
2

i

log(1/(4δ)),

where EB,A is the probability corresponding to samples
collected by algorithm A on bandit problem B.

7. Numerical simulations
In this section, we perform some numerical simulations on
synthetic data to compare our Algorithm with a benchmark
procedure from the literature. We chose AR algorithm from
(Heckel et al., 2019) since they considered the problem
of ranking experts in an active setting. Their method is
based on pairwise comparisons and uses Borda scores as
a criterion to rank experts. In order to harness their model
into ours, we proceed as follows: when querying a pair of
experts (i, j), we sample a task uniformly at random from
JdK, and sample the performances of experts on this task
then output the result.

We focus on the specific problem of identifying the best out
of two experts (n = 2) and d = 10 tasks. For each s ∈
JdK, we consider the following scenario: the performances
of both experts in each task follow a normal distribution
with unit variance. The means of performances of the sub-
optimal expert Mπ(2) are drawn from [0, 1/2] following the
uniform law. We build a gaps vector ∆s that is s-sparse,
the non-zero tasks are drawn uniformly at random from JdK,
and the value of the kth non-zero gap is set to

(
k
3s

)2
. Then

we consider Mπ(1) = Mπ(2) + ∆s. Figure7 presents the
sample complexity of Algorithm 1 with parameters (δ, 0)
and AR from (Heckel et al., 2019), as a function of the
sparsity ratio s/d for s ∈ JdK. The results are averaged over
20 simulations for each scenario, in all simulations both
algorithms made the correct output.

Figure 7 presents the empirical sample complexity of Algo-
rithm 1 and AR as a function of the sparsity rate s/d. The
results show, as suggested by theoretical guarantees, that Al-
gorithm 1 with parameters (δ, 0) outperforms AR for small
sparsity rates, mainly due to its ability to detect large gaps,
as discussed previously. For large sparsity rates, the gaps
vector is dense, and evaluating experts using their average
performance across all tasks proves to be efficient. In the
last regime, AR procedure outperforms Algorithm 1.

8. Conclusion
In this paper, we have addressed the challenge of ranking a
set of n experts based on sequential queries of their perfor-
mance variables in d tasks. By assuming the monotonicity
of the mean performance matrix, we have introduced strate-

Figure 1. Empirical sample complexity of AR by (Heckel et al.,
2019) and Algorithm 1 in this paper. We varied the sparsity rate
of the gaps vector s/d ∈ [5%, 100%]. The presented results are
averaged over 20 simulations.

gies that effectively determine the correct ranking of experts.
These strategies optimize the allocation of queries to tasks
with larger gaps between experts, resulting in a considerable
improvement compared to traditional measures like Borda
Scores.

Our research has unveiled several promising avenues for
future exploration. One notable direction involves narrow-
ing the poly-logarithmic gap in n between our upper and
lower bounds for both full ranking and best expert identi-
fication. Achieving this goal will require the development
of more refined ranking strategies, which we leave for fu-
ture investigation. Additionally, relaxing the monotonicity
assumption considered in this study and adopting a more
inclusive framework that accommodates diverse practical
applications would be an intriguing area to explore. It would
be worthwhile to scrutinize the assumptions made in the
study conducted by (Bengs et al., 2021) as a potential direc-
tion for further research.
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Figure 2. Empirical sample complexity of AR by (Heckel et al., 2019) and Algorithm 1 in this paper. We varied the number of tasks
d ∈ [4, 8, 16, 32, 64] while keeping the sparsity rate constant 1/3. The presented results are averaged over 20 simulations.

A. Additional numerical simulations
We add a numerical simulation on synthetically generated data. We consider the task of comapring two experts and suppose
that the performance gaps vector is sparse, with a fixed sparsity rate of 1/3. We conduct simulations for various dimension
(number of tasks d) and plot the sample complexities of our algorithm and the benchmark algorithm AR ((Heckel et al.,
2019)). Figure A displays the results.

B. Proof of Theorem 4.1
Suppose Assumption 2.1 holds and that (w.l.o.g) expert 1 is the optimal expert, that is π(1) = 1.

Additional notation: Define xj := M1,j −M2,j . Let (x(j))j∈JdK denotes the (xj)j∈JdK ordered in a decreasing order.
Next, we introduce the effective sparsity s∗ of the vector x. Lemma F.3 states that there exists s∗ ∈ JdK such that

∥x∥22 ≤ s∗ log(2d) x2
(s∗) .

If x had been s-sparse and if all the non-zero components of x had been equal, then we would have s = s∗ and the above
inequality would be valid (without the log(2d)). Here, the virtue of the effective sparsity s∗ is that it is defined for arbitrary
vectors x. Then, we denote

x∗ := x(s∗) , ∆2
∗ := s∗x2

∗ , and S∗ := {i ∈ JdK : xi ≥ x∗} ,

where ∆2
∗ plays the role of the square norm x at the scale s∗ and S∗ is the corresponding set of size s∗ of coordinates larger

or equal to x∗.

In order to prove Theorem 4.1, we will follow three steps:

• Part 1: In Lemma B.3, we show that Algorithm 1 outputs k̂ ∈ {null, 1} with probability at least 1− δ.

• Part 2: In Lemma B.8 we consider Algorithm 2 with input (δ, s, h). If h < x∗ and s < s∗, then, with probability at
least 1− log(d)δ, the output of the algorithm is k̂ = 1.

• Part 3: As a conclusion, we will gather previous lemmas to derive a bound on the total number of queries until the
termination of Algorithm 1.

.

Part 1: Let us start by introducing the following concentration result for the empirical means computed in Algorithm 2. In
the lemma below, the set S is considered as fixed. More generally, S can be any random set independent of the samples used
to compute the means (µ̂j,T )j,T
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Lemma B.1. Let T ≥ 1, fix j ∈ JdK and S ⊂ JdK. We have

P

 1

|S|
∑
j∈S

µ̂
(21)
j,T >

√
2 log(1/δ)

|S|T

 ≤ δ,

where µ̂
(21)
j,T = 1

T

∑T
u=1

(
X

(u)
2,j −X

(u)
1,j

)
.

Proof. The proof is a straightforward consequence of Chernoff’s inequality. Recall that the variable X2,j − X1,j is√
2-sub-Gaussian for any j ∈ S. Moreover, all samples used in the sum

∑
j∈S µ̂

(21)
j,T are independent. We have

P

 1

|S|
∑
j∈S

µ̂
(21)
j,T >

√
2 log(1/δ)

|S|T

 ≤ P

 1

|S|
∑
j∈S

µ̂
(21)
j,T +

1

|S|
∑
j∈S

xj >

√
2 log(1/δ)

|S|T

 ≤ δ,

where the first inequality follows from the fact xj ≥ 0 (recall that the optimal expert is 1), and the second is a direct
consequence of Chernoff’s concentration inequality.

Lemma B.2. Consider Algorithm 2 with input (δ, s, h). We have

P
(
k̂ = 2

)
≤ 1.75 log(d)δ.

Proof. We have

P
(
k̂ = 2

)
= P

(
∃ℓ ≤ log4/3(d/s) : µ̂

(21)
ℓ >

√
2 log(2/δ)

n0ϕ

)
≤ log4/3(d/s)

δ

2
≤ 1.75 log(d)δ ,

where we used Lemma B.1.

Lemma B.3. Consider Algorithm 1 with input (δ, ϵ). The probability of outputting the wrong result satisfies

P
(
k̂ = 2

)
≤ 0.6δ .

Proof. When Algorithm 1 with input δ halts, we denote k̂ its returned ranking. For ρ ≥ 1 and r ≤ ρ, denote k̂ρ,r the output
of Algorithm 2 with input (δρ, sr, hr). We have

P
(
k̂ = 2

)
= P

(
∃ρ ≥ 1,∃r ≤ ρ : k̂ρ,r = 2

)
≤

∞∑
ρ=1

ρ∑
r=0

P
(
k̂ρ,r = 2

)
.

Using Lemma B.2, we have

P
(
k̂ = 2

)
≤

∞∑
ρ=1

ρ∑
r=0

1.75 log(d)
δ

10 log(d)ρ3
≤ 1.75δ

10

∞∑
ρ=1

ρ+ 1

ρ3
≤ 0.6δ .
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Part 2: To ease notation, we write Sℓ instead of S(12)
ℓ in the remainder of this proof. Introduce the following notation

T ∗ := {j ∈ JdK : x(12)
j ≥ 1

2
x∗} ; Mℓ :=

∣∣∣∣{j ∈ Sℓ ∩ S∗ : µ̂
(12)
j,ℓ ≥

3

4
x∗}
∣∣∣∣ ;

Nℓ :=

∣∣∣∣{j ∈ Sℓ \ T ∗ : µ̂
(12)
j,ℓ ≥

3

4
x∗}
∣∣∣∣ ; qℓ := exp(−2ℓ);

ξℓ :=

{
|Sℓ ∩ S∗|
|Sℓ|

≥ s∗

2d

(
4

3

)ℓ−1
}

; ξ′ℓ+1 :=

{
|Sℓ+1 ∩ S∗|
|Sℓ+1|

≥ 4

3

|Sℓ ∩ S∗|
|Sℓ|

}
;

Θℓ :=

{
|Sℓ ∩ (T ∗ \ S∗)|

|Sℓ|
<

1

4

}
; Λℓ :=

{
|Sℓ ∩ S∗|
|Sℓ|

<
1

4

}
.

While the set S∗ (introduced earlier) stands for the collection of coordinates that are larger or equal to x∗, the set T ∗

contains all moderate coordinates. The other new notation deal with the constant with the ℓ-th iteration in the algorithm. Mℓ

corresponds to the set of ’significant’ coordinates that lie in Sℓ and such that the empirical mean is large enough, while Nℓ is
the set of ’small’ coordinates that are in Sℓ and whose empirical mean is large. The events ξℓ, ξ′ℓ, Θℓ, and Λℓ are discussed
later. The following lemma states the set S1 at step ℓ = 1 contains a non-vanishing proportion of significant coordinates.
Lemma B.4. Consider Algorithm 2 with input (δ, s, h). Suppose that s < s∗. Recall that S1 is the set of sampled questions.
We have

P
[
|S1 ∩ S∗| ≥

s∗
2d
|S1|

]
≥ 1− δ .

Proof. By definition, |S1 ∩ S∗| follows a binomial distribution with parameters (|S1|, s∗/d). Hence, Chernoff’s inequality
(Lemma F.4 with κ = 1/2) enforces that

P
(
|S1 ∩ S∗| ≤

s∗

2d
|S1|

)
≤ exp

(
− s∗

8d
|S1|

)
≤ exp

(
−s∗

s
log(1/δ)

)
≤ δ ,

where we used |S1| = ϕ ≥ 26 log(1/δ)d/s and s < s∗.

The next lemma roughly states that, provided the event ξℓ holds, then, with high probability, Sl+1 will contain a larger
proportion of significant questions. More precisely, we prove that the number Mℓ of significant questions with a large
empirical mean is high and the number Sℓ of non-significant questions with a large empirical mean is small.
Lemma B.5. Consider Algorithm 2 with inputs (δ, s, h) such that s < s∗ and h < x∗. For any ℓ ≥ 1, we have

P
(
Mℓ ≤

2

3
|Sℓ ∩ S∗|

∣∣∣ξℓ) ≤ δ ; P
(
Nℓ ≥

1

4
|Sℓ|
∣∣∣ξℓ) ≤ δ .

Proof. Define M̄ℓ := |Sℓ ∩ S∗|. Using the definition of Mℓ, we have

M̄ℓ =
∑

j∈Sℓ∩S∗

1

(
µ̂
(12)
j,ℓ <

3

4
x∗

)
.

Let j ∈ Sℓ ∩ S∗, recall that E[µ̂(12)
j,ℓ ] ≥ x∗, and the samples (X

(u)
1,j − X

(u)
2,j ) are

√
2-sub-Gaussian. Therefore, using

Chernoff’s bound

P
(
µ̂
(12)
j,ℓ <

3

4
x∗

)
≤ exp

(
−tℓ

x2
∗

32

)
= exp

(
−2ℓ−1n0

x2
∗

32

)
≤ exp(−2ℓ) = qℓ ,

since h ≤ x∗ and by definition of ℓ and of qℓ. Thus, the variables 1(µ̂(12)
j,ℓ < 3

4∆
∗) for j ∈ Sℓ ∩ S∗ are stochastically

dominated by B(qℓ) and independent. Therefore M̄ℓ is stochastically dominated by B(|Sℓ ∩ S∗|, qℓ), where B(a, b) denotes
the binomial distribution with parameters (a, b). Let κ := 1/(3qℓ)− 1 > 0, we have

P
(
Mℓ ≤

2

3
|Sℓ ∩ S∗|

∣∣∣ξℓ) = P
(
M̄ℓ >

1

3
|Sℓ ∩ S∗|

∣∣∣ξℓ)
= P

(
M̄ℓ > (1 + κ)qℓ|Sℓ ∩ S∗|

∣∣∣ξℓ)
14
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Using Lemma F.4 and the definition of the event ξℓ

P
(
Mℓ ≤

2

3
|Sℓ ∩ S∗|

∣∣∣ξℓ) ≤ exp{κqℓ|Sℓ ∩ S∗| − (1 + κ)qℓ|Sℓ ∩ S∗| log(1 + κ)}

≤ exp

{(
1

3
− qℓ −

1

3
log

(
1

3qℓ

))
|Sℓ ∩ S∗|

}
.

Recall that qℓ = exp(−2ℓ) so that κ > 1/5. Using the expression |Sℓ| = |S1|
2ℓ−1 ≥ 26d log(1/δ)

2ℓ−1s
, the definition of the event ξℓ,

and s > s∗, we deduce that

P
(
Mℓ ≤

2

3
|Sℓ ∩ S∗|

∣∣∣ξℓ) ≤ exp

{(
1

3
− exp(−2ℓ)− 2l − log(3)

3

)(
2

3

)ℓ−1

13 log(1/δ)

}
.

For ℓ ≥ 3, we have 2ℓ−1 ≥ log(3) + 3, which leads to

P
(
Mℓ ≤

2

3
|Sℓ ∩ S∗|

∣∣∣ξℓ) ≤ exp

{
−
(
4

3

)ℓ−1

13 log(1/δ)

}
≤ δ .

One easily check that this bound is still true for ℓ = 1, and ℓ = 2. We have proved the first part of the lemma.

For the second result, we start from

Nℓ =
∑

j∈Sℓ\T ∗

1

(
µ̂
(12)
j,ℓ ≥

3

4
x∗

)
.

Arguing as in the first part, we easily check that the variables 1(µ̂(12)
j,ℓ ≥

3
4x∗), for j ∈ Sℓ \ T ∗ are independent and

stochastically dominated by B(qℓ). Hence Nℓ is stochastically dominated by B(|Sℓ|, qℓ). Let κ′ = 1
4qℓ
− 1 ≥ 0. Using

again Lemma F.4, we have

P
(
Nℓ ≥

1

4
|Sℓ|
∣∣∣ξℓ) = P

(
Nℓ ≥ (1 + κ)qℓ|Sℓ|

∣∣∣ξℓ)
≤ exp{κqℓ|Sℓ| − (1 + κ)qℓ|Sℓ| log(1 + κ)}

≤ exp

{(
1

4
− qℓ −

1

4
log

(
1

4qℓ

))
|Sℓ|
}
.

Next, we use the expression of |Sℓ| and obtain

P
(
Nℓ ≥

1

4
|Sℓ|
∣∣∣ξℓ) ≤ exp

{(
1

4
− exp(−2ℓ)− 1

4
log

(
exp(2ℓ)

4

))
26d log(1/δ)

s2ℓ−1

}
.

Recall that d ≥ s. As in the first part of the proof, we easily check that ℓ = 1 and ℓ = 2 the above expression is smaller or
equal to δ. For ℓ ≥ 3, we have 2l−1 ≥ 1 + log(4), which implies also that

P
(
Nℓ ≥

1

4
|Sℓ|
∣∣∣ξℓ) ≤ exp

[
−2ℓ−1

4
· 26

2ℓ−1
log(1/δ)

]
≤ δ .

The event Λℓ and Θℓ respectively state that the proportion of significant (and moderately significant) questions in |Sℓ|
is smaller or equal to 1/4. The following lemma roughly states that as long ξℓ, Θℓ+1, and Λℓ+1, then the proportion of
significant questions in Sℓ+1 is significantly reduced.

Lemma B.6. Let any integer ℓ ≥ 1, we have

P
(
Θℓ+1 and Λℓ+1 and ¬ξ′ℓ+1

∣∣∣ξℓ) ≤ 2δ .

15
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Proof. Recall that m(12)
ℓ denotes the median computed in Algorithm 2, we will denote mℓ instead of m(12)

ℓ in this proof for
the sake of simplicity. We have

P
(
Θℓ+1 and Λℓ+1 and ¬ξ′ℓ+1

∣∣∣ξℓ) = P
(
Θℓ+1 and Λℓ+1 and ¬ξ′ℓ+1 and {mℓ <

3

4
x∗}
∣∣∣ξℓ)

+ P
(
Θℓ+1 and Λℓ+1 and ¬ξ′ℓ+1 and {mℓ ≥

3

4
x∗}
∣∣∣ξℓ). (3)

Upper bound for the first term in the rhs of (3). The event mℓ < (3/4)x∗ implies that {j ∈ Sℓ ∩ S∗ : µ̂
(12)
j,ℓ ≥

3
4x∗} ⊂

Sℓ+1. Hence, {
j ∈ Sℓ ∩ S∗ : µ̂

(12)
j,ℓ ≥

3

4
x∗

}
⊂ Sℓ+1 ∩ S∗,

which gives Mℓ ≤ |Sℓ+1 ∩ S∗|. This leads us to

P
(
Θℓ+1 and Λℓ+1 and ¬ξ′ℓ+1 and {mℓ <

3

4
x∗}
∣∣∣ξℓ) ≤ P

(
¬ξ′ℓ+1 and {mℓ <

3

4
x∗}
∣∣∣ξℓ)

= P
(
{|Sℓ+1 ∩ S∗| ≤

2

3
|Sℓ ∩ S∗|} and {mℓ <

3

4
x∗}
∣∣∣ξℓ)

≤ P
(
{Mℓ <

2

3
|Sℓ ∩ S∗|} and {mℓ <

3

4
x∗}
∣∣∣ξℓ)

≤ P
(
Mℓ <

2

3
|Sℓ ∩ S∗|

∣∣∣ξℓ) ≤ δ ,

where we used Lemma B.5 in the last line.

Upper bound for the second term in the rhs of (3). The event Θℓ+1 implies in particular that

|Sℓ+1 ∩ S∗|+ |Sℓ+1 \ T ∗| ≥ 3

4
|Sℓ+1|.

Moreover, we have that the event {mℓ ≥ 3
4x∗} implies that{

j ∈ Sℓ \ T ∗ : µ̂
(12)
j,ℓ ≥

3

4
x∗

}
⊃ Sℓ+1 \ T ∗,

which gives |Sℓ+1 ∩ S∗|+Nℓ ≥ |Sℓ+1 ∩ S∗|+ |Sℓ+1 \ T ∗| ≥ 3
4 |Sℓ+1|. We conclude that

P
(
Θℓ+1 and Λℓ+1 and ¬ξ′ℓ+1 and {mℓ ≥

3

4
x∗}
∣∣∣ξℓ) ≤ P

(
Λℓ+1 and {|Sℓ+1 ∩ S∗|+Nℓ ≥

3

4
|Sℓ+1|}

∣∣∣ξℓ)
≤ P

(
Nℓ ≥

1

2
|Sℓ+1|

∣∣∣ξℓ) = P
(
Nℓ ≥

1

4
|Sℓ|
∣∣∣ξℓ) ≤ δ,

where we used the definition of Λℓ+1 and Lemma B.5 in the second line. We conclude that

P
(
Θℓ+1 and Λℓ+1 and ¬ξ′ℓ+1

∣∣∣ξℓ) ≤ 2δ .

Consider Algorithm 2 with input (δ, s, h). Let ℓ̄ := ⌈log4/3(d/s∗)⌉+ 1. Introduce the following event:

Eℓ := {Algorithm 2 made at least ℓ iterations} and
u=ℓ⋂
u=1

(Θu ∩ Λu). (4)

16
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Lemma B.7. Consider Algorithm 2 with input (δ, s, h). Suppose that h < x∗ and s < s∗. We have

P(Eℓ̄) ≤ 2ℓ̄δ.

Proof. First, let us prove by induction that, for any ℓ ≤ ℓ̄, we have

P(¬ξℓ and Eℓ) ≤ 2ℓδ.

The assertion for ℓ = 1 is a direct consequence of Lemma B.4. Suppose that the result for some ℓ ≤ ℓ̄. Observe that, by
definition, the event ¬ξℓ+1 implies that either we have ¬ξ′ℓ+1 or we have ¬ξℓ. This leads us to

P(¬ξℓ+1 and Eℓ+1) ≤ P
(
¬ξ′ℓ+1 and Eℓ+1

)
+ P(¬ξℓ and Eℓ+1)

≤ P
(
¬ξ′ℓ+1 and Λℓ+1 and Θℓ+1

)
+ P(¬ξℓ and Eℓ)

≤ 2δ + 2ℓδ,

where we used Lemma B.6 and induction hypothesis in the last line.

Observe that

¬ξℓ̄ =

{
|Sℓ̄ ∩ S∗|
|Sℓ̄|

<
s∗

2d

(
4

3

) ¯ℓ−1
}

; Λℓ̄ =

{
|Sℓ̄ ∩ S∗|
|Sℓ̄|

<
1

4

}
.

Recall that ℓ̄ = ⌈log4/3(d/s∗)⌉ + 1, which implies that s∗

2d

(
4
3

)ℓ̄ ≥ 1
4 . Hence, we have ¬ξℓ̄ ⊂ Λℓ̄ and we conclude that

P(Eℓ̄) = P(¬ξℓ̄ and Eℓ̄) ≤ 2ℓδ.

The following result is built upon the previous lemmas and states that Algorithm 2 returns null with a very small probability
provided that h and s are small enough.
Lemma B.8. Consider Algorithm 2 with input (δ, s, h). Suppose that h < x∗ and s < s∗. We have

P
(
{k̂ = null}

)
≤ 3ℓ̄δ.

Proof. We have:

P
(
{k̂ = null}

)
= P

(
{k̂ = null} and ¬Eℓ̄

)
+ P

(
{k̂ = null} and Eℓ̄

)
≤ P

(
{k̂ = null} and ¬Eℓ̄

)
+ 2ℓ̄δ,

where we used Lemma B.7. Now Suppose Eℓ̄ is false. Hence, there exists an iteration ℓ ≤ ℓ̄ such that either Θℓ is false

or Λℓ is false. Recall that {k̂ = null} implies that µ̂(12)
ℓ <

√
2 log(2/δ)

n0ϕ
(otherwise, the algorithm halts at iteration ℓ and

outputs k̂ ∈ {1, 2}). Then

P
(
{k̂ = null} and ¬E

)
≤

ℓ̄∑
ℓ=1

P

({
µ̂
(12)
ℓ <

√
2 log(2/δ)

n0ϕ

}
and {¬Θℓ ∪ ¬Λℓ}

)

=

ℓ̄∑
ℓ=1

P

 1

|Sℓ|
∑
j∈Sℓ

xj − µ̂
(12)
ℓ >

1

|Sℓ|
∑
j∈Sℓ

xj −

√
2 log(2/δ)

n0ϕ

 and {¬Θℓ ∪ ¬Λℓ}


≤

ℓ̄∑
ℓ=1

P

 1

|Sℓ|
∑
j∈Sℓ

xj − µ̂
(12)
ℓ >

1

8
x∗ −

√
2 log(2/δ)

n0ϕ


≤

ℓ̄∑
ℓ=1

P

 1

|Sℓ|
∑
j∈Sℓ

xj − µ̂
(12)
ℓ >

√
2 log(2/δ)

n0ϕ

 ≤ ℓ̄δ ,

where we used the definition of Θℓ and Λℓ in the third line, the assumption h < x∗ and s < s∗ in the fourth line and
Chernoff’s bound in the last line.
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Part 3: Here, we gather all the previous lemmas to establish the three claims of the theorem.

Conclusion for the first claim: Lemma B.3 leads to the first claim of Theorem 4.1.

Conclusion for the second claim: Let us prove that if ϵ2 < d/H then Algorithm 1 with input (δ, ϵ) outputs k̂ = 1 with
probability at least 1− δ. By Lemma B.3, we have P(k̂ = 2) ≤ 0.6δ. Hence, it suffices to prove that P(k̂ = null) ≤ 0.4δ.
Define

ρ∗ :=

⌊
log2

(
16d

s∗x2
∗

)⌋
and r∗ :=

⌈
log2

(
1

x2
∗

)⌉
. (5)

By assumption, we have x2
∗ ≤ 1, so that r∗ ≥ 1 and ρ∗ ≥ 1. Recall that ϵ2 < d

H ≤ log(2d)s∗x2
∗ ≤ 16 log(2d)d 2−ρ∗

.
If Algorithm 1 returns k̂ = null, then it implies in particular that Algorithm 2 returns k̂ = null at the iteration ρ∗

and r∗ ≤ ρ∗. At this step, the inputs (δr∗ , sr∗ , hr∗) of Algorithm 2 satisfy δr∗ ≤ δ/(10r∗3 log(d)), hr∗ = 1/
√
2r∗ ≤

x∗, and sr∗ = 2r
∗
d/2ρ

∗ ≤ s∗. We then deduce from Lemma B.8 that k̂ = null with probability less or equal to
3

10r∗3 log(d) (⌈log4/3(d/s
∗)⌉+ 1)δ ≤ 0.4δ. We conclude that P[k̂ = 1] ≥ 1− δ.

Conclusion for the third claim: The total number of queries made by Algorithm 2 with inputs (δ, s, h) is at most

Ns,h = 4096
log4/3(16d/(9s)) log(1/δ)

sh2
.

Consider Algorithm 1 with input (δ, ϵ). Suppose that ϵ2 ≥ d/H , therefore the maximum number of iterations is less than
ρ′ = ⌊log2(4 log(2d)d/ϵ2)⌋. Therefore the total number of queries satisfies:

N ≤
ρ′∑

ρ=1

ρ∑
r=0

Nsr,hr

≤ 4096[log4/3(d) + 2]

ρ′∑
ρ=1

ρ∑
r=0

log(1/δr)

srh2
r

≤ 104 log(d) log

(
10 log(d)ρ

′3

δ

)
ρ′∑

ρ=1

(ρ+ 1)2ρ

≤ 8.104 log2(2d) log2

(
log(8d log(d))

ϵ2

)
log

(
10 log(d)ρ′3

δ

)
d

ϵ2

≤ c′ log2(2d) log

(
log(2d)

ϵ2

)
log

(
2 log(2d/ϵ2)

δ

)
d

ϵ2
,

where c′ is a numerical constant.

Now suppose that ϵ2 < d/H . We have shown previously that, with probability at least 1− δ, the algorithm stops no later
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than at iteration ρ∗ and r∗ (defined in (5)). Under such an event, the total number of iterations satisfies

N ≤
ρ∗−1∑
ρ=1

ρ∑
r=0

Nsr,hr
+

r∗∑
r=0

Nsr,hr

≤ 4096[log4/3(d) + 2]

ρ∗−1∑
ρ=1

ρ∑
r=0

log(1/δr)

srh2
r

+

r∗∑
r=0

log(1/δr)

srh2
r


≤ 104 log(d) log

(
10 log(d)ρ∗3

δ

) ρ∗∑
ρ=1

(ρ+ 1)2ρ

≤ 104 log(d) log

(
10 log(d)ρ∗3

δ

)
(ρ∗ + 1)2ρ

∗+1

≤ 8 · 104 log(d) log
(
10 log(d)

δ
log32

(
4d

s∗x2
∗

))
log2

(
8d

s∗x2
∗

)
d

s∗x2
∗

≤ c′ log2(d) log(H) log

(
log(H) log(d)

δ

)
H ,

where c′ is a numerical constant and where we used that ∥x∥22 ≤ s∗ log(2d)x2
s∗ .

C. Full Ranking
C.1. Binary search algorithm

Algorithm 5 Binary-search(δ, i, r, a, b)
Input: δ, r, i expert to be inserted, start, end (start/end of array r).
if start = end then

if compare(δ, 0, i, r[start]) = i then
Output: start + 1.

else
Output: start.

end if
end if
if start > end then

Output: start.
end if
Let mid← ⌊(start + end)/2⌋
if compare(δ, 0, i, r[mid]) = i then

Output: Binary-search(δ, i, r,mid + 1, end).
else if compare(δ, 0, i, r[mid]) = r[mid] then

Output: Binary-search(δ, i, r, start,mid− 1).
else

Output: mid.
end if

C.2. Proof of Theorem 5.1

For i ∈ Jn− 1K, define:

Hi :=
d∑d

j=1(Mπ(i),j −Mπ(i+1),j)2
.

By convention, we define H0 = 0. Binary insertion sort procedure makes at most n⌈log2(n)⌉ comparisons, hence using
an union bound, we conclude that all calls to compare algorithm output a correct result with probability at least 1 − δ.
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Moreover, inserting any expert i costs at most ⌈log2(n)⌉ calls to compare. For any k ∈ JnK \ {i}, we apply Theorem 4.1.
Hence, the total number of queries made by Binary-search(δ/(n⌈log2(n)⌉), i, r, 1, i− 1) is upper bounded by

c log2(d) log(n) log(Hi ∨Hi−1) log[n log(d) log(Hi ∨Hi−1)/δ](Hi ∨Hi−1)

with probability at least 1− δ/n. Here, c stands for a numerical constant. Summing for i ∈ Jn− 1K gives the desired result.

D. Best expert identification
D.1. Max search algorithm

The max-search routine with precision ϵ is described in Algorithm 6 below.

Algorithm 6 Max-search(δ, S, ϵ)
Input: δ confidence parameter, S a set of experts, ϵ a precision parameter.
Output: Set C of experts.
Let ℓ = |S| and a1, . . . , aℓ be the elements of S.
C ← {a1}, m← a1.
for r = 2, . . . , ℓ do

if compare( δ
2|S| , ϵ,m, ar) = null then

C ← C ∪ {ar}.
else if compare( δ

2|S| , ϵ,m, ar) = ar then
C ← {ar}, m← ar.

end if
end for
for i ∈ C \ {m} do

if compare( δ
2|S| , ϵ,m, i) = m then

C ← C ∪ {i}
end if

end for
Output: C.

D.2. Proof of Theorem 5.2

Let i∗ ∈ JdK denote the optimal expert. For ϵ ∈ (0, 1), define Bϵ ⊂ JdK as follows:

Bϵ := {i ∈ JnK : ∥Mi∗ −Mi∥22 ≤ ϵ2}.

Lemma D.1. Consider Algorithm 6 with input (δ, S, ϵ) such that ϵ ≤ 1 and i∗ ∈ S. Denote C its output. With probability
at least 1− δ, we have i∗ ∈ C and C ⊆ B2ϵ.

Proof. Fix δ ∈ (0, 1) and ϵ ∈ (0, 1). To ease notation, we denote R1(a, b) (resp. R2(a, b)), the output of compare(δ, ϵ, a, b)
for a ∈ S and b ∈ S in the first (resp. second) loop of Algorithm 6. Also, we we write m̂ the element with which items are
compared in the second loop of Algorithm 6.

Using Theorem 4.1, we have that, on an event of probability 1− δ, all the results of R1(m, i) and R2(m, i) in Algorithm 6
are such that, for s = 1, 2, Rs(m, i) ∈ {i,null} if i is above m, Rs(m, i) ∈ {m,null} if m is above i, and Rs(m, i) ̸=
null if ∥Mm −Mi∥2 ≥ ϵ.

Let us show that, under this event, we have i∗ ∈ C and C ⊆ B2ϵ. Indeed, if i∗ /∈ C, this implies that in the second loop we
had R2(m̂, i∗) = m̂, which is not possible by definition.

Besides, we easily check that m̂ satisfies ∥Mm̂ −Mi∥2 ≤ ϵ. Since C only contains the elements j such that we have
found Rs(m̂, j) ∈ {j,m} for s = 1 or s = 2, this implies that either j is above m̂ or that ∥Mm̂ −Mi∥2 ≤ ϵ. By triangular
inequality, we have proved that C ⊆ B2ϵ.
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Lemma D.2. Consider Algorithm 6 with input (δ, S, ϵ) such that ϵ ≤ 1 and i∗ ∈ S. Denote Nϵ the total number of queries
made. We have

Nϵ ≤ c log2(d) log

(
d

ϵ2

)
log

(
|S| log( d

ϵ2 )

δ

)
d|S|
ϵ2

,

where c is a numerical constant.

Proof. Observe that in Algorithm 6, there are at most 2|S| calls to the procedure compare with precision parameter ϵ.
Using Theorem 4.1, we get the result.

Conclusion: Fix δ ∈ (0, 1) and denote N the total number number of queries made by Algorithm 4.

Write r = 1, . . . , r̂ for the iterations of Algorithm Algorithm 4 and write Sr for the corresponding result of Max-search
algorithm. We write S0 = [n]. Applying Lemma D.1, we know that on event of probability higher than 1− δ, we have,

i ∈ Sr and Sr ⊆ B2·4−r+1 . (6)

simultaneously for all r = 1, . . . , r̂.

We work henceforth under this event. First, this implies that Sr̂ = {i∗}. Hence, the procedure recovers the best expert.

Write ∆∗ := mini ̸=i∗∥Mi −Mi∗∥22 for the minimum distance between i∗ and another expert. Denote r∗ = ⌈log4(8/∆∗)⌉.
By (6), we have r̂ ≤ r∗. By Lemma D.2, the total number of queries made at iteration r is no larger than

c log2(d) log

(
d

4−2r

)
log

(
n2k log( d

4−2r )

δ

)
d|Sr−1|
4−2r

,

where c is a numerical constant and |Sr−1| ≤ |B2·4−r+2 | for r ≥ 2 and |S0| = n.

As a consequence, the total number N of queries from iteration 2 to r∗ satisfies

N ≤ c′d log2(d) log

(
n log(d)

δ

)[
n+

r∗∑
r=2

r log(d42r)42r|B2·4−r+2 |

]

≤ c′d log2(d) log

(
n log(d)

δ

)n+
∑
i ̸=i∗

r∗∑
r=2

k log(d42r)42r1{∥Mi −Mi∗∥2 ≤ 2 · 4−r+2}


≤ c′′d log2(d) log

(
n log(d)

δ

)n+
∑
i ̸=i∗

1

∥Mi −Mi∗∥22
log2

(
d

∥Mi −Mi∗∥22 ∨ 1

) .

The result follows.

E. Proofs of the lower bounds
Proof of Theorem 6.1. Fix d ≥ 1, δ ∈ (0, 1/4), and ∆ ∈ (R+)d such that ∥∆∥2 > 0, and let A be a δ-accurate algorithm.
Define the 2× d matrix M∗ by M∗

1,j = ∆j for j ∈ JdK and M∗
2,j = 0. For any permutation π of J2K and any permutation

σ of JdK, we write M∗
π,σ for the permuted matrix such that (M∗

π,σ)i,j = (M∗
π,σ)π−1(i),σ−1(j). Obviously, we have M∗

π,σ

belongs toMn,d and π is the permutation that order the rows of M∗
π,σ .

For any permutations π and σ, we write P(π,σ) for the distribution of the data such that Xi,j ∼ N [(M∗
π,σ)i,j , 1]. We also

introduce the ’null’ distribution P0 such that Xi,j ∼ N [0, 1]. There exist only 2 permutations on J2K, that we respectively
denote π0 (for the identity permutation) and π1. Since the strategy A is δ-accurate, we have, for any permutation σ of JdK,
that

P(π0,σ)(π̂ ̸= π0) ≤ δ and P(π1,σ)(π̂ ̸= π1) ≤ δ . (7)

Denote N the total budget of the algorithm A. Let x be the smallest integer such that

max
σ

max
z=0,1

P(πz,σ)[N > x] ≤ δ
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Next, we claim that P0(N > x) ≥ 1− 2δ. Indeed, for any κ > 0, consider the 2× d matrix M ′ such that M ′
1,1 = κ and

M ′
i,j = 0 otherwise. Write M ′

π0
and M ′

π1
for the matrix M ′ where we have permuted the rows according to π0 and π1.

Write P′(π0) and P′(π1) for the corresponding distribution of the data. Since the strategy A is δ-accurate, we have

P
′(π0)(π̂ ̸= π0) ≤ 1− δ and P

′(π1)(π̂ ̸= π0) ≤ 1− δ

As a consequence,
P

′(π0)(π̂ = π1 and N ≤ x) + P
′(π1)(π̂ = π0 and N ≤ x) ≤ 2δ

On the event where N ≤ x, the distributions P′(π0) and P′(π1) converges in total variation distance towards P0 when κ goes
to zero. This implies that P0[N ≤ x] ≤ 2δ.

Consider the new algorithm A′ defined as follows. If the total budget of A is smaller or equal to x, then it returns Ĥ = H1,
if the total budget is higher than, then it returns Ĥ = H0”. With a slight abuse of notation, we still write N for the total
budget of A′ and P(π,σ) for the corresponding distributions. By definition of x, we have

max
σ

max
z=0,1

P(πz,σ)[Ĥ = H1] ≥ 1− δ and P0[Ĥ = H1] ≥ 1− 2δ .

By definition of the total variance distance TV between distributions (see Theorem 2.2 of (Tsybakov, 2004)), we derive that

min
z=0,1

1

d!

∑
σ

TV
(
P(πz,σ),P0

)
≥ 1− 3δ

By Lemma F.2, we control the total variation distance in terms of Kullback-Leibler discrepancy.

TV
(
P(π,σ),P0

)
≤ 1− 1

2
exp

−
2∑

i=1

d∑
j=1

E0[Ni,j ] KL
(
P(0)
i,j ,P

π,σ
i,j

), (8)

Under Pπ,σ , the distribution the (i, j)-th entry is N (M∗
π−1(i),σ−1(j), 1). Fixing π = π0 and averaging over all permutation

σ leads to
1

d!

∑
σ

exp

− d∑
j=1

E0[N1,j ]∆
2
σ−1(j)

 ≤ 6δ

By Jensen’s inequality, we deduce that

1

d!

∑
σ

d∑
j=1

E0[N1,j ]∆
2
σ−1(j) ≥ log(1/(6δ)) .

Arguing similarly for the permutation π1, we arrive at

1

d!

∑
σ

d∑
j=1

E0[N1,j +N2,j ]∆
2
σ−1(j) ≥ 2 log(1/(6δ)) .

Then, by Lemma F.1, this left-hand-side term of this equation is larger or equal to E0[N ]∥∆∥22/d. Since E0[N ] ≥ (1−2δ)x,
we conclude that

x ≥ d log(1/6δ)

2∥∆∥22
,

which conclude the proof.

Proof of Theorem 6.2. We introduce the n × d matrix M0 by (M0)1,j = 1 and (M0)i,j = 1 −
∑i−1

l=1 ∆l/
√
d for i =

2, . . . , n− 1. All the rows of M0 are constant. Obviously, the true ranking π is the identity, while ∥Mi −Mi+1∥22 = ∆2
i .

Given i ∈ Jn0 − 1K, let πi,i+1 denote the transposition that exchanges i and i+ 1. Any δ-accurate algorithm A is able to
decipher with probability higher than 1− δ between the matrix M0 and the permuted matrix (M0)πi,i+1 , which, since the
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rows of M0 are constant, is equivalent to best arm identification in a two-arm problem with gap ∆i/
√
d. Assume that we

observe the matrix M0 with a standard Gaussian noise and denote B0 for the corresponding distribution. By (Kaufmann
et al., 2016), we have EB0,A[Ni+1] ≥ d log[1/4δ)]/∆2

i . By linearity, we deduce that

EB[N ] ≥
n−1∑
i=1

d

∆2
i

log[1/(4δ)] ,

which concludes the proof.

Proof of Theorem 6.3. This theorem is a straightforward consequence of existing lower bounds in multi-armed bandits for
best arm identification. Indeed, the set Dn,d

∆ contains in particular problem instances that are constant over questions. For
these instances, our d-dimensional problem is akin to a one dimensional problem, i.e. to a standard multi-armed bandit
problem. Existing lower bounds in this case imply the bounds, see e.g. (Kaufmann et al., 2016).

F. Technical results
The first lemma is a slight generalization of Lemma 3.1 in Castro, 2014

Lemma F.1. Let Υd denote the set of permutations on JdK. Consider any vectors x = (x1, . . . , xd) ∈ Rd
+ and any

b = (b1, . . . , bd) ∈ Rd
+. ∑

π∈Υd

d∑
i=1

bi xπ(i) =
|Υd|
d

d∑
i=1

xi

d∑
i=1

bi .

Proof. Fix any such b and x. We simply exchange the summation order.

∑
π∈Υd

d∑
i=1

bi xπ(i) =

d∑
i=1

bi
∑
π∈Υd

xπ(i) =

d∑
i=1

bi
|Υd|
d

d∑
i=1

xi

=
|Υd|
d

d∑
i=1

xi

d∑
i=1

bi .

Lemma F.2 (Kaufmann et al., 2016, with slight modification). Let ν and ν′ be two collections of d probability distributions
on R, such that for all a ∈ JdK, the distributions νa and νa′ are mutually absolutely continuous. For any almost-surely finite
stopping time τ with respect to the data collected before τ ,

sup
E∈Fτ

|Pν(E)− Pν′(E)| ≤ 1− 1

2
exp

{
−

d∑
a=1

Eν [Na(τ)]KL(νa, ν′a)

}
.

Lemma F.3. Let (xi)i∈JdK denote a sequence of non-increasing numbers in [0, 1]. We have

d∑
i=1

xi ≤ log(2d) max
1≤s≤d

{s xs}. (9)

Proof. Suppose for the sake of contradiction that, for any s ∈ JdK, we have

s log(2d) xs <

d∑
i=1

xi.
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Dividing the above inequality by s and summing it over s ∈ JdK, we deduce that

log(2d)

d∑
s=1

xs <

d∑
s=1

1

s

d∑
i=1

xi,

which contradict the upper bound on the partial sum of harmonic series Hd =
∑d

s=1
1
s :

Hd ≤ log(d) + γ +
1

2d− 1
.

The following lemma is a direct consequence of Chernoff’s inequality applied to a binomial random variable.

Lemma F.4. Let X =
∑n

i=1 Xi, where Xi are independent and follow the Bernoulli distribution with parameter p, and let
µ = E[X], we have for any κ ≥ 0

P(X ≥ (1 + κ)µ) ≤ eκµ

(1 + κ)(1+κ)µ
.

Besides, for any κ ∈ (0, 1), we have

P(X ≤ (1− κ)µ) ≤ exp

(
−κ2µ

2

)
P(X ≥ (1 + κ)µ) ≤ exp

(
−κ2µ

3

)
Proof. We only show the first inequality, the other ones being classical. All of them are consequences of Chernoff
inequality. For a variable Y , we denote MY (t) its moment generating function. Recall that, for any Xi ∼ Ber(p), we have
MXi

(t) ≤ ep(e
t−1). Moreover for X =

∑n
i=1 Xi, we have

P(X ≥ k) ≤ min
t>0

MX(t)

e(k)
= min

t>0

∏n
i=1 MXi

(t)

etk

≤ min
t>0

(
ep(e

t−1)
)n

etk
= min

t>0

eµ(e
t−1)

etk
.

For k = (1 + κ)µ, we take t = log(1 + κ) and we obtain

P(X ≥ (1 + κ)µ) ≤ eµ(e
log(1+κ)−1)

e(1+κ)µ log(1+κ)
=

eκµ

(1 + κ)(1+κ)µ
.
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